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Abstract
Background: Dusp8 is the first GWAS-identified gene that is predominantly ex-
pressed in the brain and has previously been linked with the development of diabetes 
type 2 in humans. In this study, we unravel how Dusp8 is involved in the regulation of 
sucrose reward behavior.
Methods: Female, chow-fed global Dusp8 WT and KO mice were tested in an ob-
server-independent IntelliCage setup for self-administrative sucrose consumption 
and preference followed by a progressive ratio task with restricted sucrose access to 
monitor seeking and motivation behavior. Sixty-three human carriers of the major C 
and minor T allele of DUSP8 SNP rs2334499 were tested for their perception of food 
cues by collecting a rating score for sweet versus savory high caloric food.
Results: Dusp8 KO mice showed a comparable preference for sucrose, but consumed 
more sucrose compared to WT mice. In a progressive ratio task, Dusp8 KO females 
switched to a “trial and error” strategy to find sucrose while control Dusp8 WT mice 
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1  | INTRODUC TION

The ever increasing prevalence of type 2 diabetes (T2D) has led to a 
surge in studies that explored the genetic underpinnings for this sys-
temic disease. T2D-associated loci identified in these genetic studies 
were mostly pointing toward peripheral pathologies such as an aber-
rant insulin secretion (Krentz & Gloyn, 2020). Few, if any loci hinted 
toward CNS-based mechanisms, which remains surprising given 
the purported role of the brain as glucoregulatory organ (Kullmann 
et al., 2020; Ruud et al., 2017; Stemmer et al., 2019).

Recently, we revealed hypothalamic insulin resistance in human 
carriers of the minor T/T allele of SNP rs2334499 (Schriever 
et al., 2020), a frequent polymorphism previously associated with a 
modestly increased T2D risk (Kong et al., 2009; Morris et al., 2012). 
Based on the close proximity of SNP rs2334499 to the gene dual 
specificity phosphatase 8 (DUSP8), a likely relationship had been 
implicated (Kong et al., 2009; Morris et al., 2012). Consistent with 
that still unexplored assumption, we found hypothalamic insulin 
resistance and systemic glucose intolerance in high-fat diet-fed 
Dusp8 KO mice (Schriever et  al.,  2020). Mechanistically, we re-
vealed an impaired HPA axis feedback control with chronic hy-
percorticosteronemia, and an altered sympathetic nervous system 
tone as driving factors for the dysfunctional glucose control in 
Dusp8 KO mice.

Dusp8 is a phosphatase specific for mitogen-activated kinases 
(MAPK) that is predominantly expressed in the brain and to lesser ex-
tent in muscles and bone (Martell et al., 1995; Schriever et al., 2020). 
The specificity of Dusp8 toward MAPK appears to be tissue and 
context dependent. Dusp8 overexpressed in cells showed highest 
dephosphorylation activities toward Jnk and minor activities to-
ward p38, and an absence of activity toward Erk (Muda et al., 1996; 
Schriever et al., 2020). In vivo, global Dusp8 deficient mice had Jnk 
hyperactivation in the hypothalamus (Schriever et al., 2020), but Erk 
hyperactivation in the hippocampus (Baumann et al., 2019) and the 
heart (Liu et  al.,  2016). These data are consistent with a complex 
crosstalk of MAPK that is finely regulated by numerous scaffold pro-
teins and Dusp family members (Farooq & Zhou, 2004); they further 
suggest a prominent and tissue-specific role for Dusp8 in MAPK sig-
naling and function.

Recently, we reported decreased hippocampal volumes in human 
carriers of DUSP8 minor allele rs2334499 (Baumann et  al.,  2019). 
The hippocampus is a mesolimbic brain area that is fundamentally 
involved in cognitive behaviors. Consistent with the human data, we 
found decreased hippocampus mass and perturbed anxiety, loco-
motion, and spatial cognition behaviors in mice with global Dusp8 
deficiency (Baumann et  al.,  2019). The hippocampus is moreover 
a central brain area involved in food reward behaviors (Kanoski & 
Grill,  2017; Tracy et  al.,  2001) that is highly interconnected with 
dopaminergic centers within the basal ganglia via bidirectional as 
well as unidirectional glutamatergic and GABAergic projections 
(Thierry et al., 2000). Perturbations in this network, which further 
includes areas such as the prefrontal cortex or thalamus (Berthoud 
et al., 2011; Sescousse et al., 2013), have been linked to alterations in 
reward sensation and foraging behavior and an impulsive over-con-
sumption and binge-eating of incentive sweet treats (Berridge 
et al., 2010; Castro & Berridge, 2014; Robinson & Berridge, 1993; 
Turton et  al.,  2017). Food reward nuclei of the limbic system are 
moreover in direct connection with homeostatic feeding circuits 
originating in the hypothalamus (Berthoud et al., 2011).

Here, driven by our recent work on hippocampal as well as hy-
pothalamic Dusp8 function, we aimed to assess whether Dusp8 also 
plays a role in regulating feeding reward behaviors. Reward studies 
in rodents mostly entail the use of sucrose as incentive salience stim-
ulus. These studies revealed a major role for dopamine in controlling 
sucrose reward behavior, but showed that these effects are largely 
confined to wanting behavior with limited effects on liking or condi-
tioned learning (Berridge, 2007). Accordingly, we aimed to assess su-
crose reward and wanting behaviors in Dusp8 KO mice using sucrose 
self-administration tests, and interrogate whether Dusp8 deficiency 
perturbs dopaminergic reward circuits.

We further aimed to investigate the link between the human 
DUSP8 diabetes-risk variant and the preference for sweet high caloric 
versus savory high caloric foods. Sugar-sweetened beverage (SSB) in-
take is a known risk factor for the development of diabetes, even inde-
pendently from obesity (Fagherazzi et al., 2013; Imamura et al., 2016; 
Qi et al., 2012; Romaguera et al., 2013). Accordingly, we aimed to gain 
first insights on the presently unresolved question whether a genetic 
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kept their previously established seeking pattern. Nonetheless, the overall motivation 
to consume sucrose, and the levels of dopaminergic neurons in the brain areas NAcc 
and VTA were comparable between genotypes. Diabetes-risk allele carriers of DUSP8 
SNP rs2334499 preferred sweet high caloric food compared to the major allele carri-
ers, rating scores for savory food remained comparable between groups.
Conclusion: Our data suggest a novel role for Dusp8 in the perception of sweet high 
caloric food as well as in the control of sucrose consumption and foraging in mice and 
humans.
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predisposition can affect food reward behaviors to exacerbate meta-
bolic dysfunctions based on elevated sugar consumption.

2  | METHODS

2.1 | Animals

Dusp8 global WT and KO mice were generated as described (Liu 
et al., 2016). All mice in our studies were female littermates derived 
from heterozygous parents on a C57BL/6J background. Mice had free 
access to chow diet (Altromin, #1314) and were group-housed on a 
12:12 hr light–dark cycle. Temperature and air humidity were set to 
22°C and 50% to 60%, respectively. The age of the mice ranked from 
4 to 6 months at the start time of testing. The murine studies were 
based on power analyses to assure adequate sample sizes, performed 
in accordance with relevant guidelines and regulations, and approved 
by the Animal Ethics Committee of the Government of Upper Bavaria, 
Germany (animal protocol number VTA 55.2-1-54-2532-46-16).

2.2 | IntelliCage setup

Mice were group-housed in an IntelliCage of TSE systems 
(IntelliCagePlus Version 3.3.2.0, TSE Systems) containing four test-
ing corners, each equipped with two bottles, which allowed behav-
ioral testing of the animals without any handling stress. Mice were 
identified via a subcutaneous implanted transponder and got as-
signed to one correct corner, where they could access via nose poke 
one of the two bottles. In the other three incorrect corners, access 
to the drinking bottles was denied. Observer-independent behav-
ior of the animals was tracked for 8 days by the provided computer 
software using subcutaneous transponders with ring antenna in the 
corners of the drinking bottles. The number of tongue-contacts with 
spouts of the bottles was registered by a lickometer and displayed 
as number of licks. Chow food was provided ad libitum in the center 
of the IntelliCage.

2.2.1 | Two-bottle sucrose versus water choice test

To adapt mice to a standard 10% sucrose solution used for the su-
crose wanting test as hedonic incentive stimulus, animals got access 
for 5 s to sucrose solution in the respective correct corner after nose 
poke performance at both drinking bottles {Holter, 2015 #49}. For 
a habituation period of 24 hr, no plain water was available but su-
crose solution. After this forced sucrose period, the test program 
was switched to a two-bottle sucrose versus water choice test in 
the designated correct corner. Mice had access for 5 s to water or 
sucrose in the correct corner at the left or right side, respectively, 
after one single nose poke. During those 5 s, the doors to the bot-
tles stayed open and allowed free interaction of the mice with the 
spout. A LED light indicated the sucrose containing side after entry 

of the correct corner. After each trial, mice had to leave the test cor-
ner before starting a new nose poke. Visits in correct and incorrect 
corners, first choice nose pokes, total numbers of nose pokes and 
licks for fluid in the respective sides were monitored for 5 days and 
analyzed. Nose pokes and visits are parameters for activity, licks for 
fluid are referred to as fluid consumption. Interactions are displayed 
in 2 hr intervals.

2.2.2 | Progressive ratio setup

The motivation of mice to consume sucrose rather than neutral 
water was measured in a two-bottle sucrose versus water choice 
test under a progressive ratio (PR)-2 paradigm for sucrose access. 
Animals had to perform increasing numbers of nose pokes in the 
respective correct corner in order to get access to the reinforcer 
sucrose solution for 5 s. Following every 10th correct reinforcer de-
livery, the number of nosepokes in the respective sucrose corner to 
earn the next reinforcer was increased by two. For accessing water, 
the fixed ratio of 1 nose poke was kept throughout the entire test-
ing time. After each trial, mice had to leave the test corner before 
starting a new nose poke. The motivation for getting access to the 
reinforcer sucrose was measured with the progressive ratio scale for 
a period of eight nights.

2.3 | Immunofluorescence

Mice were euthanized in CO2 and perfused through the heart using 
a peristaltic pump. After a washing step with ice cold PBS, mice were 
perfused with 4% paraformaldehyde (PFA) and the brains extracted 
and postfixed overnight before transferring them to 30% sucrose 
followed by PBS. Brains were cut coronally into 20 μm sections and 
treated with citrate-containing heat-induced epitope retrieval buffer 
for 30 min at 85°C. Sections were washed 3 × 5 min in PBS-Triton 
and blocked in PBS-Triton containing 1% FBS and 2% nonfat milk 
powder. Immunofluorescence staining against dopamine trans-
porter (DAT) was conducted by an overnight incubation with anti-
DAT (1:200, Cat. #MAB369, Merck Millipore) primary antibody at 
4°C, sections were subsequently washed 3 × 10 min in TBS. Alexa 
Fluor 568 goat antirat IgG (H + L) secondary antibody (Cat. A-11077, 
Invitrogen Thermo Scientific) was used in the dilution 1:1,000 in 
blocking buffer and incubated for 1 hr at room temperature. Sections 
were washed again 3 × 10 min in TBS, mounted on glass slides, and 
dried at room temperature. Sections were covered in Elvanol mount-
ing medium and sealed under a coverslip. Until imaging slides were 
stored in the dark at 4°C.

2.4 | High caloric food ranking in humans

As previously reported (Kullmann et al., 2015), pictures of calorie-
dense, processed savory and sweet foods such as hamburger and 
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donuts, respectively, were rated on a laptop on a scale of 1 to 9 (du-
ration approx. 10 min). Ratings were performed under anorexigenic 
conditions (60 min after a nasal insulin bolus application). 63 partici-
pants rated 100 food pictures in two separate blocks according to 
explicit “liking” (“How much do you like the food item in general?”) 
and “wanting” (“How much would you like to eat the food item right 
now?”). For genotyping, DNA was isolated from whole blood using 
a commercial DNA isolation kit (NucleoSpin, Macherey & Nagel, 
Düren, Germany). The SNP rs2334499 was genotyped using the 
Agena MassARRAY® System with iPLEX software (Agena Bioscience 
GmbH). All subjects provided informed written consent, and the 
local ethics committee at the University of Tübingen approved the 
protocol. Human studies were performed in accordance with the rel-
evant local guidelines and regulations.

2.5 | Statistical analysis

For statistical analyses, GraphPad Prism 8.0.1 was used. Multiple 
comparisons were performed by two-way ANOVA with post hoc 
Sidak's multiple comparison tests. Two-tailed unpaired Student's 
t tests were used to compare two groups. p-values  ≤  .05 were 
considered as statistically significant. All results are presented as 
means ± SEM.

3  | RESULTS

3.1 | Dusp8 KO mice have increased sucrose 
consumption in a self-administration setup

To evaluate whether Dusp8 plays a role in sucrose reward and want-
ing, we conducted a self-administered two-bottle sucrose versus 
water choice test in the IntelliCage setup in chow-fed female WT and 
Dusp8 KO mice littermates (WT: 21.7 ± 1.9 g BW; KO 21.4 ± 2.1 g 
BW). The preference for sucrose, measured as the percentage of 
nose pokes for sucrose of all performed nose pokes, was comparable 
in Dusp8 KO and WT mice. Both genotypes showed a comparable 
increased preference for sucrose in the first dark phase of the test 
paradigm (Figure 1a, ANOVA p = .22) that was consistent with a de-
creased preference for water (Figure 1b, ANOVA p = .66). The pref-
erence levels for both sucrose and water remained stable during the 
second (Figure 1a, ANOVA p = .81; Figure 1b, ANOVA p = .65) and 
the subsequent dark phases (data not shown). The preferences for 
nose pokes in incorrect corners did not differ between both geno-
types and remained stable throughout the testing time (Figure 1c, 
first dark phase ANOVA p = .94, second dark phase ANOVA p = .78).

Similar to earlier observations by our laboratory (Baumann 
et al., 2019), we saw an overall higher locomotor activity of Dusp8 
KO mice compared to Dusp8 WT controls that was reflected by a 

F I G U R E  1  Two-bottle sucrose versus. water choice test of female, chow-fed Dusp8 WT & KO mice. Preference for (a) sucrose or (b) 
water in the first and second dark phase, displayed as percentage of nose pokes (NPs) for sucrose or water versus total NPs, respectively. 
(c) Preference for NPs in incorrect corners in the first and second dark phase. (d) Total number of corner visits in the second dark phase. (e) 
Total consumption of water and sucrose in the second dark phase. Female WT: n = 6, female Dusp8 KO: n = 8. Means ±SEM. **p < .01
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higher number of corner visits (Figure 1d). We further found an over-
all higher number of licks at the drinking bottles for Dusp8 KO mice. 
This increase was caused by a significantly higher number of nose 
pokes for sucrose (Figure 1e). The amount of consumed water did 
not differ between genotypes. Overall, our assessment of self-ad-
ministered sucrose consumption revealed comparable preferences 
for sucrose or water in the Dusp8 KO and WT mice. Nonetheless, 
females deficient for Dusp8 showed higher locomotor activity and 
an increased consumption of sucrose.

3.2 | Dusp8 deficiency increases sucrose foraging 
but not the reinforcement value of sucrose in a 
progressive ratio operant licking test

The increased sucrose consumption of female Dusp8 KO mice 
prompted us to test their motivational behavior for sucrose in a pro-
gressive ratio reinforcement schedule. Specifically, to quantify the mo-
tivation of Dusp8 WT and KO mice for consuming sucrose, the mice 
had to increase their nose pokes in the correct corners after a correct 
trial to get access to the drinking bottles with sweet sucrose solution. 
The water bottles remained accessible with performing only one nose 

F I G U R E  2  Sucrose preference was 
assessed in female chow-fed Dusp8 WT 
and KO mice by a two-bottle choice 
test for sucrose versus water with a 
progressive ratio schedule. Preference 
for nose poke (NP) performance for 
accessing sucrose in the (a) first and 
second night phase and (b) during the 
8 days of testing, measured by the 
number of nose pokes (NPs) in the correct 
corner. Preference for NPs for water 
in the (c) first and second night phase 
and (d) during the 8 days of testing. 
Preference for NPs in the incorrect 
corner of the IntelliCage setup during 
the (e) first and second night phase and 
(f) over the 8 days of testing. Maximum 
numbers of NPs in the progressive ratio 
schedule (g) after the second night and 
(h) during the 8th dark phase of testing 
indicate a comparable motivation for 
sucrose consumption in WT and Dusp8 
KO mice. Increased foraging and random 
investigation behaviors in Dusp8 KO mice 
were reflected by higher total numbers 
of corner visits in the second night (i) and 
during the 8th dark phase (j). Total liquid 
consumption in the second night phase 
remained unchanged (k). Dusp8 KO mice 
have a random 25% distribution in the 
nose poke preference for the assigned 
correct versus. incorrect corners during 
the 8th dark phase (l). Female WT: n = 6, 
female Dusp8 KO: n = 8. Means ± SEM. 
*p < .05, **p < .01, ***p < .001
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poke. With this approach, we measured the reinforcement value of 
sucrose, that is, how much effort the mice are willing to invest for con-
suming sucrose before switching to the easily accessible water.

After starting the motivation paradigm, within the first night the 
preference for sucrose dropped dramatically in both Dusp8 KO and 
WT mice, and remained at minimum levels throughout the entire 
testing phase of 8  days (Figure  2a,b). This finding showed that the 
reinforcement value of sucrose was not affected by Dusp8 ablation. 
However, from day 2 onwards Dusp8 WT mice showed a higher pref-
erence for water (Figure 2c,d), while Dusp8 KO mice had an elevated 
preference for incorrect nose pokes that was detached from the ac-
cess to water or sucrose (Figure 2e,f). A higher preference for incorrect 
nose pokes may indicate elevated foraging, or motivation behavior in 
Dusp8 KO mice. However, the breakpoint as maximum number of mo-
tivated nose pokes for sucrose access was comparable in both geno-
types at day 2 (Figure 2g) or day 8 (Figure 2h) of the testing paradigm. 
Increased numbers of overall corner visits of Dusp8 KO mice at day 2 
(Figure 2i) and throughout the test time (Figure 2j) rather pointed to-
ward elevated sucrose foraging behavior in Dusp8 KO females. On day 
2, the amounts of consumed liquids were comparable between both 
genotypes (Figure 2k). Notably, while the percentage of entrained nose 
pokes in the correct test corner remained elevated in Dusp8 WT mice 
(Day 8, Figure 2l), we found a randomly distributed pattern of nose 
pokes, that is, 25% versus 75%, for the correct and the three incorrect 
corners in Dusp8 KO mice (Dusp8 WT: correct 53.0%, incorrect 47.0%, 
±6.6%; Dusp8 KO: correct 26.2%, incorrect 73.8%, ±1.6%). Overall, 
we found a comparable reinforcement value of sucrose in Dusp8 KO 
and WT mice, but an elevated and, supposedly random, trial-and-error-
like foraging behavior in Dusp8 KO mice.

3.3 | Incentive seeking strategy is independent of 
dopaminergic system in Dusp8 KO mice

The dopaminergic reward system in the brain is crucially involved 
in motivation-related and drive behavior (Berridge,  2007; Ferrario 

et al., 2016). The close network of the NAcc and the ventral tegmental 
area is regulating the onset of eating behavior and affects the salience 
of different nutritional stimuli introduced to the animal via dopamine 
(Nieh et al., 2016). Prompted by the different sucrose-seeking strategy, 
we wanted to investigate the neuronal background of that behavior. 
We therefore analyzed the integrity of the dopaminergic reward sys-
tem of the NAcc and the VTA and performed immunofluorescence 
staining against the dopamine transporter (Figure  3a,b). Therefore, 
we analyzed the integrity of dopaminergic projections to the NAcc 
and their cellular origins in the VTA. Overall, we found a compara-
ble staining intensity in the NAcc (Figure 3c) and similar numbers of 
DAT-positive cells in the ventral tegmental area (Figure 3d). This points 
toward an intact reward system in the striatum and an unaltered devel-
opment and maturation process, respectively.

3.4 | Association between DUSP8 SNP 
rs2334499 and hedonic rating of sweet high 
caloric food

Mice with a deficiency in Dusp8 showed a higher consumption of 
sucrose, increased locomotion, and higher sucrose foraging behav-
ior. Recently, we already reported increased locomotion, and further 
revealed higher anxiety levels and impaired spatial cognition in mice 
deficient for Dusp8 (Baumann et al., 2019). Consistent with our find-
ing of decreased hippocampus mass and volume in Dusp8 KO mice, 
we moreover revealed that human carriers of DUSP8 variant SNP 
rs2334499 have a lower volume of the hippocampus subregions 
subiculum and CA4 (Baumann et al., 2019). Prompted by this transla-
tional earlier study and our new finding of perturbed sucrose reward 
behavior in Dusp8 KO mice, we next aimed to assess whether human 
carriers of the rs2334499 diabetes-risk allele show alterations in 
their preference for sweet high caloric food compared to human car-
riers of the major allele.

Specifically, we assessed the evaluation of visual food cues in 
sixty-three participants by collecting a rating score for sweet high 

F I G U R E  3   Dopamine transporter 
(DAT) densities in the NAcc (a) and the 
VTA (b), two key areas for sucrose reward, 
were assessed by immunostaining for DAT 
in female mice. (c) Signal intensities of 
DAT-positive projections in the NAcc and 
(d) the number of DAT-positive cells in the 
VTA of WT and Dusp8 KO females. Arrow 
heads indicate examples for DAT-positive 
cells. NAcc: nucleus accumbens, NAccSh: 
nucleus accumbens shell. Female WT: 
n = 4, female Dusp8 KO: n = 6. Scale bar 
100 µm. Means ± SEM
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caloric versus savory high caloric food under standardized condi-
tions. Minor T-risk allele carriers rated sweet high caloric food higher 
compared to major allele CC carriers (Figure  4a). Hedonic rating 
scores for savory high caloric food did not differ between DUSP8 
genotypes (Figure 4b). Moreover, the wanting levels for sweet high 
caloric food (Figure 4c) or savory high caloric food (Figure 4d) were 
comparable between genotypes. Taken together, human carriers 
of the minor allele of the DUSP8 SNP rs2334499, which has previ-
ously been linked to T2D risk (Kong et al., 2009; Morris et al., 2012), 
hypothalamic insulin resistance (Schriever et  al.,  2020) and to a 
smaller hippocampal subiculum and CA4 layer volume (Baumann 
et al., 2019), show a preference for sweet high caloric food compared 
to major allele carriers.

4  | DISCUSSION

We here expand our earlier work that showed a role for the 
MAPK-specific Dusp8 as gatekeeper for insulin resistance, cogni-
tion, and anxiety behavior in mice (Baumann et al., 2019; Schriever 
et  al.,  2020). We now reveal an additional role for Dusp8 in con-
trolling sucrose reward behavior. Female chow-fed Dusp8 KO mice 
showed unaltered sucrose preference in a progressive ratio setup, 
but perturbed sucrose-seeking behavior. These murine data are fur-
ther consistent with our new translational finding that human carri-
ers of the DUSP8 SNP rs2334499 minor allelic variant have higher 

hedonic ratings for sweet high caloric food compared to major allele 
carriers.

In female mice with Dusp8 deficiency, we found unperturbed 
sucrose preference but a change in their sucrose-seeking strategy. 
Most interestingly, we found a random distribution pattern of forag-
ing to correct and incorrect corners in our Dusp8 KO mice subjected 
to a progressive ratio task, while total water intake was unchanged. 
This “trial and error” strategy to find sucrose in any corner was in 
stark contrast to WT control mice that still preferred the correct 
corner. This different strategy may indicate a negatively reinforcing, 
stereotypical behavior, and displacement activity driven by Dusp8 
ablation. The brain region responsible for this increased displace-
ment activity in Dusp8 KO mice remains unclear. Dopaminergic 
neurons in the reward-related regions NAcc and VTA are potential 
candidates as they play a predominant role in regulating hedonia and 
sucrose reward behavior (Nieh et al., 2015). For instance, dopamine 
transporter (DAT)-altered mice were shown to have higher moti-
vational levels for sucrose consumption in a progressive ratio task 
(Davis et al., 2018). However, using immunohistochemical stainings 
in the NAcc and VTA, we found comparable DAT levels in Dusp8 
WT and KO mice. Alterations in the reward-seeking behavior ob-
served in Dusp8 KO mice are thus unlikely to involve morphological 
differences in dopamine circuits in the VTA/NAcc or its efferent or 
afferent projections.

Recently, we reported that Dusp8 KO mice have a reduced hippo-
campal mass and volume and a mildly impaired spatial memory when 
challenged with a spatial learning paradigm (Baumann et al., 2019). In 
rodents, spatial and working memory processes are directly modu-
lated by the availability, or absence, of sucrose (Kendig, 2014). A hip-
pocampus-striatal axis was further associated with reward behaviors 
(Nauta & Domesick, 1984) and learning, prediction and goal-directed 
behaviors (Pennartz et al., 2011). Accordingly, a role of Dusp8 in this 
hippocampal-striatal control of sucrose-seeking behavior seems 
possible. Future studies should clarify whether sucrose restriction 
in the progressive ratio paradigm can exacerbate baseline spatial 
orientation deficits present in Dusp8 deficient mice. Such studies 
should further address whether hypercorticosteronemia, which we 
recently reported for male Dusp8 KO mice (Schriever et al., 2020), is 
a unifying determinant for the lower hippocampal mass, for the im-
pairment in spatial orientiation, and for the aberrant sucrose-seeking 
behavior.

Additional limitations of our studies are based on the choice of 
behavior tests, and on the paucity of evidence in respect to molec-
ular mechanisms. Using the IntelliCage system with its group hous-
ing restricted our behavioral studies to female mice due to animal 
welfare guidelines and the higher aggression of males. Moreover, 
we did not control for the estrous cycle of our female mice, which 
may affect sucrose reward behaviors (Becker & Koob,  2016). Our 
IntelliCage setup, with its constant social interactions, avoids so-
cial deprivation and allows the study of complex murine behaviors 
in an unrestrained, home-cage environment. It nonetheless adds a 
layer of complexity that may impede the interpretability of the re-
sults. Traditional testing of individual mice in Operant conditioning 

F I G U R E  4   Rating for sweet and savory high caloric food in 
humans. Hedonic (liking) rating scores of carriers of the major C and 
minor T allele of DUSP8 SNP rs2334499 of (a) sweet high caloric 
food (CC: n = 18, CT: n = 31, TT: n = 14) and (b) savory high caloric 
food (CC: n = 18, CT: n = 31, TT: n = 13). (c,d) show the wanting 
rating score for sweet and savory high caloric food, respectively. 
Means ± SEM. * p < .05
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boxes could circumvent that issue and further allow testing of 
male mice. It would be interesting to compare results collected in 
IntelliCages versus Operant conditioning boxes, to learn whether 
pre-existing pathologies such as the hypercorticosteronemia, the 
impaired spatial orientation, or the anxiety (Baumann et al., 2019; 
Schriever et  al.,  2020) of Dusp8 KO mice can differentially affect 
sucrose reward behaviors under single-housed versus group-housed 
conditions. The study design could further be optimized to test the 
reinforcer efficacy of sucrose in more detail by using varying doses 
of sucrose. Similarly, Dusp8 WT and KO mice could be tested for 
differences in sweet perception (Dotson & Spector, 2007), or for pa-
rameters classically used to distinguish the hedonic categories want-
ing and liking, that is, facial expression or licking patterns of lips and 
paws (Berridge, 2000). Last, future studies should aim to delineate 
the involvement of MAP kinases and in general the molecular mech-
anisms that drive the sucrose-seeking behavior of Dusp8 KO mice.

In Dusp8 KO mice, we could not discriminate whether the in-
creased consumption of sucrose is driven by an incentive salience 
stimulus in the terminology of “wanting” and “liking”. However, by 
assessing the evaluation of visual food cues in sixty-three partici-
pants via a rating score for sweet versus savory high caloric food, we 
could show that human carriers of DUSP8 variant SNP rs2334499 
have an increased liking for sweet high caloric food whereas want-
ing scores were not differing between DUSP8 genotypes. Of note, 
an association of visual food cue reactivity and eating behavior has 
been reported before (Boswell & Kober, 2016), but the methodology 
used for assessing wanting versus liking is controversially discussed 
(Tibboel et al., 2015). By tightly keeping our participants in a com-
parable metabolic state to eliminate a bias in rating score by differ-
ences in alliesthesia levels, we were nonetheless able to strengthen 
the validity of our results. Overall, we report higher liking scores for 
sweet high caloric food in participants carrying the diabetes-risk 
variant. Whether such an increased liking leads to an actual higher 
consumption of sweet high caloric food, potentially even to the in-
creased risk for T2D (Kong et al., 2009; Morris et al., 2012), remains 
to be tested.

5  | CONCLUSION

Taken together, we show an involvement of Dusp8 in regulating 
sucrose consumption and sucrose-seeking behaviors in mice that 
appear to be independent from perturbations in mesolimbic do-
paminergic circuitry. Our data are consistent with our earlier work 
(Baumann et al., 2019; Schriever et al., 2020) and suggest that this 
MAPK-specific phosphatase is involved in a wide range of trans-
lationally relevant, stimuli-triggered behaviors via yet unknown 
mechanisms. Variation in DUSP8 further appears to be involved in 
mediating hedonic taste sensation without altering affect in humans. 
The increased preference for sweet high caloric food in Dusp8 minor 
allele adds to earlier work on the association of SNP rs2334499 
minor allele with the overall type 2 diabetes risk (Kong et al., 2009; 
Morris et al., 2012) or the increased hypothalamic insulin resistance 

(Schriever et  al.,  2020). Collectively, these data suggest a transla-
tional role for this genetic locus in the development of diabetes type 
2, likely driven by mechanisms orchestrated within the CNS.
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