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Context:  Pancreatic steatosis leading to beta-cell failure might be involved in type 2 diabetes 
(T2D) pathogenesis.

Objective:  We hypothesized that the genetic background modulates the effect of pancreatic fat 
on beta-cell function and investigated genotype × pancreatic fat interactions on insulin secretion.

Design:  Two observational studies.

Setting:  University hospital.

Patients or participants:  A total of 360 nondiabetic individuals with elevated risk for T2D 
(Tuebingen Family Study [TUEF]), and 64 patients undergoing pancreatectomy (Pancreas 
Biobank [PB], HbA1c <9%, no insulin therapy).

Main Outcome Measures:  Insulin secretion calculated from 5-point oral glucose tolerance test 
(TUEF) and fasting blood collection before surgery (PB). A genome-wide polygenic score for 
T2D was computed from 484,788 genotyped variants. The interaction of magnetic resonance 
imaging-measured and histologically quantified pancreatic fat with the polygenic score was 
investigated. Partitioned risk scores using genome-wide significant variants were also computed 
to gain insight into potential mechanisms.

*R.W. and B.A.J. contributed equally to this work.
Abbreviations:  AUC, area under the curve; BMI, body mass index; CIR, corrected insulin 
response; gwPS, genome-wide polygenic score; HOMA2, homeostatic model assess-
ment 2; MRI, magnetic resonance imaging; OGTT, oral glucose tolerance test; ROI, 
region of interest; SNP, single-nucleotide polymorphism; T2D, type 2 diabetes; TUEF, 
Tuebingen Family Study.
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Results:  Pancreatic steatosis interacted with genome-wide polygenic score on insulin secretion 
(P = 0.003), which was similar in the replication cohort with histological measurements 
(P = 0.03). There was a negative association between pancreatic fat and insulin secretion 
in participants with high genetic risk, whereas individuals with low genetic risk showed a 
positive correlation between pancreatic fat and insulin secretion. Consistent interactions were 
found with insulin resistance-specific and a liver/lipid-specific polygenic scores.

Conclusions:  The associations suggest that pancreatic steatosis only impairs beta-cell 
function in subjects at high genetic risk for diabetes. Genetically determined insulin 
resistance specifically renders pancreatic fat deleterious for insulin secretion. (J Clin 
Endocrinol Metab 105: 1–8, 2020)

Key Words:   beta cell function, insulin secretion, non-alcoholic fatty pancreas disease, 
pancreatic steatosis, prediabetes, type 2 diabetes

Pancreatic steatosis (ie, pancreatic fat) is charac-
terized by an increased pancreatic triacylglycerol 

content and embodies adipocytes interspersed in the 
pancreatic parenchyma (1). Accumulating evidence im-
plicates this fat compartment as a modulator of islet 
function (1-4). Specifically, pancreatic steatosis was in-
versely associated with insulin secretion in subjects with 
prediabetes (2). Further, it has been suggested that re-
duction of pancreatic steatosis is pivotal in improving 
beta-cell function during a lifestyle intervention (5, 6). 
However, subjects with normal glucose tolerance do 
not exhibit the negative association between pancre-
atic steatosis and insulin secretion (2, 7). In longitudinal 
studies, there was no association between age-adjusted 
computed tomography-measured pancreatic steatosis 
and diabetes incidence (8), but only in lean subjects 
(9). In patients with type 2 diabetes (T2D), pancreatic 
fat associated with a reduction of glucagon-stimulated 
insulin secretion (10). A possible explanation to these 
controversial findings could be a large heterogeneity of 
individual responses to increased pancreatic fat mass. 
As a complex disease, T2D results from an interplay of 
genetic predisposition and environmental factors (11). 
We hypothesized that unfavorable effects of pancreatic 
steatosis on beta-cell function arise only in the context 
of a genetic predisposition for diabetes.

Methods

Subjects
In the discovery analyses, we investigated data from 360 

nondiabetic subjects of the Tübingen Family Study (TUEF) who 
underwent magnetic resonance imaging (MRI) measurements of 
pancreatic fat content (see Supplementary Figure 1a which is lo-
cated in a digital research material repository (12)). The subjects 
were recruited based on their elevated risk for type 2 diabetes 
(positive family history, prior gestational diabetes, known glu-
cose intolerance, or overweight) and underwent oral glucose 
tolerance tests (OGTT). Subjects either had normal glucose 
tolerance or impaired fasting glucose and/or impaired glucose 

tolerance. Subject characteristics are given in Supplementary 
Table 1. All supplementary material and figures are located in a 
digital research materials repository (12). Liver fat measurements 
were missing in 10 subjects, C-peptide-based insulin secretion 
measurements were missing in 12 subjects. In the validation ana-
lysis, we investigated data (N = 64) from our Pancreas Biobank. 
Patients undergoing pancreatic surgery provided written in-
formed consent to donate pancreas tissue for research purposes. 
We obtained macroscopically healthy tissue that had been re-
sected during surgery, but was not needed for further pathology 
workup. Fasting blood was drawn before surgery to provide 
detailed metabolic phenotyping. Patients on insulin therapy 
and those who had very high HbA1c levels independent from 
therapy (>9%) were excluded from the analysis (Supplementary 
Figure 1b, located in a digital research materials repository (12)). 
Patient characteristics are shown in Supplementary Table 2, lo-
cated in a digital research materials repository (12).

Measurement of insulin secretion
Participants of the TUEF study underwent 5-point OGTT 

with 75 g glucose. Blood samples were taken at fasting and 
after 30, 60, 90, and 120 minutes.

Insulin secretion was measured from stimulated insulin and 
C-peptide levels using the insulinogenic index (13) and area 
under the curve (AUC)-C-peptide0-30/AUC-glucose0-30. The 
AUCs for C-peptide and glucose were calculated with the trap-
ezoid method. Insulin sensitivity was assessed by the insulin sen-
sitivity index of Matsuda and DeFronzo (14). Participants of the 
Pancreas Biobank provided fasting blood samples before surgery. 
In this cohort, insulin secretion and sensitivity were computed 
using the homeostatic model assessment 2 (HOMA2) method 
(15). Insulin secretion was computed from fasting glucose and 
C-peptide (HOMA2%B) or fasting glucose and insulin for a 
sensitivity analysis (HOMA2%B-insulin). Insulin sensitivity was 
computed from fasting glucose and insulin levels (HOMA2%S).

Plasma glucose was measured using a bedside glucose ana-
lyzer (glucose-oxidase method, Yellow Springs Instruments, 
Yellow Springs, OH) or from sodium fluoride plasma using an 
automated glucose oxidase method on Siemens ADVIA XPT 
Clinical Chemistry Analyzer (Siemens, Healthineers, Erlangen, 
Germany). Plasma insulin and C-peptide were measured using 
the ADVIA Centaur XPT Analyzer (Siemens Healthineers, 
Eschborn, Germany). HbA1c measurements were performed 
using the Tosoh glycohemoglobin analyzer HLC-723G8 
(Tosoh Bioscience, Tokyo, Japan).
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Quantification of pancreas fat, liver fat, and other 
adipose tissue compartments

In the discovery cohort, pancreatic steatosis was quantified 
by MRI as previously described (Fig. 1A, B) (16). MRI is con-
sidered as the most accurate method to quantify pancreatic 
steatosis (16). The evaluation of the MRI scans was performed 
by a single experienced investigator (J.M.), who was not aware 
of the subject’s characteristics. The regions of interest (ROIs) 
of the pancreas were focused on the caput, corpus, and cauda. 
The mean of the ROIs was calculated for each individual. 
The ROIs of pancreatic fat were measured avoiding macro-
scopic vessels, motion artefacts, or partial volume artefacts. As 

internal reference ROI of the adjacent mesenteric fat was used. 
This reference was close to the investigated pancreatic tissue. 
Even participants with similar body mass index (BMI) and vis-
ceral adipose content displayed a considerable heterogeneity 
in pancreatic fat content (Fig. 1C). Liver fat content, which 
was used as a covariate in some of the models, had been meas-
ured by localized proton magnetic resonance spectroscopy, as 
described previously (17).

In the validation cohort (N = 64), pancreatic steatosis was 
assessed from insulin immunostained histological sections 
with a manual and an automatic method (Fig. 1D, E). First, 
fat infiltration levels were manually specified as none (N = 9), 

Figure 1.  Determination of pancreatic fat content. In the discovery cohort, pancreatic fat was measured from cross-sectional fat selective magnetic 
resonance imaging (MRI) images using the average value of the regions of interest at the head, neck, and tail of the organ (orange circles; a, b). 
Nearby visceral adipose tissue (dotted blue circle) is used as internal reference. MRI scans (a, b) are from 2 female study participants. Participant 1 
(46 years, BMI 32 kg/m2) has a pancreatic fat content of only 4% (A), whereas participant 2 (66 years, BMI 33 kg/ m2) has 28% (B). Participants 
with similar BMI and visceral adipose tissue can have strikingly different pancreatic fat contents (C; n = 360, dot color and size indicate pancreatic 
fat content). In the validation cohort, pancreatic fat was determined from hematoxylin and eosin-stained tissue slices also featuring insulin 
costaining to locate islets of Langerhans (D, E). One patient (D) had low pancreatic fat content, whereas the other (E) high pancreatic fat content.
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< 10% (N  =  25), and > 10% (N  =  30) by an experienced 
operator (F.G.) who was unaware of the laboratory results 
and the genetic risk score at the time of the investigation. For 
further analyses, the 2 lower categories were aggregated, re-
sulting in a low (N = 34) and high (N = 30) pancreatic fat 
infiltration group. Second, we used an automatic segmentation 
of adipocyte area on histological sections of each patient using 
ImageJ (18, 19).

Pancreatic tissue samples were obtained from the tumor-
free resection margins, as provided by the pathologist. 
Paraffin-embedded pancreatic sections were incubated with 
primary antibody against insulin (1:1000; Dako) and CD68 
(1:3000, Cell  Signaling Technology). The primary antibody 
was detected using the Opti-View system (Ventana, Multimer 
Technology, Roche). Hematoxylin-eosin was used as coun-
terstaining and for the assessment of the grade of fibrosis. 
Macrophage/monocyte infiltration was quantified by counting 
the CD68+ cells in islets.

Visceral adipose tissue volume was quantified between fem-
oral heads and thoracic diaphragm from axial T1-weighted 
fast spin-echo MRI as described in Machann et al (20) by an 
automatic segmentation procedure based on fuzzy clustering 
and orthonormal snakes (21). Liver fat content was assessed 
by single-voxel proton MR spectroscopy applying a stimu-
lated echo acquisition matrix technique with short echo time 
(10 ms) and long repetition time (4 seconds). Ratio of the inte-
gral of methyl/methylene and water signal was calculated and 
liver fat content is given as percentage of the entire signal (20).

Genotyping and polygenic scores
We used multiple approaches to estimate genetic diabetes 

risk. An outline on polygenic risk scores is provided in the 
review of Udler et al (22). First, we computed a genome-wide 
polygenic score (gwPS), also known as global extended poly-
genic score, for each participant using the combination of all 
genotyped variants and BMI-adjusted summary statistics from 
the latest large genome-wide association study meta-analysis 
in ~900,000 European subjects (23). This computation was 
performed with the LDPRED algorithm, which aggregates 
Bayesian estimates for each variant after accounting for 
linkage disequilibrium (24). After quality control, exclusion 
of multiallelic and low-frequency variants, we combined 
484,788 variants from the datasets, yielding an estimated 
genome-wide single-nucleotide protein (SNP)-heritability of 
0.069 in the TUEF cohort. Correlation of this polygenic risk 
score with glycemic endpoints in the whole TUEF cohort is 
shown in Supplementary Table 3 (12). Second, we computed 
polygenic scores from a restricted set of genome-wide signifi-
cant variants (restricted to significant polygenic scores) that 
were partitioned to pathomechanistic groups. Specifically, we 
assigned variants to homeostatic action groups (insulin sensi-
tivity, insulin secretion, or both) using data from Mahajan et al 
(25). The provided glycemic traits of interest were HOMA-IR 
and insulin sensitivity index-Matsuda (for insulin sensitivity), 
as well as HOMA-B and corrected insulin response (CIR; 
for insulin secretion). We selected all genome-wide signifi-
cant variants for diabetes that were affecting 1 or more of 
these specific glycemic traits at P values < 0.025 resulting in 
the classification of SNPs shown in the Supplementary Table 
4 (12). Because effect sizes for different outcomes (HOMA-
indices, CIR, etc.) were difficult to consolidate into meaningful 

weights, scores were computed by simple addition of risk al-
leles. Third, we used the partitioning of variants to different 
pathomechanistic clusters as suggested by Udler et al (26). In 
brief, this work assigned variants to one or more of the fol-
lowing groups: (1) variants affecting beta-cell function with 
elevated proinsulin (beta-cell); (2) beta-cell function with re-
duced proinsulin (proinsulin); (3) obesity; (4) lipodystrophy; 
and (5) liver/lipid. All genotyping in the TUEF cohort and in 
the participants of the pancreas biobank was performed using 
a 700-K Infinium Global Screening Array from Illumina (San 
Diego, CA).

Statistics
All statistical analyses were conducted in R version 3.4 

(27). For linear regression models, outcome variables were 
log-transformed to approximate normal distributions. To fa-
cilitate comparison of genetic effects for different outcomes, 
effect sizes are shown as standardized estimates (β), with out-
comes normalized to a mean of 0 with standard deviations of 
1.  In the statistical models, insulin secretion was always ad-
justed for insulin sensitivity (Matsuda-index or HOMA%S). 
In the models using restricted-to-significant polygenic scores 
partitioned to mechanism of action, we adjusted insulin secre-
tion (insulinogenic index) to insulin sensitivity, sex, age, age2, 
BMI, and visceral adipose tissue volume. A P value of < 0.05 
was considered statistically significant.

Study approval
Both studies conformed to the principles outlined in the 

Declaration of Helsinki and the study protocols had been 
approved by the institutional review board at the Medical 
Faculty of the University of Tübingen. Written informed con-
sent from all participants was received before inclusion in 
the study. For the study, all participants are identified only by 
number, not by name.

Results

Genome-wide polygenic score using MRI 
measured pancreatic steatosis

Genetic T2D risk (gwPS) inversely associated with 
insulin secretion (AUC-C-peptide0-30/AUC-glucose0-30) 
after adjustment for insulin sensitivity, sex, age, age2, 
and BMI (β = -0.038, P = 0.019). However, there was 
no association between gwPS and pancreatic steatosis in 
the discovery cohort (P = 0.21). Pancreatic steatosis also 
did not associate with insulin secretion when analyzed 
in the full cohort (after adjustment for insulin sensi-
tivity, sex, age, age2, and BMI; P = 0.166 for AUC-C-
peptide0-30/AUC-glucose0-30). Correlation of pancreatic 
fat content with anthropometric, glycemic, and lipid 
variables is shown in Supplementary Table 5 (12).

In models testing interaction of pancreatic steatosis 
with gwPS, the interaction term was significant for 
the insulin secretion indices (β = -0.097, P = 0.008 for 
insulinogenic index; and β = -0.95, P = 0.011 for AUC-
C-peptide0-30/AUC-glucose0-30, adjusted as described 
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previously). These interactions were also independent 
from the potential confounders visceral adipose tissue 
and liver fat content (P = 0.006 and P = 0.001 for the 
interaction terms in the insulin- and C-peptide-based 
secretion assessment, respectively, full multivariable 
models are shown in Supplementary Tables 6–7 (12)).

When stratifying the study population by terciles of 
genetic risk (gwPS low, mid, and high), pancreatic stea-
tosis positively associated with insulin secretion (AUC-
C-peptide0-30/AUC-glucose0-30) in the low gwPS group 
(β = 0.091, P = 0.007) and negatively in the high gwPS 
group (β = -0.086, P = 0.038; Fig. 2A).

Genome-wide polygenic score using histologically 
determined pancreatic steatosis

When analyzing the validation cohort as a whole, 
there was no association of genetic risk or pancreatic 
steatosis with insulin secretion (P > 0.3). However, we 
detected an interaction between gwPS and pancreatic 
fat infiltration (P = 0.03 with the dichotomized manual 
pancreatic fat measurements and P = 0.0001 using mean 
adipocyte coverage area from automatically quantified 
fat measurements) on C-peptide-based insulin secretion. 
The interaction was also significant for insulin-based 
HOMA2-B index (P = 0.03 and P = 0.02, respectively). 
In the low and mid gwPS strata, pancreatic fat did not 
associate with insulin secretion (P > 0.112). In the high 
gwPS stratum, participants with high histologically de-
termined pancreatic fat infiltration had lower insulin se-
cretion (β = -0.880, P = 0.011, Fig. 2B). Dichotomized 
data from automatic measurements of pancreatic fat 
showed a directionally consistent trend for association 
(Supplementary Figure 3 (12)). Patients with higher 
pancreatic fat content in their histologic sections had 
also larger insulin staining areas, but no differences in 
the gwPS (Supplementary Figure 4 (12)). We did not de-
tect an association of the degree of pancreatic steatosis 
with underlying pancreatic disease, obstruction of the 
pancreatic duct, or histologic grade of tissue fibrosis 
(Supplementary Table 8 (12)).

Restricted to significant polygenic scores 
partitioned to mechanism of action

In a further step, we computed polygenic scores only 
comprising genetic variants that are associated with 
T2D at a genome-wide significant level. These genetic 
variants were grouped to broad categories of mech-
anism of action. In the first realization of this approach, 
we used published data of effects on glycemic traits 
such as insulin sensitivity indices and insulin secretion 
indices to assign the variants to specific categories. From 
these scores, only the group of variants affecting insulin 

sensitivity was involved in the interaction with pancre-
atic fat (Table  1). When examining the interaction of 
clustered genetic scores with pancreatic fat content, we 
identified an interaction for the group of SNPs involved 
in the liver/lipid phenotype suggested by Udler et al (26) 
(Tables 1 and 2).

Discussion

Our data provide evidence that pancreatic fat has dis-
tinct association patterns with insulin secretion de-
pending on genetic T2D risk. In case of low genetically 
determined T2D risk, there was a positive association 
of pancreatic steatosis with insulin secretion in the dis-
covery cohort. In contrast, subjects with a high genetic 
T2D risk showed lower insulin secretion levels associ-
ated with increased pancreatic steatosis. Because these 
associations were independent of BMI, insulin sensi-
tivity index, MRI-measured visceral adipose tissue, and 
liver fat content—all bona fide confounders of insulin 
resistance—the impact of pancreatic steatosis on insulin 
secretion appears to be independent from whole-body 
insulin action but highly dependent on genetic predilec-
tion to diabetes. The lower insulin secretion in case of 
high pancreatic fat content and elevated genetic risk was 
validated in a different set of patients with histologically 
quantified pancreatic fat content.

Data from the partitioned polygenic scores provide 
insights on the biological background of the observed 
interaction. We identify an interaction between the 
insulin-sensitivity modulating group of SNPs and pan-
creatic fat content, suggesting that variants determining 
insulin resistance are involved in flipping the action of 
pancreatic fat on insulin secretion to negative. Among 
the polygenic scores proposed by Udler et al (26), the 
liver/lipid cluster showed a consistently directed inter-
action with pancreatic fat (ie, higher polygenic risk led 
to a more negative slope of the association of pancreatic 
fat with insulin secretion).

These findings complement recent experimental data 
from human pancreatic adipocytes and islets cocultures 
showing that pancreatic fat cells lead to a deterior-
ation of islet function only in a typical environment 
that characterizes insulin resistance (28). Specifically, 
the hepatokine fetuin-A, which is typically increased in 
fatty liver disease, induced the secretion of inflamma-
tory cytokines from preadipocytes and adipocytes in 
the presence of palmitate (28). Of note, palmitate is se-
creted as part of very low density lipoproteins (VLDL) 
from the liver. This process is amplified in persons with 
insulin resistance resulting from enhanced hepatic de 
novo lipogenesis (29). The existence of a metabolic 
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crosstalk between pancreatic fat, fatty liver, and pan-
creatic beta-cells is now supported by the interaction 
between the liver/lipid polygenic risk cluster and the 
amount of pancreatic fat on insulin secretion. Of note, 

capturing complex relationships that underly such a 
multiorgan crosstalk in human subjects is challenging. 
The individual metabolic environment shows con-
siderable within-person or day-to-day variation and 

Figure 2.  Association of pancreatic fat content with insulin secretion depends on genetic risk to develop type 2 diabetes. Strata of polygenic risk 
scores (PRS, determined as genome-wide polygenic scores) are shown in 3 panels with different colors for low, middle, and high PRS. (A) In the 
discovery set, pancreatic fat was measured by MRI. Insulin secretion was determined from OGTT and adjusted for confounders (y-axis: standardized 
residuals of log-transformed AUC-C-peptide0-30/AUC-glucose0-30 adjusted for sex, age, age2, BMI, insulin sensitivity (Matsuda index), visceral 
adipose tissue, and liver fat). (B) In the validation set, pancreatic fat was estimated from immunohistological sections as shown in Fig. 1. Insulin 
secretion was determined from the HOMA2%B index (y-axis: standardized residuals adjusted for insulin sensitivity (HOMA2%S), sex, age, and 
BMI). P values are from linear regression models. AUC, area under the curve; BMI, body mass index; HOMA2, homeostatic model assessment 2; 
MRI, magnetic resonance imaging; OGTT, oral glucose tolerance test.
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characteristic biomarkers are not fully known or diffi-
cult to measure. Thus, genetic instruments can be used 
as substitutes either for the general predisposition to de-
velop T2D (gwPS), or for specific features of the path-
ology (partitioned polygenic scores).

The gene × environment interaction between gwPS and 
pancreatic steatosis leads to a turning of the direction of 
association between pancreatic steatosis and insulin se-
cretion, dependent on the genetic background (Fig. 2A).

When analyzed in an unstratified cohort, opposing 
association directions can wipe out each other. This may 
explain the lack of association of pancreatic steatosis 
with insulin secretion and diabetes reported in some 
clinical studies (7, 8, 30).

The elevated insulin secretion with higher pancre-
atic fat content, seen in low-risk individuals in our data, 
warrants further examination. Whether this phenom-
enon is secondary to insulinotropic effects of free fatty 
acids and could play a role in a perpetuation of insulin 
hypersecretion especially in individuals with pancreatic 
steatosis are important questions that currently cannot 
be answered from our data.

Our work shows the genetic-risk dependent associ-
ation of pancreatic fat in a diabetes-prone population 
using gold standard measurements for pancreatic fat. 
Although the findings were replicated in a different co-
hort with complementary methods, the data in the valid-
ation cohort are limited by restricted regions of sampling, 
available amount of tissue, and potential collateral ef-
fects of pancreatic diseases underlying the surgery.

The findings show that pancreatic fat is relevant in 
the decrease of insulin secretion. However, this factor 
has to be interpreted in the context of genetically de-
termined insulin resistance. Further studies have to 
examine the metabolic effects of pancreatic steatosis in 
relation to genetic risk for diabetes and other potential 
effect-modifying factors.
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Table 1.  Interaction Between Pancreatic Fat 
Content and Partitioned Diabetes Risk Scores on 
Insulin Secretion Grouped by Action on Metabolic 
Homeostasis

Score Type Effect Estimate SE P Value

Secretion -0.019 0.041 0.6
Secretion/sensitivity -0.026 0.03 0.4
Sensitivity -0.093 0.031 0.003

Insulin secretion is measured by the insulinogenic index. Effect esti-
mates, standard errors and P values are provided for the interaction 
term (risk score × pancreatic fat content) in models additionally ad-
justed for insulin sensitivity, age, age2, sex, body mass index, visceral 
adipose tissue volume). Risk scores use the sum of diabetes risk alleles 
in variants grouped by action on metabolic homeostasis (modulating 
insulin secretion, insulin sensitivity or both). 

Table 2.  Interaction Between Pancreatic Fat 
Content and Diabetes SNP-Clusters on Insulin 
Secretion

SNP-Cluster Effect Estimate SE P Value

Beta-cell 0.04 0.056 0.5
Lipodystrophy 0.005 0.053 0.9
Liver/lipid -0.116 0.056 0.04
Obesity 0.029 0.053 0.6
Proinsulin -0.057 0.051 0.3

Insulin secretion is measured by the insulinogenic index. Effect esti-
mates, standard errors and P-values are provided for the interaction 
term (risk score × pancreatic fat content) in models additionally ad-
justed for insulin sensitivity, age, age2, sex, body mass index, visceral 
adipose tissue volume). SNP-clusters are computed as described by 
Udler et al (26). 
Abbreviation: SNP, single-nucleotide polymorphism.
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