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PARKINSON'’S DISEASE

A patient-based model of RNA mis-splicing uncovers
treatment targets in Parkinson’s disease
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Parkinson'’s disease (PD) is a heterogeneous neurodegenerative disorder with monogenic forms representing pro-
totypes of the underlying molecular pathology and reproducing to variable degrees the sporadic forms of the
disease. Using a patient-based in vitro model of PARK7-linked PD, we identified a U1-dependent splicing defect
causing a drastic reduction in DJ-1 protein and, consequently, mitochondrial dysfunction. Targeting defective exon
skipping with genetically engineered U1-snRNA recovered DJ-1 protein expression in neuronal precursor cells
and differentiated neurons. After prioritization of candidate drugs, we identified and validated a combinatorial
treatment with the small-molecule compounds rectifier of aberrant splicing (RECTAS) and phenylbutyric acid,
which restored DJ-1 protein and mitochondrial dysfunction in patient-derived fibroblasts as well as dopaminergic
neuronal cell loss in mutant midbrain organoids. Our analysis of a large number of exomes revealed that U1 splice-
site mutations were enriched in sporadic PD patients. Therefore, our study suggests an alternative strategy to
restore cellular abnormalities in in vitro models of PD and provides a proof of concept for neuroprotection based

on precision medicine strategies in PD.

INTRODUCTION

Parkinson’s disease (PD) is increasingly recognized as a heterogeneous
disorder, as reflected by its substantial phenotypic, neuropathological,
and genotypic variability (I1). Therefore, previous models consider-
ing PD as a single disease entity, although successful for developing
symptomatic therapies that compensate for the dopaminergic defi-
cit responsible for the motor symptoms of PD, fall short in terms of
developing neuroprotective treatment strategies (2). Focusing on
pathomechanisms and understanding the underlying molecular pa-
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thology of neurodegeneration is essential, and genetic stratification
of patients into subgroups provides an important entry point for
precision medicine (3). During the past 20 years, a substantial num-
ber of genes related to PD have been identified, including mutations
in genes responsible for rare monogenic forms of PD. These mono-
genic forms of PD have become a valuable resource for PD research,
because patient-based cell models display disease-specific cellular
phenotypes recapitulating the phenotypes found in postmortem
brain tissue (4). According to this concept, the validation of clinico-
genetic subtypes of PD may be achieved based on rare but strong
molecular signatures and subsequently applied to the different
pathophysiological tiers within each disease subtype (5).

Mutations disrupting splicing in monogenic PD have recently
come into focus, and variants predicted in silico to cause aberrant
splicing have been described for PINK1, PARK2, PARK7, and GBA
(6-9). Mutations in the DJ-1 encoding gene PARK?7 are a rare cause
of early-onset PD (10). In this study, we identified and validated an
exonic splicing mutation in PARK7, ¢.192G>C. This mutation was
previously described as a missense mutation altering the protein se-
quence of DJ-1 (p.E64D) (11). Using patient-derived cellular models,
we discovered that the mutation disrupts the binding motif of the
small nuclear RNA (snRNA) U1 leading to exon skipping. We ap-
plied a genetic approach and developed a pharmacological interven-
tion that rescued aberrant splicing and cellular phenotypes.

Furthermore, we show for the common sporadic form of PD
that yet unrecognized mutations in U1 splicing sites are overrepre-
sented in exomes from patients compared to controls. Our findings
are in line with large-scale characterization of disease-associated mu-
tations that found splicing mutations largely underestimated and
open the door for a mechanism-based personalized medicine strat-
egy in PD (12).
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RESULTS

DJ-1 protein amount is reduced in carriers

of the homozygous ¢.192G>C mutation

The ¢.192G>C mutation in PARK7 was discovered in a family (11)
and predicted to cause the amino acid change p.E64D. Subsequent
studies conducted with E64D DJ-1 recombinant protein revealed
only subtle effects on protein stability (13, 14). Later, fibroblasts from
family members became available, including from individual II.6
[who has severe depression (hom1)] and the index patient I1.8 (hom?2),
both homozygous ¢.192G>C mutation carriers, as well as from an
unaffected brother I1.4 (hetl) and the unaffected individual III.4
(het2), both heterozygous mutation carriers (Fig. 1A). Native fibro-
blasts of the homozygous mutation carriers (hom1 and hom2) showed
a pronounced loss of DJ-1 protein to an almost undetectable quan-
tity, whereas cells of heterozygous individuals intermediate DJ-1
quantities (Fig. 1B). Fibroblasts of both heterozygous individuals
were still in the normal range of DJ-1 protein expression observed
in a larger set of healthy donors (fig. S1A). To investigate the reduc-
tion in DJ-1 protein amounts across cell types, we reprogrammed
fibroblasts to induced pluripotent stem cells (iPSCs) (fig. S2, A to
D). iPSC clones (hetl1-3, hom1-4, hom2-1, and hom2-4) were further
differentiated to small-molecule neural precursor cells (smNPCs)
(15) that expressed the neuronal precursor markers SOX1 and
NESTIN (fig. S2E). iPSC and smNPC were used to derive patient-
specific neurons (15, 16). DJ-1 protein amounts were markedly
reduced in all iPSC (Fig. 1C), smNPC (Fig. 1D and fig. S1B), and
iPSC-derived neurons (Fig. 1E) with the homozygous ¢.192G>C
mutation. To test whether increased proteasomal or autophagy-
lysosomal degradation pathways contribute to the reduction of the
predicted E64D D]J-1 protein in homozygous mutation carriers, we
blocked these pathways in smNPC. However, none of the inhibitors
rescued DJ-1 protein in the homozygous mutation carriers (Fig. 1,
F and G). To exclude the possibility that the lack of signal in the
Western blot was due to the lower affinity of the antibody to the
mutant protein, we tested two additional monoclonal antibodies
binding different epitopes of DJ-1 and independently used mass
spectrometry for the analysis of DJ-1. All three antibodies showed
the same low abundance of DJ-1 in cells from homozygous muta-
tion carriers (fig. S1, C and D), and mass spectrometry only detected
peptides unique to DJ-1 in the cell lysates of healthy controls (Fig. 1H).

The c.192G>C mutation in the PARK7 gene causes

skipping of exon 3

To further explore the reduced protein amount, we analyzed PARK7
mRNA expression. We found that PARK7 RT-PCR (reverse transcrip-
tion polymerase chain reaction) products of homozygous c.192G>C
mutation carriers were shorter than expected and that heterozygous
mutation carriers exhibited both a long and a short RT-PCR frag-
ment (Fig. 2A, top). Sequencing of the RT-PCR fragments ampli-
fied from control and patient-derived smNPC revealed that exon 3
was skipped in the patient’s mRNA (Fig. 2A, bottom). Targeted rese-
quencing of the entire PARK?7 locus in the index patient excluded
the presence of other mutations potentially related to the observed
aberrant splicing (Fig. 2B and data file S1). Quantitative RT-PCR of
RNA from iPSC-derived neurons showed that the overall PARK7
mRNA amount (including full-length and Aex3 mRNA) was com-
parable between healthy controls and heterozygous and homozy-
gous mutation carriers (Fig. 3A). However, the amount of full-length
PARK7 mRNA was reduced by half in the heterozygous cells and
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was almost undetectable in cells derived from homozygous carriers
(Fig. 3B). Nevertheless, Aex3 mRNA was indeed as abundant in
patient-derived cells as full-length PARK7 mRNA in control cells,
as shown by Northern blot (Fig. 3C).

To test whether the G>C substitution was sufficient to cause
exon skipping, we cloned PARK7 exon 3 and the flanking regions
from a healthy donor and from the index patient into the minigene
vector pSPL3. We then specifically introduced the ¢.192G>C muta-
tion into the wild-type (wt) PARK” minigene construct and vice
versa. Upon expression in human embryonic kidney (HEK) 293
cells, only minigene constructs encoding wt and corrected patient’s
exon 3 gave rise to full-length complementary DNA (cDNA). Tran-
scripts of both minigene constructs carrying the mutation were ab-
errantly spliced (Fig. 3D), suggesting that the ¢.192G>C mutation
was sufficient to cause exon skipping. Consistent with these in vitro
results, the monoallelic correction of the mutation ex vivo in patient-
derived (hom?2) fibroblasts by gene editing (fig. S3, A to D) rescued
the aberrant splicing of one allele, leading to both full-length and
Aex3 mRNA as expected for the heterozygous state (Fig. 3E and fig.
S3D). The correction of one allele was sufficient to rescue DJ-1 pro-
tein expression in those cells (Fig. 3F). The mutation occurs at the
last position of exon 3. Therefore, we predicted that Ul-mediated
splicing was involved in the pathogenic mechanism related to ¢.192G>C
by creating an additional mismatch that abolishes the binding of U1
snRNA to the splice donor site (fig. S4A).

Genetically engineered U1 snRNA rescues aberrant splicing
and loss of protein

We tested our hypothesis by cloning an adapted Ul snRNA (G>C
U1 snRNA) to restore binding to ¢.192G>C mutant pre-mRNA.
According to our predictions, G>C Ul snRNA should restore the
correct splicing of ¢.192G>C PARK7 mRNA (fig. S4B). Exon 3 was
skipped in the minigene assay when a PARK” construct harboring
the ¢.192G>C exon 3 was cotransfected with wt Ul snRNA, but
exon skipping was partially rescued when cells were cotransfected
with G>C U1 snRNA (Fig. 4A). This in vitro rescue was next trans-
lated into our ex vivo cellular model. smNPCs were stably transduced
with either wt UL snRNA or G>C Ul snRNA expression constructs
(fig. S5A). Whereas expression of wt Ul snRNA showed no signifi-
cant effect (P > 0.05), full-length PARK7 mRNA was significantly
(P < 0.01) increased upon G>C U1l snRNA expression (Fig. 4B).
This rescue of full-length mRNA translated into a significant
(P < 0.05) rescue of DJ-1 protein expression. Compared to control
smNPC, untransduced and wt Ul snRNA-transduced clones all
showed less than 5% DJ-1 protein (Fig. 4C). Transduction of both
clones with G>C U1 snRNA vectors resulted in an increase in DJ-1
protein expression above 10% (Fig. 4C). These smNPCs were further
differentiated into neurons (fig. S5, B to D), and the rescue remained
stable upon differentiation, with G>C Ul snRNA-expressing neu-
rons showing significantly (P < 0.05) increased DJ-1 protein (Fig. 4D).

Impaired translation of ¢.192G>C mutant mRNA causes loss
of DJ-1 protein

Because exon 3 skipping is in frame, a shorter DJ-1 peptide would
be expected that lacks 34 amino acids encoded by exon 3. However,
no truncated protein could be detected (Fig. 1 and fig. S1, A and C).
To exclude that expression of DJ-1 protein in our patient-derived
cell model was impaired by defects of the translation machinery un-
related to the mutation itself, we overexpressed wt DJ-1 by lentiviral
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(D), and neurons (E). (F) Representative immunoblot and densitometry of DJ-1 after blocking of proteasomal
v degradation in patient-derived smNPC with increasing concentrations of MG132. B-Actin was used as loading
control, and detection of increasing polyubiquitination was used as treatment control. n =4 Western blots.

(G) Representative immunoblot and densitometry of DJ-1 after blocking the autophagy-lysosomal pathway in
patient-derived smNPC with increasing concentrations of bafilomycin A1. B-Actin was used as loading control, and the detection of increasing LC3Il amount was used as
treatment control. n =4 Western blots. (H) Number of peptides with a sequence unique for DJ-1 (solid bars, right y axis) detected by mass spectrometry and the signal
intensity of these measurements calculated as the label-free quantification (LFQ) (striped bars, left y axis) in protein lysates of control and patient-derived smNPCs.

transduction of patient-derived smNPC. Moreover, we transduced
cells with a Aex3 PARK7 cDNA vector whose transcript requires no
splicing and is expected to translate into a truncated protein (fig.
S5E). Overexpression of the wt PARK?7 sequence restored DJ-1 pro-
tein expression in clones hom2-1 and hom2-4 (Fig. 5A). However,
overexpression of the Aex3 vector failed to increase DJ-1 protein
expression (Fig. 5A). In line with this observation, the overexpression
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of wt PARKY resulted in a significant (P < 0.0001) increase of full-
length mRNA (Fig. 5B, left graph). Although the expression of Aex3
mRNA was significantly (P < 0.0001) increased in transduced clones
compared to those of untransduced clones (Fig. 5B, right graph),
truncated protein was still not detected (Fig. 5A). This observation
was confirmed after neuronal differentiation of those transduced
smNPCs (Fig. 5C).
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Fig. 3. The c.192G>C PARK7 mutation causes skipping of exon 3. (A and B) Assessment of PARK7 mRNA expres-
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Next, we investigated the predicted
centroid secondary structure of mRNA,
where 47.1% of the bases were predicted
to be unpaired for wt PARK?7, whereas
only 40.3% were unpaired for the Aex3
variant. This difference in the number
of unpaired bases in the native mRNA
structure is also reflected by a slightly
higher predicted minimum free energy
(=271.1 kcal/mol) than that in the Aex3
variant (—273.1 kcal/mol). These energy
predictions can only provide indicative
estimates, although structure visualiza-
tions (Fig. 5D) pointed to systematic differ-
ences between the variants across several
bases in one specific local branch, be-
tween the bases at positions 209 and
486 in the native structure, and between
bases 214 and 381 in the mutant. In this
secondary structure branch, most of the
bases in the native structure were un-
paired, whereas the corresponding
branch in the mutant was dominated by
base pairs forming stem-loop structures.
However, the predicted differences in
mRNA structure do not result in inhibi-
tion of mRNA transport from the nucleus
to the cytoplasm where translation takes
place. Northern blot analyses of cytosolic
and nuclear fractions of snNPC showed
no difference in PARK7 mRNA amounts
between control lines and patient-derived
cells (Fig. 5E and fig. S6A). To complete-
ly exclude an inhibition of the transla-
tion by any other cellular mechanism,
both vectors, wt and Aex3 PARK7, were
used for in vitro translation. Whereas
the translation of in vitro transcribed wt
PARK7 mRNA led to production of full-
length protein, Aex3 mRNA failed to be
translated into truncated DJ-1 protein
in vitro (Fig. 5F and fig. S6, B and C).
Next, we explored whether impaired
Aex3 PARKY translation is only related
to interference with the eukaryotic trans-
lation machinery. When expressed in a
prokaryotic organism, Aex3 PARK7 cDNA
also failed to be translated (Fig. 5G).
Escherichia coli transformed with either
Aex3 PARKY or wt PARK7 cDNA constructs
expressed PARK7 mRNA (Fig. 5G, top);
however, only wt PARK7 mRNA was
translated into protein (Fig. 5G, bottom,
and fig. S6D). Together, our results show
that the lack of DJ-1 protein in homo-
zygous ¢.192G>C carriers is not caused
by mRNA instability or mislocalization
but rather by impaired translation of Aex3
PARK7 mRNA.
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show means + SEM. Friedman test followed by Dunn’s multiple comparisons test, n =

Reintroduction of DJ-1 rescues cellular phenotypes
inimmortalized fibroblasts

Loss of DJ-1 interferes with mitochondrial function and morphology
in cellular models. We previously reported that murine DJ-1 knock-
out (KO) fibroblasts exhibit reduced mitochondrial membrane po-
tential (MMP) (17). Human immortalized fibroblasts hom2-im
derived from the index patient showed significantly (P < 0.0001)
reduced MMP compared to that in healthy control C-im that was
significantly (P < 0.0001) rescued after reintroduction of wt DJ-1 by
transfection (Fig. 6A).

Currently, even successful genetic intervention as a rescue strat-
egy cannot be directly translated into a treatment option for patients.
Therefore, we performed literature mining for the prioritization of
candidate compounds that target Ul-dependent mis-splicing and
may rescue DJ-1 protein in our patient-based cellular models of
PD. The plant cytokinin kinetin (6-furfurylaminopurine) was re-
ported to successfully rescue pathologic exon skipping of IKBKAP
pre-mRNA in patients with familial dysautonomia (FD) (18). Here,
we tested the kinetin analog RECTAS (rectifier of aberrant splicing)
(19), which has been described to be even more potent in cellular
models of FD. Because of the limited efficiency of RECTAS to con-
sistently increase full-length PARK7 mRNA to sufficient and relevant
amounts in our cells (fig. S6E), we applied an in-house computa-
tional literature mining tool and identified phenylbutyric acid (PB)
as a compound that selectively increased PARK7 mRNA expression
in rat dopaminergic N27 cells and human HEK293 cells (20). We
hypothesized a synergistic effect of RECTAS when combined with
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6.*P<0.05, *P<0.01. ns, not significant.

PB to rescue DJ-1 in ¢.192G>C carriers. After a 4-day treatment of
hom2-im fibroblasts with 1 mM PB and 10 or 25 uM RECTAS, we
observed a dose-dependent increase in DJ-1 protein that reached
statistical significance (P < 0.01) at the higher concentration (Fig. 6B).
This increase was of physiological relevance because it led to an in-
crease in MMP: Whereas untreated and ethanol (EtOH)/dimethyl
sulfoxide (DMSO)-treated hom2-im fibroblasts showed decreased
MMP compared to that in healthy control C-im, the MMP was sig-
nificantly (P < 0.05) increased in fibroblasts treated with 1 mM PB
and 10 pM RECTAS (Fig. 6C).

Pharmacologic treatment of aberrant splicing rescues
neuronal cell loss in midbrain organoids

To observe the rescue in a more disease-relevant cell model, we dif-
ferentiated neurons from two patient-derived smNPC clones (fig. S5C)
and treated for 4 days with indicated concentrations. Compared to
the untreated and the EtOH/DMSO-treated neurons, correctly spliced
full-length PARK7 mRNA was significantly (P < 0.05) increased after
treatment with 1 mM PB and 50 uM RECTAS (Fig. 6D, left graph).
At the same time, the ratio of full-length mRNA to Aex3 mRNA
increased significantly (P < 0.05) in treated cells, indicating that the
combinatorial treatment not only increased full-length mRNA amounts
but also rescued the pathologic exon skipping (Fig. 6D, right graph).
Therefore, we chose the concentration of 25 uM and the most effec-
tive concentration of 50 uM for longer treatments of 14 days to res-
cue DJ-1 protein. DJ-1 protein expression increased up to 8.84 and
17.77% compared to the healthy control upon treatment with 1 mM
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Fig. 5. Mechanism mediating the loss of protein. (A) Quantification of DJ-1 immunoblots of indicated, transduced smNPC clones. DJ-1 amount was normalized to
B-actin. Values are normalized to control C2 (Fig.4D) and show means + SEM. Kruskal-Wallis test followed by Dunn’s multiple comparisons test, n=5 to 8. (B) One-step
RT-qPCR results of the indicated smNPC clones. Full-length PARK7 mRNA (left graph) and Aex3 PARK7 mRNA (right graph) were detected by duplex one-step RT-gPCR
using TagMan probes and normalized to ACTB. Values show means + SEM. One-way ANOVA followed by Holm-Sidak’s multiple comparisons test, n=3 to 7. (C) Quantifi-
cation of DJ-1 immunoblots of neurons differentiated in vitro from indicated, transduced smNPC clones. DJ-1 amounts were normalized to B-actin. Values are normalized
to control C2 (Fig. 4E) and show means + SEM. Kruskal-Wallis test followed by Dunn’s multiple comparisons test, n = 6. (D) Secondary structure predictions for wt PARK7
mRNA (left) and Aex3 PARK7 mRNA (right) were generated using RNAfold software. (E) (Left) Northern blot and quantification of the cytosolic (first panel) and nuclear
(second panel) fractions of indicated smNPC lines. mRNA was visualized using a PARK7-specific probe. (Right) Western blot of the same cytosolic and nuclear fractions of
smNPC C3 (third panel) and hom2-4 (fourth panel) stained with anti-p84 and anti-tubulin antibodies to confirm the purity of the fractions. (F) Immunoblot of in vitro
translation of PARK7 mRNA that was transcribed in vitro from empty vector, wt PARK7 vector, or Aex3 PARK7 vector. The arrow indicates the expected size of a Aex3 DJ-1
protein. Representative image out of four independent experiments. (G) Expression of recombinant DJ-1 in E. coli BL21 after transformation with wt PARK7 or Aex3 PARK7
plasmids. Representative figure of PARK7 cDNA amplification from bacterial RNA without and with induction of plasmid expression by isopropyl-8-o-thiogalactopyranoside
(IPTG) (top), and immunoblot of DJ-1 protein and quantification (n = 2) from respective bacterial lysates (bottom). *P < 0.05, fp< 0.01, and ¥P<0.0001.

PB and 25 or 50 uM RECTAS, respectively, whereas EEOH/DMSO
treatment showed no increase (Fig. 6E). This rescue of aberrant
splicing in patient-derived neurons carrying the ¢.192G>C muta-
tion translates into full-length mutant p.E64D DJ-1 protein. Studies
with recombinant p.E64D DJ-1 revealed no severe cellular pheno-
type caused by the mutation and only subtle effects on protein sta-
bility (11, 13, 14). Therefore, we hypothesized that the translation of
¢.192G>C mutant mRNA (encoding p.E64D DJ-1 protein) in human
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neuronal cells would still compensate for the loss of DJ-1 and at least
partly restore physiological DJ-1 function.

To analyze whether mutant DJ-1 induces a disease-related phe-
notype in a more physiological relevant in vitro model, we generated
isogenic midbrain-specific organoids that were derived from the
control line C4 and the isogenic line C4Mut, in which the pathogenic
¢.192G>C mutation was inserted via CRISPR-Cas9 technology. smNPC
spheroids were generated, kept in maintenance medium for 10 days,

60f 13

0202 ‘2 13qWIBA0N UO X3Y101|gig[eauaz - Uusydunjy wniuaz zijoywiaH e /B1o Bewsousios wis//:dny woiy papeojumoq


http://stm.sciencemag.org/

SCIENCE TRANSLATIONAL MEDICINE | RESEARCH ARTICLE

A

vector

- N
o o

MFI TMRE
]

Empty wt
DJ-1
=

Rel. DJ-1/B-actin

m Untreated
EtOH/DMSO

PB 1 mM + RECTAS 10 uM £
= PB 1 mM+RECTAS 25 M

[ —
0.0825

ns

Rel. DJ-1/B-actin
o

EtOH/DMSO
I PB 1 mM + RECTAS 25 uM
M PB 1 mM + RECTAS 50 uM

hom2-1+hom2-4

2

c

mm Untreated PB1mM+10 UMRECTAs ™ Untreated
DMSO/EtOH mm PB 1 mM + 25 uM RECTAS EtOH/DMSO

15

210

Cim hom2-im

DMSO/EtOH

D

= PB 1 mM + RECTAS 25 uM
== PB 1 mM + RECTAS 50 uM
PB 1 mM + RECTAS 10 uM mm PB 1 mM + RECTAS 100 uM

=)

Norm. PARK7 mRNA
@
3

‘C2 "hom2-1 + hom2-4 hom2-1 + hom2-4

1TmMPB+ 1TmMPB+
2.5 mM RECTAS 25 mM RECTAS

€ oy mma I CaMut bsoxwr )
g 3.0x107 g e
© 7 g “
§ 20x10 i 8
= 1.0x 107 = E
0 0 0
DMSO/EtOH || - |+ | - | - - |+ - | [omsoeton || - [+ |- | - ~ |+ -] -] |omsoEtoH [ - |+ | -] - -+ -] -
PB 1 mM - |-+ |+ - |-+ |+ PB 1 mM - |-+ ]+ - |-+ |+ PB 1 mM - -]+ |+ - |-+ |+
RECTAS uM - |- 125125 -1-125]25 RECTAS uM - |- 125|125 - | - [25]25| |RECTAS uM -1- |25]25 -1- 12525
J Fig. 6. Genetic and pharmacologic rescue of loss of DJ-1-related cellular phenotypes.
(A) MMP quantification represented as mean fluorescence intensity (MFI) of the tetramethyl-
75 rhodamine, ethyl ester (TMRE) signal of indicated lines. Values show means + SEM. n =3. Kruskal-
TH pixels Wallis test followed by Dunn's multiple comparisons test. (B) Densitometry of DJ-1immunoblots
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B-actin. Values are normalized to control C-im and show means + SEM. Friedman test followed
65 TH links by Dunn's multiple comparisons test, n=5. (C) Flow cytometric analysis of MMP by TMRE
’ TH nodes staining in indicated immortalized fibroblast lines after 4 days of treatment compared to
6 TH % untreated lines (black bars). Values are normalized to control C-im and show means + SEM.
Friedman test followed by Dunn's multiple comparisons test, n=7. (D) Amounts of correctly
55 TH by Hoechst spliced full-length PARK7 mRNA (left graph) and ratio of full-length to Aex3 mRNA in
' Hoechst pixels in vitro differentiated neurons after 4 days of treatment as determined by duplex TagMan
5 Tujt pisels RT-gPCR. Full-length and Aex3 PARK7 mRNA expression was normalized to expression of
ACTB. Values are normalized to control C2 (left graph) or to the untreated patient-derived
a5 TH fragmentation  nayrons (right graph) and show means + SEM. One-way ANOVA followed by Tukey's mul-

Tuj1 by Hoechst

tiple comparisons test (left graph), n=>5 to 8, and Kruskal-Wallis test followed by Dunn’s
multiple comparisons test (right graph), n=4 to 7. (E) (Top) Representative immunoblot
of DJ-1 and B-actin of in vitro differentiated neurons from indicated clones treated for
14 days. (Bottom) Quantification of DJ-1 normalized to B-actin. Values are normalized to con-
trol C2 and show means + SEM. One-way ANOVA followed by Holm-Sidak's multiple com-
parisons test, n =3 to 5. (F) Representative maximum intensity projection of confocal images
of C4 and C4Mut midbrain organoids, showing Tuj1 and TH staining. (G to 1) Bar graphs

showing quantification of Hoechst™ (G), Tuj1* (H), and TH" () pixels in untreated or treated C4 and C4Mut midbrain organoids. Bars represent means + SEM. One-way
ANOVA followed by Turkey’s multiple comparisons test. The midbrain organoid derivation was performed three times (total number of sections analyzed: C5 Untr, 13;
C5Veh, 16; C5PB 1 mM PB + RECTAS 2.5 uM, 9; C5 PB 1 mM PB + RECTAS 25 uM, 12; C5 Mut, 16; C5Mut Veh, 17; C5PB 1 mM PB + RECTAS 2.5 uM, 13; C5PB 1 mM PB + RECTAS
25 uM, 13. (J) Heatmap and cluster analysis of all the features extracted from the image analysis of treated midbrain organoids. *P < 0.05, P < 0.01, and ¥P<0.0001.
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and subsequently differentiated into midbrain-specific organoids
and treated with PB and RECTAS, at indicated concentrations, until
day 35, for a total duration of 25 days. No difference was observed
between C4 and C4Mut organoids in terms of number of overall
cells and neurons specifically, as detected by staining with Hoechst
and Tujl staining, respectively (Fig. 6, F, left column, G, and H).
However, the number of TH" (tyrosine hydroxylase-positive)-
dopaminergic neurons was markedly decreased in C4Mut organ-
oids. This specific dopaminergic phenotype ofloss of DJ-1 in human
midbrain organoids was rescued in a dose-dependent manner by
the administration of 1 mM PB and 2.5 or 25 uM RECTAS (Fig. 6,
F and I). A high-level view of all features extracted from the image
analysis (table S1) shows distinct clustering of untreated and EtOH/
DMSO-treated C4Mut organoids (Fig. 6]). After treatment with PB
and RECTAS, C4Mut organoids cluster together with the organoids
generated from the wt line C4 (Fig. 6]).

Sporadic PD cases have a higher burden of harboring
deleterious splice variants

Mutations in PARK?7 are a rare cause of PD, and the ¢.192G>C mu-
tation was found in a single family of Turkish descent until now.
However, splice-site mutations are common in humans with about
30% of all mutations causing aberrant splicing (12, 21). To deter-
mine whether mutations in U1-binding sites might play a role in the
common sporadic form of PD, we performed a burden analysis
of next-generation sequencing (NGS) data from PD cases (fig. S7).
We first used the whole-exome sequencing (WES) data from the
Parkinson's Progression Markers Initiative (PPMI) study (www.
ppmi-info.org). After sample processing and quality control (QC),
we compared 372 PD and 161 control sequences. We observed a
significant burden for genome-wide mutations in Ul-binding sites
in cases compared to the controls [P = 0.012, odds ratio (OR) = 1.39,
confidence interval (CI) = 1.08 to 1.82]. The signal was coming
mainly from exonic variants in 5’ splicing sites (P = 0.028, OR = 1.37,
CI = 1.04 to 1.84). To increase the statistical power of the test and
further test the hypothesis of a higher burden in typical PD, we sub-
sequently repeated our analysis in a larger cohort for PD exomes.
From the sequencing data of the ongoing Parkinson Disease Genome
Sequencing Consortium (PDGSC) project, we analyzed sequencing
data from 2710 PD cases and 5713 controls. In both cohorts, the
control datasets were age- and sex-matched with the corresponding
patient cohorts. Individuals with neurological dysfunctions were
excluded from the control cohorts. The burden analysis of this rep-
lication cohort confirmed the higher burden of splice-site mutations
in typical PD cases compared to controls with an FDR (false discov-
ery rate) adjusted P value of 0.014 (P = 0.007, OR = 1.04, CI = 1.01
to 1.08, P value FDR adjusted = 0.014). Similar to the PPMI cohort,
the signal was mainly driven by exonic splice-site variants (P = 0.003,
OR = 1.11, CI = 1.03 to 1.19, P value FDR adjusted = 0.011), and
within this group of genes, the main signal is driven by variants in
brain-expressed genes with an FDR-adjusted P value of <0.0001
(Fig. 7, right). (See data file S2 for a list of brain-expressed genes
harboring variants uniquely identified in cases from both cohorts.)

DISCUSSION

Here, we describe a mechanistic concept for the pathogenesis of PD
related to U1 splice-site mutations that was identified and validated
on the basis of the previously reported PD-associated ¢.192G>C
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mutation in PARK?7 (11). In contrast to a missense mutation pre-
dicted to cause instability of E64D mutant DJ-1 protein, we identi-
fied a drastic reduction of DJ-1 protein in patient-based cellular
models due to Ul-dependent mis-splicing of pre-mRNA. These
results are in line with a recent study showing that about 10%
of pathogenic missense variants predicted to alter protein coding
essentially disrupt splicing (12). The demonstration of the disease-
causing Aex3 PARK7 mRNA splice variant as a cause of the drasti-
cally reduced expression of DJ-1 protein reported here underscores
the relevance of access to patient material for functional studies to
validate predictions and define the underlying molecular pathology.
Together with the demonstration of an overrepresentation of muta-
tions in U1 splice sites as a more general feature in sporadic cases of
PD, our study provides the basis for precision medicine approaches
in PD.

The observed discrepancy between the overall amount of mutant
pre-mRNA and the drastically reduced amounts of DJ-1 protein in
homozygous ¢.192G>C carriers indicated the involvement of patho-
logical mRNA processing and/or translation and argued against
nonsense-mediated decay (NMD) as the underlying mechanism
(22-24). To confirm a Ul-mediated pathogenic splicing mechanism
underlying the loss of DJ-1 function in PD, we performed genetic
rescue experiments. Genetically engineered Ul snRNAs have been
shown to partially restore correct splicing using artificial splicing
reporter assays in established cell lines in vitro (25). This approach
may open avenues for future gene transfer strategies for the central
nervous system, as options for viral vectors delivered to the brain are
becoming safer and more effective (26). Currently, however, pharma-
cological treatment remains the most straightforward strategy to
translate our findings into neuroprotective treatment options.

Here, we successfully applied an advanced literature mining ap-
proach for the prioritization of candidate drugs to revert molecular
and cellular phenotypes. The combination of a compound rectifying
aberrant splicing in FD (19) with an enhancer of DJ-1 expression
(20) increased the mRNA and protein amounts of DJ-1 in patient-
based cells across different cell types. No complete rescue of protein
expression to control was required to restore mitochondrial func-
tion. Three-dimensional (3D) self-organizing organoids (27) reca-
pitulate the spatial architecture, multilineage differentiation, and
cell-cell interactions of the original tissue (28, 29). To investigate
the specific effect of the mutation and to eliminate effects caused
by different genetic backgrounds, we generated isogenic midbrain-
specific organoids. The restitution of dopaminergic integrity and
related neuronal features of treated C4Mut organoids were compa-
rable to organoids of the wt line C4 and, hence, segregate together
in the cluster analysis. DJ-1 KO mice do not display changes of the
integrity of dopaminergic neurons in the substantia nigra compared to
wt littermates (30, 31). We believe that the human-specific pheno-
type in 3D cultures of midbrain organoids adds to the observation
that the higher dopamine metabolism observed in human neurons
compared to mice contributes to the selective vulnerability of these
neurons (32).

Our findings regarding a causative treatment for DJ-1 deficiency
have an immediate impact for homozygous carriers of the ¢.192G>C
mutation, and this strategy may qualify as treatment at the prodromal
stage of PD for addressing neuroprotective strategies in PD (33). PB
is a U.S. Food and Drug Administration-approved compound used
as adjunctive therapy in the management of patients with urea cycle
disorders (34). As a histone deacetylase inhibitor, PB is thought to
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increase DJ-1 expression via increased binding of Sp1 to the PARK7
promoter (20, 35). Earlier studies have described a neuroprotective
role for PB in PD models of pathological aggregation of a-synuclein,
although these reports did not account for its effect via DJ-1
up-regulation (36, 37). Loss of DJ-1 protein in PARK7-linked PD
causes pathological a-synuclein aggregation in the brains of
patients, thereby defining synucleinopathy (38). For RECTAS, rapid
absorption after oral administration, subsequent stability in plasma,
and the detection of relevant doses of the compound in the brain
after blood-brain barrier penetration were shown (19). Moreover,
transcriptomic analyses revealed a high specificity of RECTAS, only
affecting splicing of a limited set of genes (19). As a first drug candidate
for the correction of aberrant splicing, kinetin recently underwent
clinical assessments for pharmacokinetics, safety, and effectiveness
in vivo (39, 40). In a clinical trial, kinetin was well tolerated and safe
and resulted in increased expression of correctly spliced mRNA
in vivo (39). This finding indicates that drugs targeting Ul-mediated
splicing defects have great potential to become therapeutic tools
and supports future clinical trials.

The therapeutic potential of the treatment for targeting defective
splicing is further substantiated by additional mutations in monogenic
PD. Homozygous mutations in PARK?7 affecting the 5’ consensus
splice site for Ul were described as a ¢.91-2AG mutation in an
Iranian family and a ¢.317-322del mutation in a Turkish family (8, 9).
Moreover, the ¢.1488+1 G>A mutation in the PINKI gene was
shown to affect a Ul-binding site and cause an in-frame deletion
of exon 7 (6). As for the ¢.192G>C mutation in PARK7, no NMD of
the mutant PINK1 mRNA was observed in affected carriers.

Our findings suggest that the pathogenic relevance of exonic
splicing mutations has been underestimated in PD. Although de-
fective pre-mRNA processing is known to represent a common
cause of human diseases, with ~30% of all mutations causing aber-
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cluding iPSC-based midbrain organoids
as a complex in vitro model, these results
need to be further validated in vivo. Here,
rodent models of aberrant DJ-1 splic-
ing may help to test the combinatorial
treatment in vivo, not only to validate
the rescue of aberrant splicing but also to
analyze the efficacy of the compounds
at different concentrations as defined
by the capacity to cross the blood-brain
barrier. Furthermore, the effect of RECTAS cannot be easily pre-
dicted for every splice-site donor mutation. RECTAS activity was
suggested to depend on auxiliary factors such as hnRNPA1 and
therefore acted only on a minor fraction of the human exons in cells
derived from a patient with FD (19). Because the exact molecular
mechanism by which RECTAS restores the inclusion of specific
exons (19) remains still unknown, the rescuing effect of RECTAS
on other mutations needs to be validated on a case-by-case basis.
However, our burden analysis in PD cohorts suggest a high preva-
lence of splice-site donor mutations in brain-expressed genes in PD
patients compared to controls from European ancestry. Therefore, a
large number of candidate exons can still be expected, which remain
to be experimentally validated.

Our study illustrates the promise for treatment approaches in
precision medicine in PD that focus on genetic and molecular strat-
ification. To account for the increasingly recognized heterogeneity
in PD and other neurodegenerative disorders, additional strategies
need to be developed for the stratification of patients along shared
pathogenic mechanisms. The candidate drugs identified in our cellular
models may translate into basket studies referring to patients shar-
ing the same underlying mechanism, as already shown for precision
medicine approaches in cancer, and might allow for clinical trials in
patients across groups that share certain molecular signatures (42).

variants in intronic regions; DEL.

MATERIALS AND METHODS

Study design

The objective of this study was to generate patient-derived cellular
models to characterize the pathogenic effects of the mutation in
PARK7 that was known by that time as amino acid substitution
E64D. After obtaining skin fibroblasts from the index patient and
additional family members and reprogramming these into iPSC, we
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uncovered that the mutation leads to loss of protein due to aberrant
splicing. Because the mutation occurs within the 5 splice-site
donor, we followed different strategies to test the hypothesis that the
point mutation causes exon skipping by abolishing the binding of
the small nuclear ribonucleoprotein (snRNP) U1. First, we confirmed
in vitro by minigene assay and ex vivo by gene editing that the mu-
tation alone is sufficient to cause exon skipping. Subsequently, we
applied successfully a genetically engineered Ul snRNA, whose
sequence matched the mutated PARK7 sequence, to restore exon
inclusion in vitro and ex vivo. Having deciphered the molecular
mechanism by which the mutation causes loss of protein, we used
literature mining to identify candidate compounds for pharma-
cological intervention. After identifying that the combinatorial
treatment with PB and RECTAS recues partially exon inclusion and
protein expression, we investigated whether the degree of rescue
was of biological relevance. Subsequently, we tested the effect of
the treatment on the well-established phenotype of impaired MMP
in patient-derived fibroblasts, which led us to study the effect of
the treatment on midbrain-specific organoids. To eliminate any
interference by the genetic background of the patient, we generated
an isogenic control iPSC line and revealed a loss of dopaminergic
neurons in mutant organoids that was rescued by the treatment.
Randomization and blinding were not applied to these in vitro studies,
and the number of replications of each experiment can be found
in the figure legends. Although mutations in PARK? are a rare event,
generally, mutations causing aberrant splicing are contributing up to
one-third of disease-causing mutations. Therefore, we performed a
burden analysis on the WES dataset of the PPMI cohort and de-
tected a higher burden in PD patients. To confirm this result and to
gain statistical power, we subsequently analyzed the dataset of the
PDGSC cohort, which contains substantially more genetic datasets.
The study size was determined by the size of the two cohorts and the
filtering we applied. Briefly, cohorts were filtered for European
ancestry, and population outliers were removed during QC. For
the control groups of both cohorts, individuals with substantial neuro-
logical dysfunction were excluded. GenomeAnalysisToolkit (GATK)
hard filtering was used to select high-quality single-nucleotide variants
(SNVs) with a call rate of >0.9 (PPMI) or >0.8 (PDGSC). Deleterious
variants were identified on the basis of the MaxEntScan method and
two ensemble scores (dbscSNV_ADA and dbscSNV_RF), and burden
analysis was conducted by constructing a generalized linear model.

Burden analysis

WES data of 372 PD and 161 control samples from the PPMI study
were used in the discovery cohort, whereas the replication cohort
(PDGSC) was composed of 2710 cases and 5713 controls. The PPMI
controls were selected on the basis of the following criteria: (i) 30 years
or older, (ii) no first-degree blood relative with PD, (iii) no neuro-
logical dysfunction, and (iv) no cognitive impairment based on a
Montreal Cognitive Assessment (MoCA) score >26. The controls
used in the PDGSC cohort are obtained from a subset of samples
from the International Parkinson Disease Consortium (https://
pdgenetics.org/about). It is a multicentric consortium consisting of
samples obtained from various countries forming the International
Parkinson’s Disease Genomics Consortium (IPDGC). The following
criteria were used to select the controls: (i) mean age at the time
of examination of ~50 years (across all the studies) and (ii) were
required to have no neurological dysfunction. Briefly, the deleterious
U1 splice-site variants were identified on the basis of the MaxEntScan
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(43) method and two ensemble scores (dbscSNV_ADA and dbscSNV_RF)
that are generated from multiple splice-site prediction tools (44),
which are available as part of the dbNSFP database (45). Burden
analyses at the whole-exome levels were conducted by constructing
generalized linear models (glm) while adjusting for different covariates.
For detailed data description and processing, please see Supplementary
Materials and Methods.

Statistical analysis

All experimental data represent means + SEM and were statistically
analyzed by one-way analysis of variance (ANOV A) whenever data
passed normality test and by Kruskal-Wallis or Friedman test for
nonparametric data followed by appropriate post hoc analysis using
GraphPad Prism 8.4.0. The value of significance level alpha was set
to 0.05. Statistical parameters of each experiment are stated in the
figure legends. Burden analysis was performed by constructing
generalized linear regression models using R version 3.4.1 while
correcting for various confounding factors as described in Materials
and Methods. P values were adjusted for multiple testing by the
function “p.adjust” (R version 3.4.1) using the FDR method.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/12/560/eaau3960/DC1
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Fig. S1. Loss of DJ-1 protein in homozygous c.192G>C mutation carriers.
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Fig. S3. Generation of gene-corrected fibroblasts.

Fig. S4. Schematic of genetic intervention to rescue aberrant splicing of ¢.192G>C PARK7.
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PARK(7) preservation

Mutations in PARK?7 lead to the development of early-onset Parkinson's disease (PD), a neurodegenerative
condition for which there are currently no effective treatments. Here, Boussaad et al. identified an exonic splicing
mutation in PARK?Y linked to PD and studied the effect of this mutation in patient-derived cellular models. The
mutation resulted in impaired splicing, reduced production of DJ-1 protein, and consequent mitochondrial
dysfunction. Rescuing the aberrant splicing with the kinetin analog RECTAS in combination with phenylbutyric acid
rescued neuronal loss in patient-derived brain organoids. The results suggest that precision medicine targeting

specific molecular signatures could be an effective strategy for PD and possibly other neurodegenerative diseases.
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