3250

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 10, OCTOBER 2020 | FAB NPEE Sonal & %
—

P33

Processing
Society

o— ks

Compressed Optoacoustic Sensing of
Volumetric Cardiac Motion

Ali Ozbek™, Xosé Luis Dean-Ben”, and Daniel Razansky”, Member, IEEE

Abstract—The recently developed optoacoustic
tomography systems have attained volumetric frame
rates exceeding 100 Hz, thus opening up new venues for
studying previously invisible biological dynamics. Further
gains in temporal resolution can potentially be achieved
via partial data acquisition, though a priori knowledge
on the acquired data is essential for rendering accurate
reconstructions using compressed sensing approaches.
In this work, we suggest a machine learning method
based on principal component analysis for high-frame-rate
volumetric cardiac imaging using only a few tomographic
optoacoustic projections. The method is particularly
effective for discerning periodic motion, as demonstrated
herein by non-invasive imaging of a beating mouse heart.
A training phase enables efficiently compressing the
heart motion information, which is subsequently used as
prior information for image reconstruction from sparse
sampling at a higher frame rate. It is shown that image
quality is preserved with a 64-fold reduction in the data
flow. We demonstrate that, under certain conditions,
the volumetric motion could effectively be captured by
relying on time-resolved data from a single optoacoustic
detector. Feasibility of capturing transient (non-periodic)
events not registered in the training phase is further
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demonstrated by visualizing perfusion of a contrast
agent in vivo. The suggested approach can be used to
significantly boost the temporal resolution of optoacoustic
imaging and facilitate development of more affordable and
data efficient systems.

Index Terms—Image acquisition, image reconstruction,
image restoration, machine learning, optoacoustic imaging.

I. INTRODUCTION

ISUALIZATION of rapid biological dynamics is often

hampered with the existing imaging modalities due to
the need for sequential acquisition of tomographic data, which
limits the achievable temporal resolution, in particular when it
comes to volumetric (3D) imaging. In contrast, it only takes
a single nanosecond-duration laser pulse to generate a full
tomographic dataset in optoacoustic imaging, both in 2D [1],
[2] and 3D [3], [4]. This enables effectively “freezing” the
tissue motion and imaging at frame rates ultimately limited by
the unidirectional propagation of ultrasound through the region
of interest (ROI). State-of-the-art volumetric optoacoustic
tomography (VOT) systems based on simultaneous acquisition
of 512 signals (projections) have enabled the visualization of
very fast biological processes, such as cardiovascular dynamics
or neuronal activity, at 3D frame rates of 100 Hz [5], [6].

In practice, the temporal resolution of optoacoustic imaging
is effectively constrained by the data throughput capacity of
imaging systems. One way to accelerate the achievable frame
rate consists in partial (sparse) sampling of tomographic data
for each laser pulse [7], [8]. The missing information can
then be recovered by considering prior knowledge on the
acquired data. For example, compressed sensing (CS) schemes
achieve this by assuming that the signals (or images) are
sparse in a certain domain, i.e. the data to be recovered
exhibits low entropy. Such approaches have recently attracted
great attention as they enabled full recovery of the recon-
structed image quality from sparse signals sampled below
the Nyquist rate [9], [10]. CS has further been successfully
exploited for tomographic reconstructions from sparse data
in several 2D and 3D optoacoustic embodiments [8], [11],
[12], thus enabling imaging of freely swimming fish embryos
at kilohertz volumetric frame rates [12]. To this end, several
systems providing 4D (real-time 3D) optoacoustic imaging
capabilities have been reported [13]-[18]. The frame rate is
typically limited by the data throughput capacity, which can
potentially be significantly accelerated by devising efficient
data compression strategies.

The main limitations of CS-based methods often stem from
the lack of accurate a priori knowledge on the data sparsity.

For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1. Data acquisition and image reconstruction protocol of the
PCA-based method. The training phase (top section) involves acquir-
ing optoacoustic data with all the available channels and subsequent
processing to extract the principal components from the image sequence.
Reconstruction phase (bottom section) involves acquisition of signals
from fewer channels. Image quality recovery for the subsampled data is
achieved by means of the previously learned principal components.

In principle, prior information can be obtained by training
machine learning algorithms on the specific type of acquired
data [19]-[22]. In this work, we suggest a machine learning
method based on principal component analysis (PCA) for
optimization and acceleration of the data acquisition protocol
for cardiac optoacoustic imaging. PCA is based on reducing
the dimensionality of a large number of random variables by
analyzing their mutual correlations. Thereby, it is particularly
suitable for compressing periodic heartbeat data with a high
degree of correlation between the motion of different voxels.

Il. METHODS
A. Algorithm

The PCA protocol is schematically illustrated in Fig. 1.
The training phase was performed with datasets consisting
of 300 frames with sets of n., = 512 time resolved signals
with ne, = 494 samples (required to effectively cover the
field of view). The captured signals were subsampled to
a lower frame rate from the original 100 Hz dataset. The
subsampled signal samples, after subtraction of the inter-frame
average (DC) component, were considered as a data matrix
X € RM*N of N = neyng possibly correlated variables. Each
of the frames is considered as an observation of such row
vector p € RY whereas, each variable represents a single
pixel of the signal matrix. Note that signals from different
channels are concatenated to form p. High correlation of the

variables in vector X is associated with similarities in temporal
variations of the signal samples (time domain sparsity) and is
not related to the potential spatial domain sparsity of the object
that generated such signals. The PCA transformation renders
a set of n— 1 principal components, calculated from the eigen-
decomposition of the covariance matrix Q defined as

1
0= anTx, (1)

being X a matrix whose columns contain the n observations
of X. The eigenvectors of @ form a transformation matrix
A € RV*K with N variables and K = n — 1 principal
components, which corresponds to ~ 283MiB of training
data. Note that image quality can potentially be improved by
selecting K to be below n — 1, which is further investigated in
section III. The matrix transforms a vector from the principal
component space into the signal space. The PCA protocol is
aimed at recovering the missing time-resolved signals. After
this step, any reconstruction algorithm can be employed to
render the 3D images. The training phase allows “learning”
a matrix A of principal component coefficients to be used
for the reconstruction of the entire signal sequence from
sparse (subsampled) data. In this reconstruction phase, a vector
xg € RMhs*s corresponding to sparse spatial sampling from
only a few sensors (channels) was considered, where n.jy
is the number of channels in the subsampled data. For each
sparse acquisition, the projection of the entire frame along
the principal component directions w € RX was estimated as
solution of an inverse problem defined as

w = argmin||Asy — x|, (@)
y

and calculated via
w = A x;, 3)

where A; is a matrix obtained from A by removing the rows
corresponding to missing channels in the subsampled data and
A} is its pseudo-inverse. w was subsequently projected along
the p directions corresponding to all samples as

x=Auw'. “)

No sparsity condition (e.g. ! regularization) needs to be
imposed for inverting the principal component matrix in (2).
In PCA decomposition, the components are ordered accord-
ing to their contribution to the image i.e. the eigenvalues.
By limiting the number of principal components used during
the inversion, a constraint is effectively imposed that reduces
likelihood of overfitting. The recovered frame was eventually
obtained by adding the previously calculated average of the
training frames and substituting the already present channels in
the subsampled dataset. Both training and recovery phases are
solely accomplished in the signal domain without the need for
image reconstruction. This enables faster and more memory
efficient calculations.

B. Experimental Measurements

The VOT system used for acquisition of the 4D data consists
of a custom-made piezo-composite spherical array transducer
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Quality comparison between conventional and PCA-recovered reconstructions. (a) Images rendered with the conventional

back-projection (BP) algorithm when reducing the number of acquired channels (indicated in each column). (b) The corresponding images
reconstructed with a model-based algorithm including a total variation regularization term. (c) The corresponding images reconstructed with BP after
signal recovery with the PCA-based approach. (d) Cosine similarity between the ground-truth (first column in panel a) and other reconstructions as
a function of the number of simultaneously acquired channels. Cosine similarity between the ground-truth and PCA as a function of various training
frame rates (e) and number of principal components (f) for reconstructions with various subsampling factors. (g) Comparison of cosine similarity to
ground truth for various spatial detector distributions, as indicated with the corresponding colors in the schematic array representation.

(Imasonic SaS, Voray, France) featuring 512 individual circu-
lar elements with 2.5 mm diameter, 5 MHz central detection
frequency and ~ 80% bandwidth. The spherical detection
surface of the array has a radius of 40 mm and 140° angular
coverage (1.37 solid angle), providing nearly isotropic spatial
resolution of 150 um at its center [23]. Optoacoustic data was
acquired by exciting the tissue with a short-pulsed (<10 ns)
laser tuned to a wavelength of 800 nm and operating at
a pulse repetition frequency (PRF) of 100 Hz. All signals
from the transducer elements were simultaneously digitized
with a custom-made data acquisition system (DAQ, Falken-
stein Mikrosysteme GmbH, Taufkirchen, Germany) capable
of digitizing 494 samples at 40 megasamples per second from
512 channels simultaneously.

Performance of the suggested PCA approach was tested
by non-invasive imaging of the heart in hairless NOD.SCID
mice (Envigo, Rossdorf, Germany). For imaging, the mouse
was placed in supine position on top of an agar block filling
the volume between the animal and active surface of the
transducer array. Ultrasound gel was further applied to ensure
acoustic coupling between the skin and the agar medium.
During the measurements, the mouse was anesthetized using
a ~ 2% isoflurane-medical air mixture (~ 0.8 I/min gas
flow). The energy density per pulse at the surface of the

mouse was approximately 12 mJ/cm, below safety standards
for laser exposure. All animal experiments were performed in
full compliance with institutional guidelines and with approval
from the Government of Upper Bavaria.

Prior to PCA processing, all signals recorded by the DAQ
were filtered by a finite impulse response filter with cut-off
frequencies of 0.5-8 MHz and deconvolved with the impulse
response of the transducer elements. As previously described,
the training was performed by considering 300 out of the
3000 original frames, i.e. operating at 10 Hz effective imaging
frame rate, which is a common pulse repetition rate of flash-
lamp-pumped lasers ensuring an optimal trade-off between
signal-to-noise and safe laser exposure levels [24]. However,
we further evaluated how subsampling at other frame rates
affects the resulting image quality. Due to the instantaneous
excitation of optoacoustic responses across the entire organ,
all samples from the individual optoacoustic waveforms (pro-
jections) correspond to the same phase of the cardiac cycle.
Although irregular movements originating from e.g. breathing
or arrhythmic events may lead to distortions, the spatio-
temporal information is generally expected to be encoded in a
few principal components. After training, a set of 1500 frames
(different from the training set) at the original frame rate
of 100 Hz was reconstructed. Sparse acquisition was simulated
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by considering a reduced number of channels, whereas data
from all the 512 channels was taken as reference. Tomo-
graphic reconstructions of both the recovered and reference
frames were performed with a filtered 3D back-projection
formula [25] implemented on a graphics processing unit
(NVIDIA GeForce GTX TITAN X). The training phase of
the algorithm (calculation of the transformation matrix) with
300 frames was accomplished within approximately 6.3 s.
Recovery of each image frame has taken on average 5.4 ms.
Both phases of the algorithm are running on an Intel 17-7700K
CPU with 64 GB of RAM. When employing GPU-accelerated
backprojection reconstruction [26], each frame containing
100 x 100x100 voxels can be recovered from the undersampled
data within less than 33 ms, thus allowing for real-time image
rendering and preview.

I1l. RESULTS

As expected, both the PCA-recovered frames and their
unprocessed equivalents yield equally good results when data
from all the channels are used for the reconstruction. However,
quality of the images reconstructed from sparse data using the
conventional 3D back-projection algorithm deteriorates signifi-
cantly when reducing the number of channels (Fig. 2a). Similar
deterioration was observed when using a more advanced
model-based algorithm imposing a spatial sparsity condition
via the total variation (TV) regularization term (Fig. 2b).
On the other hand, the image quality is largely preserved
with the suggested PCA-based processing, even when only
employing data from a single channel for the reconstructions
(Fig. 2b). A more quantitative comparison is provided in
Fig. 2d, which displays the cosine similarity metric between
the three reconstruction strategies calculated via

a-b
[lallllb]]

where a and b are vectors representing two images and || - ||
is the /2-norm.

Similarity between images reconstructed from the sub- and
fully-sampled data was calculated for an image sequence
corresponding to a time interval of 1 second (roughly 5 heart
cycles). The mean image was subtracted before calculating the
cosine similarity in order to compare the methods’ accuracy
in the presence of temporal variations while discarding the
static component of the image sequence. Clearly, features of
the original image are better preserved when PCA processing
is employed, particularly when reconstructing from less than
128 channels (Fig. 2d). The PCA-based method is further
capable of maintaining accuracy over a large range of training
frame rates (Fig. 2e) whereas significant image quality deteri-
oration only starts at 3 Hz (>30 subsampling factor). Depen-
dence of the reconstruction quality, similarly estimated via the
cosine similarity, on the number of principal components is
presented in Fig. 2f. Indeed, the PCA method can recover the
missing data even from a few principal components. A slight
decline in the image accuracy can be observed with increasing
number of principal components, which can be ascribed to
overfitting. In fact, distribution of the active elements plays an
important role in establishing the reconstructed image quality
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Fig. 3. Data acquisition and image reconstruction protocol of the
PCA-based method. The training phase (a) involves acquiring optoa-
coustic data with all the available channels and subsequent processing
to extract the principal components from the image sequence. Recon-
struction phase (b) involves acquisition of signals from fewer channels.
Image quality recovery for the subsampled data is achieved by means of
the previously learned principal components (c).

(Fig. 2g) whereas the highest cosine similarity corresponds
to a random distribution of elements. The other configurations
had comparable performance except for the uniform outer ring
distribution, arguably due to the strong signals generated by
the heart surface. Those are chiefly propagating perpendicular
to the skin hence not efficiently collected by the elements
located on the outer ring.

The method’s robustness in identifying transient events not
originally present in the training phase was subsequently tested
by injecting 100 ml (100 nmol) of indocyanine green (ICG)
through the tail vein of the mouse. 3000 frames were acquired
at 100 Hz, whereas the injection was done 16 s after com-
mencement of the signal acquisition. Training was performed
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with the first 150 out of 1500 fully-sampled frames (temporally
downsampled to 10 Hz) corresponding to the first 15 s of
the recording (Fig. 3a), while the remaining frames were
subsequently reconstructed with only 8 randomly- selected
channels. The signal increase corresponding to the appearance
of the ICG bolus can clearly be discerned around 20-25 s after
the beginning of the acquisition by observing a representa-
tive voxel intensity from the reconstructed image sequence.
Fig. 3b displays a more detailed comparison of the different
profiles in a narrower time window containing several cardiac
cycles and one irregular motion event presumably related to
breathing. A more quantitative comparison is presented in
Fig. 3c, where the cosine similarity between the ground truth
and both methods are shown as a function of number of
channels used for reconstruction. The similarity was calculated
for a time window between 20 and 25 seconds after the
start of the acquisition. This time window covers the image
intensity increase due to ICG injection as well as a breathing
event. It is shown that the PCA method was able to follow
the temporal signal changes much more reliably than the
standard back projection reconstruction applied to the sparse
data. The results further indicate that the PCA-processed
time profiles of the sparsely reconstructed data accurately
follow the reference profiles, whereas the time profiles from
the unprocessed images remain largely distorted. A visual
comparison between the different reconstruction approaches
is provided in Supplementary Video 1 available in the online
version of the journal.

IV. DISCUSSION AND CONCLUSIONS

The presented results demonstrate the feasibility of a highly
compressed acquisition of volumetric optoacoustic data in
the presence of periodic motion. Training of the PCA-based
algorithm with densely sampled 512-channel data recorded
at 10 Hz has enabled here high quality imaging at a rate
of 100 Hz using just a small fraction of the channels. In fact,
the proposed method was capable of rendering real-time
volumetric images of the mouse heart with 1/64th of the
channels without substantial impact on the image quality and
even operated reasonably well under single channel acquisition
conditions. In principle, the first eigenvector obtained from the
PCA analysis is sufficient to describe a sequence of images
featuring a synchronous periodic motion. Note that the heart
motion is not fully synchronized for all the image voxels while
it is further superimposed by breathing motion occurring at
a different frequency. Accurate reconstructions could yet be
obtained with relatively low number of eigenvectors, evincing
data compression efficiency of the suggested approach. The
relatively short (sub-minute) training times and real-time
image rendering may further enable dynamic alteration of the
experimental parameters based on real-time image feedback.
Furthermore, the developed PCA-based method can be equally
applied to arbitrary laser pulse repetition and imaging frame
rates also beyond 100 Hz.

It has been previously demonstrated that compressed acqui-
sition of tomographic optoacoustic data can alternatively be
facilitated by encoding spatial data into temporal domain

signatures [27], [28]. However, such solutions necessitated
additional hardware, e.g. scanning of the excitation laser beam,
employing ergodic relays or adding randomly distributed scat-
terers around the imaged object. Furthermore, computation-
ally costly models based upon non-differentiable inversion
methods are required to generate images with those methods.
In contrast, the method proposed herein can be used without
altering the experimental setup. Following signal recovery,
a simple back-projection reconstruction can then be used to
render images in real-time.

The PCA-guided reconstruction of sparsely acquired data is
not restricted to periodic motion and can accurately recover
dynamic events that were not part of the training phase. This
was demonstrated here by volumetric tracking of contrast
agent perfusion but other transient events can potentially be
recovered, such as cardiac arrhythmias. Note that the ICG
injection was performed at a relatively slow rate in our
experiments and hence imaging of faster transient events
may not be possible or require additional training. Unlike
other compressed sensing methods relying on spatial spar-
sity, the suggested PCA-based method efficiently exploits the
temporal sparsity of the data while preserving well spatial
features of the images. The suggested approach is not of sole
relevance to cardiac imaging and may potentially be applied
to other biological data containing strong periodic component,
e.g. stimulus-evoked brain responses. In general, VOT has
significance for neuroimaging applications as it is sensitive
to both label-free hemodynamic responses [29], [30] as well
as calcium or voltage labels that represent neural activity more
directly [31], [32].

The low degree of spatial domain sparsity in the heart
images indicates that the suggested approach can outperform
generalized CS algorithms commonly based on adding a !
regularization term to the reconstruction procedure (e.g. to the
gradient or the wavelet transform of the image). CS may have
a better performance for imaging fast transient events when
sparsity conditions apply. However, PCA may potentially
serve for the same purpose if proper training is performed.
Furthermore, the method can be improved to better account for
translation and scaling of the image data to allow for broader
applicability. In conclusion, the suggested machine learning
approach based on PCA can be used to significantly boost the
temporal resolution of volumetric optoacoustic imaging and
facilitate development of more affordable and data efficient
systems.
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