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KEY PO INT S

l CRISPR/Cas9-
mediated T-cell-
receptor knockout
with anti-CD19-CAR
expression enables
allo-CAR–T-cell
therapy.

l Coexpression of
endogenous TCR and
CD19-CAR prolongs
in vivo persistence of
T cells.

Anti-CD19 chimeric antigen receptor (CAR) T cells showed significant antileukemic activity
in B-precursor acute lymphoblastic leukemia (ALL). Allogeneic, HLA-mismatched off-the-
shelf third-party donors may offer ideal fitness of the effector cells, but carry the risk of
graft-versus-host disease. Knockout (KO) of the endogenous T-cell receptor (TCR) in CD19-
CAR-T cells may be a promising solution. Here, we induced a CRISPR/Cas9-mediated KO of
the TCRb chain in combination with a second-generation retroviral CAR transduction in-
cluding a 4-1BB costimulatory domain in primary T cells. This tandem engineering led to a
highly functional population of TCR-KO-CAR-T cells with strong activation (CD25, in-
terferon g), proliferation, and specific killing upon CD19 target recognition. TCR-KO-CAR-
T cells had a balanced phenotype of central memory and effector memory T cells. KO of the
endogenous TCR in T cells strongly ablated alloreactivity in comparison with TCR-
expressing T cells. In a patient-derived xenograft model of childhood ALL, TCR-KO-
CAR-T cells clearly controlled CD191 leukemia burden and improved survival in vivo.

However, coexpression of endogenous TCR plus CAR led to superior persistence of T cells and significantly prolonged
leukemia control in vivo, confirmed by a second in vivo model using the leukemia cell line NALM6. These results point
toward an essential role of the endogenous TCR for longevity of the response at the price of alloreactivity. In con-
clusion, anti-CD19 CAR T cells with a CRISPR/Cas9-mediated TCR-KO are promising candidates for nonmatched third-
party adoptive T-cell transfer with high antileukemic functionality in the absence of alloreactivity, but long-term
persistence in vivo is better in the presence of the endogenous TCR. (Blood. 2020;136(12):1407-1418)

Introduction
Treatment with autologous anti-CD19 chimeric antigen receptor
(CAR) T cells has shown high initial complete response rates in
patients with relapsed and refractory acute lymphoblastic
B-precursor leukemia (BCP-ALL).1,2 Nevertheless, up to 50% of
pediatric patients experience relapse due to loss of CAR T cells
or escape variants of leukemic blasts.3,4 Moreover, insufficient
lymphocyte numbers for leukapheresis, chemotherapy pre-
treatment, and failure of CAR–T-cell production remain unsolved
challenges in various CAR production approaches.4-6 Insufficient

T-cell function has also been attributed to leukemia-induced
T-cell exhaustion.7 Administration of allogeneic off-the-shelf
products from healthy HLA-mismatched donors may overcome
these hurdles, but carry the risk of severe graft-versus-host
disease (GvHD). Current CAR–T-cell protocols use lymphode-
pleting regimens eliminating the host’s T-cell pool for the time of
CAR–T-cell infusion and expansion, minimizing the risk of re-
jection of CAR T cells.3,6 T cell receptor (TCR) knockout (KO) of
the CAR–T-cell product would be supposed to prevent GvHD.
Two patients were reported previously who were treated with
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anti-CD19-CAR-T cells, engineered with transcription activator-
like effector nucleases (TALENs) to KO the endogenous TCR.8 In
these cases, allogeneic T cells derived from an HLA-mismatched
healthy third-party donor. TALEN-mediated TCR-KO was
combined with lentiviral transduction to produce TCR2/CAR1

T cells, which were administered to 2 pediatric BCP-ALL patients
with good initial response rates. However, TCR1 cells from the
CAR infusion expanded in vivo and induced GvHD.

The relevance of the TCR was also analyzed in a mouse model
using knockin of an anti-CD19 CAR into the locus of the en-
dogenous constant TCR a-chain (TRAC) by combination of
clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) technology with
adeno-associated viral transfer.9 The CAR in the TRAC locus
resulted in increased CAR functionality in preclinical mouse
models, but was not yet investigated in clinical phase I/II trials.
Nevertheless, recently published clinical data with virus-specific
T cells showed that additional TCR stimulation enhances the
expansion and function of CD19-CAR-T cells.10

Here, we combineCRISPR/Cas9-mediated TCR-KOwith retroviral
transduction of a second-generation anti-CD19 CAR with 4-1BB-
based costimulation to analyze the relevance of the endogenous
TCR for functionality of TCR2/CAR1 T cells. TCR-KO-CAR-
T cells exert excellent anti-CD19 activity and significantly de-
creased alloreactivity. However, TCR1 CAR T cells showed
significantly improved persistence in vivo indicating an essential
role of the endogenous TCR for sustained CAR T-cell function
in vivo.Nevertheless, highly functional allogeneic TCR2CARsmight
be promising treatment candidates as a bridge to transplant.

Materials and methods
Isolation of peripheral blood mononuclear cells (PBMCs), T-cell
activation, cell lines, flow cytometry, intracellular staining, his-
tology, proliferation, cytotoxicity assays, CAR-enrichment, and
depletion of CD31 T cells are described in the supplemental
Methods, available on the Blood Web site.

Retroviral anti-CD19 CAR transduction
For retroviral transduction, second-generation anti-CD19 CAR
sequence containing FMC63,11 CD8 transmembrane and spacer
domains, and 4-1BB costimulatory domain (based on patent
WO2015187528A1) was cloned into pMP71 (kindly provided by
Christopher Baum, Medizinische Hochschule Hannover, Hann-
over, Germany) via EcoRI andNotI (pMP71_CAR). A myc tag was
included in the CAR for detection and purification. pMP71_CAR
was transfected into 293Vec-Galv cells (kindly provided by
BioVec Pharma Inc., Quebec, Canada) using TransIT-293
transfection reagent (Mirus Bio, Madison, WI) according to the
supplier’s instructions. Retroviral supernatant was used for
transduction of 293-Vec-RD114 cells (kindly provided by BioVec
Pharma Inc.) to create a stable producer system. Retroviral su-
pernatant of 293-Vec-RD114 cells was used to transduce primary
T cells from healthy donors. Therefore, 24-well plates were
coated with 2.5 mg RetroNectin reagent (Takara Bio, Kusatsu,
Japan) per well at 37°C for 2 hours. Plates were blocked with
2% Albumin Fraction V (Carl Roth, Karlsruhe, Germany) in
phosphate-buffered saline (PBS; Gibco; Thermo Fisher Scien-
tific, Waltham, MA) for 30 minutes and washed with a 1:40 di-
lution of HEPES 1 M (Thermo Fisher Scientific) in PBS. Virus

supernatant was harvested and filtered (0.45 mm). One milliliter
of virus supernatant was transferred in each well of the plate and
centrifuged at 3000g for 90 minutes at 32°C. Virus supernatant
was discarded, and 1 3 106 T cells in 1 ml of TexMACS GMP
medium (Miltenyi Biotec, Bergisch Gladbach, Germany)/2.5%
human AB serum (Institute for Clinical Transfusion Medicine,
Ulm, Germany) plus 12.5 ng/mL human IL-7 and IL-15, premium
grade (Miltenyi Biotec) and 2 mg/mL Protamine sulfate (Sigma-
Aldrich, Taufkirchen, Germany) were added. Plates were
centrifuged for 10 minutes at 450g at 32°C. Transduction was
performed on day 2 after T-cell activation.

CRISPR/Cas9-mediated TCR KO
CRISPR/Cas9-mediated TCR KO was performed 1 day after CAR
transduction. The guide RNA (gRNA) targeting the TCR constant
b-chain was published previously.12,13 For CRISPR/Cas9-medi-
ated TCR KO, Alt-R CRISPR-Cas9 transactivating CRISPR RNA
and Alt-R CRISPR-Cas9 CRISPR RNA (both from Integrated DNA
Technologies, Coralville, IA) were mixed 1:1 and heated
5 minutes at 95°C. Alt-R S.p. Cas9 Nuclease 3NLS (Integrated
DNATechnologies) wasmixedwith the gRNA complex and Alt-R
Cas9 Electroporation Enhancer (Integrated DNA Technologies)
and incubated 15 minutes at room temperature. For electro-
poration, 1 M buffer14 was used on a Nucleofector 2b device
according to the manufacturer’s instructions (Lonza, Basel,
Switzerland). After electroporation, T cells were immediately
transferred to fresh medium. T cells treated with a nonbinding
gRNA were used as control (Integrated DNA Technologies).
T cells were further expanded as described in the supplemental
Methods.

Alloreactivity assay
PBMCs were isolated from 6 different healthy donors, irradiated
with 20 Gy, and pooled. To distinguish between TCR KO T cells
and donor-derived allogeneic PBMCs (allo-PBMCs), T cells were
labeled with CellTrace CFSE Cell Proliferation Kit and PBMCs
were labeled with CellTrace Violet Cell Proliferation Kit (both
Thermo Fisher Scientific). After coculturing the cells at a 1:5
effector-to-target (E:T) ratio for 1 to 5 days, TCR-KO vs wildtype
T cells were analyzed for their activation marker profile (CD69,
CD137, CD25) and their proliferation by flow cytometry.

In vivo experiments
All animal trials were performed in accordance with the current
ethical standards of the official committee on animal experi-
mentation (written approval by Regierung von Oberbayern;
ROB-55.2Vet-2532.Vet_02-16-7). Mice were maintained under
specific pathogen-free conditions, had free access to food and
water, and were housed with a 12-hour light/dark cycle and
constant temperature. The leukemia cell line NALM6 and ALL-
265 patient-derived xenograft (PDX) cells15 were genetically
modified by lentiviral transduction to express enhanced firefly
luciferase and enhanced GFP (eGFP) as selection marker (see
Addgene vector 104834).16 A total of 13 105 luciferase-positive
NALM6 or 2 3 106 BCP-ALL PDX cells were transplanted IV into
NOD-scid IL2Rgnull (NSG) mice (The Jackson Laboratory, Bar
Harbor, ME). Three days after injection, CAR T cells were thawed
and counted, and 23 107 cells in 200 ml of PBS were injected IV
into mice. This high number of T cells was chosen to increase the
risk of GvHD. Early onset of GvHD clarifies differences of
alloreactivity and tumor growth control between TCR1 CAR
T cells and TRBC KO CAR T cells. Leukemia burden was
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monitored once or twice per week by bioluminescence in vivo
imaging (BLI) as described previously.15,17 Furthermore, pe-
ripheral blood was analyzed regularly to detect presence of
human T and CAR T cells. Mice were monitored daily for signs of
GvHD like weight loss, hair loss, altered posture, or reduced
mobility. When BLI reached values above 1 3 1010 P/sec, or if
mice showed clinical signs of illness or GvHD, mice were eu-
thanized and blood was analyzed for presence of NALM6 or PDX
cells and human T/CAR T cells.

Statistics
Statistical analyses were performed using GraphPad Prism 7. A
2-tailed paired Student t-test was performed to analyze the
statistical significance between experimental conditions of at
least 3 independent experiments. When more than 2 groups
were compared with each other, statistical significance was
tested with a one-way ANOVA. Overall survival of mice was
calculated using the Kaplan-Meier method. A two-tailed Mann-
Whitney U test was used to compare presence of T cells in the
peripheral blood of mice. *P , .05; **P , .01; ***P , .001;
****P , .0001.

Results
CAR T cells with KO of the TCRb chain show
comparable transduction rates and expansion
compared to conventional CAR T cells
T cells were isolated, activated (CD3/CD28 stimulation;
Figure 1A), and retrovirally transduced with a second-generation
CAR (Figure 1B). One day after transduction, CRISPR/Cas9-
mediated TCR-KO was performed by electroporation of the
ribonucleoprotein complex including a gRNA targeting the
TCRb chain (TRBC). Nonelectroporated conventional CARs
(RV19BB_TCR1), CAR T cells electroporated with Cas9 and a
nonbinding gRNA (RV19BBCRTCR1), and untransduced, non-
electroporated T cells served as comparator for CAR T cells with
KO of the TCRb chain (RV19BBCRTRBC2). The gRNA targeting
the TCRb chain was published before and showed high on-
target and low off-target effects.18 Because the TCR b constant
region comprises 2 different genes, TRBC1 and TRBC2, we
made sure that the selected gRNA targets both TRBC loci.
RV19BB_TCR1, RV19BBCRTCR1, and RV19BBCRTRBC2 CARs
showed comparable mean transduction rates of 36.6%, 38.3%,
and 39.6%, respectively (Figure 1C). RV19BBCRTRBC2 CAR
T cells reached a mean TCR-KO rate of 78.2%, determined by
flow cytometry (Figure 1D). A total of 32.2% of all T cells had both
a CAR on the surface as well as a TCR-KO after expansion
(Figure 1E). Exemplary flow cytometry plots to determine
transduction and TCR-KO rates are shown in Figure 1F. De-
fective TCR assembly upon KO of the TCRb chain is confirmed
by simultaneous CD3 downregulation (Figure 1G). After mag-
netic CAR enrichment (c-myc tag) and CD3 depletion, a high
purity of TCR2/CAR1 T cells was achieved (supplemental
Figure 1A). Untransduced T cells and RV19BB_TCR1 CARs
showed an expansion .120-fold (175-fold and 124-fold, re-
spectively), whereas RV19BBCRTCR1 and RV19BBCRTRBC2 CARs
showed slightly reduced proliferative capacity (77-fold and 89-
fold, respectively; Figure 1H). Expansion impairment was seen in
RV19BBCRTCR1 and RV19BBCRTRBC2 CARs, meaning that this
effect was mediated by the electroporation process itself rather
than by loss of the TCR.

In vitro CAR–T-cell function is independent of
presence or absence of endogenous TCR
T-cell characteristics with or without TCR were analyzed (CD62L/
CD95/CD45RO expression; Figure 2A).19 After expansion
(14 days IL-7/IL-15), no naı̈ve T cells and only a minor fraction
(,2.2%) of terminally differentiated effector T cells (Teff) were
detectable in untransduced RV19BB_TCR1, RV19BBCRTCR1 and
RV19BBCRTRBC2 CAR T cells. Thus, the final T-cell product
consisted mainly of central memory (Tcm) and effector memory
(Tem) T cells. T-cell subpopulations were distributed equally
between RV19BB_TCR1 CAR T cells, with a mean of 50.6% Tcm
and 47.8% Tem, and the RV19BBCRTRBC2 CARs, with a mean of
47.1% Tcm and 46.0% Tem cells. Expression of costimulatory and
coinhibitory molecules as well as exhaustion markers 2B4,
LAG-3, and PD-1 was analyzed by flow cytometry at the end of
expansion phase (Figure 2B). RV19BBCRTRBC2 CAR T cells
shared a comparable profile of costimulatory and inhibitory
molecules with RV19BB_TCR1 CAR T cells. RV19BB_TCR1 and
RV19BBCRTRBC2 CARs showed high surface expression levels of
OX40 (52.4% vs 46.9%) and CD28 (88.2% vs 89.0%), whereas 4-
1BB was expressed to a very low amount at the end of the
expansion protocol. Both RV19BB_TCR1 and RV19BBCRTRBC2

CARs displayed low expression of coinhibitory molecules like
PD-1 (5.5% vs 3.2%), BTLA (2.7% vs 0.6%), CTLA-4 (0.4% vs
0.2%), TIGIT (12.4% vs 10.6%), and VISTA (0.1% vs 0.1%). Only
TIM-3 was highly expressed on RV19BB_TCR1 as well as even
slightly increased on RV19BBCRTRBC2 CAR T cells (80.8% vs
85.8%; P5 .0222). Besides that, the TCR-KO on CAR T cells had
no effect on the expression of typical exhaustion markers like
2B4 (11.1% vs 15.5%), LAG-3 (7.1% vs 6.4%), and PD-1 (5.5% vs
3.2%). At the end of the expansion protocol, different T-cell
subsets were present in the final product, but no monocytes,
B cells or natural killer (NK) cells (Figure 2C). RV19BBCRTRBC2

CARs and RV19BB_TCR1 CARs showed a similar cellular com-
position of CD81 T cells (47.5% vs 37.1%) and NKT cells (17.4%
vs 13.5%), with minor differences in the CD41 T-cell population
(32.6% vs 44.8%, P 5 .0222).

CAR T cells with KO of the TCRb chain are highly
functional in vitro and prevent alloreactivity
Activation potential of TCR-KO-CAR-T cells was tested (Figure 3A).
Untransduced T cells, RV19BB_TCR1, RV19BBCRTCR1, and
RV19BBCRTRBC2 CARs were cocultured with a CD191 target cell
line for 24 hours and then stained for the activation markers
CD137 and CD25. The baseline surface expression of both
markers was very low, ranging from 0.8% to 6.0% for CD137 and
from 1.2% to 4.2% for CD25. Upon antigen contact, the CAR-
expressing T cells showed a significant upregulation of CD137
and CD25 compared to untransduced T cells. RV19BBCRTRBC2

CARs displayed a similar target-specific activation compared to
RV19BB_TCR1 CAR T cells with a mean CD137 expression of
65.0% vs 66.3% and ameanCD25 expression of 95.2% vs 94.7%.
To determine the lytic potential of RV19BBCRTRBC2 CAR T cells,
cytokine secretion after 24 hours of coculturing with CD191

target cells was analyzed (Figure 3B). Notably, interindividual
variability in cytokine secretion was compensated by analysis of
4 different individual donors. Without antigen contact, untrans-
duced T cells, RV19BB_TCR1, RV19BBCRTCR1, and RV19BBCRTRBC2

CARs showed ,0.5% of interferon g (IFNg)–positive cells. After
coculturing with target cells, RV19BB_TCR1, RV19BBCRTCR1,
and RV19BBCRTRBC2 CARs showed a significantly increased
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percentage of IFNg-positive cells ranging from 5.3% to 30.4% of
RV19BB_TCR1 CARs, 8.8% to 22.4% of RV19BBCRTCR1 CARs, and
10.9% to 23.2% of RV19BBCRTRBC2 CARs. A similar pattern was

observed for tumor necrosis factor a (TNFa) secretion upon stim-
ulation. RV19BB_TCR1 CAR T cells as well as RV19BBCRTRBC2 CARs
showed a significant upregulation of TNFa-positive cells upon
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Figure 3. Functionality of RV19BBCRTRBC2 CAR T cells and alloreactive potential of TCR1 T cells in vitro. (A-D) The functionality of RV19BBCRTRBC2 CAR T cells was
compared to RV19BB_TCR1, RV19BBCRTCR1 CARs and untransduced T cells in different functionality assays. (A) Twenty-four hours after coculturing the CAR T cells with CD191

target cells in a 1:1 E:T ratio, the cells were harvested and analyzed for expression of activation markers CD137 and CD25 (n5 6). (B) Intracellular staining of IFNg and TNFa was
performed after 24 hours of coculturing effector cells with CD191 cells at an E:T of 1:1 (n5 4). (C) CFSE labeled T cells were used to analyze the frequency of proliferating effector
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antigen stimulation (5.5% up to 12.3% vs 4.3% up to 12.1%).
Therefore, loss of the TCR on RV19BBCRTRBC2 CARs showed
no disadvantage regarding secretion of IFNg and TNFa
compared to RV19BB_TCR1 CARs. The proliferative character-
istics of RV19BBCRTRBC2 CARs showed comparable results to
RV19BB_TCR1 CARs after 72 hours of antigen contact (Figure 3C).
More than 97.6% of RV19BB_TCR1, RV19BBCRTCR1 and
RV19BBCRTRBC2 CARs proliferated. To analyze the cytotoxic ca-
pacity, the different CAR approaches were cocultured with CD191

target cells for 48 hours (Figure 3D). RV19BB_TCR1, RV19BBCRTCR1,
and RV19BBCRTRBC2 CARs showed high anti-CD19 cytotoxicity
at various E:T ratios independent of TCR expression. At an E:T ratio
of 1:1, RV19BB_TCR1, RV19BBCRTCR1, and RV19BBCRTRBC2 CARs
showed a mean killing of 87.6%, 86.1%, and 84.6%, respectively.
Even at a very low E:T ratio of 0.04:1, .36% of the CD19-
expressing target cells were killed by the CAR T cells, indicating
strong efficacy even at low T-cell concentrations.

For analysis of alloreactivity in vitro, CD19 expressing B cells are
necessary for sufficient induction of alloreactivity and anti-CD19-
reactivity becomes indistinguishable from alloreactivity for CAR
T cells in a mixed lymphocyte reaction. Instead, wildtype T cells
with (CRTCR2) or without a TCR KO (CRTCR1) were analyzed for
alloreactivity. Untreated T cells, CRTCR1, and CRTCR2 T cells
were cocultured with irradiated PBMCs pooled from 6 different
donors. After 48 hours of coculture, expression of activation
markers CD69, CD25, and CD137 was analyzed (Figure 3E).
Untreated T cells and CRTCR1 showed a significant upregulation
of CD69 (3.6-fold and 3.9-fold, respectively), CD25 (2.6-fold and
3.3-fold, respectively), and CD137 (6.1-fold and 7.0-fold, re-
spectively) upon contact with allo-PBMCs compared to CRTCR2

T cells, which showed no response to allo-PBMCs (CD69,
1.3-fold; CD25, 0.9-fold; CD137, 1.3-fold). A similar proliferative
response was seen 5 days after allo-PBMC stimulation (Figure 3F).
Untreated T cells and CRTCR1 T cells showed elevated levels of
proliferating cells ranging from 7.0% to 13.8% and 4.8% to 12.2%
upon stimulation, respectively, whereas CRTCR2 T cells showed
almost no response after contact with allo-PBMCs (0.7% to
0.9% proliferating cells), pointing toward significantly reduced
alloreactivity of TCR-deficient T cells.

Patient derived xenografts of CD191 childhood
acute lymphoblastic leukemia (ALL) induce
sufficient activation and target-cell killing of
anti-CD19-CAR-T cells
To investigate whether RV19BBCRTRBC2 CAR T cells can elimi-
nate allogeneic, patient-derived tumor cells in vitro, PDX leu-
kemic cells were expanded in a murine model. Leukemic cells
from a pediatric BCP-ALL patient were transferred to NSG mice,
expanded over several passages and genetically modified to
express enhanced firefly luciferase and eGFP as selection
marker.16,17 Passage 3 and passage 5 PDX cells were extracted
from the bone marrow of NSG mice, and expression of CD19
was confirmed by flow cytometry (supplemental Figure 1B). To

determine the killing capacity of CAR T cells, in vitro cytotoxicity
assays at a 0.2:1 E:T ratiowereperformed (Figure 4A). RV19BB_TCR1,
RV19BBCRTCR1, and RV19BBCRTRBC2 CARs showed a significantly
increased killing rate (60.5%, 63.1%, and 64.3%, respectively) of ALL-
265 PDX cells compared to untransduced T cells (0.2%). Cytotoxicity
of RV19BBCRTRBC2 CAR T cells was comparable to conventional
CAR T cells. We next investigated the proliferative capacity of
RV19BBCRTRBC2 CAR T cells upon contact with ALL-265 PDX cells
for 72 hours (Figure 4B). RV19BB_TCR1, RV19BBCRTCR1, and
RV19BBCRTRBC2CARs proliferated upon contact with ALL-265 PDX
cells ranging from 14.2% to 68.2%, 24.1% to 55.6%, and 17.0% to
59.9% of proliferating cells, respectively.

To analyze CAR–T-cell functionality in vivo, ALL-265 PDX cells
were injected IV into NSG mice and followed by T-cell injection
3 days later (Figure 4C).Miceweremonitored for leukemia burden
by bioluminescence. RV19BBCRTCR1 and RV19BBCRTRBC2 CARs
were able to immediately control growth of PDX ALL cells within
4 days below detection threshold (,1 3 106 P/sec; Figure 4D-E;
supplemental Figure 2A). Although PBS control mice had to be
euthanized between day 36 and 43 after T-cell injection because
of end-stage leukemia, RV19BBCRTRBC2 CARs increased survival
to at least 76 days (Figure 4F). In contrast, mice treated with
RV19BBCRTCR1CARs completely controlled leukemia burden, but
4 mice had to be euthanized between day 38 and 61 because of
clinical signs of GvHD, such as skin rash and ruffled fur (pictures
not shown) and an eye infection.

Presence of endogenous TCR significantly
improves persistence of CAR T cells in vivo
To further analyze CAR–T-cell functionality and the relevance of
the endogenous TCR in vivo, we used the more aggressive
NALM6 in vivo model and injected those IV in NSG mice, fol-
lowed by T-cell injection 3 days later. Mice treated with untrans-
duced T cells showed a fast increase in leukemia burden and had to
be euthanized 22 days after T-cell injection (Figure 5A-C). In con-
trast, mice receiving RV19BBCRTRBC2 or RV19BBCRTCR1 CARs
showed a clear and comparable control of leukemia growth
until day 14 post T-cell injection (average, 2.43 107 P/sec vs 1.83
107 P/sec; Figure 5A-B; supplemental Figure 2B). After day 14,
treatment with RV19BBCRTCR1CARs led to an improved prevention
of leukemia regrowth compared to RV19BBCRTRBC2 CAR T cells.
Moreover, administration of RV19BBCRTCR1 CAR T cells resulted in
prolonged survival rates compared to RV19BBCRTRBC2 CAR–T-cell
treatment (Figure 5C).

Peripheral blood was regularly taken to analyze T-cell persis-
tence (Figure 5D). Untransduced T cells, RV19BBCRTCR1 CARs,
and RV19BBCRTRBC2 CAR T cells showed differences in en-
graftment 3 days after injection (mean of 2.4% vs 0.6% vs 1.3%,
respectively) and a reduction by day 10, with comparable T-cell
amounts in mice treated with RV19BBCRTCR1 CARs and
RV19BBCRTRBC2 CAR T cells (0.1% vs 0.1%, respectively). The
majority of analyzed T cells were CD41, independent of time
point and genotype (supplemental Figure 2C). In the further

Figure 3 (continued) cells after contact with CD191 target cells for 72 hours (n 5 3). (D) CD191 target-cell killing was determined by flow cytometry after target cells were
cocultured for 48 hours with CAR T cells in different E:T ratios (n 5 4). (E-F) Untransduced, CRTCR1, CRTRBC2 T cells were cocultured with allo-PBMCs pooled from 6 different
donors and cocultured at an E:T ratio of 1:5. (E) After 48 hours of coculture, T cells were analyzed for surface expression of the activationmarkers CD69, CD25, and CD137 (n5 3).
(F) Percentage of proliferating T cells after contact with allo-PBMCs was analyzed after 5 days (n 5 3). A 2-tailed paired Student t test or 1-way ANOVA was performed to
determine statistical significance.
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course, T cells showed strong expansion in the RV19BBCRTCR1

CAR–T-cell group, which was stable from day 24 on, whereas no
T cells were detectable anymore in mice with RV19BBCRTRBC2

CAR T cell treatment after day 24. Although all mice receiving
untransduced T cells or RV19BBCRTRBC2 CAR T cells had to be
euthanized due to high leukemia burden (6 out of 6 mice each),
high leukemia burden only occurred in 44.4% of the
RV19BBCRTCR1 CAR T cell group (4 out of 9 mice; Figure 5E).
Instead, 4 mice were euthanized as they showed signs of GvHD
in absence of high tumor burden upon day 45 and 64 after T-cell

injection, with slight weight loss (Figure 5F), skin rash, and ruffled
fur (pictures not shown), and 1 mouse died during anesthesia.
Cleaved caspase 3 (CC3) staining of skin tissue was performed to
monitor further signs of GvHD (Figure 5G). In some mice treated
with TCR1 CARs (RV19BBCRTCR1_1, RV19BBCRTCR1_2), several
apoptotic cells surrounding hair follicles were detectable,
whereas leukemia load was comparably low at the time point of
euthanization (data not shown). However, apoptotic cells were
not detectable in all mice that had to be euthanized due to
weight loss or clinical signs of discomfort.
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Figure 5. Functionality of RV19BBCRTCR1and RV19BBCRTRBC2CART cells in vivo. (A-H) NSGmicewere injected IV with 13 105 NALM6, followed by an IV T-cell injection (23
107 cells) of untransduced T cells (n 5 6), RV19BBCRTCR1 (n 5 9), and RV19BBCRTRBC2 CAR T cells (n 5 6) 3 days after. (A,B) At the indicated time points after T-cell injection,
NALM6 leukemia burden was monitored by BLI. (A) Exemplary bioluminescence pictures are shown, as well as (B) changes in NALM6 leukemia load for each mouse. (C) Kaplan-
Meier analysis of survival of mice treated with 13 105 NALM6 cells (n5 6 per group) is shown. A log-rank Mantel-Cox test was used to test for statistical significance. (D) T-cell
persistence in peripheral blood was measured by flow cytometry. A 2-tailed Mann-Whitney U test was performed to determine statistical significance. (E) Overview of the
incidence of leukemia- or nonleukemia-related death inmice. (F) Body weight wasmonitored at several time points after T-cell injection. (G) Exemplarymicrographs of skin tissue
stained for CC3 by IHC are shown for mice treated with RV19BBCRTCR1 or RV19BBCRTRBC2 CARs.

ANTILEUKEMIC ACTIVITY OF CAR T CELLS blood® 17 SEPTEMBER 2020 | VOLUME 136, NUMBER 12 1415

D
ow

nloaded from
 http://ashpublications.org/blood/article-pdf/136/12/1407/1758107/bloodbld2020005185.pdf by H

ELM
H

O
LTZ ZEN

TR
U

M
 user on 30 O

ctober 2020



Taken together, TCR KO does not impair antileukemia activity
of CAR T cells in the xenograft mouse model in vivo. T-cell
persistence depends on TCR-mediated alloreactivity, leading
to long-term leukemia control with relevant risk of GvHD.

Discussion
In this study, we address the hurdles for off-the-shelf CD19-CAR-
T cells against ALL using allogeneic donors. Relevance of
the endogenous TCR is investigated using CRISPR/Cas9 KO
of the constant TCRb chain. TCR2/CAR1 T cells were highly
functional and showed no alloreactivity in vitro and in vivo
compared to CAR T cells with an endogenous TCR. CAR T cells
with or without a TCR demonstrated both improved survival
rates in an ALL patient-derived xenograft mouse model as
well as in a NALM6 leukemia bearing xenogeneic mouse
model in comparison with mice treated with untransduced
T cells. However, only in the presence of endogenous TCRs,
the CAR T cells showed prolonged and sustained persistence
in vivo.

The TCR is essential for T-cell activation upon recognition of
pathogens or tumor cells. Both chains, the a- and b-chain, are
required for assembly of a TCRab and hence both KO strategies
targeting the a- or b-chain result in complete absence of the
TCR.12,18,20 Pilot experiments with TRAC and TRBC KO, resulted
in slightly higher TCR KO efficacy when targeting the TRBC locus
(data not shown). Therefore, a TRBC-specific gRNA was used for
further evaluation in this study. For this TRBC-specific gRNA,
high on-target and low off-target events were previously
confirmed.18 Besides that, most of the trials investigated CARs
with a TCR KO are targeting the a-chain, eg, with zinc-finger
nucleases, TALEN or CRISPR/Cas9, so additional data for tar-
geting the b-chain is of great interest.8,9,20 Using TCR-deficient
T cells, potentially impaired cellular function has to be excluded.
Characteristics and functionality of TCR-deficient CARs were well
preserved compared to conventional second-generation CAR
T cells in vitro with a balanced CD4/CD8 ratio and a promising
phenotype of mainly Tcm and Tem, that are known to have high
proliferative capacity as well as functionality in vivo.1,21 Both
TCR2 as well as TCR1 CAR T cells showed a comparable fraction
of NKT cells in the final cell product. In a previously published
study,5 we could show that this is not mediated by the
T-cell–isolation method, because both CD4/CD8 and an un-
touched T cell enrichment include subpopulations of NKT cells.5

TCR2/CAR1 T cells highly expressed costimulatory molecules,
which enhance CAR–T-cell functionality in the presence of their
ligands. TCR-deficient CAR T cells did not express relevant
numbers of coinhibitory molecules. Only TIM-3 was highly
expressed on the final CAR–T-cell product, which is most likely
mediated by anti-CD3/CD28-stimulation and IL-7/IL-15–
supplemented cell culture media and could thus be a sign of
activation, as shown before.22 Based on recent data, the minor
differences in expression of TIM-3 on TCR-deficient CARs
compared to conventional CARs, are not expected to be of
functional relevance.23 Furthermore, exhaustion markers were
analyzed and showed almost no surface expression, underlining
the promising cellular characteristics of the TCR-deficient CAR
T cells. Although conventional CAR T cells showed high allor-
eactive potential, no alloreactivity of TCR-KO T cells was seen
in vitro and in vivo.

In the presence of CD191 target cells in vitro, TCR-deficient CAR
T cells displayed high functionality, with similar upregulation of
activation markers, cytokine secretion, proliferative capacity and
cytotoxicity compared to conventional CAR T cells. This confirms
that early CAR–T-cell activation is not dependent on endoge-
nous TCR signals, but rather is mediated by the CAR-intrinsic
CD3z and 4-1BB signaling domains. This was also supported
through data from our in vivo model, where leukemia-bearing
mice treated with RV19BBCRTRBC2 or RV19BBCRTCR1 CARs
showed comparable initial control of NALM6 and ALL-265 PDX
leukemia burden. Durable persistence of CAR T cells in clinical
studies has been described in patients with successful leukemia
control,24 emphasizing that persistence of CAR T cells is essential
to control leukemia in the long term. Due to lack of persistence
of RV19BBCRTRBC2 CAR T cells, mice treated with those T cells
showed minor long-term leukemia control than mice receiving
RV19BBCRTCR1 CAR T cells. An association of CAR–T-cell per-
sistence with alloimmune or autoimmune T-cell activation
through the TCR has not been described until now. However,
TCR engagement negatively affected CD8 but not CD4 CAR–
T-cell expansion and leukemic clearance in an immunocom-
petent syngeneic murine model.25 Therefore, the endogenous
TCR might play a role in activation or stabilization of the T cell
and thereby prolong in vivo persistence and expansion. Spec-
ificity of these responses might be infectious or allogeneic
(xenogeneic in case of mouse tissue), since several studies have
shown induction of GvHD when human T cells are injected into
NSG mice.26-28 Furthermore, in patients treated with HLA-
mismatched, allogeneic, TALEN-engineered, TCR-deficient
CAR T cells, only a small fraction of contaminating TCR1 CAR
T cells persisted and induced GvHD.8 Lapteva et al10 could show
that additional stimulation through a virus-specific TCR on CAR
T cells led to enhanced proliferation and functionality in patients,
underlining the important role of the TCR. Another study could
show that CARs with CD3z transmembrane domains dimerize
with endogenous TCR/CD3 complexes, probably resulting in
phosphorylation of endogenous immunoreceptor tyrosine-
based activation motifs (ITAMs) and thereby strengthening
CAR activation.29 Constitutive tonic signaling in the absence of
ligand is an increasingly recognized complication of engineered
T cells and can be a cause of poor antitumor efficacy, impaired
survival, and reduced persistence in vivo.30 This constitutive or
chronic cell signaling may have a substantial deleterious impact
on CAR–T-cell effector function and survival and may lead to a
significant disparity between in vitro cytolytic capacity and
in vivo antitumor efficacy. In our in vivo data, long-term control of
ALL .120 days through an RV19BBCRTCR1 CAR excludes pre-
dominance of this deleterious signaling and demonstrates ca-
pacity for sustained in vivo responses. However, impaired in vivo
persistence of TCR-deficient CARs in mice might be different in
humans, because the human cytokine mileu and lymphoid tissue
are different.26,31 Given the diversity of human cytokine profiles
in pretreated leukemia patients,32 and the differences in stromal
cells and secondary lymphoid organs, mouse models hardly
reflect completely the situation in patients. Despite these limi-
tations of the animal model, differences of in vivo persistence
and leukemia control both reflect T-cell functionality.

In conclusion, we present a novel and efficient tandem engi-
neering approach to generate anti-CD19 CAR T cells with a
CRISPR/Cas9-mediated KO of the TCRb chain. TCR KO leads to
significant reduction of alloreactivity both in vitro and in vivo.
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TCR KO in CAR T cells is associated with a reduction of in vivo
persistence. Whereas allogeneic TCR2/CAR1 T cells show effi-
cient early responses against leukemia cells, they might serve as
temporary therapy until a successful generation of autologous
CARs or bridge to transplant. The role and specificity of the
endogenous TCR for the in vivo expansion of CAR T cells re-
mains to be investigated in clinical studies and opens new
options to improve longevity of remissions after CAR–T-cell
therapy in the future.
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