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Abstract
Cyanobacterial mats were hotspots of biogeochemical cycling during the Precambrian. However, mechanisms that
controlled O2 release by these ecosystems are poorly understood. In an analog to Proterozoic coastal ecosystems, the Frasassi
sulfidic springs mats, we studied the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis (OP and AP) in
versatile cyanobacteria, and interactions with sulfur reducing bacteria (SRB). Using microsensors and stable isotope probing
we found that dissolved organic carbon (DOC) released by OP fuels sulfide production, likely by a specialized SRB
population. Increased sulfide fluxes were only stimulated after the cyanobacteria switched from AP to OP. O2 production
triggered migration of large sulfur-oxidizing bacteria from the surface to underneath the cyanobacterial layer. The resultant
sulfide shield tempered AP and allowed OP to occur for a longer duration over a diel cycle. The lack of cyanobacterial DOC
supply to SRB during AP therefore maximized O2 export. This mechanism is unique to benthic ecosystems because
transitions between metabolisms occur on the same time scale as solute transport to functionally distinct layers, with the
rearrangement of the system by migration of microorganisms exaggerating the effect. Overall, cyanobacterial versatility
disrupts the synergistic relationship between sulfide production and AP, and thus enhances diel O2 production.

Introduction

The evolution of oxygenic photosynthesis (OP) by cyano-
bacteria was one of the major transformative events in the
history of life and is responsible for the bounty of life on

Earth as we know it today. O2 is the most favorable electron
acceptor used for respiration by myriads of organisms, and
its accumulation in the atmosphere considerably changed
the surface chemistry of the Earth. There are, however,
many open questions concerning the history of O2 on Earth.
Particularly the long lag in the rise of atmospheric O2 levels
after the first appearance of free oxygen signals in the
geological record still defy holistic mechanistic explanation
[1]. One of the most mysterious episodes in Earth’s history
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after the Great Oxidation Event (~2.3–2.6 billion years ago)
is often referred to as the “boring billion” during the mid-
end Proterozoic, during which the O2 level remained below
0.01–10% of modern levels for about 1 billion years before
rising markedly in the Neoproterozoic Oxidation Event.

Realizing that the Proterozoic global O2 stasis—the
“dullest time in Earth’s history” [2]—cannot be explained
exclusively based on geochemical mechanisms, biologically
nuanced models suggest that global pelagic O2 production
might have been tempered due to competition between OP
and sulfide- or iron-driven anoxygenic photosynthesis (AP)
[3–5]. The conceptual model introduced by Johnston et al.
[3] specifically assumes euxinic water column conditions
and suggests that organic carbon produced during sulfide-
driven AP would be unavailable for aerobic respiration in
the uppermost water column and thus would stimulate
sulfate reduction in the deeper oceans. This feedback would
then further increase rates of sulfide-driven AP in disfavor
of OP. Competition between AP and OP for light and/or
nutrients might therefore have set into motion a series of
biogeochemical cascades that sustained sulfidic oceans and
tempered O2 production. Johnston et al.’s proposal
emphasizes that the physiology and ecology of early
microorganisms need to be considered to understand Earth-
scale effects of microbial activity.

Sulfur-driven AP can be performed by specialized obli-
gate anoxygenic phototrophs, as well as by cyanobacteria
[6]. While there is some speculation that early cyanobacteria
used electron donors in addition to sulfide and water [7],
only reduced sulfur compounds have been confirmed as
alternative electron donors in extant cyanobacteria [6, 8–
11]. Sulfide:quinone reductase (SQR) is the only enzyme
involved in cyanobacterial AP that has been identified so
far, and might be the only equipment needed for light-
driven sulfide oxidation [12]. Sulfide oxidation is integrated
into the oxygenic photosynthetic electron transport chain
such that AP and OP can be performed simultaneously and
yet compete for their portion in the overall photosynthetic
rate [13] (Fig. S1). Photosynthesis rates in individual
organisms and the environment therefore reflect a compe-
tition between OP and AP. The outcome of this competition
manifests itself in the partitioning between AP and OP, and
is shaped by electron donor and light availability, and
specific affinities of, e.g., enzymes of different microbes
specialized in either one of these photosynthetic modes, or
within versatile cyanobacteria capable of switching between
them.

Although Johnston et al.’s model was developed to
explain water column conditions, they also suggested that
the same feedback mechanisms would arise in cyano-
bacterial mats. As opposed to pelagic systems, cyano-
bacterial mats are densely packed ecosystems shaped by
diffusional transport and intense metabolic interactions

occurring over only a few mm depth. The lack of stratifi-
cation disturbance by advective exchange of sulfur com-
pounds, organic carbon, and nutrients, might have favored
the establishment of a positive feedback loop. On modern
Earth, mats often form under extreme conditions, such as
high salinities, that provide natural protection from the
majority of grazing animals. Proterozoic cyanobacterial
mats, however, flourished in a vast proportion of the sunlit
shallow seafloor, under low-O2 and high reductant condi-
tions even after the first global rise of atmospheric O2 [3].
Among these reductants, reduced sulfur compounds might
have played a central role as electron donors for AP. Phy-
logenetic as well as sulfur isotope data [14] suggest that
even the earliest microbial mats might have been char-
acterized by intense sulfur cycling despite limited external
sulfur input [15–17]. Predominantly ferruginous ocean
conditions are nowadays a widely accepted model [17–20]
replacing the former model of a global euxinic ocean [21].
This questions the applicability of the Johnston et al.’s
model beyond highly productive coastal environments that
might have represented the local exception and were
likely euxinic [1]. Thus, the model by Johnston et al.
might rather apply to the microbial ecosystems that flour-
ished and evolved under sunlit sulfidic conditions:
cyanobacterial mats.

This study aimed to test if the open ocean model of
positive feedbacks between sulfide-driven AP and sulfate
reduction [3] can be validated in an analog ecosystem to
coastal mats of the Proterozoic characterized by cyano-
bacterial AP. Such analog mat ecosystem flourishes under
diverse sulfide to O2 ratios along the flow path of sulfidic
spring water emerging from the Frasassi cave system, Italy
[22, 23]. Using an approach that combines microsensor
measurements and stable isotope probing (SIP), we assessed
rates of AP, OP and sulfide production, and followed the
fate of assimilated CO2 over simulated diel cycles.

Methods

Experimental design

To enable simultaneous assessment of depth-resolved gross
rates of light-driven sulfide consumption and O2 production,
as well as the fate of freshly produced dissolved organic
carbon (DOC), we sampled a cyanobacterial mat without
the underlying sediment from the Frasassi sulfidic springs in
September 2012 (Fig. S2). The mat was placed in a flow
chamber that accommodated sufficient area for microsensor
measurements and sub-sampling of the mat during defined
conditions (Fig. S3) that are detailed in the following sec-
tions. The incubation started with exposure to darkness for
8 h. 13C-bicarbonate solution was added to the water

J. M. Klatt et al.



column and to a spring water reservoir underneath the mat
after ~5.5 h. During the following stepwise increase of light
intensity (7, 19, 89, and 315 µmol photons m−2 s−1), net and
gross rates of AP and OP were continuously monitored
using microsensors in three replicate spots of the mat. Light
intensity was only increased after a steady state had estab-
lished for at least 30 min (determined from concentration
depth profiles). Triplicate subsamples (1 cm2) of the mat
were taken in regular intervals over the course of the
experiment to (1) determine bulk rates of inorganic carbon
assimilation, (2) identify the functional groups involved in
this 13C assimilation based on fatty acids (FA), (3) follow
the flow of assimilated carbon into the 13C-DOC pool, and
(4) monitor changes in the active community based on 16S
rRNA sequencing. To be able to differentiate between the
effect of light intensity and photosynthetic O2 production,
after exposure to 315 µmol photons m−2 s−1, DCMU (3-
(3,4-dichlorophenyl)-1,1-dimethylurea; dissolved in etha-
nol), an inhibitor of OP [24], was added to the water column
in the dark to a final concentration of ~10 µM. The mat was
then again exposed to 315 µmol photons m−2 s−1 for 8 h. In
a second incubation run with fresh mat material DCMU was
added in the beginning, before addition of 13C-bicarbonate.

Sampling and setup

The cyanobacterial mat forms along the flow path of “Main
Spring” that emerges from the Frasassi cave system
(Fig. S2, 43°24′4″N, 12°57′56″E, [23]). The day before first
mat sampling, water column samples for total sulfide
determination were collected and conserved in 2% zinc
acetate solution. Concentration was assessed on the same
day according to Cline [25]. O2 concentration and pH were
determined using microsensors (see below). Temperature at
the mat surface was measured with a PT1000 mini-sensor
(Umweltsensortechnik, Geschwenda, Germany). Spring
water was collected from the outflow of main spring and
transported to the laboratory facilities of the Osservatorio
Geologico di Coldigioco (~45 min driving time) and
immediately prepared for use in the flow chamber.

The flow chamber was a larger version of what is
described in [26] (Fig. S3). Briefly, the upper part of the
flow chamber was separated from a bottom chamber using
fibrous web and GF/F filters. The bottom chamber was
filled with HEPES-buffered (pH 7.2) spring water that was
then purged with N2 using needles penetrating the rubber
stoppers on the wall of the chamber. The upper flow
chamber was connected with tubing via five inlets to a water
pump in a thermostated 20 L recycle of freshly sampled N2-
bubbled spring water.

The following day, a 30 × 40 cm piece of mat was
carefully lifted off the sediment, transferred into a plastic
container, and transported cooled and in the dark to the

laboratory. A small subsection of the mat was flash-frozen
for 16S rRNA analysis on site. Upon arrival in Coldigioco,
the mat was immediately placed onto the GF/F filters in the
flow chamber. Neutralized Na2S was slowly added to the
20 L recycle of the flow cell. After ~6 h of dark incubation,
12C- and 13C-sodium bicarbonate (13C-DIC final atom
fraction of ≈6%) were injected into the bottom chamber and
briefly stirred. Subsequently, 12C- and 13C-sodium bicar-
bonate (13C-DIC final atom fraction of ≈6%) was added to
the recycle. To allow for homogeneous distribution of the
label, the pumping speed was increased for 5–10 min. To
minimize outgassing of H2S and exchange of 13CO2 with
the atmosphere, the spring water in the 20 L recycle was
covered with paraffin oil and the water column in the flow
cell was covered with transparent plastic wrap. Small holes
were kept in the wrap to allow microsensor measurements.
Immediately after bicarbonate addition, the first mat and
water column samples were taken. Homogenous illumina-
tion was achieved by using two large cold-white lamps
(Envirolite), the distance of which to the mat was adjusted
to change light conditions. Incident irradiance at the mat
surface was determined using a cosine‐corrected quantum
sensor connected to a LI‐250A light meter (both LI‐COR
Biosciences GmbH, Germany).

Microsensors

O2, H2S, and pH microsensors with a tip diameter of 10,
20, and 50 µm, respectively, and response time of <2 s
were constructed and calibrated as described previously
[22, 27–29]. All sensors were mounted on a multi-sensor
holder and the tips were separated by less than 1 cm. The
motorized positioner for vertical microprofiling was
mounted on a horizontal motorized positioner, which
allowed automated and reproducible repositioning of the
sensors in three replicate spots during the incubation. At
each light condition H2S, pH, and O2 depth profiles were
measured in the three spots. After correction for the
measurement angle, depth resolution of profiling was
~450 µm in the water column and depths greater than 4
mm, and ~180 µm in the uppermost 4 mm of the mat.
Total sulfide (Stot) concentration (∑[S2−, HS−, H2S]) was
calculated from H2S concentration and pH. When steady
state was reached at each light intensity, gross photo-
synthesis rates over depth in one of the replicate spots was
measured using the previously described O2- and H2S-
based light-dark shift methods for OP and AP, respec-
tively [22]. Fluxes and local volumetric net rates of pro-
duction/consumption were calculated from concentration
depth profiles using Fick’s first and second law of diffu-
sion, respectively, using diffusion coefficients corrected
for temperature and salinity (1.35 × 10−5 cm2 s−1 for sul-
fide and 1.78 × 10−5 cm2 s−1 for O2).
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To be able to compare rates of OP, AP, and chemosyn-
thetic sulfide oxidation to rates derived from the SIP assays,
we calculated potential C-fixation rates. For OP we multi-
plied the depth-integrated gross rates of O2 production with
a factor 1 assuming the stoichiometry:

H2Oþ CO2 ! O2 þ CH2O: ð1Þ
For AP we took a similar approach and multiplied the

depth-integrated gross rates of light-dependent sulfide
consumption by a factor 2 assuming sulfide oxidation to
zero-valent sulfur according to:

2H2Sþ CO2 ! 2S0 þ CH2Oþ H2O; ð2Þ

as previously described in [13, 22]. The rate of predicted
CO2 fixation by sulfur-oxidizing bacteria (SOB) was
estimated based on the fluxes of sulfide and O2 into the
zone of aerobic sulfide oxidation, and the previously
determined energy conservation efficiency of 16.9% for
autotrophic aerobic sulfide oxidation in Frasassi mats
[22, 30]. The end member stoichiometries for predominant
oxidation of sulfide to S0 and SO4

2− under the incubation
conditions follow, respectively:

H2Sþ 0:4O2 þ 0:1CO2 ! 1S0 þ 0:1CH2Oþ 0:9H2O;

ð3Þ

and

H2Sþ 1:5O2 þ 0:5CO2 þ 0:5H2O ! 1SO2�
4 þ 0:5CH2Oþ 2Hþ:

ð4Þ

The stoichiometry was adjusted according to the con-
centrations of H2S and O2, and pH for each time point
assuming a constant thermodynamic efficiency but variable
products of sulfide oxidation (Table S1).

CO2 assimilation rates

To determine the 13C/12C of the dissolved inorganic carbon
(DIC) pool, water column, and bottom chamber water
samples were taken in regular intervals during the incuba-
tion and preserved by addition of HgCl2 and ZnCl2 in
Exetainers (Labco, UK) without headspace. The 13C/12C
ratio was determined by isotope-ratio-monitoring gas
chromatography–mass spectrometry (GC-MS) (VG
Optima; Micromass, Manchester, UK) [31].

The 13C/12C in the mat sampled during the incubation
was determined using an automated elemental analyzer
(FlashEA, 1112 series) coupled to a Delta Plus Advantage
mass spectrometer (Finnigan DeltaplusXP, both from
Thermo Scientific) after freeze-drying and decalcification

with ortho-phosphoric acid. The leftovers of freeze-dried
samples were pooled and used for FA-SIP and DOC
extraction. Total CO2 fluxes were calculated as the rate of
increase in the isotopic labeling of the mat, considering the
average areal weight of mat and correcting for the labeling
of the DIC pool.

13C-DOC

To estimate the 13C/12C of the DOC pool, the remaining
freeze-dried and decalcified mat material was pooled for
each time point and 1.5 mL of ultrapure water were added to
each sample. The re-suspended mat material was vigorously
shaken. After centrifugation, the supernatant was filtered
through 0.45 µm PES syringe filters into 2 mL septum vials
(Zinsser). To convert the DOC into CO2, we followed the
approach of Menzel and Vaccaro [32, 33] by adding 30 mg
potassium persulfate and 60 µL 3% ortho-phosphoric acid
before autoclaving for 1.5 h. The 13C/12C ratio in the
resultant CO2 pool in the headspace was determined with
isotope-ratio-monitoring GC-MS (VG Optima; Micromass,
Manchester, UK). 13C-Glucose was used as a standard to
assess conversion efficiency. As the efficiency of conver-
sion into CO2, however, likely varies amongst different
compounds of the DOC pool, we did not aim to quantify
DOC but only report the relative changes of the 13C/12C-
DOC.

FA-SIP

The total lipids extracts (TLE) of freeze-dried mat samples
were obtained following the procedure in [34], with mod-
ifications (see Supplementary material). Elemental sulfur
was removed from the TLE using copper powder (Sigma-
Aldrich), activated with 4 N HCl as explained in [35]. An
aliquot of the TLE was saponified according to [36]. Prior
to analysis, FAs were derivatized using boron trifluoride
(BF3) in methanol (Merck), leading to FA methylesters.

FAs were identified by coupled GC-MS (Agilent 6890N
GC with Agilent 5973N mass selective detector). Quanti-
fication was done by GC coupled to a flame ionization
detector using squalene as injection standard. The carbon
isotopic compositions were determined by GC-isotopic
ratio-MS using a Thermo Scientific Trace GC Ultra coupled
to a Thermo Scientific Delta V Plus IRMS. The carbon
isotope ratios were expressed in the delta notation (δ13C),
based on which the relative increase of label (Δδ13C) was
calculated by subtracting the δ13C of each FA at the first
time point [37].

FA were classified into cyanobacterial-FA, sulfur reducing
bacterial (SRB)-FA and SOB-FA according to the literature.
Cyanobacterial-FA included the even-numbered mono-
unsaturated C16:1ω9 and C18:1ω9, and the polyunsaturated FA
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C16:2 and C18:2 [37–41]. SRB-FA included aiC15:0, iC15:0,
10Me-C16:0, aiC17:0, iC17:0, and iC17:1, as well as C15:1, C17:0,
and C17:1 [42–45]. SOB-FA included the even-numbered
monounsaturated C16:1ω7 and C18:1ω7 [46–48].

Relative 13C uptake rate contribution of FAs (FA-RUR)
for each interval between time points were calculated as the
ratio of the rate of increase in the isotopic labeling of each
SRB-FA (δ13C) over time (t) and the total rate of increase of
all SRB-FAs over time, as:

FA�RUR ¼
Δδ13C
Δt

ΣΔδ13C
Δt

: ð5Þ

We then clustered sub-groups of SRB-FAs according to
the patterns of increase/decrease in rate (examples in
Fig. S4a, b), with group 1 (SRB-FA1) comprising 10Me-
C16:0 and iC17:1, group 2 (SRB-FA2) comprising aiC17:0,
iC17:0, and C17:1 and group 3 (SRB-FA3) comprising
aiC15:0, iC15:0, C15:1, and C17:0.

16S rRNA extraction and sequencing

The mat sample taken directly in main spring, and six of the
subsamples taken during the flow chamber incubations were
chosen for sequencing. RNA was extracted from these
seven RNAlater stabilized subsamples with FAST RNA Pro
Soil direct kit (MP Bio). Pyrosequencing libraries were
constructed as described previously [49] with modifications
(see Supplementary information). Emulsion PCR, emulsion
braking and sequencing were performed applying the GS
FLX Titanium chemistry following the supplier’s protocols
(Roche).

16S rRNA analysis

The raw sequencing data sets were initially processed with
the next-generation sequencing analysis pipeline of the
SILVA project (available at www.arb-silva.de/ngs) [50] to
obtain sequence and alignment quality-based filtering of the
amplicons, aligned sequences, and a taxonomic classifica-
tion (see Supplementary information). Based on quality
filtering, a subset of cyanobacterial and deltaproteobacterial
sequencing reads were selected for further oligotyping
analysis using Oligotyping version 2.1 (available from
https://github.com/merenlab/oligotyping). Oligotype repre-
sentatives were then added to the SILVA RefNR 132 guide
phylogenetic tree using the ARB-parsimony addition
tool [51] (Table S2). Further processing of oligotype data-
was performed in R environment for statistical computing
(https://www.R-project.org/), using package phyloseq
(version: 1.19.1) [52] (see Supplementary informa-
tion). Sequence data has been deposited in the European
Nucleotide Archive (ENA) at EMBL-EBI under

accession number PRJEB38493 [53] (see Supplementary
information).

Results

Mat is dominated by filamentous cyanobacteria and
SOB

Cyanobacterial and gammaproteobacterial 16S rRNA
sequences dominated throughout all samples taken directly
in the spring and during the incubations, which was con-
sistent with highly abundant filamentous cyanobacteria and
large sulfur bacteria observed by microscopy (Fig. 1).
Interestingly, relative 16S rRNA sequence abundance was
<0.5% for potential obligate anoxygenic phototrophs (e.g.,
Chloroflexaceae, Chlorobi and purple bacteria) and suspi-
cious morphotypes, such as Chromatiaceae, were not
observed visually (data not shown).

Transitions between anoxygenic and oxygenic
photosynthesis depend on irradiance

In the dark and after adjustment of pH and O2 and total
sulfide (Stot) concentration in the water column approxi-
mately to in situ conditions (Table S3), the mat surface was
covered with SOB as deduced from the whitish appearance
of the mat (see inset between Fig. 2c, d). Consistent with
this observation, microsensor profiling revealed concave-
shaped steady-state depth profiles of O2 and Stot con-
centrations in the top 500 µm of the mat, indicative of
consumption, i.e., aerobic sulfide oxidation, in this zone
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Fig. 1 Relative abundance of 16S rRNA sequences at the phylum
level and light microscopic images of cyanobacterial and SOB
filaments in mat subsamples taken in main spring and during the
incubations. Incubation 1 was initially run without DCMU addition,
while it was added to the flow chamber in the beginning of incubation
2. Subsamples for microscopic images shown here were taken in the
beginning of incubation 1, before addition of labeled bicarbonate.
Scale bar in the right image is 20 µm.
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(Fig. 2a). Upward sulfide fluxes from deep layers into the
sulfide oxidation zone in the three replicate spots were in
the same range as measured in situ [22] even though the
sample consisted of the thin mats only (~5–6 mm), without
underlying sediment or any artificially added sulfide supply
from underneath. This indicated within-mat production of
sulfide between ~3–5 mm depth, which is supported by the
convex shape of the steady-state Stot profiles and corre-
sponding positive local volumetric rates in this zone
(Fig. 2a).

Upon exposure to an incident irradiance of 7 µmol pho-
tons m−2 s−1, the zone of Stot consumption expanded to the
cyanobacterial layer at depths 0.3–1.1 mm (Fig. 2b). Depth-
integrated gross rates of AP (light-driven sulfide con-
sumption; Fig. 3a) matched the net sulfide flux consumed in
the cyanobacterial layer, the latter calculated from the
steady-state Stot depth profile as the difference between the
fluxes of Stot at the upper and lower boundary of the cya-
nobacterial layer (Table S1). This suggests that sulfide
consumption in the cyanobacterial layer was predominantly
driven by AP, and that there was negligible local source of
sulfide. Sulfide was not entirely depleted, which implies that
AP was limited by light, and not by electron donor
(Fig. 2b).

Upon exposure to 89 µmol photons m−2 s−1, light-driven
sulfide consumption rates increased sufficiently to entirely
deplete sulfide underneath the SOB layer (Fig. 2c). As a
result, the cyanobacteria additionally performed OP, con-
sistent with the physiology of versatile cyano-
bacteria (Fig. S1) [13, 54]. After this transition between
photosynthetic modes, downward migration of the SOB
from the mat surface to underneath the cyanobacterial layer
occurred (Fig. 2d). Since the presence of sulfur granules

inside SOB leads to intense light scattering (which gives
SOB populations their characteristic white appearance), this
downward migration of the SOB population resulted in a
locally increased availability of light in the cyanobacterial
layer [22], which led to an increase in the rate of gross OP
(compare OP rates at time 10.1–11.7 h in Fig. 3a, and the
corresponding bar profiles in Fig. 2c, d). After dis-
appearance of the white layer from the mat surface, we
observed a distinct zone of aerobic sulfide oxidation
underneath the photosynthetically active layer. In this zone,
we did not detect light-induced dynamics of sulfide. The
upward sulfide flux was consumed with the photo-
synthetically produced oxygen at a Stot:O2 consumption
ratio of ~2.3 suggesting predominantly incomplete sulfide
oxidation to zero-valent sulfur (characterized by a relatively
low carbon yield of ~0.12 mol C (mol S)−1) [30] (Table S1).
As the sulfide flux from underneath did not reach the cya-
nobacterial layer, AP was almost exclusively fueled by
sulfide from the water column (Table S1). Furthermore,
because the available sulfide in the overlying water was
lower than that from below, the depth-integrated rate of AP
decreased substantially.

Exposure to irradiance of 315 µmol photons m−2 s−1 led
to a further increase in the rate of OP but no significant
change in AP (Figs. 2e and 3a). Driven by photo-
synthetically produced O2 from the cyanobacterial layer, the
rate of O2 consumption increased. Therefore also the pre-
dicted CO2 fixation rate, by aerobic sulfide oxidation in the
SOB layer, increased (Fig. 3a). The ratio of sulfide and O2

consumption by this process decreased from ~2.3 to
~0.85 suggesting a switch from incomplete to pre-
dominantly complete aerobic sulfide oxidation to sulfate
[30] (Table S1).
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After addition of DCMU, OP was inhibited and only AP
was detectable (Figs. 2f and 3a). O2 only penetrated down
to a maximum of ~0.5 mm below the mat surface. As a
result, the SOB returned to the surface despite continued
illumination with 315 µmol photons m−2 s−1. This behavior
was unexpected because of reports of photophobic
responses of Beggiatoa [55]. Similarly, in a separate run of
the experiment with DCMU addition at the beginning of the
diel cycle (Fig. 4), the SOB did not migrate despite expo-
sure to light intensities >300 µmol photons m−2 s−1. This is
consistent with the shallow penetration of O2 (Fig. 2f) due
to the lack of O2 production in the mat by cyanobacterial
OP.

13C-bicarbonate was assimilated into mat biomass
throughout the initial dark phase and in the light
(Fig. S5), at rates increasing with light intensity (Fig. 3a).
13C/12C values of the replicate samples were very similar
(error bars in Fig. S5) suggesting horizontally

homogeneous mat activity. This is supported by the high
reproducibility of fluxes calculated from the measure-
ments in the three replicate spots (Table S1). Total CO2

assimilation rates in the absence and presence of DCMU
(Figs. 3a and 4a) deviated by up to 70% from the C-
fixation rates estimated by summing the depth-integrated
rates of gross AP, OP, and aerobic sulfide oxidation under
dark and low light conditions. These large differences are
likely caused by relative uncertainties increasing with
decreasing rates. C-fixation rates for irradiances ≥89 µmol
photons m−2 s−1 were 90–97% of the microsensor-based
rates, supporting our assumption that in versatile cyano-
bacteria sulfide oxidation contributes to the photo-
synthetic electron chain with two electrons and follows
Eq. (2) for CO2 fixation.

Despite the long incubation time, shifts between pho-
tosynthetic modes (see AP:(OP+AP) ratio in Fig. 3b),
and the use of the inhibitor DCMU, the cyanobacterial
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rRNA sequences were dominated by Cyanobacteriaceae
(Figs. 3c and 4c) throughout the experiment. Most
sequences were affiliated with the genus Annamia
(Fig. 5). Upon transition from dark to AP-dominated
conditions, the relative abundance of oligotypes affiliated
with Annamia and Planktothricoides SR001 (Oscillator-
iaceae) increased, particularly in incubation 2, while the
abundance of other cyanobacterial oligotypes remained
low (Fig. 5). However, during OP-dominated conditions,
the balance between families and genera in the transcribed
cyanobacterial rRNA pool changed (Fig. 3c and 5).
Namely, we observed relatively higher rRNA transcrip-
tion by Phormidiaceae (genera Planktothrix NIVA-CYA
15 and Tychonema CCAP 1459–11B) and Plankto-
thricoides SR001, with the Planktothrix rRNA sequences
affiliating with the isolate Planktothrix FS34 derived from
the sample site in the Frasassi Gorge [26] (Figs. 3c, 5,
and S6).

The relative abundance of transcribed rRNA sequences
of potential chemotrophic SOB among the gamma- and
epsilonproteobacteria decreased slightly with incubation
time (Fig. S7). Yet, sequences affiliating with Beggiatoa-
ceae dominated throughout the experiment. After extended
exposure to DCMU, however, we consistently observed
increased epsilonproteobacterial rRNA transcription, rela-
tive to gammaproteobacterial (Fig. S7).

Sulfide production varies with photosynthetic mode

Within-mat sulfide production in the zone underneath the
autotrophic layers was estimated as the difference between
the steady-state upward flux of sulfide into the SOB/cya-
nobacteria layer and of the downward flux into the bottom
chamber (Fig. 3b) and is additionally illustrated by the local
volumetric rates in Fig. 2 (bars). Intriguingly, sulfide pro-
duction responded to changes in light intensity. In the dark,
sulfide fluxes were constant for ~8 h (Fig. 3b, Table S1) and
also the sulfide concentration in the zone of production
(below ~3 mm; Fig. 2a) did not change significantly. Upon
exposure to low light, when photosynthesis was
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predominantly anoxygenic, the rate of sulfide production
started to decrease (Figs. 3b and 2b, c). When the cyano-
bacteria switched to OP during exposure to higher light,
areal sulfide production rates increased again (Fig. 3b).
Also, the change in curvature of the profiles and corre-
sponding volumetric rates suggested that the zone of sulfide
production moved to a shallower depth or that an additional
source of sulfide closer to the cyanobacteria became active
(Fig. 2d, e). When OP was inhibited by DCMU, sulfide
concentration decreased rapidly (Figs. 2f, 3b, and 4b).
Calculation of volumetric rates was omitted because con-
centration profiles did not approach steady state due to the
continuous decrease of sulfide concentration. Consequently,
rates of AP also decreased due to the limited supply of the
electron donor. Ultimately, AP and aerobic sulfide oxida-
tion driven by an internal sulfur cycle could not be main-
tained in the presence of DCMU and mat autotrophy was
entirely dependent on the external supply of electron donor
from the overlying water column. Before the disrupting
event of DCMU addition, process rates were reproducible
throughout the experiment, which indicates maintained
activity and biomass of the microbial key players in
the sulfur and carbon cycle (compare rates in the three
dark phases, and two phases of exposure to 315 µmol
photons m−2 s−1 in Fig. 3 and Table S1). The decrease in
AP and sulfide production upon inhibition of OP, however,
is expected to finally lead to mat community collapse and
biomass degradation, as already indicated by reduced rela-
tive abundance of transcribed 16S rRNA of the potential
autotrophic key players (Fig. 1).

A link between organic carbon release by
cyanobacteria and sulfide production

The 13C/12C of the DOC pool increased with increasing OP
(Fig. 3b) suggesting accumulation of freshly assimilated,
likely excreted, soluble organic carbon in the layer of pro-
duction due to insufficient local sink strength. This 13C-
enriched DOC rapidly disappeared in the dark, which
implies net oxidation or assimilation into nonsoluble bio-
mass components. Whenever AP-dominated total photo-
synthesis (low light conditions and DCMU treatment), no
net increase in the 13C/12C of the DOC pool was detected
(Figs. 3b and 4b). We would therefore expect sulfide pro-
duction (see above) to be tightly linked to the 13C-DOC
release. Consistent with this idea, the 13C/12C of the FA
pool characteristic of cyanobacteria and SRB increased
concomitantly (Fig. 3d). Taken together, dynamics of Stot
production, 13C-DOC and 13C-FAs support the concept that
the highly active OP-performing cyanobacteria assimilate
13C into biomass including FAs, but also excrete labile
freshly assimilated DOC that is rapidly transferred to SRB
to be incorporated into their FAs. The relative uptake into

the two SRB-FA groups (FA-RUR, Figs. 3d and 4d, bar
chart) showed that during AP the relative contribution to the
rate of group 3 was highest, while group 1 only showed
significant contribution during the OP phase.

Changes in sulfide production rates were accompanied
by changes in the transcribed deltaproteobacterial rRNA
sequences (right bars in Figs. 3c and 4c). In the dark,
Desulfobacteraceae dominated while under AP conditions
diversity increased, with Geobacteraceae taking over
(Figs. 3c, 4c, and 6). Desarfarculaceae rRNA was only
abundant under OP conditions. The change in SRB rRNA
abundances closely tracked changes observed among the
relative uptake rates into SRB-FAs (compare Figs. 3c, d and
4c, d). Overall, this indicates that the deltaproteobacterial
community responds to changes in cyanobacterial metabo-
lism. The differential stimulation of activity is likely driven
by changes in source and composition of DOC, and/or due
to the variable supply of oxidized sulfur compounds by AP
and aerobic sulfide oxidation, i.e., changes in the abundance
of intermediate sulfur species and sulfate.

Discussion

We can paint a picture of a cyanobacterial mat that has
spatially strongly separated zones of aerobic sulfide
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oxidation, photosynthesis, and sulfide production. Yet, we
observed well-tuned coupling of these processes in our
experiments. The network of metabolic coupling changed
dramatically with light conditions, i.e., the diel light cycle,
and the cascade of changes was controlled by metabolic
transitions of individual functional groups, migration
behavior, and rate of solute transport.

In the dark, the cyanobacterial community was sand-
wiched between sulfide consumers (SOB) and sulfide pro-
ducers (SRB). Low light and high local sulfide
concentration favor AP over OP in versatile cyanobacteria
(Fig. S1), consistent with OP rates below detection limit.
Predominant AP in the cyanobacterial layer did not induce a
change of mat structure. However, as photosynthesis tran-
sitioned from AP to OP at higher light, a cascade of feed-
back effects was initiated. Most prominently, the transition
to OP was followed by a downward migration of SOB. The
relative abundance of transcribed rRNA levels of potential
SOB amongst the Gammaproteobacteria only changed
substantially after prolonged exposure of the mat to DCMU
(Fig. S7). Thus, the short-term changes in the depth of
sulfide oxidation and the Stot:O2 consumption ratio were
likely only driven by migration and adjustment of the sul-
fide oxidation product (zero-valent sulfur vs. sulfate)
depending on the availability of Stot and O2 [22, 30], and not
by a shift in active community. As migration was not
observed upon exposure to similar light intensities in the
presence of DCMU, its direct cause was the photo-
synthetically produced O2 rather than the light. Specifically,
the SOB are characterized by a fixed efficiency of energy
conversion and are thus restricted to the consumption of O2

and Stot in a specific range of ratios [30]. They likely
migrated below the cyanobacterial layer because remaining
on top would not have allowed them to adjust their O2:Stot
consumption ratio to match the stoichiometry of the sulfide
and O2 fluxes imposed by their environment [30]. A
deviation from the possible range of stoichiometries implies
that O2 cannot be consumed within the SOB layer. The
resultant local increase in O2 concentration likely stimulates
a phobic response and the migration [56]. The dis-
appearance of the white, light-scattering SOB cover shading
the cyanobacteria led to an increased availability of light
for, and thus to increased rates of cyanobacterial OP. This
cascade of transitions is beneficial for both cyanobacteria
and SOB: the SOB have direct access to sulfide from
underneath and photosynthetically produced O2, while the
cyanobacteria can fully exploit the photon flux at the
surface.

Upon transition to OP, diversity of transcribed cyano-
bacterial rRNA increased. Amongst the increasing sequen-
ces, we identified Planktothrix oligotypes affiliating with
Planktothrix FS34 (Fig. S6). This cyanobacterium was
isolated from the Frasassi sulfidic spring mats and described

as a sulfide-tolerant obligately oxygenic phototroph [26],
which is consistent with activity only under conditions
allowing for OP. 16S rRNA analysis also revealed that
Annamia was the dominant genus throughout the experi-
ment. Using microscopy, we found only four cyanobacterial
morphotypes. The vastly dominating morphotype, which
was indistinguishable from the photosynthetically versatile
cyanobacterium described in [54], was likely an Annamia
species. Overall, changes in light availability and sulfide
concentration also triggered changes in the transcribed
cyanobacterial rRNA pool suggesting that the transitions
between AP and OP result from the concerted activity of
several differently adapted cyanobacteria, with the dom-
inating versatile Annamia sp. still likely shaping the tran-
sition to OP and thus the change of the system from a sink
to source of O2.

Capping the sedimentary supply of sulfide in our
experiment allowed us to disentangle this supply from the
production within the mat right underneath the autotrophic
layers and to gain insights into the well-tuned tango of
interaction in the mat’s sulfur and carbon cycle over a diel
cycle. Sulfide production during the illuminated periods of
the day appeared to be exclusively stimulated by OP but not
AP. Organic carbon excretion during OP likely represents
this link to sulfide production by sulfate/sulfur reducers,
because we only detected an increase of 13C/12C in the DOC
pool during this time frame. We calculated that the diffusion
time of small organics (e.g., acetate using a diffusion
coefficient of 1 × 10−5 cm2 s−1 [57]) is sufficiently short (~8
min) to explain the temporal link between organic carbon
release in the photosynthetically active layer and the
response in the zone of sulfide production ~1 mm away.

Our method for DOC determination did unfortunately
not allow quantifying and identifying the excreted com-
pounds. Yet, DOC release during high oxygenic photo-
synthetic activity and stimulation of sulfate reduction
rates by these photosynthates has been observed pre-
viously [58] and has been linked to photorespiration in
low nutrient (e.g., nitrate) availability environments [59].
We therefore suggest that during high light conditions,
high O2 and low CO2 microenvironmental conditions
favor the oxygenase activity of RuBisCo yielding 2-
phosphoglycolate, which can further be metabolized to
glycolate [60, 61]. This freshly fixed carbon is excreted
and available for the heterotrophic community including
SRB [62]. Intriguingly, we did not detect 13C-labeled
DOC during AP despite similarly high total photosynth-
esis rates when OP was inhibited by DCMU and sulfide
was plentiful (in the second run). Since photorespiration
cannot occur under anoxic and AP-dominated conditions,
our results suggest that sulfide production in the mat is
primarily fueled by glycolate or other compounds released
during cyanobacterial photorespiration.

J. M. Klatt et al.



The upward shift of the sulfide production zone from
dark to OP conditions could suggest stratification in the
SRB community, with the populations closest to the cya-
nobacteria taking advantage of the DOC released during
OP, while the deeper populations utilizing fermentation
products. We could however not confirm any DOC release
in the dark, likely because rates of conversion and excretion
were substantially lower than during OP or because 13C/
12C-DOC analysis was selective for photosynthates. As
rates remained stable in the dark, while they dropped in the
light under AP conditions, dark sulfide production was still
likely fueled by products of fermentation, performed by the
cyanobacteria in the absence of O2 [63, 64]. Overall, the
sulfide-producing community is thus fed with DOC by
cyanobacteria day and night—just not during AP.

The hypothesized interplay of metabolisms in the mat
over a diel cycle is summarized in Fig. 7. Fermentation at
night sustains a part of the sulfide-producing community.
During OP a different population is supplied with freshly
fixed and excreted organics. The mat-building cyanobacteria
thus “farm” a sulfide-producing population that is adapted to
the periodic availability of specific substrates. The lack of
supply of small organics during AP, i.e., in the early
morning, allows the cyanobacteria to switch to OP at rela-
tively low light intensities. When DOC excretion and sulfide
production rates are highest in the cyanobacterial population
has already switched to OP. OP then establishes an aerobic
sulfide oxidation “shield,” either by abiotic reactions or by
SOB, before stimulation of sulfide production that would
favor AP or even cause toxic sulfide levels for OP. This
cascade overall minimizes the fraction of the day during
which photosynthesis is dominated by AP. Intriguingly, the
spatial separation of functional groups in combination with
mass transfer resistance plays an important role in this

scenario. Namely, the diffusion time of excreted DOC
imposes a delay that allows for the emergence of local OP-
driven O2 gradients that then act as the “sulfide shield.” This
effect is even more pronounced because the small spatial
scales allow for structural rearrangements (by SOB migra-
tion) before sulfide production is stimulated.

Overall, the Frasassi sulfidic spring mats have given
unpreceded insights into the competitive advantage of
photosynthetic versatility in cyanobacteria and the impact of
versatility on O2 export. An appreciation of scale, mass
transfer, and diel light dynamics are crucial to understand
this advantage. If the cyanobacteria were sulfide-resistant
obligate oxygenic phototrophs, for instance, DOC excretion
and thus SRB stimulation would follow the light dynamics.
Irradiance, however, has to be high enough to allow for OP
rates that are sufficient to enable formation of the O2 barrier
to scavenge the additional sulfide. The versatile cyano-
bacteria achieve this by postponing OP, while still being
photosynthetically active at low light by performing AP.
Similarly, excretion of DOC during AP would induce
immediate response of sulfide production and thus a posi-
tive feedback loop, with reduced O2 export. Photosynthetic
versatility, with DOC excretion limited to OP, thus enables
the cyanobacteria to actively modulate the sulfur cycle. This
finally facilitates out-competition of obligate anoxygenic
phototrophs and net O2 production, despite multidirectional
high sulfide supply. Specifically, sulfide is mainly supplied
when the production rate of O2 is already high, pushing the
redox cline downward and favoring SOB over anoxygenic
phototrophs. In principle, the mechanism of sulfur cycle
manipulation could also occur in a benthic system with
overlapping photosynthetic and sulfide-producing zones.
However, the delay in sulfide production after onset of OP,
which is related to spatial separation of functional groups
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and mass transfer resistance, allows for a faster transition to
OP and thus further increased O2 export.

Solute transfer between different functional groups in
microbial mats occurs at temporal scales that allow for
interactions and feedback loops within a diel cycle. These
inherent properties of mats enable the differential effect of
AP and OP on sulfide production. Such feedback effects are
not intuitive and in stark contrast to the model introduced by
Johnston et al. [3], which predicts a positive feedback loop
between sulfide production and AP in the pelagic realm.
This is because solute transfer between redox interfaces in
the oceans’ water column occurs on substantially longer
timescales and because the carbon cycle is coupled mainly
by the transfer of particulates. Feedback effects conse-
quently arise based on integrated activity over complete
day–night cycles in the photic zone. Clearly, when the main
mode of transport is diffusion, when scales allow “com-
munication” across the redox zonation within a diel light
cycle, and when AP and OP occur within a single functional
group, different feedback mechanisms arise. Most aston-
ishingly, O2 export in the sulfidic environment studied here
is maximized by the cyanobacteria’s ability to perform AP
during low light conditions. The capability to perform both
AP and OP in a benthic environment thus allowed the
cyanobacteria to modulate and even invert the positive
feedback effects in the sulfur cycle predicted for the water
column by Johnston et al. While the evolution of AP likely
predated OP, the evolutionary history of AP within cya-
nobacteria remains uncertain, mainly because the sulfide
oxidizing enzyme SQR is characterized by a history of
intense horizontal gene transfer [7, 12, 65, 66]. As opposed
to obligate anoxygenic phototrophs, cyanobacteria might
have therefore acquired the capability to perform sulfide-
driven AP after the evolution of OP [12] and this trait might
have only been widespread in the Proterozoic when sulfide
became an electron donor of global relevance. Our data
highlights that the evolutionary onset of versatility in the
form of SQR acquisition might have substantially reshaped
the balance between aerobic and anaerobic remineralization
processes and boosted O2 export of microbial mats. Con-
sidering the uncertainties in the control of euxinia and
potential triggers of Earth’s major redox transitions, these
findings emphasize the need to understand more about the
evolution of cyanobacterial AP and the global extent of
benthic photosynthesis over Earth’s history [7, 12, 67].
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