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The making of insulin in health and disease
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Abstract
The discovery of insulin in 1921 has been one of greatest scientific achievements of the 20th century. Since then, the availability
of insulin has shifted the focus of diabetes treatment from trying to keep patients alive to saving and improving the life of millions.
Throughout this time, basic and clinical research has advanced our understanding of insulin synthesis and action, both in healthy
and pathological conditions. Yet, multiple aspects of insulin production remain unknown. In this review, we focus on the most
recent findings on insulin synthesis, highlighting their relevance in diabetes.
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Abbreviations
CPE Carboxypeptidase E/H
DDX1 DEAD-box helicase 1
eIF Eukaryotic initiation factor
ER Endoplasmic reticulum
ERO1α/β Endoplasmic reticulum

oxidoreductin 1α/β
GLP-1 Glucagon-like peptide 1
hnRNP Heterogeneous nuclear ribonucleoprotein
IRE1α Inositol-requiring enzyme 1α
mTOR Mammalian target of rapamycin
PC1/3 Proprotein convertase 1/3
PDI Protein disulfide isomerase

PERK Protein kinase RNA-like endoplasmic
reticulum kinase

PTBP1 Polypyrimidine tract-binding protein 1
RBP RNA-binding protein
tRNA Transfer RNA
UPR Unfolded protein response
UTR Untranslated region

Introduction

Discovered first by Frederik Banting and Charles Best in
1921, insulin is a 51-amino-acid long peptide hormone, which
is key for control of glucose homeostasis, metabolism and cell
growth [1]. Insulin is thought to be only produced and secret-
ed by the beta cells of the pancreatic islets, although contro-
versial findings have suggested that minute amounts may also
be expressed in a subset of neurons in the central nervous
system [2] . Within 1–10 min fol lowing a meal ,
hyperglycaemia prompts beta cells to secrete a small fraction
(<5%) of their insulin content. Systemic circulation distributes
insulin to its main target cells, namely hepatocytes, promoting
their glucose storage via glycogen synthesis, and skeletal
muscle cells and adipocytes, to stimulate their glucose uptake.
Thereby, through these concerted actions, blood glucose is
lowered to fasting levels [3].

Insulin biosynthesis begins with the translation of mRNA
into preproinsulin, a polypeptide of 110 amino acids with an
N-terminal signal peptide, followed by the B chain, the
connecting peptide (C-peptide) and the C-terminal A chain
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(Fig. 1). Upon translocation into the endoplasmic retic-
ulum (ER), the signal peptide is removed, thereby
converting preproinsulin into proinsulin, and disulfide
bridges form between the B and A chains. Following
its exit from the ER, proinsulin moves through the
Golgi complex to the trans-Golgi network (TGN) to
be sorted into membrane-enclosed organelles termed
secretory granules [4] (Fig. 2). Cleavage of the C-
peptide in this compartment converts proinsulin into
mature insulin, which consists of the B and A chains
only (Fig. 1). Mature insulin is stored within secretory
granules until they fuse with the plasma membrane to
release insulin, or are degraded intracellularly through
autophagy or direct delivery to lysosomes, otherwise
defined as crinophagy [5–7].

As newly-synthesised insulin is preferentially secreted
[8–10], hyperglycaemia simultaneously enhances de novo
insulin biosynthesis in order for beta cells to replenish their
insulin granule stores and, thus, retain their secretory compe-
tence. Given the astonishing assembly rate of >3 × 103 new
insulin molecules per second per beta cell [11], each step for
insulin production must have been optimised during
evolution.

Glucose regulates insulin mRNA transcription
and translation

Glucose is the key factor controlling insulin mRNA expres-
sion. Indeed, in glucose-stimulated beta cells, insulin levels
are increased 20-fold [12, 13]. This effect is mediated both
by transcriptional and post-transcriptional mechanisms.
Glucose stimulates the activity of insulin transcription factors
pancreatic and duodenal homeobox 1 (PDX-1), neurogenic
differentiation 1 (NEUROD1)–E47 and MafA at multiple
levels, including changes in their expression levels, subcellu-
lar localisation, DNA-binding activity, transactivation capa-
bility and interactions with other proteins. For more informa-
tion on this topic, we refer readers to another review within
this special issue [14]. However, for the specific purpose of
this article, it is critical to emphasise that the levels of
preproinsulin (i.e. unspliced) pre-mRNA and mature (i.e.
spliced) preproinsulin mRNA only increase 1 h and several
hours after glucose stimulation, respectively [15]. On the other
hand, insulin protein levels are already increased 30 min after
exposure of rodent and human islets to hyperglycaemia [13,
16, 17]. Taken together, these data indicate that post-
transcriptional mechanisms account mostly, if not entirely,
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Fig. 1 The insulin peptide. Insulin is synthesised as a 110 amino-acid-
long preproinsulin including a signal peptide (orange), a B chain (blue), a
connecting peptide (C-peptide, yellow) and an A chain (red). The signal
peptide targets the preproinsulin to the ER, where it is cleaved by the
signal peptidase and converted into proinsulin. In the ER, three disulfide
bonds are formed between cysteine residues with the help of PDIs.

Proinsulin is trafficked from the ER, through the Golgi and the trans-
Golgi network to secretory granules (SGs), where PC1/3 and CPE
process the dibasic residues (grey) to form mature insulin. Zn2+ non-
covalently binds to the HisB10 to form the insulin hexamer. Amino acids
mentioned in the text are shown in a darker colour. This figure is available
as part of a downloadable slideset
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for the sudden increase in insulin biosynthesis elicited by
glucose stimulation.

Preproinsulin mRNA is the most abundant transcript in
beta cells, accounting for ∼30% of their total mRNA content
[18]. Resting beta cells store translationally repressed pre-
existing copies of preproinsulin mRNA in the cytosol.
Hyperglycaemia stimulates the conversion of preproinsulin
mRNA into a translationally active form, by altering the
combinatorial binding of RNA-binding proteins (RBPs) to
cis-regulatory elements in its untranslated regions (UTRs).
In this way, beta cells can bypass the time-consuming tran-
scriptional step and quickly activate insulin biosynthesis to
replenish their stores [19]. In particular, as briefly summarised
below, RBPs modulate preproinsulin mRNA stability [16,
18], translation initiation rates [17, 20, 21], including cap-
independent translation [22, 23], and transfer to the ER [24].

Regulation of preproinsulin mRNA stability
in health and diabetes

Preproinsulin mRNA has a long half-life, which is mainly
regulated by a conserved polypyrimidine tract and a
UUGAA-motif in its 3′-UTR [13, 16]. Glucose stimulation

increases preproinsulin mRNA stability two- to threefold, as
compared with non-stimulated beta cells. The best known
RBP that regulates preproinsulin mRNA stability is
polypyrimidine tract-binding protein 1 (PTBP1, also known
as heterogeneous nuclear ribonucleoprotein [hnRNP] I) [25,
26]. PTBP1 binds to the 3′-UTR of preproinsulin mRNA and
prevents its destabilisation by opposing T cell-restricted intra-
cellular antigen 1-related (TIAR) protein [27]. Although it is
unclear how, it is known that hyperglycaemia promotes the
nucleocytoplasmic translocation and recruitment of PTBP1 to
preproinsulin mRNA in the cytosol [28]. Preproinsulin
mRNA stability is also enhanced by glucagon-like peptide 1
(GLP-1), which is released from nutrient-stimulated L cells in
the gut. Exposure of beta cells to GLP-1 induces the protein
kinase A (PKA)-mediated phosphorylation of the nuclear
import signal within PTBP1 and, thus, its nucleocytoplasmic
translocation [29], conceivably to prime beta cells for the
increased insulin demand following a meal.

Other preproinsulin RBPs, at least in insulinoma cells,
include hnRNP K [25, 27], hnRNP C, hnRNP E [25],
hnRNP L, hnRNP U, HuD [30], and the poly(rC)-binding
proteins (PCBP) 1, 2 and 3 [27]. Their involvement in
preproinsulin mRNA stability remains unknown and, for
some, such as hnRNP K, there are conflicting findings [30].
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Fig. 2 Schematic of insulin production and secretion, from mRNA to the
mature hormone. The preproinsulin mRNA is stabilised by its binding to
various hnRNPs in the cytosol. Preproinsulin translation and its translo-
cation to the ER starts after the formation and activation of the ribosomal
complex. Following proinsulin folding in the ER and the removal of the
C-peptide, mature insulin is formed in secretory granules (SGs).
Environmental changes, such as metabolic stress or inflammation, that

can hamper this highly regulated process are shown in red for type 2
diabetes (T2D) and in orange for type 1 diabetes (T1D); genetic changes
resulting in different types of diabetes are labelled in blue (T2D and
gestational diabetes mellitus [GDM]) and in green (neonatal diabetes).
ATF6, activating transcription factor 6; miR, microRNA; SRP, signal
recognition particle; TGN, trans-Golgi network. This figure is available
as part of a downloadable slideset
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Yet, several of them are among the most rapidly regulated
proteins in INS-1 cells exposed to hyperglycaemia or 3-
isobutyl-1-methylxanthine (IBMX) [31], which, like GLP-1,
enhances cAMP levels. Hence, evidence increasingly points
to RBPs as being critical for rapid post-transcriptional regula-
tion of preproinsulin mRNA.

Since the levels of preproinsulin mRNA in the islets of
individuals with normoglycaemia or type 2 diabetes do not
significantly differ, its stability is unlikely to be affected in
type 2 diabetes [32, 33]. On the other hand, in mouse islets
and insulinoma (MIN6) cells exposed to proinflammatory
cytokines, no-go and nonsense-mediated RNA decay path-
ways are upregulated, lowering the levels of preproinsulin
mRNA [34]. It is, therefore, possible that inflammation in
pancreatic islets in type 1 diabetes alters preproinsulin
mRNA stability, while its alternative splicing seems unaffect-
ed [35].

Regulation of preproinsulin mRNA translation
in health and diabetes

While a blood glucose concentration of >4–5 mmol/l
enhances insulin secretion, glucose concentrations as low as
2–4 mmol/l already support the biosynthesis of insulin to
ensure maintenance of its stores [36, 37]. In mammalian cells,
translation starts with the binding of various initiation factors
to the 5′-UTR of mature mRNAs. This binding occurs in a
prescribed order and promotes the recruitment of the small
and large ribosomal subunits. Beta cells store preproinsulin
mRNA in assembled polysomes. Upon glucose stimulation
these polysomes are transported to the ER and preproinsulin
mRNA translation starts immediately [24]. Besides common
regulators of translation, such as those related to the mamma-
lian target of rapamycin (mTOR) pathway, several other
specific factors regulate insulin translation in response to
nutrients. Among them is the ATP-dependent RNA helicase
DEAD-box helicase 1 (DDX1), which binds to eukaryotic
initiation factor (eIF)3a and eIF4b, and to preproinsulin
mRNA [38]. These findings could be relevant for the patho-
genesis of type 2 diabetes, which is commonly associated with
hyperlipidaemia; saturated NEFAs, like palmitate, acutely
enhance the secretion of insulin but, unlike its other secreta-
gogues (glucose and GLP-1), they do not concomitantly
increase its production [39]. In mice, in particular, palmitate-
induced phosphorylation of DDX1 displaces it from the
preproinsulin mRNA and suppresses insulin biosynthesis,
hence providing a direct link between hyperlipidaemia and
insulin deficiency [38]. Moreover, depletion of Ca2+ levels
in the ER upon exposure to palmitate can impair proinsulin
folding and cause ER stress, hence further downscaling insu-
lin biosynthesis [40].

Transfer RNAs (tRNAs) deliver amino acids to translating
ribosomes, and their post-transcriptional methylation
enhances the fidelity and, thus, efficiency of translation.
Polymorphisms or mutations in tRNA methyltransferases,
such as in CDKAL1 and TRMT10A [41–43], are associated
with glucose intolerance due to impaired insulin synthesis
and, in the case of TRMT10A, cause a monogenetic form of
young-onset diabetes associated with microencephaly and
intellectual disability. Interestingly, the use of an alternative
start codon in human preproinsulin mRNA can lead to the
translation of a nonconventional insulin product and the
generation of neoantigenic peptides thereof, which are targets
of T cell-mediated autoimmunity in type 1 diabetes [44].

All eukaryotic mRNAs are capped at their 5′-UTR and
translated in a cap-dependent fashion. However, cap-
independent translation can occur if initiation factors are
recruited closer to the first AUG codon through an internal
ribosome entry site (IRES). Bypassing many of the controls
for cap-dependent translation, cap-independent translation
allows for protein synthesis in conditions in which the former
is compromised, for example, upon irradiation, hypoxia,
apoptosis or amino-acid starvation. Notably, mRNAs for insu-
lin and other secretory granule cargoes can be translated in a
cap-independent manner, thus enabling their continuous
production, even in stress conditions [23] or upon inhibition
of the mTOR pathway [45]. Key to this process is PTBP1, the
binding of which to the preproinsulin mRNA 5′-UTR is
increased upon transient hyperglycaemia. However, exposure
of human islets to prolonged hyperglycaemia suppresses
PTBP1 expression and insulin biosynthesis, possibly due to
the concomitant upregulation of microRNA (miR)-133a,
which binds to the 3′-UTR of PTBP1 mRNA [46]. Increased
nuclear retention of PTBP1 in the islets of individuals with
type 2 diabetes may also contribute to impaired glucose-
stimulated insulin biosynthesis [47]. Furthermore, common
polymorphisms within PTBP1 influence glucose-stimulated
insulin secretion [48], albeit, in general, PTBP1mRNA levels
in the islets of individuals with impaired glucose tolerance and
type 2 diabetes are unaffected as compared with individuals
with normoglycaemia [33].

Although most mutations in insulin’s amino acid sequence
impair its folding in the ER [49–51] (see below), there are also
single-point mutations (such as the three shown in dark orange
in Fig. 1) or extensive exon deletions that affect its efficient
translation (Fig. 1). In all these instances, translation initiation
of preproinsulin is immediately arrested, leading to permanent
neonatal diabetes. For instance, mutations in the start codon of
preproinsulin cause immediate arrest of translation initiation.
Downstream mutations in the signal peptide of preproinsulin,
such as R6C replacement [52], also impair ER translocation
and target preproinsulin for proteasomal degradation.
Furthermore, mutations affecting signal-peptide cleavage,
such as the A24D replacement, also cause permanent neonatal
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diabetes by blocking ER exit of the protein and leading to ER
stress [50, 51]. Finally, polymorphisms in the gene encoding
translocon-associated protein subunit α (SSR1) may alter
preproinsulin translocation and, thus, predispose carriers to
type 2 diabetes and gestational diabetes [53, 54].

Regulation of proinsulin folding in health
and diabetes

Proinsulin folding in the ER involves the establishment of
three disulfide bonds, two interchain between the B and A
chains and one intrachain within the A chain (Fig. 1).
Altered cysteine pairing, such as upon mutations of C96 in
the A chain, causes misfolding, accumulation and toxic aggre-
gation of proinsulin in the ER leading to permanent neonatal
diabetes or mature-onset diabetes of the young (reviewed
previously [50]). Recent studies in a human-derived induced
pluripotent stem cell (iPSC) model of neonatal diabetes with a
C96R mutation, and in the Akita mouse model of diabetes, in
which one Ins2 allele carries a C96Y replacement, suggest
that proinsulin misfolding reduces beta cell proliferation and
mass due to downregulation of mTOR signalling during
pancreas development [55–57], rather than beta cell apoptosis,
as it is commonly assumed.

In vitro studies suggest that among the 15–20 protein disul-
fide isomerases (PDIs) found in the human genome, PDIA1
primarily facilitates the oxidative folding of proinsulin disul-
fide bonds in conjunction with the oxidoreductases ER
oxidoreductin 1α/β (ERO1α/β) [51, 58, 59]. In turn,
ERO1α/β regenerate PDIs for subsequent rounds of disulfide
bond generation. Increasing evidence suggests that modest
amounts of proinsulin disulfide mispairing occurs even in
healthy beta cells and that accumulation of misfolded proin-
sulin intermediates occurs early in type 2 diabetes [60, 61].
Thus, maintenance of a proper redox status, which relies on
the continuous supply of reducing equivalents by the cytosolic
thioredoxin system, is critical for proper beta cell function.
Interestingly, the thioredoxin interacting protein (TXNIP),
which inhibits the antioxidative action of thioredoxin and is
elevated upon ER stress and insulin misfolding [62, 63], was
also found to be elevated in type 2 diabetes islets [64].

Perturbance of proinsulin folding is countered by the
unfolded protein response (UPR). Among the three UPR
sensors, namely inositol-requiring enzyme 1α (IRE1α),
protein kinase RNA-like ER kinase (PERK) and activating
transcription factor 6 (ATF6), IRE1α and PERK have been
more extensively implicated in the regulation of proinsulin
folding. IRE1α signalling is constitutively active under physio-
logical conditions for control of oxidative proinsulin folding
[58], whereas the PERK pathway is induced upon ER stress
[65, 66]. Mutations in PERK (also known as EIF2AK3) cause
the Wolcott–Rallison syndrome, an autosomal recessive

permanent neonatal diabetes [65]. On the other hand,
inactivating mutations of the heat shock protein p58IPK,
resulting in increased PERK activity, can also cause diabetes
[51, 65]. In type 1 diabetes, cytokine-induced ER stress may
account for impaired folding of insulin and altered HLA
presentation of antigenic peptides thereof, hence contributing
to beta cell dysfunction and T cell-mediated destruction
[67–69].

Regulation of proinsulin conversion
into mature insulin in health and diabetes

The conversion of proinsulin into mature insulin occurs in two
consecutive steps; first, the C-peptide junctions at the B and A
chains are cleaved at basic residues R55–R56 and K88–R89
(Fig. 1) [70, 71]. In human beta cells, proprotein convertase
1/3 (PC1/3) is mainly responsible for C-peptide release, while
in rodent beta cells, its paralogue proprotein convertase 2
(PC2) also participates in this process [72]. Next, the exopep-
tidase carboxypeptidase E/H (CPE) removes the dibasic resi-
dues R55–R56 at the C-terminal end of the B chain (Fig. 1)
[70, 71]. Although impaired proinsulin conversion with
elevated proinsulin secretion is a hallmark of type 2 [73] and
type 1 diabetes [74, 75], genetic variants affecting the junction
between the C-peptide and the A chain, such as replacement
of R89 [50] (Fig. 1), or the proteolytic activities of either PC1/3
[76] or CPE [77] have only been identified in a few individuals
with type 2 diabetes or altered glucose metabolism. While
islets of donors with type 2 diabetes do not display reduced
expression of PC1/3 (also known as PCSK1) and/or CPE
mRNA [33, 78], one study found that palmitate treatment of
islets isolated from non-diabetic deceased organ donors
reduced CPE protein levels [79]. This intriguing observation
remains to be validated in studies of CPE expression in islets
of individuals with type 2 diabetes in situ. On the other hand,
proteomic analysis indicated that PC1/3 and CPE are reduced
in islets from donors with type 1 diabetes that were obtained
by laser capture microdissection (LCM) [80, 81]. Besides
reduced expression of PC1/3 and CPE, other mechanisms
could account for the inefficient conversion of proinsulin into
mature insulin. The activation of PC1/3 and CPE, which also
travel through the secretory pathway together with proinsulin,
is induced by the lowering of luminal pH to <6.0 and the rise of
Ca2+ concentration in immature insulin secretory granules.
Therefore, reduced proinsulin-to-insulin conversion may also
reflect changes in luminal acidification, for instance, due to
premature ageing of secretory granules, since the pH of older
granules is ≥6.2 (M. Neukam and M. Solimena, unpublished
results). Beta cell degranulation, due to excessive insulin
demand, may also force the immediate release of immature
secretory granules without providing enough time for efficient
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proinsulin-to-insulin conversion. This scenario, however,
remains to be proven.

In most mammalian beta cells, including humans, mature
insulin is stored in secretory granules as a hexamer of three
dimers, each of which coordinates the binding of a Zn2+ mole-
cule to H34 (B10) in the B chain (Fig. 1). Albeit, a notable
exception to this is guinea pig insulin, which does not bind to
Zn2+. Import of Zn2+ into secretory granules is mediated by
the zinc transporter 8 (ZnT8; encoded by the SLC30A8), a
known autoantigen of type 1 diabetes and a risk gene for type
2 diabetes. Depletion of Zn2+ impairs both insulin
crystallisation, thereby altering the characteristic appearance
of the granule-dense core that can be seen using electron
microscopy, and insulin secretion in mice [82]. Remarkably,
carriers of the ZnT8 variant R325W, which correlates with
lower expression of the transporter, convert proinsulin to insu-
lin more efficiently and have a lower risk of developing type 2
diabetes. On the other hand, in these individuals, the import of
Zn2+ into secretory granules may be compensated by other
zinc transporters [83, 84].

The dimerisation interface of the insulin B chain, which
contains the aromatic triplet F48, F49 and Y50 (Fig. 1), facili-
tates the sorting and maturation of proinsulin and the interac-
tion of insulin with its receptor [49, 85–87]. Intriguingly,
large-scale analysis of human and mouse islets by targeted
mass spectrometry have only very recently revealed that the
adjacent T51 is O-glycosylated (Fig. 1) [88]. The functional
implications of this modification, however, remain to be
determined.

Conclusion and some outstanding questions

As we briefly summarised above, in recent years our under-
standing of post-transcriptional and translational mechanisms
for insulin production and their impairment in diabetes has
progressed relentlessly. Still, numerous aspects of these
processes remain unclear. For instance, factors involved in
the regulation of splicing and nucleocytoplasmic transport of
preproinsulin mRNA are unknown. Also unknown is where
exactly in the cytosol resting beta cells store untranslated
preproinsulin mRNA, while our knowledge about the machin-
ery regulating its stability and degradation is rudimental.
In vitro studies and animal models suggest that ER stress
and proinsulin traffic are relevant to the pathogenesis of type
1 and type 2 diabetes, but conclusive evidence in humans is
still missing. We also lack a clear explanation for the ineffi-
cient processing and elevated release of proinsulin in type 2
diabetes. The same post-transcriptional and translational
mechanisms likely coordinate the biosynthesis of other insulin
granule cargoes and enable the proper assembly of these
organelles [3, 26]. As exemplified by the occurrence of diabe-
tes in carriers of mutations affecting insulin production, any

deficit along this supply chain can deplete beta cells of new
insulin granule stores, thereby hampering their competence
for glucose-stimulated secretion. Insulin and other insulin
granule cargoes are also major targets of autoimmunity in type
1 diabetes. The inherent reasons for deficient insulin secretion
in type 2 diabetes and for autoimmunity against insulin gran-
ule components are, however, yet to be discovered. Thus,
despite popular belief suggesting that by now we know how
cells manufacture insulin [89], almost a century after the
discovery of insulin, much remains to be uncovered regarding
its production and release for the control of glucose homeo-
stasis. We are nonetheless confident that ingenuity and access
to ever new powerful methodologies will enable this know-
ledge gap to be filled.
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