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Abstract

Molecular networking has become a key method used to visualize and annotate the chemical spacein
non-targeted mass spectrometry-based experiments. However, distinguishing isomeric compounds and
guantitative interpretation are currently limited. Therefore, we created Feature-based Molecular
Networking (FBMN) as a new analysis method in the Global Natural Products Social Molecular
Networking (GNPS) infrastructure. FBMN leverages feature detection and alignment tools to enhance
quantitative analyses and isomer distinction, including from ion-mobility spectrometry experiments, in
molecular networks.

Main text

Introduced in 2012*, molecular networking has become an essential bioinformatics tool to visualize and
annotate non-targeted mass spectrometry data®. The first application of molecular networking was
described by Traxler and Kolter® as holding “great promise in providing the next quantum leap in

under standing the fascinating world of microbial chemical ecology”. Molecular networking goes beyond
spectral matching against reference spectra, by aligning experimental spectra against one another and
connecting related molecules by their spectral similarity®. In amolecular network, related molecules are
referred to as a“molecular family”, differing by simple transformations such as glycosylation, alkylation,
and oxidation/reduction. Molecular networking became publicly accessible in 2013 through theinitial
release of the Global Natural Product Social Molecular Networking (GNPS), a web-enabled mass
spectrometry knowledge capture and analysis platform (http://gnps.ucsd.edu)®, and has been widely
applied in mass spectrometry-based metabolomicsto aid in the annotation of molecular families from
their fragmentation spectra (MS?).

Powered by 3,000+ CPU cores at the Center for Computational Mass Spectrometry at the
University of California San Diego and the MasslV E data repository, GNPS has provided researchers
from more than 150 countries with the ability to perform molecular networking. To build upon the
success of the first molecular networking method (referred to as “ classical” molecular networking,
classical MN) which is based on the M S-Cluster algorithm’, we introduce a compl ementary tool named
Feature-based Molecular Networking (FBMN). FBMN accepts the outputs of well-established mass
spectrometry processing software and improves upon classical MN by incorporating MS" information,
such as isotope patterns and retention time, but also ion-mobility separation when performed. As aresult,
molecular networks obtained with FBMN can distinguish isomers that may have remained hidden,
facilitates spectral annotation, and incorporates rel ative quantitative information which enables robust
downstream metabolomics statistical analysis. Whereas users of the classical molecular networking would
have had to perform molecular networking and MS' analysis separately before performing a cumbersome
linking of the outputs, a key advantage of FBMN isthat the analysisis fully integrated throughout the
analysis pipeline.

Tofully utilize the MS' and MS* content collected during a non-targeted liquid chromatography
coupled to tandem mass spectrometry data (LC-MS?) metabol omics experiment in a streamlined fashion,
we have created an online infrastructure to support the outputs of feature detection and alignment tools for
FBMN analysis (https.//ccms-ucsd.github.io/ GNPSD ocumentati on/featurebasedmol ecul arnetworking),
including the standard output format for small molecules analysis (mzTab-M)® (Fig. 1a). The diversity of
supported software, each offering different functionalities/modul es, serves experimentalists,
bioinformati cians, and software devel opers. FBMN is already the second most utilized analysis tool
within the GNPS environment (Fig. 1b) with more than 600 jobs performed in August 2019 and has
aready been used in more than 80 publications using FBMN during its development since Nov 2017.
The molecular networks generated with FBMN enabl e the efficient visualization and annotation of
isomersin LC-MS? datasets, as demonstrated below with LC-MS? data from adrug discovery project
from Euphorbia plant extract® (Fig. 2a-b), and the detection of human microbiome-derived lipids,
belonging to the commendamide family™, detected in fecal samples from the American Gut Project™ (a
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crowd-sourced citizen science microbiome project) (Fig. 2c-d). In both cases, FBMN resolved positional
isomersin the molecular networks that have similar M S? spectra but distinct retention times, that would
not have been resolved with classical MN. In the study of metabolites produced by Euphorbia plants, the
annotation of isomers in the FBMN facilitated the subsequent isolation of antiviral compounds®. With
samples from the American Gut Project, FBMN enabled the annotation of commendamide isomers,
including a putative novel derivative®.

By incorporating chromatographic information, FBMN reduced the complexity of molecular
networking analysis. In non-targeted LC-M S data acquisition, the same precursor ion can be fragmented
multiple times during chromatographic elution, which ultimately leads to multiple nodes representing the
same compound in classical MN. Additionally, coeluting isobaric ions are often isolated and fragmented
together | eading to the generation of chimeric spectrawhich result in different M S spectrafor one
precursor ion. With FBMN, the integration of feature detection with the alignment of the mass
spectrometry signal discerns that these different MS* spectra are related to the same precursor molecule
and selects a singular representative consensus spectrum for the feature. The benefit of using FBMN in
such acase can beillustrated with the metal chelating agent ethylenediaminetetraacetic acid (EDTA)
observed in the LC-MS? analysis of plasma samples (Fig 2e), in which it is used as an anticoagul ant
agent. Classical MN resulted in 13 duplicated nodes with identical precursor nvz values in one molecular
family, ten of which have spectral library matchesto EDTA reference MS? data (Fig. 2e and f). On the
contrary, FBMN displays a unique representative MS? spectrum that matches EDTA spectrain the
library, because the multiple M S? spectra detected were part of a single feature in the chromatographic
dimension. The reduction of redundancy within the resulting molecular network simplifies the discovery
of structurally related compounds.

While classical MN uses the spectral count or the sum precursor ion count, FBMN uses the LC-
M S feature abundance (peak area or peak height), resulting in a more accurate estimation of the relative
ion intensity. The method of FBMN simplifies, organizes the data, and adds relative quantitative
information and precursor isotope patterns. FBMN enables robust statistical analysis by providing relative
ion intensities across a dataset. This capacity is demonstrated with a serial dilution series dataset of the
NIST1950 serum reference standard®, containing 150 spiked standards. Here, the LC-MS? were
processed with MZmine' or OpenMS™ for FBMN (Fig 2g-h). A linear regression analysis was used to
evaluate the relative quantification between classical MN and FBMN. Figure 2h shows that for FBMN,
relative quantification has a correlation coefficient (r) value distribution mostly above 0.7, while thiswas
not the case when the precursor ion abundance was obtained from classical MN via spectral counts (Fig
2g). The improved distribution of correlation coefficients towards 1 indicates a more linear response
between concentration and ion abundance, which improves the accuracy and precision of quantification
results. FBMN facilitates the direct application of existing statistical, visualization, and annotation tools,
such as QIIME2"®, MetaboAnalyst’, ili*®, NAP™, MS2LDA®, MolNetEnhancer %, and SIRIUS™.

FBMN further enables the creation of molecular networks from ion mobility spectrometry
experiments coupled with LC-MS? analysis. As an orthogonal separation method, the use of ion mobility
offers additional resolving power to differentiate isomeric ions in the molecular network. The integration
of ion mobility with FBMN on GNPS can currently be performed with MetaboScape, MS-DIAL?, and
Progenesis QI. An example of such isomer separation using trapped ion mobility spectrometry (TIMS)
coupled to LC-MS? is shown in Supplementary Fig. 1.

Available on the GNPS web platform at https://gnps.ucsd.edu, FBMN isideally suited for
advanced molecular networking analysis, enabling the characterization of isomers, the incorporation of
relative quantification, and the integration of ion mobility data. FBMN is the recommended way to
analyse asingle LC-M S? metabol omics study, but care must be taken when applied across multiple
studies due to different experimental conditions and possible batch effects. M oreover, the use of FBMN
for the analysis of very large datasets (containing severa thousand samples) is limited by the scalability
of most feature detection and alignment software tools. Thus, while FBMN offers an improvement upon
many aspects of molecular networking analysis, classical MN remains essential for repository-scale meta-
analysis large dataset processing, and is convenient for rapid analysis of LC-MS” data with less user
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defined parameters: one important aspect of molecular networks obtained with FBMN is the use of
adequate processing steps and parameters, which otherwise could negatively impact the resulting
molecular networks. To facilitate dissemination, education of the FBMN method, and the supported
processing software, we created detailed tutorials and step-by-step instructions, available at https.//ccms-
ucsd.github.io/GNPSD ocumentati on/f eaturebasedmol ecul arnetworking.

The FBMN workflow offers not only automated spectral library search and spectral entry
curation, but is also integrated with other annotation tools available on GNPS environment, such as
MASST?, while promoting data analysis reproducibility by saving the FBMN jobs on the user's private
online workspace. The GNPS environment conveniently enables the user to evaluate different parameters
and enables the sharing of the results viaaweb URL for publication.
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Fig. 1: Methods for the generation of molecular networ ks from non-targeted mass spectrometry
data with the GNPS web platfor m. a) Two methods exist for the generation of molecular networks on
the GNPS web platform: classical MN and feature-based molecular networking (FBMN). For both
methods, mass spectrometry data files have to be converted to the mzML format using tools such as
Proteowizard M SConvert®. The classical MN method runs entirely on the GNPS platform. In that
method, MS? spectra are clustered with MS-Cluster and the consensus M S? spectra obtained are used for
classical MN generation. In the case of FBMN, a feature detection and alignment tool is used to first
process the LC-M S data (such as MZmine, MS-DIAL, XCMS, OpenMS, Progenesis Ql, or
MetaboScape) instead of using MS-Cluster (classical MN). Results are then exported and uploaded to the
GNPS web platform for molecular networking analysis. b) Graphs showing the number of molecular
networking jobs performed on GNPS. The upper graph shows the number of classical MN and FBMN
jobs since 2016. The lower graph shows the number of FBMN jobs since its introduction in 2017 and key
events accelerating its use.
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Fig. 2: Comparisons of classical MN and featur e-based molecular networ king. In these examples, the
node size corresponds to the spectral count in classical MN (orange boxes, |eft) or to the sum of LC-MS
peak areain FBMN (blue boxes, right). Panel (a) displays the results from classical MN with the LC-MS?
data of Euphorbia dendroides plant samples; classical MN resulted in one node for theion at m/z
589.313, while (b) FBMN performed after MZmine processing was able to detect seven isomers of this
ion. Classical MN in the data of a cohort from the American Gut Project (c) showed two different N-acyl
amides while the use of FBMN (d) processed with MZmine allowed the annotation of three different
isomers per N-acyl amides. Classical MN (€) and FBMN (f) performed with OpenM S, were used to
analyse the network of EDTA in plasma (373 samples) by compressing MS? spectra of EDTA eluting
over 2.5 min into one best-quality MS? spectrum. FBMN recovered the molecular similarity of in-source
fragments observed for EDTA, which were not displayed with classical MN, due to the fixed top-K rank
for connected nodes (typically set to 10) of MS? spectral similarity. Evaluation of quantitative
performance using a seria dilution of serum reference sample (NIST1950SRM) analyzed with (Q)
classical MN and (h) FBMN. The plots are showing the correlation score (r) distribution between the
observed and expected relative ion abundance. The upper charts present the distribution of the correlation
score for all the nodes (features) generated, and the bottom charts show the distribution for 150 reference
compounds. While classical MN uses the spectral count or the sum precursor ion count to estimate the
molecular network node abundance, FBMN uses the LC-M S feature abundance (peak area or peak
height), resulting in a more accurate estimation of the relative ion intensity.

Methods

Development of Feature-based M olecular Networking (FBM N)

The FBMN method consists of two main steps: 1) LC-M S feature detection and aignment, then 2) a
dedicated molecular networking workflow on GNPS. Our first prototype for FBMN was devel oped with
the Optimus workflow'? that uses OpenM S tools™ and the KNIME Analytics® platform. Following step
1 (feature detection and alignment), two files are exported: a feature quantification table (.TXT format)
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and aM$ spectral summary (.M GF format). The feature quantification table contains information about
LC-MSfeatures across al considered samples including a unique identifier (feature ID) for each feature,
mv/z value, retention time, and intensity. The MS” spectral summary contains alist of MS? spectra, with
one representative MS? spectrum per feature. The mapping information between the feature quantification
table and the MS’ spectral summary is stored in these files using the feature 1D and scan number,
respectively. This simple mapping enablesto relate LC-M S feature information or statistically derived
results to the molecular network nodes. This approach was aso used for the integration of other tools with
FBMN, and does not require third party software like it was proposed in the past®"?. Finally, the FBMN
workflow also supports the mzTab-M format®, a standardized output format designed for the report of
metabolomics M S-data processing results. In this case, the mzTab-M fileis used instead of feature
quantification table and requires the input of the mzML filesinstead of the MS spectral summary file.
Support for the mzTab-M format enables the possibility to perform FBMN with any existing and future
processing tools that support this standardized format.

The FBMN workflow has been integrated into the GNPS ecosystem and thus benefits from the
connection with other GNPS features, e.g. the possibility to perform automatic MS? spectral library
search, the direct addition and curation of library entries, the search of a spectrum against public datasets
with MASST?, and the visualization of molecular networks directly in the web browser® or with
Cytoscape®. The FBMN workflow is available on the GNPS platform (https://gnps.ucsd.edu/) viaaweb
interface (See Supplementary Fig. 2). Jobs are computed and stored on the computational infrastructure of
the Center for Computational Mass Spectrometry at the University of California San Diego. Each finished
job is saved in the private user space for future examination and has a permanent static link that enables
data sharing and collaborative analyses. We strongly recommend the sharing of this static link along with
publications using GNPS workflows to facilitate results accessibility and data analysis reproducibility.
Instructions to perform FBMN with the supported tools are provided in the GNPS documentation
(https://ccms-ucsd.github.io/ GNPSD ocumentati on/featurebasedmol ecul arnetworking and Supplementary
Fig. 3).

FBMN with MZmine

MZmine* is a popular open-source cross-platform software for mass spectrometry data processing with
an advanced Graphical User Interface (GUI) that enables the usersto visually optimize parameters and
examine the results of each processing step. Moreover, MZmine allows for the export of a batch file
containing all the steps and parameters used in the processing, thus enabling its reproducibility. To
support FBMN in MZmine, the feature detection step (peak “ Deconvolution module”) was modified to
provide the ability to pair afeature with its MS? scans using an m/z and retention time range defined by
the user (Supplementary Fig. 4). Due to a new data structure and to support older projects (created with
release < 2.38), an additional specific filtering module (Group M’ scans with features) was devel oped to
assign all MS* scans to the features of existing peak list (see this video for instructions:
https.//www.youtube.com/watchv=EL 5pmFvpTFE). Moreover, a GNPS export and direct submission
module was created (Supplementary Fig. 5) which offers two maodes: 1) Export of the feature
quantification table and the MS’ spectral summary file and 2) Direct FBMN analysis on the GNPS web
platform (release 2.37+). The direct GNPS job submission generates all the files and uploads them
together with an optional metadata table and default parameters (Supplementary Fig. 6) to the FBMN
workflow on GNPS. By providing the user’s GNPS login credentials (optional), a new job can be created
in the personal user space

(https://www.youtube.com/watchvy=vFcGG7T 44E&list=PL4L2Xw5k8I Tzd9hx5X1P94vFPxj1sSafB&i
ndex=4&t=0s). Otherwise, the user can be notified by email or directly redirected to the job webpage
after the submission. With the option “most intense”, the GNPS Export uses the most intense M S
spectrum as a representative spectrum for each LC-M S feature. When using the “ merge MS/M S’ spectra
option (release 2.40+), a representative high quality MS® spectrum is instead generated from all spectra
and exported as a representative spectrum (Supplementary Note 1). The detailed documentation is
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available at https://ccms-ucsd.qgithub.io/GNPSD ocumentati on/f eaturebasedmol ecul arnetworking-with-
mzmine2/.

FBMN with OpenM S

OpenMS is an open-source cross-platform software specifically designed for the flexible and reproducible
analysis of high-throughput MS data analysis, including more than 200 tools for common mass
spectrometric data processing tasks™. Building on our experience with the Optimus development, the
integration of OpenM S and FBMN was achieved by creating a GNPSExport tool (TOPP tool) as a part of
the OpenM S tool collection (https.//github.com/Bioinformatic-squad-DorresteinLab/OpenM S). A detailed
description of the GNPSExport module and how to use it for FBMN is available at the following webpage
https://ccms-ucsd.github.io/ GNPSD ocumentati on/featurebasedmol ecul arnetworking-with-openms/. In
brief, after running an OpenM S non-targeted metabol omics pipeline, the GNPSExport TOPP tool can be
applied to the consensusX ML file resulting from FeatureLinker UnlabeledKD or
FeatureLinkerUnlabeledQT tools (alignment step), and the corresponding mzML files. For each
consensusElement (LC-MS? feature) in the consensusXML file, the GNPSExport generates one
representative consensus M S* spectrum that will be exported in the MS? spectral summary file (using
either the option “most intense” or “merged spectra’, see Supplementary Note 1). The TextExport tool is
applied to the same consensusXML file to generate the feature quantification table. Note that the
GNPSEXxport reguires the use of the IDMapper tool on the featureXML files (from the feature detection
step) prior to feature linking, in order to associate MS? scans [peptide annotation in OpenMS

terminol ogy] with each feature. These MS® scans are used by the GNPSExport for the generation of the
representative MS? spectrum. Additionally, the FileFilter has to be run on the consensusXML file, prior to
the GNPSExport, in order to remove consensus Elements without associated M S? scans. Thetwo files
exported (feature quantification table and MS spectral summary) can be directly used for FBMN analysis
on GNPS. The OpenM S-GNPS workflow for metabolomics data processing was implemented as a

python wrapper around OpenM S TOPP tools (https:/github.com/Bioinformatic-squad-

DorresteinL ab/openms-gnps-tools), and released as a workflow (https://github.com/Bioinformatic-squad-
DorresteinL ab/openms-gnps-workflow) on the GNPS/MasslVE web platform®. OpenMS version 2.4.0
was used”™. The OpenM S + GNPS workflow can be accessed and run here:
https://proteomics2.ucsd.edu/ProtecSAFe/.

FBMN with XCM S

The XCMS package (https://github.com/sneumann/xcms for the most recent version) is one of the most
widely used software for processing of mass spectrometry-based metabolomics data™. The integration of
XCMSand FBMN is currently possible using a custom utility function “formatSpectraForGNPS’
creating the MS” spectral summary. This function is available on the following GitHub repository
https://github.com/j orainer/xcms-gnps-tools and is compatible with the CAMERA algorithm for isotopes
and adduct annotation®. Representative XCMS R scripts in markdown and Jupyter notebook formats are
available in the following GitHub repository

https://github.com/DorresteinL aboratory/XCM S3_FeatureBasedMN. The two exported files (feature
quantification table and MS spectral summary) can be directly used for FBMN analysis on GNPS. The
detailed documentation is available at https.//ccms-

ucsd.github.io/GNPSD ocumentati on/featurebasedmol ecul arnetworking-with-xcms3/.

FBMN with M S-DIAL

MS-DIAL is an open-source mass spectrometry data processing software” (available for Windows only,
http://prime.psc.riken.jp/Metabolomics Software/MS-DIAL/). The integration of MS-DIAL and FBMN
was made possible since ver. 2.68 by exporting the “ Alignment results’ using the “ GNPS export” option.
In addition to LC-M S’ data processing, MS-DIAL can process data from SWATH-MS? (data-independent
LC-MS? acquisition), and ion mobility spectrometry coupled to LC-MS?. The two files exported (feature
quantification table and MS* spectral summary) can be directly used for FBMN analysis on GNPS. A
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video tutorial on the use of MS-DIAL for FBMN isavailable at
https://www.youtube.com/watch?/=hxk40jwAkcc& t=7s. The detailed documentation is available at
https://ccms-ucsd.github.io/GNPSD ocumentati on/f eaturebasedmol ecul arnetworking-with-ms-dial/.

FBMN with M etaboScape

MetaboScape is a proprietary mass spectrometry metabol omics data processing software commercialized
by Bruker and available on Windows. MetaboScape can perform feature detection, alignment and
annotation of non-targeted LC-M$S” data acquired on Bruker mass spectrometers. Support for the
processing of trapped ion mobility spectrometry (TIMS) coupled to non-targeted LC-MS? (LC-TIMS-
MSZ) was added in MetaboScape 4.0, which resultsin LC-TIMS-MS features. Feature-based molecular
networking can be performed on LC-MS or LC-TIMS-MS? data by exporting the feature quantification
table and MS? spectral summary from the “bucket table” using the “ Export to GNPS format” function.
These files can be uploaded to GNPS for FBMN analysis. Information from MetaboScape, such asthe
Collision Cross Section values, or other spectral annotations can be mapped into the molecular networks
using Cytoscape™. The detailed documentation is available at https://ccms-

ucsd.qgithub.io/ GNPSD ocumentati on/featurebasedmol ecul arnetworking-with-metaboscape/

FBMN with Progenesis QI

Progenesis QI is a proprietary feature detection and alignment software devel oped by Nonlinear
Dynamics (Waters) that is compatible with various proprietary and open mass spectrometry data formats.
Progenesis QI can perform feature detection, alignment and annotation of non-targeted LC-M S data
acquired either in data-dependent acquisition (DDA) or dataindependent analysis (DIA, such asMS),
and can also utilize the ion mobility spectrometry (IMS) dimension. FBMN can be performed on any of
these data types processed with Progenesis QI (ver 4.0), by exporting the feature quantification table
(.CSV format) and the MS spectral summary (.MSP format). These two files can be exported from the
“Identify Compounds” submenu by using the function “ Export compound measurement” and “ Export
fragment database”, respectively. These files can be uploaded to GNPS for FBMN analysis. Information
from Progenesis QI, such asthe Collision Cross Section values, or other spectral annotations can be
mapped into the molecular networks using Cytoscape®. The detailed documentation is available at
https://ccms-ucsd.github.io/GNPSDocumentati on/f eaturebasedmol ecul arnetworking-with-progenesisQl/.

FBMN makesit possibleto resolveisomersin a drug lead discovery effort

The examination of the LC-MS? data (M SV 000080502) from the Euphorbia dendroides plant extract
showed the presence of numerous chromatographic peaks for ionsin the range m/z 500-900,
corresponding to diterpene ester derivatives. These specialized metabolites consist of a polyhydroxylated
diterpene core acylated with various acidic moieties, that are typically found as positional isomers based
on their acylation pattern®. The extracted ion chromatogram (EIC) for theion m/z589.31 in the
Euphorbia dendroides extract data (Supplementary Fig. 7) shows the presence of at least seven distinct
LC-MS peaks between 24.5 and 27.3 min, including five peaks with an associated M S? spectra. The
analysis of the extract and the fractions where these molecules were originally isolated (fractions 13 and
14) with classical MN resulted in a molecular network with two nodes for the m/z 589.31 ions (Fig. 2a
and Supplementary Fig. 8). These MS? spectra (cluster index 5352 and 5354) resulted from merging 96
fragmentation spectra spanning from 23.6 to 26.5 min by MS-Cluster (Fig. 2b and Supplementary Fig. 9).
Close examination of the clustered spectrarevealed that while all MS? spectra for the precursor mvz
589.31 present fragment ions m/z 501.26, 423.21, 335.16, and 295.17, three distinct spectral types could
be established based on the ions relative intensities (Supplementary Fig. 10). FBMN of the dataset with
MZmine processing (see the GNPS job) enabled the differentiation of the MS” spectra of seven isomers
(Figure 2b and Supplementary Fig. 11 for the molecular network view). A detailed discussion on the
differences observed between the two methods can be found in the Supporting Information
(Supplementary Note 2 and Supplementary Table 1). Interestingly, in the origina study*? OpenMSwas
used for FBMN and resulted in the observation of three different positional isomersinstead of seven,
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which shows that different processing methods can lead to different results with FBMN. These three
isomers were subsequently isolated and differed by the position of one double bond on the C-12 acyl
chain, or from carbon C-4 confi gurationlz. Because FBMN connects the accurate rel ative abundance of
the ions across the fractions and the mol ecular networks, it allowed to create bioactivity-based molecular
networks'?, which were used to predict and target potentially antiviral compounds. For detailed
description of the extraction, mass spectrometry analysis, and structural elucidation, see the original
manuscript™. The MZmine project and parameters used can be accessed on the Mass|VE submission
(MSVv000080502).

FBM N resolvesisomersin large scale metabolomics studies

FBMN was applied on a cohort of the American Gut Project (AGP), a citizen-scientist research project
that enabled the observation of the commendamide in humans, along with other new N-acyl amide
derivatives using molecular networking™. Commendamide is a recently discovered bacterial N-acyl
amide that was shown to modulate host metabolism via G-protein-coupled receptors (GPCRS) in the
murine intestinal tract™.

The use of FBMN for the AGP data (Figure 2d) made possible to observe the presence of two additional
commendamide isomers (m/z 330.26) and of an analogue (hydroxyheptadecanoyl)glycline (nvVz 344.28),
while classical MN resulted in the observation of one single consensus spectrum for each compound
(Figure 2¢). In addition, FBMN allowed to observe a putative commendamide derivative
(dehydrohexadecanoyl)glycine (CCM SL1B00005436498 and Supplementary Fig. 12) in the
commendamide molecular network. The sample collection and mass spectrometry acquisition methods
are described in the original manuscript™. The data were downloaded from MasslV E (M SV 000080186)
and processed with MZmine (2.37). The MZmine project along with parameters and export files were
deposited to the MassIVE repository (M SV 000084095). The chromatograms for nvz 330.26 and m/z
344.28 displayed in Figure 2¢c-d are from samples 43076 _P3 RB9 01 314.mzML and

38131 P5 RA4 01 _538.mzML, respectively. Chromatograms were exported with MZmine. The results
were exported with the “Export for/Submit to GNPS’ module for FBMN analysis on GNPS. The
corresponding job can be accessed here:

https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=0a8432b5891a48d7ad8459bada89969f (only logged
users can see all the input files). The mzML files were used for the classical MN job can be accessed
here: https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=3c27e43d908c4044baced05cc394cd25.

FBMN reduces spectral redundancy and deobfuscates spectral similarity relationships: the case of
EDTA

The benefit of using FBMN can beillustrated with the metal chelating agent ethyl enediaminetetraacetic
acid (EDTA), widely used in beauty products, food, and scientific protocols. A search for its occurrences
in public spectral datasets with the mass spectrometry search tool (MASST)?* showed that it is frequently
observed in plasma samples where it is used during the sample preparation. We took one of the public
human serum sampl e datasets (M SV 00008263) where EDTA was observed. For a detailed description of
the protocol and mass spectrometry parameters, see Supplementary Note 3. The analysis of the data with
classical MN showed that the EDTA ions are found in two molecular networks. One network consists of
[M+H]" spectraand the other of [M+Na] " spectra. Interestingly, each of these networks have one node
with alarge number of clustered spectra (node 91205 for 4655 spectra, and node 116470 for 571 spectra,
respectively), but yet EDTA ions are represented by multiple nodes although these nodes have the same
precursor ion mass and retention time. Detailed analysis showed that while the median pairwise cosine
values between EDTA spectra are high (median value of 0.93 and 0.94), the spectra are not clustering into
asingle node. Examination of the multiple fragmentation spectrafor EDTA ions showed that some 1) are
chimeric spectra*“ contaminated” by fragment ions produced by co-eluting isobaric ions, and 2) that other
spectra were dominated by low intensity fragment ions resulting from M S® spectra acquired at low
intensity. The method of FBMN was applied on that same dataset using the OpenM S-GNPS workflow
(see the ob), and the results showed that it efficiently reduces the appearance of these redundant node
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patterns from the same molecule (see the FBMN job, Figure 2f), both for the molecular networks
containing the [M+H]" and [M+Na]" spectra. FBMN recovers the molecular similarity of in-source
fragments observed for EDTA, which were not displayed with classical MN, asthey now fall within the
top-K rank (typically set to 10) of MS? spectral similarity considered in the network topology. The
parameters used for OpenM S tool s can be accessed in the OpenM S-GNPS job (see the job). OpenM S ver.
2.4.0 was used™.

FBM N enables the use of relative quantification in the molecular networ ks

While classical MN uses the spectral count or the sum of precursor ion intensity to estimate theion
abundance, FBMN uses the accurate ion intensities obtained from LC-M S feature detection. The FBMN
method bringsin ion abundance across all samples by using the value of the chromatographic peak area
or peak height as determined by the LC-MS feature detection and alignment software. Using a seria
dilution of the NIST 1950 serum reference metabol ome sample*® analyzed on an Orbitrap mass
spectrometer (Q Exactive, ThermoFisher) and processed with OpenM S or MZmine, we show the linearity
of the relative quantification with FBMN and the improvement compared to classical MN (Figure 2h).
The sampl e preparation and mass spectrometry methods are described in Supplementary Note 4. The files
along with the parameters for MZmine are available on the following MasslVE repository
(MSV000084092). The linear regression analysis was performed with python 2 (ver. 2.7.15) with the
Linear Regression function of the sklearn package (ver. 0.20.1)*. The parameters used for OpenM S can
be obtained from the following job link:

https://proteomics2.ucsd.edu/ProteoSA Fe/status.jsptask=aae71e9b72cf431d9b2606170c3f 7a7d. The
molecular networking jobs can be accessed here: classical MN

(https://gnps.ucsd.edu/ProteoSA Fe/status.j sp?task=daf 3f0d7cec94104b2c9001739964c31), MZmine
processing (https://gnps.ucsd.edu/ProteoSA Fe/status.j spask=f443cad083bed979aedd2af 0f 97b9fe9) and
OpenM S processing

(https.//gnps.ucsd.edu/ProteoSA Fe/status.j sp2task=2c48a477ec094123987cdf90db4be8ed).

FBMN enables molecular networ king with ion mobility spectr ometry

The sample NIST 1950 serum™ was analyzed using atimsTOF Pro (Bruker Daltonics, Bremen) in data-
dependent acquisition mode using PASEF (Parallel Accumulation-Serial Fragmentation)®’. The data were
then processed with MetaboScape (ver. 5.0) and the results were exported for FBMN analysis on GNPS.
The mass spectrometry acquisition method, data, and parameters used for the processing were deposited
on MasslVE (MSV000084402). Classical MN were annotated with the GNPS®, NIST17 and LipidBlast®
spectral libraries

https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=f 2adc2cf 33c646548798d0e285197a96). Lipid
annotation in MetaboScape was performed using SimLipid (ver. 6.04, Premier Biosoft, Palo Alto) and
mapped to the FBMN

(https://gnps.ucsd.edu/ProteoSA Fe/status.j sp2ask=0d89db67b0974939a91 ch7d5bfe87072). The
molecular networks were visualized with Cytoscape ver. 3.7.1%, and the results are presented in the
Supplementary Information (Fig. S1). Classical MN were annotated with the GNPS’, NIST17 and
LipidBlast® spectral libraries
https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=f2adc2cf 33c646548798d0e285197a96). FBMN were
annotated by mapping annotations from the M etaboScape annotation engine
(https://gnps.ucsd.edu/ProteoSA Fe/status.j sp2ask=0d89db67b0974939a91cb7d5hfe87072).

Integration with other computational mass spectrometry annotation tools

The MGF file format is accepted by numerous computational mass spectrometry annotation tools. The
use of these tools with the M'S? spectral summary file enables subsequent direct mapping of these
annotations to the molecular networks produced by the feature-based molecular networking method.
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These tools include SIRIUS? , DEREPLICATOR,*% NAP,"® MS2LDA?, MolNetEnhancer® (see
Supplementary Note 5), as well as other software such as MetWork*, CFM-1D*, MetGem™, MetFrag™.

L arge dataset processing with OpenM Sand XCM S

The processing of large metabol omics datasets (more than a thousand samples) is limited by the
scalability of existing LC-MS feature detection tools, especially those based on a GUI (such asMZmine
and MS-DIAL). We showed that with specific peak picking parameters the use of XCMS or OpenM S
enables using FBMN for large metabol omics study (M SV 000080030, approximately 2,000 samples). See
the Supplementary Note 6, Supplementary Table 2, and Supplementary Fig. 13.

Code availability

The FBMN workflow is available as web-interface on the GNPS web platform (https.//gnps-
quickstart.ucsd.edu/featurebasednetworking). The workflow code is open source and available on GitHub
(https://github.com/CCM S-UCSD/GNPS Workflows/tree/master/feature-based-mol ecul ar-networking).
It isreleased under the licence of The Regents of the University of Californiaand free for non-profit
research (https://github.com/CCM S-UCSD/GNPS Workflows/blob/master/LICENSE). The workflow
was written in Python (ver. 3.7) and deployed with the ProteoSA FE workflow manager employed by
GNPS (http://proteomi cs.ucsd.edu/Software/ProteoSA Fe/). We also provide documentation, support,
example files, and additional information on the GNPS documentation website (https.//ccms-
ucsd.github.io/GNPSDocumentati on/featurebasedmol ecul arnetworking/). The source code of the
GNPSExport modulein MZmine is available at (https.//github.com/mzmine/mzmine2) under the GNU
General Public License. The source code of the GNPSExport tool in OpenMS is available at
(https://github.com/Bi oinformatic-squad-DorresteinL ab/OpenM S) under the BSD licence. The source
code for the GNPSExport custom function for XCM S is available at https://github.com/jorainer/xcms-
agnps-tools under the GNU General Public License.

Data availability

The LC-M S data for the Euphorbia dendr oides dataset, along with the MZmine project and parameters
used can be accessed on the MasslVE submission (M SV 000080502, Creative Commons CCO 1.0
Universal license). The classical MN and FBMN jobs can be accessed via the GNPS website at
https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=189e8bf 16af 145758b0a900f 1c44ff4a and
https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=672d0a5372384cff8c47297c2048d789, respectively.
The LC-MS? data for the American Gut Project (AGP) were downloaded from MasslVE

(MSVv 000080186 Creative Commons CCO 1.0 Universal license) and processed with MZmine (2.37). The
MZmine project along with parameters and export files were deposited (M SV 000084095, Creative
Commons CCO 1.0 Universal license). The classical MN and FBMN jobs can be accessed at
https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=3c27e43d908c4044bace405cc394cd25 and
https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=0a8432b5891a48d7ad8459badaB9969f, respectively.
The LC-MS? datafor the EDTA case are available on the Massl VE submission (M SV 00008263, Creative
Commons CCO 1.0 Universal license). The classical MN job can be accessed at
https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=fbac1a5061badad683a284ef55d45df6). The OpenMS
and the FBMN job at

https://proteomi cs2.ucsd.edu/ProteoSA Fe/status.jsptask=83a0a417a49b4b76b61e9a8191a6ea2d at
https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=8f40420c11694cf 9ab06f df 7abadc53b, respectively.
The mass spectrometry acquisition method, data, and parameters used for the processing of the serum
analysis with the timsT OF mass spectrometer were deposited (M SV 000084402). Classical MN and
FBMN jobs can be accessed here:

https://gnps.ucsd.edu/ProteoSA Fe/status.j sptask=f 2adc2cf 33c646548798d0e285197a96, and
https://gnps.ucsd.edu/ProteoSA Fe/status. sptask=0d89db67b0974939a91 ch7d5bfe87072, respectively.
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