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Wali JA, Koay YC, Chami J, Wood C, Corcilius L, Payne RJ,
Rodionov RN, Birkenfeld AL, Samocha-Bonet D, Simpson SJ,
O’Sullivan JF. Nutritional and metabolic regulation of the metabolite
dimethylguanidino valeric acid: an early marker of cardiometabolic
disease. Am J Physiol Endocrinol Metab 319: E509–E518, 2020. First
published July 14, 2020; doi:10.1152/ajpendo.00207.2020.—Dimeth-
ylguanidino valeric acid (DMGV) is a marker of fatty liver disease,
incident coronary artery disease, cardiovascular mortality, and inci-
dent diabetes. Recently, it was reported that circulating DMGV levels
correlated positively with consumption of sugary beverages and
negatively with intake of fruits and vegetables in three Swedish
community-based cohorts. Here, we validate these results in the
Framingham Heart Study Third Generation Cohort. Furthermore, in
mice, diets rich in sucrose or fat significantly increased plasma
DMGV concentrations. DMGV is the product of metabolism of
asymmetric dimethylarginine (ADMA) by the hepatic enzyme
AGXT2. ADMA can also be metabolized to citrulline by the cyto-
plasmic enzyme DDAH1. We report that a high-sucrose diet induced
conversion of ADMA exclusively into DMGV (supporting the rela-
tionship with sugary beverage intake in humans), while a high-fat diet
promoted conversion of ADMA to both DMGV and citrulline. On the
contrary, replacing dietary native starch with high-fiber-resistant
starch increased ADMA concentrations and induced its conversion to
citrulline, without altering DMGV concentrations. In a cohort of
obese nondiabetic adults, circulating DMGV concentrations increased
and ADMA levels decreased in those with either liver or muscle
insulin resistance. This was similar to changes in DMGV and ADMA
concentrations found in mice fed a high-sucrose diet. Sucrose is a
disaccharide of glucose and fructose. Compared with glucose, incu-
bation of hepatocytes with fructose significantly increased DMGV
production. Overall, we provide a comprehensive picture of the

dietary determinants of DMGV levels and association with insulin
resistance.

DMGV; insulin resistance; liver; metabolism; nutrition

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) is the commonest
liver disease in the Western world, affecting one in three
people in the general population (4, 38, 42). NAFLD is a
central driver of type 2 diabetes (T2D); however, not all
patients with NAFLD progress to T2D (2, 29, 32, 37). A
noninvasive biomarker that could determine which patients
with steatosis develop metabolic complications such as type 2
diabetes (T2D) would facilitate early commencement of treat-
ment to optimize patient outcomes. Using integrated nontar-
geted metabolomics and genomics, O’Sullivan et al. reported
that plasma DMGV was an independent biomarker of fatty
liver in the Framingham Heart Study Third Generation Cohort
(30). Concentrations of DMGV increased according to severity
of NAFLD and correlated strongly with hepatocyte ballooning
(30). In three separate human cohorts of different ethnicity,
DMGV independently predicted T2D more than 12 yr before
diagnosis (30). Furthermore, the concentrations of DMGV
decreased in parallel with metabolic improvements after Roux-
en-Y gastric bypass surgery (30).

DMGV is the product of transamination of asymmetric
dimethylarginine (ADMA) by the enzyme alanine-glyoxylate
aminotransferase-2 (AGXT2) (8, 9). Another substrate of
AGXT2 is �-aminoisobutyric acid (BAIBA), a myokine me-
tabolite that increases in the circulation after exercise and is
inversely associated with cardiometabolic disease risk (35, 41).
BAIBA competes with ADMA as an AGXT2 substrate and
reduced concentrations of BAIBA would allow greater conver-
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sion of ADMA to DMGV (17, 30). ADMA can also be
metabolized by the cytoplasmic enzyme dimethylarginine di-
methylaminohydrolase-1 (DDAH1) into citrulline (43). Inter-
estingly, DDAH1 is suppressed in fatty liver; Ddah1�/� mice
on a high-fat diet had more liver fat, higher expression of genes
involved in de novo lipogenesis, and more inflammation than
wild-type mice on the same diet (8, 9, 21). This suggests that
the conversion of ADMA to citrulline via DDAH1 may protect
from metabolic impairment, while decreased DDAH1 activity
would leave more ADMA to flux through AGXT2 to DMGV
(8, 9, 21).

More recently, a study from Sweden showed that baseline
DMGV concentrations were associated with T2D as well as
incident coronary artery disease and cardiovascular mortality
(31). Consumption of sugary drinks was associated with ele-
vated concentrations of DMGV, but intake of vegetables,
fruits, and whole grains as well as exercise was associated with
lower DMGV concentrations (31). Another study revealed
high baseline concentrations of DMGV predicted reduced
responsiveness to the metabolic benefits of endurance exercise
training (34). DMGV was also shown to be a marker of poor
metabolic outcomes in response to chronic exercise in healthy
male adults (19).

Motivated by the above, we explored further the relation-
ship between dietary macronutrients and plasma concentra-
tions of DMGV and related metabolites (ADMA, citrulline,
and BAIBA) in a large human community-based cohort; a
cohort carefully phenotyped by hyperinsulinemic-euglycemic
clamp, murine models, and hepatocytes.

MATERIALS AND METHODS

Mice and diets. Animal care and study protocols were approved by
the Institutional Animal Ethics Committee at the University of Sydney
(Sydney, NSW, Australia). C57BL/6J male mice (4 wk old) were
purchased from Animal Resources Centre (Western Australia) and
were housed four per cage (n � 20 mice/diet) at 24°C – 26°C and 44%
– 46% humidity under 12:12_h light-dark cycle settings (6 AM to 6
PM light cycle) with ad libitum access to food and water.

Commencing at 8 wk of age, mice were fed ad libitum isocaloric
(~14.5 kJ/g) experimental diets (Specialty Feeds, Western Australia)
for 18–19 wk. These diets were based on the AIN93G standard
semipure rodent diets and were kept isocaloric by adjusting their
cellulose content (33). The dietary interventions included the follow-
ing comparisons: 1) low- vs high-sucrose diet, 2) 5% vs. 15% protein
diet, and 3) native starch vs. high-fiber-resistant starch diet (Table 1).
Resistant starch was “gel-crisp” high-amylose RS type-2 (CRISP

FILM Starch from Ingredion, IL). In addition, we conducted a study
where mice were either fed control diet (AIN93G chow), a high-fat
diet (HFD), or a high-fat, high-sucrose diet (HFHSD) for 1 or 20 wk
(Table 1). All sampling occurred between 10 AM and 12 PM.

Framingham Cohort. The Framingham Heart Study (FHS) is a
large and ongoing cohort study of cardiovascular health (11). Plasma
samples from a randomly selected subset of the FHS Third Generation
Cohort of this study were analyzed using hydrophilic interaction
liquid chromatography followed by mass spectrometry. These partic-
ipants also answered questionnaires on food intake, from which
researchers could derive the average daily intake of various nutrients.
DMGV abundance could thus be correlated with the intake of various
foods and nutrients (11, 24).

Human hyperinsulinemic-euglycemic clamps. A cohort of Austra-
lian adults (n � 64) with obesity [body mass index (BMI) of �30
kg/m2] were studied at the Clinical Research Facility at the Garvan
Institute of Medical Research (Sydney, Australia) using two-step
hyperinsulinemic-euglycemic- clamps, as has been described in detail
previously (5). Briefly, a 6-h, two-step hyperinsulinemic-euglycemic
clamp procedure, incorporating deuterated glucose (Cambridge Iso-
tope Laboratory, Tewksbury, MA) was applied. Liver insulin resis-
tance was determined from the degree of suppression of endogenous
glucose production (EGP) in response to a low-dose insulin (15
mU/m2) infusion, while muscle insulin resistance was derived from
the glucose infusion rate (GIR) during the high-dose insulin (80
mU/m2) infusion (5). The study was approved by St. Vincent’s
Hospital Human Research Ethics Committee (Sydney, NSW, Austra-
lia).

Metabolomics. Plasma concentrations of metabolites were deter-
mined using published methodology incorporating the hydrophilic
interaction liquid chromatography-tandem mass spectrometry (LC-
MS/MS) method and amide chromatographic LC-MS/MS methods
(20). DMGV was not commercially available and was synthesized
according to the protocol reported by Klein et al. (18). Settings for
multiple reaction monitoring (MRM) transitions and collision ener-
gies using triple-quadrupole mass spectrometry (QqQ-MS) were ob-
tained for DMGV (synthesized), ADMA (Sigma-Aldrich), L-citrulline
(Sigma-Aldrich), and �-aminoisobutyric acid (BAIBA) (Sigma-Al-
drich) using direct infusion of analytical reference standards. MRM
scan in positive ion mode was used to monitor ion transitions for
DMGV (m/z 202.0 ¡ 70.3), ADMA (m/z 203.1 ¡ 70.3), L-citrulline
(m/z 176.1 ¡ 113.1, Sigma-Aldrich), and BAIBA (m/z 104.0 ¡ 85.9,
Sigma-Aldrich), and the MRM transitions were scheduled based on
chromatographic retention time resolved on a hydrophilic interaction
chromatographic 150 � 2.1 mm Atlantis HILIC column (Waters).
Plasma extraction was done in plasma samples using previously
published methods (20). Data were normalized relative to pooled
samples that were analyzed in the sample queue after every five
experimental samples, and normalized abundance was calculated for

Table 1. Composition of experimental diets

Diets Energy Density, kJ/g %Energy from Protein %Energy from Fat %Energy from Carbohydrate

Low-sucrose diet 14.5 5 (100% casein) 20 (100% soy oil) 75 (20% sucrose � 80% native starch)
High-sucrose diet 14.5 5 (100% casein) 20 (100% soy oil) 75 (80% sucrose � 20% native starch)
5% protein diet 14.5 5 (100% casein) 20 (100% soy oil) 75 (20% sucrose � 80% native starch)
15% protein diet 14.5 15 (100% casein) 20 (100% soy oil) 65 (20% sucrose � 80% native starch)
Native starch diet 14.5 10 (100% casein) 20 (100% soy oil) 70 (35% sucrose � 65% native starch)
Resistant starch diet 14.5 10 (100% casein) 20 (100% soy oil) 70 (35% sucrose � 65% resistant starch)
AIN93G chow diet 14.5 19 (100% casein) 18 (100% soy oil) 63 (16% sucrose � 21% dextrinized starch �

63% native starch)
High-fat diet 18.0 19 (100% casein) 45 (32% soy oil �

68% lard)
36 (16% sucrose � 21% dextrinized starch �

63% native starch)
High-fat, high-sucrose diet 18.0 19 (100% casein) 45 (32% soy oil �

68% lard)
36 (50% sucrose � 13% dextrinized starch �

37% native starch)

Source of macronutrients is given in parentheses.
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each metabolite. Thus we measured the abundance of metabolites
relative to the pooled sample (relative abundance) in our samples.
Plasma from one mouse per cage was randomly selected giving four
to five mice per diet.

Hepatocyte culture. Mouse hepatocyte cells (AML12) were cul-
tured in glucose-free Dulbecco’s modified Eagle’s medium containing
1% FCS, 0.2% BSA and 1% penicillin and streptomycin (Sigma-
Aldrich). Glucose (11 mM) or fructose (11 mM) either alone or in
conjunction with 300 �M oleate were added to the media for 24 h
before intracellular metabolite extraction.

Statistical analyses. Data are expressed as the means 	 SE, and
P 
 0.05 was considered statistically significant. Statistical analyses
of animal data were done in GraphPad PRISM software (San Diego,
CA). For intake data from the FHS cohort, individual nutrient intake
values were continuous, while specific food intake values were cate-
gorical (“Never,” “1 per week,” etc.). Spearman correlation coeffi-
cients were calculated between DMGV abundance and nutrient val-
ues, as nutrient levels were not generally normally distributed. Fol-
lowing correlation analysis, DMGV abundance was normalized using
a Box-Cox transformation (� � 0.317) and fiber intake was normal-
ized using a log2 transformation. These normalized values were used
to fit linear models of DMGV abundance, explained by soda and fiber,
controlling for age, BMI, sex, smoking status, and blood pressure.
Further details of statistical tests used are provided in relevant figure
legends.

RESULTS

We conducted studies in mice where we carefully manipu-
lated the ratios of the macronutrients and the dietary fiber
content (Table 1). This allowed the examination of the impact
of a nutrient in a controlled setting that is only possible in
animal studies. The metabolic consequences of these dietary
interventions have been described elsewhere (20, 40, 46).
Briefly, compared with chow-fed mice, mice fed a high-fat diet
or a high-fat, high-sucrose diet had significantly greater body
weights as expected (13, 45). Mice fed a 15% protein diet had
greater body weights than those maintained on a 5% protein
diet (46). In contrast, replacing native starch in the diet with
resistant starch led to lower body weights (20). Similarly, mice
maintained on a high-sucrose diet had slightly lower body
weights than those on a low-sucrose diet, which is consistent
with the findings of other studies where high amounts of sugars
were fed to mice as a solid food (44, 47).

High-sucrose intake increases circulating DMGV concen-
trations in mice. We first studied the nutrients that were
previously significantly associated with DMGV concentra-

tions, i.e., sucrose (e.g., from soda drinks) and dietary fiber
(31). Strikingly, we saw a ~3.5-fold increase in plasma DMGV
concentrations in mice consuming a high-sucrose diet (Fig.
1A). ADMA was readily detectable in mice fed a low-sucrose
diet, but it was undetectable in mice fed a high-sucrose diet.
This indicates a substantially increased conversion of ADMA
into DMGV in the liver in response to sucrose feeding. This is
likely facilitated by reduced BAIBA concentrations (thereby
providing less substrate competition with ADMA), while cit-
rulline concentrations were unaltered (Fig. 1A), which is un-
surprising given the multiple sources of citrulline (27), and
therefore, its levels do not always represent activity of
DDAH1.

High-fiber intake increases conversion of ADMA to citrul-
line in mice. In the next mouse study, 65% of the carbohydrate
energy was either sourced from native-wheat starch or high-
fiber resistant starch. Compared with native starch, resistant
starch intake led to an increase in ADMA concentration and a
trend toward increased citrulline concentrations, indicating
increased ADMA to citrulline conversion via DDAH1 (Fig.
1B). However, there was no difference in plasma DMGV or
BAIBA concentrations (Fig. 1B). There are several types of
dietary fiber [e.g., inulin, pectin, gums, resistant starch, etc.
(22)], and it is possible that the inverse association between
DMGV and dietary fiber observed in FHS (Fig. 2, below) could
be due to fiber types other than resistant starch.

High-fat and high-fat, high-sucrose diets increase circulat-
ing DMGV concentrations in mice. HFD and HFHSD are
commonly used in rodent research on obesity, hepatic steatosis,
and insulin resistance (13, 45). We collected plasma samples
after 1 and 20 wk of dietary intervention to measure the
concentration of metabolites. Compared with chow diet, mice
fed these obesogenic diets for 20 wk showed increased plasma
DMGV concentrations (Fig. 1, C and D). The HFD and
HFHSD did not alter plasma ADMA or BAIBA concentra-
tions but produced a small increase in citrulline concentra-
tions. This suggests an increased metabolism of ADMA via
both AGXT2 and DDAH1 enzymes on HFD and HFHSD
(Fig. 1, C and D).

It has previously been shown in mice that cardiometabolic
health and life span are adversely affected by high-protein
intake (40). We tested if the dietary protein content affects
plasma DMGV concentration. Mice were fed a very low-
protein diet (5% protein) or a relatively high-protein diet (15%

Fig. 1. Impact of consuming diets rich in sucrose; resistant starch; high-fat diet (HFD); high-fat, high-sucrose diet (HFHSD); and diets with increasing amount
of protein on plasma dimethylguanidino valeric acid (DMGV) concentration. A: consumption of high-sucrose diet results in elevated DMGV levels in the plasma
of mice. Shown is metabolic pathway resulting in the production of DMGV and plasma levels of DMGV, asymmetric dimethylarginine (ADMA),
�-aminoisobutyric acid (BAIBA), and citrulline in mice maintained on a high- or low-sucrose diet for 18–19 wk. AU, arbitrary units. All data are presented as
means 	 SE and were analyzed by an unpaired t test between indicated groups (n � 4–5 mice per group). *P 
 0.05 and ***P 
 0.001 between indicated groups.
B: consumption of resistant starch does not alter the plasma levels of DMGV in mice. Shown is the metabolic pathway resulting in the production of DMGV
and plasma levels of DMGV, ADMA, BAIBA, and citrulline in mice maintained on a diet rich in high-fiber-resistant starch or native starch for 18–19 wk. All
data are presented as means 	 SE and were analyzed by an unpaired t test between indicated groups (n � 5 mice per group). *P 
 0.05 between indicated groups.
C: consumption of a high-fat diet (HFD) results in elevated DMGV levels in the plasma of mice. Shown is metabolic pathway resulting in the production of
DMGV and plasma levels of DMGV, ADMA, BAIBA, and citrulline in mice maintained on an HFD for 1 or 20 wk. All data are presented as means 	 SE and
were analyzed by one-way ANOVA (n � 9 mice per group). *P 
 0.05 between indicated groups; ns, not significant. D: consumption of a high-fat, high-sucrose
diet (HFHSD) results in elevated DMGV levels in the plasma of mice. Shown is metabolic pathway resulting in the production of DMGV and plasma levels of
DMGV, ADMA, BAIBA, and citrulline in mice maintained on a HFHSD for 1 or 20 wk. All data are presented as means 	 SE and were analyzed by one-way
ANOVA (n � 9 mice per group). *P 
 0.05 between indicated groups; ns, not significant. E: consumption of increasing amounts of protein results in a trend
toward elevated DMGV levels in the plasma of mice. Shown is the metabolic pathway resulting in the production of DMGV and plasma levels of DMGV,
ADMA, BAIBA, and citrulline in mice maintained on a diet containing either 5% or 15% energy from protein for 18–19 wk. All data are presented as
means 	 SE and were analyzed by an unpaired t test between indicated groups (n � 5 mice per group).
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C  Chow vs High Fat Diet

D  Chow vs High Fat – High Sucrose Diet

E  5% vs 15% Protein Diet

A  Low Sucrose vs High Sucrose Diet

B  Native Starch vs Resistant Starch Diet
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protein) for 18–19 wk (for comparison, the AIN93G chow diet
provides ~19% energy from protein) (33). Increasing dietary
protein from 5% to 15% resulted in a trend toward increased
DMGV concentrations but did not affect plasma ADMA or
citrulline concentration (Fig. 1E). It is possible that increasing
dietary protein content beyond 15% could lead to statistically
significant increases in plasma DMGV.

Circulating DMGV levels in humans correlate with con-
sumption of soda drinks and dietary fiber. To investigate the
association between nutrient consumption and plasma DMGV
in humans, we analyzed the dietary data in the FHS Third
Generation cohort. This included macronutrients (protein, fat,
and carbohydrate), sugary drinks (“soda”), and dietary fiber
(Fig. 2A). Important characteristics of study participants are

A  Correlation of DMGV 
with dietary nutrients

D  Correlation of DMGV 
with other metabolites

B  Normalized DMGV vs Soda Intake

C  Normalized DMGV vs Fiber Intake

Fig. 2. Association between dietary nutrients
and plasma dimethylguanidino valeric acid
(DMGV) levels from the Framingham Heart
Study (FHS). A: correlation between plasma
DMGV concentrations and intake of differ-
ent nutrients from the Framingham Heart
Study. Boxes with crosses (X) represent the
P � 0.05 for indicated associations. B: cor-
relation between normalized DMGV concen-
trations and scores for daily intake of soda
drinks from the FHS. Box-Cox normalized
DMGV abundance is plotted against soda
score and a linear regression line fitted,
showing a significant positive relationship
(R � 0.11, P � 0.0017, n � 828 subjects).
Subjects were asked about how often they
drank soda drinks. Based on their responses,
they were assigned a score of 1 (never, or less
than once/month), 2 (1–3/mo), 3 (1/wk), 4
(2–4/wk), 5 (5–6/wk), 6 (1/day), 7 (2–3/day),
8 (4–5/day), and 9 (6 or more/day). C: corre-
lation between normalized DMGV concentra-
tions and scores for daily intake of dietary fiber
from the FHS. Box-Cox normalized DMGV
abundance is plotted against log2-normalized
daily fiber intake (grams) and a linear regres-
sion line fitted, showing a significant neg-
ative relationship (R � �0.089, P �
0.011, n � 828 subjects). D: correlation
between plasma DMGV and other circulat-
ing metabolites.
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given in Table 2. Consistent with data from the Swedish
cohorts (31), we observed a significant positive correlation
between the consumption of soda drinks and circulating
DMGV concentration (� � 0.084, P � 0.016, n � 828 sub-
jects) (Fig. 2, A and B, and Table 3). In contrast, increased
intake of dietary fiber was associated with reduced concentra-
tions of DMGV (� � �0.088, P � 0.012, n � 828 subjects)
(Fig. 2, A and C, and Table 4). Linear models of normalized
DMGV abundance also showed a significant positive associa-
tion with soda (P � 0.0017), and a significant negative asso-
ciation with fiber (P � 0.011). After adjusting the linear
models for age, sex, BMI, systolic and diastolic blood pressure,
and cigarettes per day, the association between DMGV and
sugary drinks remained highly significant (P value changed
from 0.0017 to 0.0020), but the effect of fiber became
nonsignificant (P value changed from 0.011 to 0.42) (Table
3 and 4). Moreover, circulating DMGV concentrations cor-
related strongly with other substrates of AGXT2 including
alanine, ADMA, and BAIBA (Fig. 2D). However, we did not

observe an association between DMGV and other nutrients
analyzed. Analyzing data by the source of protein or fat
(animal vs. plant) did not yield significant results.

Hepatic and muscle insulin resistance in humans is associ-
ated with increased circulating DMGV levels. In humans,
plasma DMGV concentrations correlate strongly with the ex-
tent of liver steatosis (30), but its relationship with insulin
resistance in muscle and liver remains unknown. We measured
plasma DMGV concentrations in a cohort of obese nondiabetic
individuals studied using two-step hyperinsulinemic-euglyce-
mic clamps (5). This allowed identification of the following
distinct phenotypic groups: i: insulin sensitive in both muscle
and liver (MSLS); ii: insulin resistant in liver (MSLR); and iii:
insulin resistant in muscle (MRLS). We found that DMGV
levels were significantly higher while ADMA and citrulline
levels were lower in the presence of either hepatic (MSLR
group) or skeletal muscle (MRLS group) insulin resistance (vs.
MSLS group) (Fig. 3A, i–v). The trends for plasma BAIBA
concentrations were similar to ADMA and citrulline results
(Fig. 3Aiv). This suggests that plasma DMGV is not only
sensitive to hepatic fat and hepatic insulin resistance but is also
perturbed by metabolic impairment in other insulin sensitive
tissues.

Exposure of hepatocytes to fructose and oleate increases
DMGV synthesis. Sucrose (a disaccharide of glucose and
fructose) and high-fructose corn syrup (a ~1:1 mixture of
monosaccharide glucose and fructose) are the most commonly
used caloric sweeteners in sugary drinks (3, 25). Increased
intake of fructose induces de novo lipogenesis in the liver and
leads to hepatic steatosis as wells as insulin resistance (12, 26,
39). We cultured AML12 mouse hepatocytes with glucose or

Table 2. Characteristics of participants in the FHS Third
Generation cohort randomly selected for metabolomic
analyses

Sample size 828

Age 43 yr (SD � 9.06)
Sex 46.4% men; 53.6% women
Weight 171.5 lb (SD � 40.76)
Height 67.11 in. (SD � 3.79)
BMI 26.64 (SD � 5.31)

BMI, body mass index; FHS, Framingham Heart Study.

Table 3. Soda: regression table showing coefficients and standard errors for successive linear models of Box-Cox
normalized DMGV abundance

Dependent Variable

DMGV

(1) (2) (3) (4) (5)

Soda 0.062***
(0.020)

0.064***
(0.020)

0.063***
(0.018)

0.056***
(0.018)

0.055***
(0.018)

Age 0.024***
(0.004)

0.015***
(0.003)

0.012***
(0.004)

0.011***
(0.004)

Sex �0.257***
(0.070)

�0.072
(0.063)

�0.025
(0.064)

�0.020
(0.064)

BMI 0.088***
(0.006)

0.083***
(0.006)

0.082***
(0.006)

Systolic BP, mmHg �0.0002
(0.003)

�0.001
(0.003)

Diastolic BP, mmHg 0.012***
(0.004)

0.013***
(0.004)

Cigarettes/day 0.005*
(0.003)

Constant �0.137**
(0.056)

�1.028***
(0.187)

�3.090***
(0.213)

�3.703***
(0.291)

�3.687***
(0.292)

Observations 828 828 828 827 824
R2 0.012 0.076 0.281 0.291 0.295
Adjusted R2 0.011 0.073 0.278 0.286 0.289
Residual SE 0.995

(df � 826)
0.963

(df � 824)
0.850

(df � 823)
0.845

(df � 820)
0.844

(df � 816)
F statistic 9.871***

(df � 1; 826)
22.722***

(df � 3; 824)
80.511***

(df � 4; 823)
56.171***

(df � 6; 820)
48.855***

(df � 7; 816)

There was a significant positive linear relationship between soda scores and dimethylguanidino valeric acid (DMGV). The association was then tested with
the stepwise addition of the following clinically significant covariates as indicated: age, sex, body mass index (BMI), systolic and diastolic blood pressure (BP),
and cigarettes per day. The association between soda and DMGV remained highly significant. *P 
 0.1, **P 
 0.05, ***P 
 0.01.
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fructose alone or in combination with the fatty acid oleate.
Compared with glucose treatment, incubation of hepatocytes
with fructose or fructose � oleate resulted in increased pro-
duction of DMGV. These treatments did not alter ADMA
concentrations (Fig. 3B). This result indicates that the fructose
component of sucrose could be responsible for significant
increase in DMGV production in liver.

DISCUSSION

The metabolite DMGV is emerging as a valuable marker of
cardiometabolic disease. Its concentration in plasma correlates
strongly with liver fat (30) and incident coronary artery dis-
ease/cardiovascular mortality (31) and predicts future T2D (30,
31). Increased intake of sugary drinks is associated with higher
plasma concentrations of DMGV while reduced concentrations
of DMGV are seen in subjects following diets rich in vegeta-

bles, after Roux-en-Y gastric weight loss surgery, and post
exercise intervention (30, 31, 34). In this study, we showed that
increased intake of sugary drinks and dietary fiber is associated
with elevated and lower concentrations of DMGV, respec-
tively, in community-dwelling individuals. Our dietary inter-
ventions in mice showed that diets rich in sucrose or fat or their
combination increase DMGV concentrations. In the case of a
very high-sucrose diet, there was a dramatic increase in
AGXT2-mediated conversion of ADMA to DMGV, but me-
tabolism of ADMA into citrulline by DDAH1 remained unal-
tered. After HFD, there was a less pronounced yet significant
increase in conversion of ADMA into both DMGV and citrul-
line. In contrast, replacing native starch with high-fiber-resis-
tant starch led to increased ADMA concentrations and a trend
toward increased conversion of ADMA into citrulline, but
DMGV concentrations remained unaffected. This may be con-

Fig. 3. Insulin resistance and exposure of hepatocytes to fructose increases dimethylguanidino valeric acid (DMGV). A: insulin resistance in liver and muscle
results in increased plasma DMGV and decreased plasma asymmetric dimethylarginine (ADMA) levels. i: Metabolic pathway resulting in the production of
DMGV and related metabolites [ADMA, �-aminoisobutyric acid (BAIBA), and citrulline] in nondiabetic obese subjects with insulin resistance in liver or muscle.
ii, iii, iv, and v: Plasma DMGV (ii), ADMA (iii), BAIBA (iv), and citrulline (v) concentrations in obese nondiabetic subjects that were either insulin sensitive
in both muscle and liver (MSLS) (n � 12) or insulin resistant in liver (MSLR) (n � 8) or insulin resistant in muscle (MRLS) (n � 9). AU, arbitrary units. All
data are presented as means 	 SE and were analyzed by an unpaired t test between indicated groups. *P 
 0.05 and **P 
 0.01 between indicated groups. Data
analysis by ANOVA-Tukey’s post hoc test yielded the following P values: DMGV [MSLS vs. MSLR � 0.31; MSLS vs. MRLS � 0.05], ADMA [MSLS vs.
MSLR � 0.002; MSLS vs. MRLS � 0.003], BAIBA [ MSLS vs. MSLR � 0.39; MSLS vs MRLS � 0.09], and citrulline [MSLS vs. MSLR � 0.08; MSLS vs.
MRLS � 0.06]. B: exposure of hepatocytes to fructose results in increased DMGV production. AML12 hepatocytes were treated with glucose (11 mM) or
fructose (11 mM) in isolation or in combination with 300 �M oleate for 24 h. Metabolites were measured in hepatocytes after these treatments. All data are
presented as means 	 SE and were analyzed by one-way ANOVA (n � 4 independent experiments). *P 
 0.05 between indicated groups. C: summary of results:
impact of sucrose, fat, protein, and resistant starch intake on circulating concentrations of DMGV, ADMA, BAIBA, and citrulline. Dotted arrows represent trends
that are statistically not significant. R. Starch, resistant starch.

Table 4. Fiber: regression table showing coefficients and standard errors for successive linear models of Box-Cox
normalized DMGV abundance

Dependent Variable

DMGV

(1) (2) (3) (4) (5)

Fiber �0.121**
(0.048)

�0.116**
(0.046)

�0.063
(0.041)

�0.046
(0.041)

�0.034
(0.042)

Age 0.022***
(0.004)

0.013***
(0.003)

0.010***
(0.003)

0.009**
(0.004)

Sex �0.312***
(0.067)

�0.129**
(0.061)

�0.072
(0.062)

�0.067
(0.063)

BMI 0.088***
(0.006)

0.082***
(0.006)

0.081***
(0.006)

Systolic BP, mmHg �0.0003
(0.003)

�0.001
(0.003)

Diastolic BP, mmHg 0.013***
(0.004)

0.014***
(0.004)

Cigarettes/day 0.004
(0.003)

Constant �0.501**
(0.201)

�0.288
(0.254)

�2.553***
(0.270)

�3.317***
(0.349)

�3.359***
(0.349)

Observations 828 828 828 827 824
R2 0.008 0.072 0.272 0.284 0.288
Adjusted R2 0.007 0.069 0.269 0.279 0.282
Residual SE 0.997

(df � 826)
0.965

(df � 824)
0.855

(df � 823)
0.849

(df � 820)
0.849

(df � 816)
F statistic 6.436**

(df � 1; 826)
21.396***

(df � 3; 824)
77.004***

(df � 4; 823)
54.198***

(df � 6; 820)
47.068***

(df � 7; 816)

There was a significant negative linear relationship between log2-normalized fiber intake and dimethylguanidino valeric acid (DMGV). The association was
then tested with the stepwise addition of the following clinically significant covariates as indicated: age, sex, body mass index (BMI), systolic and diastolic blood
pressure (BP), and cigarettes per day. After adjusting for age and sex, the inverse relationship between fiber and DMGV remained significant, but in the presence
of the other covariates the association became nonsignificant. **P 
 0.05, ***P 
 0.01.
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sistent with the association of citrulline with enterocyte mass
and intestinal function (6, 10) [high fiber intake increases
cecum size and colonic cell proliferation in rodents (16,
48)]. Overall, our results show that ADMA is metabolized

into DMGV in the context of increased components of an
unhealthy diet (Fig. 3C).

Interestingly, we found that DMGV concentrations in-
creased and ADMA concentrations decreased in subjects with

A  DMGV and Related Metabolites in Human Liver or Muscle Insulin Resistance

B  DMGV in Hepatocytes Cultured with Glucose, Fructose and Oleate
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hepatic or muscle insulin resistance, and the DMGV/ADMA
results mirrored the findings in mice on a very high-sucrose
diet. It is therefore unsurprising that DMGV correlated
strongly with consumption of sugary drinks in humans (31).
This extends the clinical value of DMGV from liver biology to
other organ/global metabolic health, and the skeletal muscle
result may underscore the DMGV response to exercise, which
is intriguing as AGXT2 is not expressed in skeletal muscle
(14). The fructose component of the sucrose strongly stimu-
lates de novo lipogenesis in the liver that promotes visceral
adiposity and insulin resistance (1, 26, 39). Fructose consump-
tion, particularly in beverages, has been linked to T2D and
cardiovascular disease (23, 28). We found that fructose also
increased DMGV production in hepatocytes. Future studies
must examine the mechanisms that link DMGV with ectopic
lipid deposition and insulin resistance in muscle and liver.

A limitation of our work is that we measured the concen-
tration of metabolites in circulation, which does not always
reflect the activity of enzymes involved (DDAH1 and
AGXT2). The steady-state levels of biomolecules in biological
samples reflect the equilibrium between their production, ca-
tabolism, transport, and excretion. ADMA is metabolized by
both DDAH and AGXT2 enzymes, and its circulating concen-
tration is therefore a less sensitive parameter for estimation of
AGXT2 activity in vivo (15, 36). Similarly, citrulline is a less
specific readout of DDAH1 activity as it is also produced in the
urea cycle and by nitric oxide synthases (7). In comparison,
DMGV is exclusively produced by AGXT2 and its concentra-
tions are a more sensitive measure of AGXT2 activity (15, 36).
This might explain why the changes in DMGV are not always
associated with expected complementary changes in plasma
ADMA and citrulline levels. In addition, while AGXT2 is the
only enzyme described in the literature that could generate
DMGV (15, 36), it is possible that other metabolic pathways
also exist that could produce DMGV, and this should be
investigated in future studies.
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