
ANALYZING PLASMID SEGREGATION: EXISTENCE AND STABILITY1

OF THE EIGENSOLUTION IN A NON-COMPACT CASE2
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3

Abstract. We study the distribution of autonomously replicating genetic elements, so-called
plasmids, in a bacterial population. When a bacterium divides, the plasmids are segregated
between the two daughter cells. We analyze a model for a bacterial population structured
by their plasmid content. The model contains reproduction of both plasmids and bacteria,
death of bacteria, and the distribution of plasmids at cell division. The model equation is a
growth-fragmentation-death equation with an integral term containing a singular kernel. As
we are interested in the long-term distribution of the plasmids, we consider the associated
eigenproblem. Due to the singularity of the integral kernel, we do not have compactness. Thus,
standard approaches to show the existence of an eigensolution like the Theorem of Krein-Rutman
cannot be applied. We show the existence of an eigensolution using a fixed point theorem and
the Laplace transform. The long-term dynamics of the model is analyzed using the Generalized
Relative Entropy method.
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1. Introduction4

Plasmids are mobile genetic elements in bacteria. They replicate autonomously, and are5

heritable [10]. A dividing bacterium segregates its plasmids between the two daughter cells.6

Plasmids have been studied intensively due to, e.g., their role in the spread of antibiotic7

resistance genes in bacterial populations [10, 3] and their importance in biotechnology where8

they are used as vectors [11]. The genetic code of a protein that is to be produced can be inserted9

into a plasmid which is taken up by bacteria. These bacteria then produce the recombinant10

protein. There are two issues to deal with when using plasmids as vectors: the loss and the11

accumulation of plasmids. Sometimes, bacteria lose plasmids which results in a plasmid-free12

subpopulation and decreases the recombinant protein yield. In order to increase the yield, one13

often uses so-called high-copy plasmids, i.e., plasmids that can have several hundred copies in a14

single bacterium [10, 11]. However, these plasmids can accumulate in some bacteria, i.e., these15

bacteria contain a very high number of plasmids. As a consequence, the high metabolic burden16

renders these bacteria inactive which again decreases the yield [5]. In order to find ways to17
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avoid both the loss and the accumulation of high-copy plasmids, it is of interest to study the1

mechanisms that lead to plasmid loss or accumulation.2

We focus on high-copy plasmids as they are commonly used in biotechnology. This type of3

plasmids replicates independently of the cell division cycle, i.e., independent of the chromosomes4

and throughout the cell division cycle [30, 35, 21]. The segregation mechanism of high-copy plas-5

mids remains unclear. In the past, it was typically assumed that they are randomly segregated6

between the two daughter cells. However, this assumption has been challenged [33, 10, 26].7

There are various mathematical models for structured populations [22, 7, 23, 12], structured8

cellular population dynamics [32, 14, 1], and plasmids in bacterial populations [37, 17, 28,9

36]. Some models distinguish between plasmid-free and plasmid-bearing cells [37] while others10

consider a bacterial population structured by the number of plasmids [17, 28]. In order to11

study the spread of a specific plasmid, like a resistance or virulence plasmid, it may suffice12

to distinguish plasmid-free and plasmid-bearing cells, but for biotechnological use, the plasmid13

content should be considered to include also the possibility of plasmid accumulation. To study14

the dynamics of a high-copy plasmid, the use of a continuous variable representing the plasmid15

content is appropriate. This variable can be interpreted, e.g., as the relative plasmid number16

or the level of fluorescence (plasmids can be marked with fluorescing proteins [29]). Models of17

a cellular population structured by a continuous variable often assume the form of aggregation-18

fragmentation or growth-fragmentation equations and have been studied extensively [8, 27].19

These equations are typically analyzed using the theory of semigroups [38, 31], the Laplace20

transform [20], or theory of positive operators together with compactness [20, 14].21

In the present paper, we consider the model for plasmid segregation of high-copy plasmids in22

a bacterial population developed in [28, 36]. The aim is to show the existence and stability of23

positive solutions of the corresponding eigenvalues.24

The model contains reproduction and death of bacteria, reproduction of plasmids within the25

bacteria and independent of the cell division cycle, and the segregation of plasmids to the two26

daughter cells at cell division. It is a growth-fragmentation-death model and a hyperbolic partial27

differential equation with an integral term. The integral term contains a plasmid segregation28

kernel that models how a bacterium distributes the plasmids to its two daughter cells at cell29

division. The consistency conditions for this segregation kernel (see, e.g., [32]) imply that the30

kernel is singular. Moreover, we assume that the plasmid reproduction rate depends on the31

plasmid content of the cell and vanishes for plasmid-free cells and for cells that have reached32

the maximal plasmid number per cell. This behavior is modeled, e.g., by a logistic plasmid33

reproduction rate.34

Usually, the existence of eigensolutions for growth-fragmentation problems is shown using35

compactness and the Krein-Rutman Theorem [9, 14, 36]. However, due to the singularity in36

the plasmid segregation kernel and the strictly positive cell division rate, we do not have com-37

pactness. Hence, we use a different approach to show the existence of an eigensolution using38

rescalings of the eigenfunction, fixed point arguments, and the Laplace transform. In order to39

show the stability of the eigensolution, we use the Generalized Relative Entropy method [32, 25]40

and adapt it to the case of a bounded plasmid number and a plasmid reproduction rate that41

vanishes for plasmid-free bacteria and bacteria with the maximal plasmid content. This method42

uses a Lyapunov functional to obtain stability results and does not require compactness.43

This paper is structured as follows: firstly, we study the eigenproblem associated with the44

model equation. We show the existence of an eigensolution in Section 2. Secondly, we study45

the stability of the eigensolution using the Generalized Relative Entropy method in Section 3.46

Finally, we discuss our findings in Section 4. Appendix A contains the proof of Theorem 2.947

which is central in the proof of the existence of an eigensolution.48
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2. Existence of an eigensolution1

We study the following model for a bacterial population structured by its plasmid content2

which was derived in [28, 36]:3 
∂tu(z, t) + ∂z

(
b(z)u(z, t)

)
= −

(
β + µ

)
u(z, t) + β

z0∫
z

k(z, z′)u(z′, t) dz′,

b(0)u(0, t) = 0 for all t ≥ 0, u(z, 0) = u0(z) for all z ∈ [0, z0].

(2.1)4

Here, u(z, t) denotes the density of bacteria structured by their plasmid content z at time t.5

There is a maximal plasmid content z0 such that z ∈ [0, z0]. For example, z can represent the6

relative plasmid number or the level of fluorescence in bacteria where plasmids are marked with7

fluorescing proteins [29]. The plasmid reproduction rate is denoted by b(z), the cell division rate8

by β, and the cell death rate by µ. At cell division, a mother cell with plasmid content z′ divides9

its plasmids to the two daughter cells according to the plasmid segregation kernel k(z, z′). For10

the derivation of the model, see [28, 36].11

In this section, we consider the specific example of logistic plasmid reproduction rate, constant12

cell division and death rate, and a special type of segregation kernel. Therefore, we make the13

following assumptions on the parameters of the model which we assume to hold throughout this14

section:15

(A1) Plasmid reproduction is logistic, i.e., b(z) = b0
z0
z(z0 − z) for z0 > 0, b0 > 0.16

(A2) The cell division rate β is constant with 0 < β <∞.17

(A3) The cell death rate µ is constant with 0 ≤ µ <∞.18

(A4) There is a function Φ : [0, 1]→ R≥0 such that the plasmid segregation kernel k satisfies19

k(z, z′) =
2

z′
Φ
( z
z′

)
χΩ(z, z′),20

21

for all z′ ∈ (0, z0], where χ denotes the characteristic function and Ω := {z, z′ ∈ [0, z0] :22

z ≤ z′}. We assume that Φ ∈ L∞([0, 1]).23

Furthermore, Φ satisfies the following consistency conditions:24

1∫
0

Φ(ξ) dξ = 1 and Φ(ξ) = Φ(1− ξ) for all ξ ∈ [0, 1].25

26

We call a plasmid segregation kernel k that satisfies Assumption (A4) scalable [28]. The con-27

sistency conditions on Φ imply that for all z′ ∈ (0, z0] and z ∈ [0, z0]28

z′∫
0

k(z, z′) dz = 2 and k(z, z′) = k(z′ − z, z′).29

30

The first condition is a consequence of the fact that a cell always divides into two daughter31

cells (see, e.g., [15, 24]) and the second conditions models that the second daughter receives all32

plasmids the first daughter did not receive, i.e., plasmids are conserved at cell division. Moreover,33

the two consistency conditions on Φ also imply that34

1∫
0

ξΦ(ξ) dξ =
1

2
,35

36
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meaning that k satisfies1

z′∫
0

z k(z, z′) dz = z′ for all z′ ∈ (0, z0].2

3

This condition again models that plasmids are conserved at cell division as all daughter cells4

together have as many plasmids as the mother cell had. These three conditions on k, respectively5

on Φ, ensure consistency of the modeling (see, e.g., [32]).6

Note that assumption (A4) implies that the plasmid segregation kernel k has a pole at 0.7

Due to the consistency condition
∫ z′

0 k(z, z′) dz = 2 for all z′ > 0, the kernel k has a pole at 08

regardless of whether it is scalable or not. However, the assumption that k is scalable has the9

advantage that one can assume the function Φ to be L∞([0, 1]). In this way, it is possible to10

separate the plasmid segregation modeled by Φ and the pole in the kernel k from one another11

and simplify computations.12

As we are interested in the long-time distribution of plasmids and our model equation (2.1)13

is linear, we expect to find a solution growing (or decreasing) exponentially in time. Thus, we14

consider the associated eigenproblem. Under Assumptions (A1) to (A4), the eigenproblem15

associated with (2.1) is given by:16 
(
b(z)U(z)

)
z

= − (β + µ+ λ)U(z) + 2β

z0∫
z

1

z′
Φ
( z
z′

)
U(z′) dz′,

lim
z→0+

b(z) U(z) = 0, U(z) ≥ 0 for all z ∈ (0, z0),

∫ z0

0
U(z) dz = 1.

(2.2)17

In the special case of constant cell division and death rate, we can give the eigenvalue explicitly18

(see [28, Corollary 3.3]).19

Lemma 2.1. There is an integrable solution to (2.2) only if λ = β − µ.20

Remark 2.2. For constant β and µ we know λ but for non-constant β and µ depending on21

the plasmid content z we do not know λ. In general, i.e., for non-constant β and µ, it is22

non-trivial to determine λ. Furthermore, we do not (yet) know if there is a solution U to the23

eigenproblem (2.2). We aim to show existence of an eigenfunction and ideally would like our24

approach to be extendable to the case of non-constant β and µ. Therefore, we do not use the25

fact that we already know λ in the following. Moreover, we hope to gain a better understanding26

of the model in this way.27

Remark 2.3. An eigenproblem similar to (2.2) was considered in [9, 14, 36]. In these cases, com-28

pactness and the Krein-Rutman Theorem could be used to show existence of an eigensolution.29

However, we do not have compactness due to the singularity of the plasmid segregation kernel30

and the assumption that β > 0. In particular, with a scalable plasmid segregation kernel we see31

that there is a pole at z′ = 0. It is useful in the following to separate the plasmid segregation32

(modeled by Φ) and the pole of the kernel ( 1
z′ ). Due to lack of compactness, we cannot use the33

standard approach but we use a different approach to show existence of an eigensolution.34

As a first step to establishing existence of an eigensolution (λ, U), we rescale the eigenfunction.35
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Lemma 2.4. There is a solution (λ, U) with U ∈ C1((0, z0)) to the eigenproblem (2.2) if and1

only if there is a solution (λ, v) with v ∈ C1((0, z0)) to2 
v′(z) +

λ+ β + µ

b0
z0

v(z)

z(z0 − z)
=

2βz0

b0

z0∫
z

Φ
(
z
z′

)
v(z′)

(z′)2 (z0 − z′)
dz′,

lim
z→0+

v(z) = 0, v(z) ≥ 0 for all z ∈ (0, z0),

∫ z0

0

v(z)

b(z)
dz = 1.

(2.3)3

Proof. If (λ, U) with U ∈ C1((0, z0)) is a solution to (2.2), then (λ, v) with v(z) := b(z)U(z) ∈4

C1((0, z0)) is a solution to (2.3).5

Likewise, if (λ, v) is a solution to (2.3), then define U(z) := v(z)
b(z) . U is well-defined for z ∈ (0, z0)6

as b(z) 6= 0 for z ∈ (0, z0), U ∈ C1((0, z0)), and (λ, U) is a solution to (2.2). �7

For the sake of brevity, we define8

α = α(λ) :=
λ+ β + µ

b0
and α0 :=

2β

b0
.9

10

Note that if λ = β − µ, then α = α0.11

There is a special case, where we have an explicit solution U to the eigenproblem (2.2).12

Example 2.5. In the case Φ(ξ) = 1 for all ξ ∈ [0, 1], i.e., plasmids are segregated uniformly,13

U(z) = Cz−α(z0−z)α−1 with C > 0, λ = β−µ, and α = α0 is a solution to (2.2) [28]. Therefore,14

by Lemma 2.4, v(z) = b(z)U(z) = C b0
z0
z1−α (z0 − z)α is a solution to (2.3).15

This example motivates another rescaling of the solution v to (2.3).16

Lemma 2.6. If there is a solution (α, g) with g ∈ C0((0, z0]) ∩ C1((0, z0)) to17 
g′(z) +

α

z
g(z) =

α0 z0

(z0 − z)α

z0∫
z

Φ
( z
z′

)
(z′)−2 (z0 − z′)α−1 g(z′) dz′,

g(z0) = 1, lim
z→0+

g(z) = 0, g(z) ≥ 0 for z ∈ (0, z0),

z0∫
0

(z0 − z)αg(z)

b(z)
dz <∞,

(2.4)18

then (λ, v) with λ := α b0 − β − µ and v(z) := C (z0 − z)α g(z) for some C > 0 is a solution to19

(2.3) with v ∈ C1((0, z0)).20

Remark 2.7. In Lemma 2.6 we do not have equivalence as there can only be a function g with21

v(z) = C (z0 − z)α g(z) and g(z0) = 1 if lim
z→z−0

v(z)
(z0−z)α = C ∈ (0,∞). This means that v behaves22

like (z0 − z)α at z0 which we write as v(z) ∼ (z0 − z)α at z0. If v does not behave like (z0 − z)α23

at z0, then it holds that either g(z0) = 0 or lim
z→z−0

g(z) = ∞ and thus the condition g(z0) = 124

cannot be satisfied.25

In Lemma 2.4, we had equivalence because we can simply rescale the solution U to (2.2) to26

obtain a solution v to (2.3) and vice versa. However, in Lemma 2.6, we do not just rescale but27

we assume that the solution v satisfies v(z) ∼ (z0 − z)α at z0, i.e., v behaves like (z0 − z)α near28

z0, and then obtain a solution g to (2.4). If the function v does not satisfy this assumption,29
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then it is not possible to find a solution g to (2.4) that satisfies g(z0) = 1 and therefore we do1

not have equivalence.2

By Example 2.5 we know that at least for Φ ≡ 1, v(z) ∼ (z0 − z)α at z0.3

Proof of Lemma 2.6. Define v(z) := (z0 − z)αg(z). As g is a solution to (2.4),4

v′(z) = g′(z) (z0 − z)α + g(z)α (z0 − z)α−1 (−1)5

= (z0 − z)α
−α

z
g(z) +

α0 z0

(z0 − z)α

z0∫
z

Φ
( z
z′

)
(z′)−2 (z0 − z′)α−1 g(z′) dz′

6

− α

z0 − z
v(z)7

= − α z0

z (z0 − z)
v(z) + α0 z0

z0∫
z

Φ
(
z
z′

)
v(z′)

(z′)2 (z0 − z′)
dz′.8

9

Therefore, v is a solution to the PDE in (2.3). It is straightforward to check that v satisfies all10

conditions in (2.3), therefore (λ, v) with λ = αb0 − β − µ is a solution to (2.3). �11

Before we consider the full equation (2.4), we focus on the integro-differential equation for g12

in (2.4) together with g(z0) = 1, i.e., we omit (for now) the conditions lim
z→0+

g(z) = 0, g(z) ≥ 013

for all z ∈ (0, z0), and the integral condition:14 
g′(z) +

α

z
g(z) =

α0 z0

(z0 − z)α

z0∫
z

Φ
( z
z′

)
(z′)−2 (z0 − z′)α−1 g(z′) dz′,

g(z0) = 1.

(2.5)15

In the following lemma we show existence of a solution g to (2.5). We will use this lemma later16

in the proof of existence of a solution to the eigenproblem (2.2).17

Lemma 2.8. For every α > 0 there exists a unique solution g ∈ C0((0, z0])∩C1((0, z0)) to (2.5).18

Proof. The proof uses a fixed point argument and is analogous to the proof of [36, Lemma 10]. �19

The proof of Lemma 2.8 gives a method to iteratively construct a solution to (2.5). This20

solution can then be rescaled to obtain a solution for the eigenproblem (2.2) (see Figure 1 and21

[36]).22

Note that Lemma 2.8 gives existence of a solution for every α > 0, i.e., for λ > − (β + µ). We23

expect that there is a unique λ > − (β + µ) and therefore a unique α > 0 for which the function24

g(z) satisfies the previously omitted conditions lim
z→0+

g(z) = 0 and g(z) ≥ 0.25

If α ≤ 0, then λ ≤ −(β+µ) < 0 and the bacterial population goes extinct. We are interested26

in finding a non-trivial asymptotic solution, therefore we consider in the following only the case27

α > 0.28

Now, we add again the conditions to equation (2.5) that we have omitted in the previous29

lemma and give necessary and sufficient conditions on the parameters of the model for existence30

and uniqueness of a solution to (2.4).31
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Theorem 2.9. There is a unique solution g ∈ C0 ((0, z0]) ∩ C1 ((0, z0)) to (2.4) with g(z) > 01

for z ∈ (0, z0] if and only if2

α = α0, and α0 < −
1

Φ̃′(0)
,3

4

where Φ̃(s) :=
1∫
0

us Φ(u) du.5

The proof of Theorem 2.9 can be found in Appendix A. So far, we have shown existence and6

uniqueness of a solution g to (2.4) but we are interested in a solution to the eigenproblem (2.2).7

Therefore, we rescale the solution g to obtain an eigensolution U and the following result.8

Theorem 2.10. If α = α0 and α0 < −
(

Φ̃′(0)
)−1

or equivalently if9

λ = β − µ and
2β

b0
< − 1

Φ̃′(0)
,10

11

then there exists a solution U ∈ C1((0, z0)) to (2.2) with U(z) > 0 for all z ∈ (0, z0).12

Moreover, U is the unique solution to (2.2) with U(z) ∼ (z0 − z)α−1 at z0.13

Proof. Theorem 2.10 follows directly from Theorem 2.9 using Remark 2.7 and Lemmas 2.4 and14

2.6. �15

We have shown existence of a solution U to (2.2) and that U(z) ∼ (z0− z)α−1 at z0. Thus, we16

know the behavior of the eigensolution at z0 (if it exists) and we obtain the following corollary17

that agrees with the known behavior of eigensolutions at z0 (see [28, Corollary 4.19]).18

Corollary 2.11. Let the assumptions of Theorem 2.10 hold and Φ̃(s) =
∫ 1

0 u
s Φ(u) du as in19

Theorem 2.9, then the eigensolution U to (2.2) satisfies:20

(a) If Φ̃′(0) ≤ −1, then α < 1, i.e., 2β < b0, and lim
z→z−0

U(z) =∞.21

(b) If Φ̃′(0) > −1 and α = 1, i.e., 2β = b0, then there exists a constant C ∈ (0,∞) such22

that lim
z→z−0

U(z) = C.23

(c) If Φ̃′(0) > −1 and 1 < α < −
(

Φ̃′(0)
)−1

, i.e., in particular 2β > b0, then lim
z→z−0

U(z) = 0.24

Example 2.12. The condition α < −
(

Φ̃′(0)
)−1

in Theorem 2.9, Theorem 2.10, and Corol-25

lary 2.11 gives for different Φ the following conditions on α:26

(a) For Φ(ξ) = 1 for all ξ ∈ [0, 1], Φ̃′(0) = −1, hence α < 1.27

Note that in this case we know that the explicit solution is given by U(z) = C z−α (z0 −28

z)α−1 (see Example 2.5). This solution is integrable over [0, z0] if and only if α ∈ (0, 1)29

which agrees with the assumption that α > 0 and the condition that α < −
(

Φ̃′(0)
)−1

=30

1.31

(b) For Φ(ξ) = 6 ξ (1− ξ), Φ̃′(0) = −5
6 , hence α < 6

5 .32

Therefore, depending on the parameters β and b0, the eigensolution can satisfy either33

lim
z→z−0

U(z) = 0, lim
z→z−0

U(z) = C ∈ (0,∞), or lim
z→z−0

U(z) =∞ (see Figure 1).34
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(c) For Φ(ξ) = 120 ξ
(

1
2 − ξ

)2
(1− ξ), Φ̃′(0) = −31

30 , hence α < 30
31 .1

Thus, lim
z→z−0

U(z) =∞.2

β = 0.45/h
β = 0.50/h
β = 0.55/h

0.0 0.2 0.4 0.6 0.8 1.0
z

0

2

4

6

8

10

U(
z
)

0.90 0.95 1.0
z

0

1

2

U(
z
)

Figure 1. Numerically constructed eigenfunctions for Φ(ξ) = 6 ξ (1 − ξ), µ =
0.1/h, b(z) = z(1− z)/h, and different β, viz. β = 0.45/h (black), 0.5/h (blue),
and 0.55/h (orange). The different cell division rates lead to different behavior of
the eigenfunction U(z) at the maximal plasmid number z0 = 1. The eigenfunction
was numerically constructed using the software R [34] as described in [36, Section
5].

We have shown that if λ = β − µ and 2β
b0
< −

(
Φ̃′(0)

)−1
, then a solution to the eigenprob-3

lem (2.2) exits and given examples for the second condition for different plasmid segregation4

kernels. We now try to interpret the second condition.5

The reproduction of bacteria (modeled by the constant cell division rate β) may not be too6

fast compared to the reproduction of plasmids (modeled by b(z) = b0
z0
z (z0 − z)) as we expect7

otherwise that bacteria lose the plasmid in the long-run. If the plasmid is lost, then the density8

u(z, t) converges to a delta distribution at z = 0 and we cannot find a continuously differentiable9

eigenfunction. Thus, 2β
b0

should be bounded.10

For the interpretation of the second part of the condition, note that by the definition of Φ̃ it11

holds that12

− 1

Φ̃′(0)
=

 1∫
0

(− log(x)) Φ(x) dx

−1

,13

14

i.e., it is the inverse of the weighted average. The weight integrates to one and attaches a greater15

weight to plasmid segregation kernels where one daughter cell is plasmid-free or receives only a16

very small fraction of the mother’s plasmids. Due to symmetry of the plasmid segregation kernel17

Φ, this means that a plasmid distribution where one daughter cell receives much more plasmids18

than the other, i.e., an unequal plasmid distribution, is weighted higher than an “equal” distri-19

bution of plasmids where both daughters receive approximately the same fraction of plasmids.20

Therefore, −
(

Φ̃′(0)
)−1

can be interpreted as a measure of how equally the plasmids are dis-21

tributed to the daughter cells. For uniform plasmid segregation we obtain the value 1, for an22

unimodal distribution, i.e., a distribution where daughters are more likely to receive about half23

of the mother’s plasmids, we obtain a value larger than 1, and for a bimodal distribution, i.e.,24

an unequal plasmid distribution, we obtain a value smaller than 1 (see Example 2.12).25

8



It still remains to interpret the connection between the cell reproduction compared to the1

plasmid reproduction and the plasmid distribution. If the plasmid distribution is unequal, then2

there are more daughter cells with only few plasmids and plasmid reproduction needs to be large3

compared to cell reproduction in order for the plasmid not to be lost. In other words, we need4
2β
b0

to be small. If, however, plasmid distribution is equal, then there are fewer daughters with5

few plasmids (compared to an unequal plasmid distribution). In this case, the condition on the6

connection between cell reproduction and plasmid reproduction can be relaxed a bit.7

This is one possible interpretation of the condition on the parameters. We note that with this8

interpretation we have not accounted for the possibility of plasmid accumulation. If plasmids9

reproduce much faster than bacteria, then we would expect that the density u(z, t) converges to10

a delta distribution at z = z0 and we cannot find an eigenfunction U ∈ C1((0, z0)). However, we11

have no condition saying that 2β
b0

needs to be bounded below for an eigensolution to exist.12

In a sense, this suggests that in our model plasmids will not accumulate in the population and13

there is no convergence to a delta distribution at z0. This may be due to the fact that we show14

existence of an eigensolution U(z) ∼ (z0 − z)α−1 at z0, i.e., an eigensolution with a prescribed15

behavior at z0. It may also be due to the assumptions of the model. By Assumptions (A1)16

to (A4), the plasmid reproduction rate is small in a neighborhood of z0 regardless of whether17

b0 is small or large, but the cell division and death rates are the same for all bacteria. If a18

plasmid-free bacterium divides, then its daughters are also plasmid-free but if a bacterium with19

z0 plasmids divides, then at most one of its daughters also contains z0 plasmids. For this reason20

we expect that in our model plasmid-free bacteria grow faster than bacteria with z0 plasmids,21

i.e., if plasmid-free bacteria do not outgrow plasmid-carrying bacteria, then also bacteria with22

z0 plasmids do not outgrow plasmid-bearing bacteria with fewer than z0 plasmids. Thus, under23

these assumptions, we expect that it suffices to control the behavior of the bacteria at z = 0.24

3. Stability of the eigensolution with the Generalized Relative Entropy25

method26

We now aim to show the stability of the eigensolution to (2.2) using the Generalized Relative27

Entropy (GRE) method [25, 32]. That is to say, we construct a Lyapunov functional for solutions28

in order to determine the long-time asymptotics.29

In this section, we consider a more general version of the model equation (2.1) with a general30

plasmid reproduction rate b(z) that is not necessarily logistic, both cell division and cell death31

rate may depend on the plasmid content of the bacterium, and a general plasmid segregation32

kernel k that does not need to be scalable in the sense of (A4). The model equation is then33

given by:34 
∂tu(z, t) + ∂z

(
b(z)u(z, t)

)
= −

(
β(z) + µ(z)

)
u(z, t) +

z0∫
z

β(z′) k(z, z′)u(z′, t) dz′,

b(0)u(0, t) = 0 for all t ≥ 0, u(z, 0) = u0(z) for all z ∈ [0, z0].

(3.1)35

We assume that the parameters of the model satisfy:36

(A5) There is a z0 > 0 such that b(0) = b(z0) = 0, b(z) > 0 for all z ∈ (0, z0), and b ∈ C1([0, z0]).37

(A6) β ∈ C0([0, z0]) and 0 < β ≤ β(z) ≤ β for all z ∈ [, z0].38

(A7) µ ∈ C0([0, z0]) and 0 ≤ µ ≤ µ(z) ≤ µ for all z ∈ [, z0].39

9



(A8) k is measurable, supp(k) ⊆ Ω := {z, z′ ∈ [0, z0] : z ≤ z′}, k ≥ 0, k is symmetric in the1

sense that k(z, z′) = k(z′ − z, z′) for all (z, z′) ∈ Ω,
∫ z′

0 k(z, z′) dz = 2 for all z′ ∈ (0, z0],2

and
∫ z′

0 z k(z, z′) dz = z′ for all z′ ∈ (0, z0].3

These conditions are regularity and positivity respectively non-negativity conditions on b, β,4

µ, and k. Furthermore, we have consistency conditions on the plasmid segregation kernel k5

(see, e.g., [32]). These conditions model that a cell always divides into two daughter cells (first6

integral condition on k) and that plasmids are not lost at cell division, i.e., the second daughter7

receives all plasmids the first daughter has not received (symmetry condition) and the daughters8

have as many plasmids as the mother (second integral condition on k).9

We consider eigensolutions (λ, U , Ψ), where (λ, U) is a solution to the eigenproblem associated10

with (3.1),11 

d

dz

(
b(z)U(z)

)
= −

(
β(z) + µ(z) + λ

)
U(z) +

z0∫
z

β(z′) k(z, z′)U(z′) dz′,

lim
z→0+

b(z)U(z) = 0, U(z) > 0 for all z ∈ (0, z0),

z0∫
0

U(z) dz = 1

(3.2)12

and (λ, Ψ) is a solution to the dual eigenproblem13 
− b(z) d

dz
Ψ(z) = −

(
β(z) + µ(z) + λ

)
Ψ(z) + β(z)

z∫
0

k(z′, z) Ψ(z′) dz′,

Ψ(z) ≥ 0 for all z ∈ (0, z0),

z0∫
0

Ψ(z)U(z) dz = 1.

(3.3)14

So far, we know that there is an eigensolution (λ, U) to (3.2) with λ = β − µ and U(z) > 015

for all z ∈ (0, z0) in the case that β and µ are constant, b is logistic, and k is scalable (see16

Section 2). For the eigensolution (λ, Ψ) to the dual eigenproblem (3.3) we have the following17

existence result.18

Lemma 3.1. Let β and µ be constant and (λ, U) be a solution to (3.2), then Ψ ≡ 1 is a solution19

to the dual eigenproblem (3.3).20

Proof. The proof is a straightforward computation using λ = β−µ and the consistency condition21

z′∫
0

k(z, z′) dz = 2. �22

Since we aim to show the stability of the eigensolution U , we assume that there exists an23

eigensolution (λ, U , Ψ) throughout this section:24

(A9) There is an eigensolution (λ, U , Ψ) such that (λ, U) is a solution to (3.2) with λ ∈ R and25

U(z) > 0 for all z ∈ (0, z0) and (λ, Ψ) is a solution to (3.3).26

In the case of logistic plasmid reproduction b, constant β and µ, and scalable plasmid segrega-27

tion kernel k, we know Assumption (A9) holds. In the general setting, i.e., under Assumptions28

(A5) to (A8), we do not know that it holds. Nonetheless, we consider the general case here.29
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We scale the solution to (3.1) by defining ũ(z, t) := e−λt u(z, t). Then, the function ũ is a1

solution to2 
∂tũ(z, t) + ∂z

(
b(z)ũ(z, t)

)
= −

(
β(z) + µ(z) + λ

)
ũ(z, t) +

z0∫
z

β(z′)k(z, z′)ũ(z′, t)dz′,

b(0) ũ(0, t) = 0 for all t ≥ 0, ũ(z, 0) = u0(z) for all z ∈ [0, z0].

(3.4)3

The idea behind the GRE method is to obtain a Lyapunov functional for solutions to (3.4) in4

order to determine the long-time asymptotics. The following theorem is the first step towards a5

Lyapunov functional.6

Theorem 3.2. Let ũ(z, t) be a solution to (3.4) and (λ, U , Ψ) be an eigensolution as in (A9).7

For every absolutely continuous function H : R→ R, it holds that8

∂t

[
Ψ(z)U(z)H

(
ũ(z, t)

U(z)

)]
+ ∂z

[
b(z) Ψ(z)U(z)H

(
ũ(z, t)

U(z)

)]
9

+

z0∫
0

β(z) k(z′, z) Ψ(z′)U(z)H

(
ũ(z, t)

U(z)

)
− β(z′) k(z, z′) Ψ(z)U(z′)H

(
ũ(z′, t)

U(z′)

)
dz′10

=

z0∫
0

β(z′) k(z, z′) Ψ(z)U(z′)

[
H

(
ũ(z, t)

U(z)

)
−H

(
ũ(z′, t)

U(z′)

)
11

+ H ′
(
ũ(z, t)

U(z)

)[
ũ(z′, t)

U(z′)
− ũ(z, t)

U(z)

]]
dz′.12

13

The proof of Theorem 3.2 consists of lengthy but straightforward computations, it can be14

found in Appendix B.15

Theorem 3.2 is the central theorem of this section, the following lemmas are basically con-16

sequences of the equation in Theorem 3.2. If we choose the function H in Theorem 3.2 to be17

convex, then the next lemma shows that we have a Lyapunov functional for a solution ũ to (3.4).18

Lemma 3.3. Let H : R → R≥0 be a convex and absolutely continuous function, ũ(z, t) a19

solution to (3.4), (λ, U , Ψ) an eigensolution as in (A9), and let there be a C > 0 such that20

|u0(z)| ≤ C U(z) for all z ∈ [0, z0]. Then, the map defined by21

t 7→ HΨ(ũ| U) :=

z0∫
0

Ψ(z)U(z)H

(
ũ(z, t)

U(z)

)
dz22

23

satisfies24

d

dt
HΨ(ũ| U) =

z0∫
0

z0∫
0

β(z′) k(z, z′) Ψ(z)U(z′)

[
H

(
ũ(z, t)

U(z)

)
−H

(
ũ(z′, t)

U(z′)

)
25

+H ′
(
ũ(z, t)

U(z)

)[
ũ(z′, t)

U(z′)
− ũ(z, t)

U(z)

]]
dz′dz =: −DΨ(ũ|U) ≤ 0.26

27

The proof of Lemma 3.3 can be found in Appendix B. We can use Lemma 3.3 to obtain a28

priori estimates for solutions to (3.4).29

Lemma 3.4. Under the assumptions of Lemma 3.3, we have30
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(i) Conservation of mass:
z0∫
0

ũ(z, t) Ψ(z) dz =
z0∫
0

ũ(z, 0) Ψ(z) dz =: m for all t ≥ 0.1

(ii) Contraction principle:
z0∫
0

|ũ(z, t)| Ψ(z) dz ≤
z0∫
0

|ũ(z, 0)| Ψ(z) dz for all t ≥ 0.2

Proof. The proof uses the formula for d
dtHΨ(ũ| U) in Lemma 3.3.3

(i) We choose H(h) = h+, where (·)+ denotes the positive part, then4

d

dt
HΨ(ũ| U) =

z0∫
0

z0∫
0

β(z′)k(z, z′)Ψ(z)U(z′)

[
ũ(z, t)

U(z)
− ũ(z′, t)

U(z′)
+

[
ũ(z′, t)

U(z′)
− ũ(z, t)

U(z)

]]
dzdz′5

= 0.6
7

Therefore, HΨ(ũ| U) is constant in time and HΨ(ũ| U) =
∫ z0

0 Ψ(z) ũ(z, t) dz.8

(ii) With H(h) = |h|, we obtain from Lemma 3.3 that9

d

dt
HΨ(ũ| U) =

d

dt

z0∫
0

|ũ(z, t)| Ψ(z) dz ≤ 0.10

11

Thus, the contraction principle follows.12

�13

In the next lemma, we show further a priori estimates for solutions to (3.4).14

Lemma 3.5. Under the conditions of Lemma 3.3, Ψ > 0, and the following conditions on the15

eigenfunction U and the initial condition u0 of a solution ũ to (3.4):16

d

dz

(
b(z)U(z)

)
∈ L1

(
(0, z0),Ψ(z) dz

)
and

d

dz

(
(b(z)u0(z)

)
∈ L1

(
(0, z0),Ψ(z) dz

)
,17

18

it holds that19

(i) |ũ(z, t)| ≤ CU(z) for a.e. z ∈ [0, z0] and for all t ≥ 0,20

(ii)
z0∫
0

|∂tũ(z, t)|Ψ(z) dz ≤ C1(u0) for all t ≥ 0, where C1(u0) is a constant depending on u0,21

and22

(iii)
z0∫
0

∣∣∂z(b(z) ũ(z, t)
)∣∣Ψ(z) dz ≤ C2(u0) for all t ≥ 0.23

Proof. This proof follows that of [32, Theorem 4.5].24

(i) We choose H(h) =
(
|h| − C

)
+

, where (·)+ denotes the positive part. Therefore, by25

Lemma 3.3,26

d

dt
HΨ(ũ| U) =

d

dt

z0∫
0

Ψ(z)U(z)

( |ũ(z, t)|
U(z)

− C
)

+

dz27

=
d

dt

z0∫
0

Ψ(z)
(
|ũ(z, t)| − C U(z)

)
+
dz ≤ 0.28

29
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Hence,1

0 ≤
z0∫

0

Ψ(z)
(
|ũ(z, t)| − CU(z)

)
+
dz ≤

z0∫
0

Ψ(z)
(
|ũ(z, 0)| − CU(z)

)
+
dz = 02

3

and because Ψ > 0 a.e., we have
(
|ũ(z, t)| − CU(z)

)
+

= 0 for a.e. z. Therefore,4

|ũ(z, t)| ≤ CU(z) for a.e. z ∈ [0, z0] and for every t ≥ 0.5

(ii) Recall that ũ is a solution to6

∂tũ(z, t) + ∂z
(
b(z) ũ(z, t)

)
= −

(
β(z) + µ(z) + λ

)
ũ(z, t) +

z0∫
z

β(z′) k(z, z′) ũ(z′, t) dz′.7

8

By differentiation in time t, we obtain that q(z, t) := ∂tũ(z, t) also satisfies this equation.9

Therefore, we can apply the contraction principle from Lemma 3.4 to the solution q to10

conclude11

z0∫
0

|q(z, t)|Ψ(z) dz ≤
z0∫

0

|q(z, 0)|Ψ(z) dz.12

13

By the definition of q we have14

q(z, 0) = ∂tũ(z, 0)15

= −∂z
(
b(z)u0(z)

)
−
(
β(z) + µ(z) + λ

)
u0(z) +

z0∫
z

β(z′)k(z, z′)u0(z′) dz.16

17

Next, we use the assumption on u0 to estimate the right hand side and the fact that U18

is a solution to (3.2) to obtain19

|q(z, 0)| ≤
∣∣∣∣ ddz (b(z)u0(z)

)∣∣∣∣+ |β(z) + µ(z) + λ|C U(z) +

z0∫
z

β(z′) k(z, z′)C U(z′) dz20

≤
∣∣∣∣ ddz (b(z)u0(z)

)∣∣∣∣+ 2 |β(z) + µ(z) + λ|C U(z) + C

∣∣∣∣ ddz (b(z)U(z)
)∣∣∣∣ .21

22

Therefore,23

z0∫
0

|q(z, 0)|Ψ(z) dz ≤
z0∫

0

[∣∣∣∣ ddz (b(z)u0(z)
)∣∣∣∣+ C

∣∣∣∣ ddz (b(z)U(z)
)∣∣∣∣]Ψ(z) dz24

+ 2C
(
β + µ+ |λ|

)
≤ C1(u0) <∞,25

26

where C1(u0) > 0 is some constant depending on the initial condition u0. In the last27

step we have used that by assumption it holds that d
dz (b(z)u0(z)) and d

dz (b(z)U(z)) ∈28

L1((0, z0),Ψ(z) dz). Overall, we have29

z0∫
0

|∂tũ(z, t)|Ψ(z) dz =

z0∫
0

|q(z, t)|Ψ(z) dz ≤
z0∫

0

|q(z, 0)|Ψ(z) dz ≤ C1(u0).30

31
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(iii) Since ũ is a solution to (3.4), we have that1

∂z
(
b(z) ũ(z, t)

)
= −∂tũ(z, t)−

(
β(z) + µ(z) + λ

)
ũ(z, t) +

z0∫
0

β(z′) k(z, z′) ũ(z′, t) dz′.2

3

We take the absolute value, multiply with Ψ, and integrate over z from 0 to z0 and4

obtain with (i) and (ii) similar to the above calculation5

z0∫
0

∣∣∣∣ ddz (b(z) ũ(z, t)
)∣∣∣∣Ψ(z) dz ≤

z0∫
0

|∂tũ(z, t)|Ψ(z) dz + 2C
(
β + µ+ |λ|

)
6

+ C

z0∫
0

∣∣∣∣ ddz (b(z)U(z)
)∣∣∣∣Ψ(z) dz7

≤ C2(u0).8
9

This finishes the proof. �10

Finally, we can now show the main theorem of this section on convergence of the solution to11

the eigensolution U .12

Theorem 3.6. If the conditions of Lemma 3.5 hold and there exists a continuously differentiable13

function Γ : [0, z0]→ [0,∞) such that Γ(I) = [0, z0] for some interval I = [0, a] ⊆ [0, z0],14

{(z,Γ(z)), z ∈ I} ⊆ supp
[0,z0]×[0,z0]

k(z, z′), and b(z) Γ′(z) 6= b(Γ(z)) for a.e. z ∈ I (3.5)15

16

hold, then solutions to (3.1) tend to a steady state as with m :=
z0∫
0

u0(z) Ψ(z) dz it holds that17

lim
t→∞

z0∫
0

∣∣∣u(z, t) e−λt −mU(z)
∣∣∣ b(z) Ψ(z) dz = 0.18

19

Remark 3.7. Condition (3.5) in Theorem 3.6 is a non-degeneracy condition on the support of20

the plasmid segregation kernel k. It holds, for example, for logistic plasmid reproduction and a21

scalable kernel, where Φ : [0, 1]→ R≥0 satisfies:22

there are constants 0 < δ1 < δ2 < 1 and c > 0 such that Φ(x) ≥ c for all x ∈ [δ1, δ2]23
24

(see [25, Remark 4.4]) because then there is some a > 1 such that Γ(z) = az satisfies Γ([0, z0a ]) =25

[0, z0], the graph of Γ(z) for z ∈ I = [0, z0a ] is a subset of the support of k, and Γ′(z) = a >26

a(z0−az)
z0−z = b(Γ(z))

b(z) for all z ∈ I.27

Proof. This proof is based on the proofs of [32, Theorem 4.7] and [25, Theorems 3.2, 4.3] that28

we extend to the case of logistic plasmid reproduction b(z), i.e., a logistic drift velocity. The29

proof consists of four steps. In the first and second step, we show convergence results. In Step 3,30

we show that the limit obtained in Step 2 can be written as mb(z)U(z). Finally, we combine31

Steps 1 to 3 to finish the proof.32

Step 1: Convergence of b(z) ũn(z, t)33

If u(z, t) is a solution to (3.1), then ũ(z, t) := u(z, t) e−λt is a solution to (3.4). We introduce34

the sequence ũn(z, t) := ũ(z, t+ tn) where (tn)n∈N is a sequence with tn ≥ 0 and tn
n→∞−−−→∞.35

14



We define ṽn(z, t) := b(z) ũn(z, t) for every n ∈ N. Then, ṽn(z, t) is a solution to1 

∂tṽ(z, t) + b(z)∂z ṽ(z, t) = −
(
β(z) + µ(z) + λ

)
ṽ(z, t)

+ b(z)

z0∫
z

β(z′) k(z, z′)
ṽ(z′, t)

b(z′)
dz′,

ṽ(0, t) = 0 for all t ≥ 0, ṽ(z, 0) = b(z) ũ(z, 0) for all z ∈ (0, z0),

(3.6)2

where the initial condition is replaced by ṽn(z, 0) = b(z) ũn(z, 0). By Lemma 3.5, it holds that3

|ṽn(z, t)| = |b(z) ũn(z, t)| ≤ ‖b‖∞ |ũ(z, t+ tn)| ≤ ‖b‖∞C U(z)4
5

for all t ≥ 0 and all n ∈ N,6

z0∫
0

|∂tṽn(z, t)|Ψ(z) dz =

z0∫
0

∣∣∂t(b(z) ũn(z, t)
)∣∣Ψ(z) dz ≤ ‖b‖∞

z0∫
0

|∂tũn(z, t)|Ψ(z) dz7

= ‖b‖∞
z0∫

0

|∂tũ(z, t+ tn)|Ψ(z) dz ≤ ‖b‖∞ C1(u0) <∞,8

9

and10

z0∫
0

|∂z ṽn(z, t)|Ψ(z) dz =

z0∫
0

∣∣∂z(b(z) ũn(z, t)
)∣∣Ψ(z) dz11

=

z0∫
0

∣∣∂z(b(z) ũ(z, t+ tn)
)∣∣Ψ(z) dz ≤ C2(u0) <∞.12

13

This means that we have bounded variation regularity of the solution ṽn to (3.6) which gives14

local strong compactness of families of solutions to (3.6) (see [32, p. 91]). Therefore, there is a15

subsequence that we still denote by ṽn such that for all T > 016

ṽn(z, t)
n→∞−−−→ h(z, t) strongly in L1

(
(0, z0)× [0, T ]

)
.17

18

Then, h(z, t) is a solution to the integro-differential equation in (3.6), and it holds that |h(z, t)| ≤19

C U(z) for some C > 0 due to |ṽn(z, t)| ≤ ‖b‖∞C U(z) for all t ≥ 0 and n ∈ N.20

Step 2: Convergence of HΨ̃(g| V)(t) and D̃Ψ̃(g| V)(t)21

With v(z, t) = b(z)u(z, t), V(z) = b(z)U(z), Ψ̃(z) = Ψ(z)
b(z) , and ṽ(z, t) = b(z) ũ(z, t) we can show22

exactly as before (see Theorem 3.2 and Lemma 3.3) that23

d

dt
HΨ̃(ṽ| V)(t) =

d

dt

z0∫
0

Ψ̃(z)V(z)H

(
ṽ(z, t)

V(z)

)
dz = −D̃Ψ̃(ṽ| V)(t) ≤ 0,24

25

15



where1

D̃Ψ̃(ṽ| V)(t) :=

z0∫
0

z0∫
0

b(z)

b(z′)
β(z′) k(z, z′) Ψ̃(z)V(z′)

[
H

(
ṽ(z′, t)

V(z′)

)
−H

(
ṽ(z, t)

V(z)

)
2

+H ′
(
ṽ(z, t)

V(z)

)[
ṽ(z, t)

V(z)
− ṽ(z′, t)

V(z′)

]]
dz′ dz.3

4

Thus, for every solution g to (3.6) and every non-negative, convex, and a.e. differentiable5

function H, the function HΨ̃(g| V)(t) is non-increasing and bounded below by 0 (as Ψ̃, V,6

and H are non-negative). Therefore, HΨ̃(g| V)(t) converges to some L ≥ 0 for t → ∞ and7

D̃Ψ̃(g| V)(t) = − d
dtHΨ̃(g| V)(t)

t→∞−−−→ 0.8

Step 3: Solutions g to (3.6) with
∫∞

0 D̃Ψ̃(g| V)(t) dt = 0 satisfy g(z, t) = mb(z)U(z)9

Next, we characterize solutions g to the integro-differential equation in (3.6) that also satisfy10

the following equation:
∫∞

0 D̃Ψ̃(g| V)(t) dt = 0. With the choice H(s) = s2 (for the remainder of11

this proof we always make this choice for H) and the definition of D̃Ψ̃(g| V)(t), we obtain that12

0 =

∞∫
0

D̃Ψ̃(g| V)(t) dt13

=

∞∫
0

z0∫
0

z0∫
0

b(z)

b(z′)
β(z′) k(z, z′) Ψ̃(z)V(z′)

[
g(z, t)

V(z)
− g(z′, t)

V(z′)

]2

dz′dzdt.14

15

Recall that β > 0, Ψ > 0, U > 0, b(z) > 0 for all z ∈ (0, z0), thus V > 0 and Ψ̃ > 0 in (0, z0),16

and for all z, z′ ∈ (0, z0) it holds that b(z)
b(z′) > 0. Therefore, for a.e. t > 0 and (z, z′) ∈ supp(k)17

it holds that18

g(z, t)

V(z)
=
g(z′, t)

V(z′)
. (3.7)19

20

If we define ψ(z, t) := g(z,t)
V(z) , then for a.e. t > 0, z ∈ I ⊆ [0, z0]21

ψ(z, t) = ψ(Γ(z), t).22
23

As in the proof of Theorem 3.2, it is straightforward to show that for a.e. t > 0 and z ∈ (0, z0)24

∂tψ(z, t) + b(z) ∂zψ(z, t) = 0, (3.8)25
26

where we use (3.7) and the same rescaling as before.27

We aim to show that ψ(z, t) is constant and therefore use that28

(∂tψ) (z, t) = (∂tψ) (Γ(z), t) and (∂zψ) (z, t) = Γ′(z) (∂zψ) (Γ(z), t).29
30

Hence, for a.e. t > 0 and z ∈ I31

(∂tψ)(Γ(z), t) + b(z) Γ′(z) (∂zψ)(Γ(z), t) = 032
33

and34

(∂tψ)(Γ(z), t) + b(Γ(z)) (∂zψ)(Γ(z), t) = 0.35
36

Overall, it holds that37 (
Γ′(z) b(z)− b(Γ(z))

)
(∂zψ)(Γ(z), t) = 0.38

39
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As by assumption b(z) Γ′(z) 6= b(Γ(z)) for a.e. z ∈ I, it holds for a.e. t > 0 and z ∈ I that1

(∂zψ)(Γ(z), t) = 0.2
3

Since Γ is a continuously differentiable function it has the Luzin N-property which means that4

it maps sets of measure zero to sets of measure zero (see, e.g., [6, Definition 3.6.8]). Therefore,5

(∂zψ)(z, t) = 0 for a.e. z ∈ (0, z0) and ψ is constant for a.e. z ∈ (0, z0). Equation (3.8) implies6

that ψ is also constant for a.e. t > 0.7

By definition of ψ it follows that there is some constant c > 0 such that a solution g to (3.6)8

with
∫∞

0 D̃Ψ̃(g| V)(t) dt = 0 satisfies g(z, t) = cV(z) = c b(z)U(z) for a.e. t > 0 and z ∈ (0, z0).9

Multiplying g(z, t) = cV(z) with Ψ̃(z), integrating over z, and once again rescaling yields10

c = c

z0∫
0

U(z) Ψ(z) dz = c

z0∫
0

V(z)

b(z)
b(z) Ψ̃(z) dz =

z0∫
0

cV(z) Ψ̃(z) dz =

z0∫
0

g(z, t) Ψ̃(z) dz11

=

z0∫
0

b(z) ũ(z, t)
Ψ(z)

b(z)
dz =

z0∫
0

ũ(z, t) Ψ(z) dz = m.12

13

Therefore, every solution g to (3.6) with
∫∞

0 D̃Ψ̃(g| V)(t) dt = 0 satisfies g(z, t) = mV(z) =14

mb(z)U(z) for a.e. t > 0 and z ∈ (0, z0).15

Step 4: Conclusion16

Finally, we combine Steps 1, 2, and 3. Consider the sequence ṽn(z, t) from Step 1 and define17

the function f : N× R>0 → R,18

f(n, T ) :=

T∫
0

D̃Ψ̃(ṽn| V)(t) dt.19

20

By Step 1, it holds for every T > 0 that lim
n→∞

f(n, T ) =
T∫
0

D̃Ψ̃(h| V)(t) dt < ∞ and for every21

n ∈ N it holds that lim
T→∞

f(n, T ) =
∞∫
0

D̃Ψ̃(ṽn| V)(t) dt =: g̃(n) <∞, since with d
dtHΨ̃(ṽn| V)(t) =22

−D̃Ψ̃(ṽn| V)(t),23

∞∫
0

D̃Ψ̃(ṽn| V)(t) dt = HΨ̃(ṽn| V)(0)− lim
t→∞
HΨ̃(ṽn| V)(t) = HΨ̃(ṽn| V)(0)− L <∞,24

25

17



for every solution ṽn to (3.6) by Step 2. Furthermore, it holds that1

lim
T→∞

sup
n∈N
|f(n, T )− g̃(n)| = lim

T→∞
sup
n∈N

∣∣∣∣∣∣
T∫

0

D̃Ψ̃(ṽn| V)(t) dt−
∞∫

0

D̃Ψ̃(ṽn| V)(t) dt

∣∣∣∣∣∣2

= lim
T→∞

sup
n∈N

∣∣∣∣∣∣
T∫

0

D̃Ψ̃(ṽ| V)(t+ tn) dt−
∞∫

0

D̃Ψ̃(ṽ| V)(t+ tn) dt

∣∣∣∣∣∣3

= lim
T→∞

sup
n∈N

∣∣∣∣∣∣
T+tn∫
tn

D̃Ψ̃(ṽ| V)(t) dt−
∞∫
tn

D̃Ψ̃(ṽ| V)(t) dt

∣∣∣∣∣∣4

= lim
T→∞

sup
n∈N

∣∣∣∣∣∣
∞∫

T+tn

D̃Ψ̃(ṽ| V)(t) dt

∣∣∣∣∣∣ = lim
T→∞

∞∫
T+ inf

n∈N
tn

D̃Ψ̃(ṽ| V)(t) dt = 0.5

6

Therefore, f(n, T )
T→∞−−−−→ g̃(n) uniformly on N and by the Moore-Osgood Theorem (see, e.g.,7

[18, p. 100]) it holds that lim
n→∞

lim
T→∞

f(n, T ) = lim
T→∞

lim
n→∞

f(n, T ), i.e.,8

∞∫
0

D̃Ψ̃(ṽn| V)(t) dt
n→∞−−−→

∞∫
0

D̃Ψ̃(h| V)(t) dt.9

10

On the other hand, it also holds that11

∞∫
0

D̃Ψ̃(ṽn| V)(t) dt =

∞∫
0

D̃Ψ̃(ṽ| V)(t+ tn) dt =

∞∫
tn

D̃Ψ̃(ṽ| V)(t) dt
n→∞−−−→ 0.12

13

Since the limit is unique, we have that h is a solution to the integro-differential equation in (3.6)14

and it satisfies
∫∞

0 D̃Ψ̃(h| V)(t) dt = 0. Then, due to Step 3, it follows that h(z, t) = mb(z)U(z)15

a.e. and therefore16

b(z) ũ(z, t) = ṽ(z, t)
t→∞−−−→ mb(z)U(z) in L1((0, z0), Ψ(z) dz)17

18

or equivalently19

ũ(z, t)
t→∞−−−→ mU(z) in L1((0, z0), b(z) Ψ(z) dz).20

21

This finishes the proof. �22

Overall, we have shown that the eigensolution U is asymptotically stable if there is a solution23

to the eigenproblem (3.2) and the dual eigenproblem (3.3) satisfying Assumption (A9) and24

the assumptions in Theorem 3.6 on the initial condition u0, the eigenfunction U , the dual25

eigenfunction Ψ, and the support of k are satisfied. In particular, we have thus shown that the26

corresponding eigenvalue is a simple eigenvalue and the eigensolution is the unique solution to27

the eigenproblem.28

Corollary 3.8. Assume that Assumptions (A1) to (A4) hold, λ = β − µ, and 2β
b0

<29

−
(

Φ̃′(0)
)−1

. Let k satisfy the non-degeneracy condition in Theorem 3.6, and let the initial30

18



condition u0 satisfy for some C > 01

d

dz

(
b(z)u0(z)

)
∈ L1((0, z0)) and |u0(z)| ≤ C U(z) for all z ∈ [0, z0].2

3

Then, there exists a positive and asymptotically stable eigensolution U for the eigenproblem (3.2).4

Proof. By Theorem 2.10, there is an eigenfunction U > 0 and by Lemma 3.1 there is a dual5

eigenfunction Ψ ≡ 1. It holds that Ψ > 0 and since U ∈ L1((0, z0)) and U is a solution to (3.2),6

d

dz

(
b(z)U(z)

)
∈ L1((0, z0)) = L1((0, z0), Ψ(z) dz).7

8

Hence, the corollary is a direct consequence of Theorems 2.10 and 3.6. �9

Thus, we have stability for our special case and also in a more general case as long as there10

is an eigensolution in the sense of (A9) and the conditions in Theorem 3.6 are satisfied.11

4. Conclusion12

In this paper, we considered the eigenproblem associated with a model for plasmid segregation13

of high-copy plasmids in a bacterial population. First, we have shown existence of an eigenso-14

lution. Due to lack of compactness standard approaches such the Krein-Rutman Theorem were15

not applicable. Instead, we used rescalings, a fixed point argument, and the Laplace transform16

to show existence of an eigensolution.17

The conditions on the parameters for existence of an eigensolution coincide with a known18

Threshold Theorem for the long-term distribution of plasmids (see [28, Corollary 4.19]). More-19

over, we gave a possible biological interpretation of the conditions on the parameters: the bacte-20

ria may not reproduce too fast compared to the plasmids, i.e., the quotient of the reproduction21

rate of bacteria and plasmids is bounded. The bound is given by a measure of how “equally”22

plasmids are distributed to the two daughter cells. If bacteria distribute their plasmids equally23

to both daughter cells, then this bound is higher than if plasmids are distributed unequally24

meaning if one daughter cell receives a larger fraction of plasmids than the other.25

In order to investigate the stability of the eigensolution, we used the Generalized Relative26

Entropy method which does not require compactness. We adapted the method to the case of27

vanishing transport term at zero and the maximal plasmid content z0. Thereby, we obtained28

the stability of the eigensolution under general assumptions on the parameters of the model and29

if an appropriate eigensolution exists.30
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Appendix A. Proof of Theorem 2.934

In this section, we show the existence of a solution g to (2.4), i.e., we show Theorem 2.9.35

In the proof of Theorem 2.9 we use the following notation (see for example [2]).36

Definition A.1. The convolution of two L1-functions f , g : [0,∞)→ R is defined by37

(f ∗ g) (t) :=

t∫
0

f(τ) g(t− τ) dτ.38

39

19



For n ∈ N, we define the n-fold convolution of f with g by1

(f∗n ∗ g) (t) :=
(
f ∗
(
f∗(n−1) ∗ g

))
(t), where

(
f∗0 ∗ g

)
(t) := g(t).2

3

We prove Theorem 2.9 in steps. Firstly, we derive the conditions on the parameters given4

existence of the solution g to (2.4). By rescaling the solution g, we obtain a function q that5

satisfies an equation containing n-fold convolutions. This equation can be simplified with the6

Laplace transform as the Laplace transform of a convolution is the product of the Laplace7

transforms. Then, the boundedness of the Laplace transform yields a first condition on the8

parameters. The remaining conditions follow from positivity and boundedness of the Laplace9

transform.10

Secondly, we show that the conditions on the parameters imply the existence of the unique11

solution g to (2.4). By Lemma 2.8, we know that there is a unique solution g to the integro-12

differential equation in (2.4). It thus remains to show that g satisfies the integrability condition13

in (2.4) and is a positive function. To this end, we use the assumptions on the parameters, the14

same rescaling as in the first part of the proof, and the Laplace transform to obtain an iteration15

formula for the Laplace transform of q. This iteration formula can be used to extend the Laplace16

transform. Finally, we show that the integral condition on g holds using the uniqueness (a.e.) of17

the inverse Laplace transform. The positivity condition on g follows via a proof by contradiction.18

We now start by assuming that there is a solution g to (2.4) and showing that the rescaled19

solution q satisfies an equation containing n-fold convolutions.20

Proposition A.2. If there is a solution g ∈ C0 ((0, z0]) ∩ C1 ((0, z0)) to (2.4), then the function21

q : R≥0 → R≥0 defined by22

q(t) :=
(
1− e−t

)α
g(z0 e

−t)23
24

satisfies q(0) = 0, lim
t→∞

q(t) = 0, q(t) ≥ 0 for all t ≥ 0, and q ∈ C0([0,∞)) ∩ C1((0,∞)).25

Moreover, there exist M > 0 and a > 0 such that q(t) ≤ Me−at
(
1− e−t

)α
for all t ≥ 0, and26

with Φ̌(t) := Φ(e−t) e−t the following equation holds for every n ∈ N:27

α q(t) =
(
1− e−t

) n∑
k=0

(α0

α

)k(
Φ̌∗k ∗

(
q′(s)

))
(t)

+
(
1− e−t

) (α0

α

)n+1
(

Φ̌∗(n+1) ∗
(
α q(s)

1− e−s
))

(t).

(A.1)28

29

Proof. We rescale g to derive the equation for q.30

Assume there is a solution g to (2.4) and let g
(
z0 e
−t) = eαt h(t) or equivalently g(z) =31 (

z0
z

)α
h
(
− log( zz0 )

)
. Then h satisfies32

h(0) = 1, lim
t→∞

eαt h(t) = 0, h(t) ≥ 0 for all t ≥ 0, h ∈ C0([0,∞)) ∩ C1((0,∞)),33

z0∫
0

(z0 − z)α z−α h(− log(z/z0))

b(z)
dz <∞.34

35

The integrability condition on g in (2.4) is36

z0∫
0

(z0 − z)α g(z)

z (z0 − z)
dz =

z0∫
0

(z0 − z)α−1 z−1 g(z) dz <∞.37

38

20



The integrand is integrable in a neighborhood of zero if and only if 1 there exist ε > 0, C > 0,1

and a > 0 such that for all 0 < z < ε it holds that2

g(z) ≤ C za.3
4

Therefore, with the transformation to h and since h ∈ C0([0,∞)) it holds for h that5

there exist M > 0, a > 0 such that h(t) ≤Me−(a+α)t for all t ≥ 0.6
7

With Φ̌(t) := Φ(e−t) e−t and the transform σ = − log(z′/z0), we obtain8

h′(t) =
(
e−αtg(z0e

−t)
)′

= −αe−αtg(z0e
−t) + e−αtg′(z0e

−t) (−z0e
−t)9

= −αe−αtg(z0e
−t)− z0e

−(α+1)t

− α

z0e−t
g(z0e

−t)10

+
α0z0

(z0 − z0e−t)α

z0∫
z0e−t

Φ

(
z0e
−t

z′

)
(z′)−2(z0 − z′)α−1g(z′) dz′

11

= − α0

(et − 1)α

t∫
0

Φ̌(t− σ)h(σ) eασ (1− e−σ)α−1 dσ12

= − α0

α(et − 1)α

t∫
0

Φ̌(t− σ)h(σ)
d

dσ
(eσ − 1)α dσ.13

14

Therefore,15

(
et − 1

)α
h′(t) = −α0

α

t∫
0

Φ̌(t− σ) h(σ)
d

dσ
(eσ − 1)α dσ.16

17

We now use n-fold convolutions and the notation from Definition A.1 to rewrite the equation18

for h as19

(
et − 1

)α
h′(t) = −α0

α

(
Φ̌∗1 ∗

(
h(s)

d

ds
(es − 1)α

))
(t).20

21

1It holds that
∫ ε
0

1
z
g(z)dz <∞ for all ε ∈ (0, z0). Let ε ∈ (0,min{z0, 1}), C > 0, and assume that for all a > 0

it holds that g(z) > Cza on (0, ε), then g(z) ≥ lim
a→0+

Cza = C sgn(z), where sgn denotes the sign function, i.e.,

sgn(z) = 1 for z > 0, sgn(0) = 0, and sgn(z) = −1 for z < 0. Therefore,
∫ ε
0

1
z
g(z) dz ≥ C

∫ ε
0

1
z
dz = ∞ which is

a contradiction to the integrability of 1
z
g(z). Hence, there exist a > 0 and C > 0 such that g(z) ≤ C za for all

z ∈ (0, ε).

21



Thus, we obtain1

h(t)
d

dt

(
et − 1

)α
=

d

dt

[(
et − 1

)α
h(t)

]
−
(
et − 1

)α d

dt
h(t)2

=
d

dt

[(
et − 1

)α
h(t)

]
+
α0

α

(
Φ̌∗1∗

(
h(s)

d

ds
(es − 1)α

))
(t)3

=
(α0

α

)0(
Φ̌∗0∗

(
d

ds

[
(es − 1)α h(s)

]))
(t) +

α0

α

(
Φ̌∗1∗

(
d

ds

[
(es − 1)α h(s)

]))
(t)4

− α0

α

(
Φ̌∗1∗

(
(es − 1)α

d

ds
h(s)

))
(t)5

=
(α0

α

)0(
Φ̌∗0∗

(
d

ds

[
(es − 1)α h(s)

]))
(t) +

α0

α

(
Φ̌∗1∗

(
d

ds

[
(es − 1)α h(s)

]))
(t)6

+
(α0

α

)2(
Φ̌∗2∗

(
h(s)

d

ds
(es − 1)α

))
(t).7

8

Proceeding recursively, we obtain for every n ∈ N9

h(t)
d

dt

(
et − 1

)α
=

n∑
k=0

(α0

α

)k (
Φ̌∗k ∗

(
d

ds

[
(es − 1)α h(s)

]))
(t)10

+
(α0

α

)n+1
(

Φ̌∗(n+1) ∗
(
h(s)

d

ds
(es − 1)α

))
(t).11

12

Therefore,13

αh(t)
(
et − 1

)α
=
(
1− e−t

) n∑
k=0

(α0

α

)k (
Φ̌∗k ∗

(
d

ds
[(es − 1)α h(s)]

))
(t)

+
(
1− e−t

) (α0

α

)n+1
(

Φ̌∗(n+1) ∗
(
h(s)

d

ds
(es − 1)α

))
(t).

(A.2)14

15

Now let q(t) := h(t)
(
et − 1

)α
, then q(t) = (1− e−t)α g(z0 e

−t) and q satisfies16

q(0) = 0, lim
t→∞

q(t) = 0, q(t) ≥ 0 for all t ≥ 0, q ∈ C0([0,∞)) ∩ C1((0,∞)),

there exist M > 0 and a > 0 such that q(t) ≤Me−at
(
1− e−t

)α
for all t ≥ 0.

17

18

By (A.2), q satisfies19

α q(t) =
(
1− e−t

) n∑
k=0

(α0

α

)k(
Φ̌∗k ∗

(
q′(s)

))
(t)

+
(
1− e−t

) (α0

α

)n+1
(

Φ̌∗(n+1) ∗
(
α q(s)

1− e−s
))

(t).

20

21

This finishes the proof. �22

The function q satisfies equation (A.1) which contains n-fold convolutions. As a convolution23

is transformed into a multiplication under the Laplace transform, we next simplify (A.1) by24

taking the Laplace transform.25

22



Proposition A.3. Assume there is a solution g ∈ C0 ((0, z0]) ∩ C1 ((0, z0)) to (2.4), define the1

function q as in Proposition A.2, and denote its Laplace transform by q̂. Then, q̂ : R → R2

satisfies3

q̂(s) > 0 for all s ≥ 0, q̂ ∈ C∞([0,∞)),4
5

and for every n ∈ N and s > 0,

q̂(s+ n) = q̂(s)
α− α0 Φ̃(s+ n)

α− α0 Φ̃(s)

n∏
k=1

(s+ k − 1)− α+ α0 Φ̃(s+ k − 1)

s+ k
, (A.3)

where Φ̃(s) :=
1∫
0

us Φ(u) du.6

Furthermore, it holds that α0 ≤ α.7

Proof. The Laplace transforms L{q(t)}(s) and L
{
α q(t)
1−e−t

}
(s) exist for <(s) ≥ 0 as there are8

M > 0 and a > 0 such that q(t) ≤M e−at (1− e−t)α for all t ≥ 0 by Proposition A.2.9

We ultimately aim to prove Theorem 2.9. To do so it suffices to consider the Laplace trans-10

forms only on the real axis. Therefore, for the remainder of this proof we let s ∈ R.11

Denote by q̂(s) the Laplace transform of q(t) and12

Φ̃(s) := L
{

Φ̌(t)
}

(s) =

∞∫
0

e−st Φ
(
e−t
)
e−t dt =

1∫
0

us Φ(u) du,13

L
{
q′(t)

}
(s) = sq̂(s)− lim

x→0+
q(x) = sq̂(s),14

15

for s > 0. Note that Φ̃ has the following properties16

Φ̃(0) = 1, Φ̃(1) =
1

2
, Φ̃′(s) < 0 ∀s ≥ 0, lim

s→∞
Φ̃(s) = 0, Φ̃(s) ∈ (0, 1) ∀s ∈ (0,∞).17

18

These properties are a direct consequence of the properties of Φ. Taking the Laplace transform19

of equation (A.1) yields for s > 0,20

α q̂(s) =
n∑
k=0

(α0

α

)k
Φ̃k(s) s q̂(s)−

n∑
k=0

(α0

α

)k
Φ̃k(s+ 1) (s+ 1) q̂(s+ 1)21

+
(α0

α
Φ̃(s)

)n+1
L
{
α q(t)

1− e−t
}

(s)−
(α0

α
Φ̃(s+ 1)

)n+1
L
{
αq(t)

1− e−t
}

(s+ 1)22

=

(
α0
α Φ̃(s)

)n+1
− 1

α0
α Φ̃(s)− 1

s q̂(s)−

(
α0
α Φ̃(s+ 1)

)n+1
− 1

α0
α Φ̃(s+ 1)− 1

(s+ 1) q̂(s+ 1)

+
(α0

α
Φ̃(s)

)n+1
L
{
α q(t)

1− e−t
}

(s)−
(α0

α
Φ̃(s+ 1)

)n+1
L
{
α q(t)

1− e−t
}

(s+ 1).

(A.4)23

24

As the functions q and α q(t)
1−e−t are integrable (for α > 0) and non-negative, their Laplace trans-25

forms q̂(s) and L
{
α q(t)
1−e−t

}
(s) are bounded and positive for s ≥ 0. Moreover, Φ̃(0) = 1 and26

Φ̃(s) < 1 for s > 0 and therefore the inequality α0 ≤ α follows by contradiction:27

Assume α0 > α, then there are 0 < s < s such that α0
α Φ̃(s) > 1 and α0

α Φ̃(s + 1) < 1 for all28

s ∈ [s, s]. Hence, for s ∈ [s, s] the first and third summand in (A.4) are increasing in n ∈ N and29

tending to infinity for n → ∞, while the second and fourth summand remain bounded for all30

23



n ∈ N. This is a contradiction to the boundedness of q̂(s) for all s ≥ 0 and all n ∈ N (which1

follows directly from g being a solution to (2.4) and the definitions of q and q̂ respectively),2

therefore, α0 ≤ α.3

Taking the limit n→∞ in (A.4) yields, because of α0 ≤ α and Φ̃(s) < 1 for s > 0,4

α q̂(s) =
s q̂(s)

1− α0 Φ̃(s)/α
− (s+ 1) q̂(s+ 1)

1− α0 Φ̃(s+ 1)/α
. (A.5)5

6

We rearrange the terms in equation (A.5) to obtain7

q̂(s+ 1) = q̂(s)
1− α0 Φ̃(s+ 1)/α

s+ 1

(
s

1− α0 Φ̃(s)/α
− α

)
8

= q̂(s)

(
1− α0 Φ̃(s+ 1)/α

)(
s− α+ α0 Φ̃(s)

)
(s+ 1)

(
1− α0 Φ̃(s)/α

)9

= q̂(s)

(
α− α0 Φ̃(s+ 1)

)(
s− α+ α0 Φ̃(s)

)
(s+ 1)

(
α− α0 Φ̃(s)

) .10

11

By iteration, we obtain equation (A.3), i.e., for n ∈ N, s > 0, and α0 ≤ α,12

q̂(s+ n) = q̂(s)
α− α0 Φ̃(s+ n)

α− α0 Φ̃(s)

n∏
k=1

(s+ k − 1)− α+ α0 Φ̃(s+ k − 1)

s+ k
.13

14

As q ≥ 0, q̂(s) > 0 for all s ≥ 0 and q̂ ∈ C∞([0,∞)) as q is of bounded exponential growth,15

meaning there are constants c ∈ R, a > 0, and M > 0 such that |q(t)| ≤M ect for all t > a. �16

In the last two propositions we have rescaled the solution g to (2.4), we have shown that17

the Laplace transform q̂ of the rescaled solution satisfies (A.3), and using the boundedness of18

q̂ we have obtained α0 ≤ α. We can now finish the first part of the proof of Theorem 2.9 by19

deriving the remaining conditions on α, α0, and the plasmid segregation kernel Φ in the following20

proposition.21

Proposition A.4. If α0 ≤ α and there is a positive function q̂ ∈ C∞([0,∞)) which satisfies22

(A.3), then23

α = α0 and α0 < −
1

Φ̃′(0)
.24

25

Proof. The function q̂ is determined by q̂|(0,1] and (A.3) with s ∈ (0, 1] and n ∈ N.26

By positivity of q̂, q̂|(0,1] > 0 and all factors on the right-hand side of (A.3) are positive. As27

α0 ≤ α and Φ̃(s) < 1 for s > 0, we obtain for the second factor on the right-hand side of (A.3)28

and for s > 029

0 <
α− α0Φ̃(s+ n)

α− α0Φ̃(s)
<∞ for all s ∈ (0, 1] and n ∈ N.30

31

By positivity of the denominator of the third term on the right-hand side of (A.3), we obtain32

the following condition for the numerator: for all k ∈ N and s ∈ (0, 1]33

(s+ k − 1)− α+ α0 Φ̃(s+ k − 1) > 034

⇔ α < s+ k − 1 + α0Φ̃(s+ k − 1) =: f(s+ k − 1).35
36

24



This inequality can only hold if f(x) > f(0) = α0 for all x > 0, because otherwise it would1

contradict α ≥ α0. Therefore, we require f ′(0) ≥ 0. Furthermore, from the definition of f ,2

f ′(x) = 1 + α0Φ̃′(x) and f ′′(x) = α0Φ̃′′(x),3
4

where5

Φ̃′(x) =

1∫
0

log(u)ux Φ(u) du < 0 and Φ̃′′(x) =

1∫
0

(log(u))2 ux Φ(u) du > 0.6

7

If f ′(0) ≥ 0, then it follows because of f ′′(x) > 0 for all x ≥ 0 that f ′(x) > 0 for all x > 0. By8

the definition of f , it holds that9

f ′(0) ≥ 0 if and only if α0 ≤ −
1

Φ̃′(0)
.10

11

Therefore, −α + α0Φ̃(s + k − 1) + s + k − 1 > 0 holds for all k ∈ N and s ∈ (0, 1] if α ≤ α0 ≤12

−
(

Φ̃′(0)
)−1

since α < f(x) for all x > 0 and, in particular, due to continuity of f we have that13

α ≤ f(0) = α0. Together with the condition α0 ≤ α, we have the following necessary conditions14

for positivity:15

α = α0 and α0 ≤ −
(

Φ̃′(0)
)−1

.16
17

It only remains show that α0 < −
(

Φ̃′(0)
)−1

.18

In the following we use α = α0. The function q̂ is continuous. In particular, q̂|[0,1] is continuous19

and q̂(n) is continuous at n ∈ N, i.e.,20

q̂(n) = lim
s→0+

q̂(n+ s) for all n ∈ N.21

22

Using (A.3) and continuity of Φ̃, yields for n = 1,23

lim
s→0+

q̂(s+ 1) = lim
s→0+

q̂(s)
1− Φ̃(s+ 1)

1− Φ̃(s)

−α0 + α0Φ̃(s) + s

s+ 1
24

= q̂(0)
(

1− Φ̃(1)
)

lim
s→0+

−α0 + α0Φ̃(s) + s

1− Φ̃(s)
.25

26

With L’Hôpital’s rule,27

lim
s→0+

−α0 + α0Φ̃(s) + s

1− Φ̃(s)
= lim

s→0+
(−α0)

1− Φ̃(s)

1− Φ̃(s)
+

s

1− Φ̃(s)
= −α0 +

1

−Φ̃′(0)
.28

29

Therefore,30

q̂(1) = q̂(0)
1

2

(
−α0 −

1

Φ̃′(0)

)
,31

32

i.e., q̂(1) is positive if and only if33

α0 < −
1

Φ̃′(0)
.34

35

This finishes the proof. �36

25



We have now established the first part of Theorem 2.9, i.e., we have shown that if there is a1

unique positive solution g ∈ C0((0, z0])∩ C1((0, z0)) to (2.4), then α = α0 and α0 < −
(
Φ̃′(0)

)−1
.2

We proceed to the second part, i.e., we show that the conditions on the parameters imply3

existence and uniqueness of a positive solution g to (2.4). To this end, we use the same rescalings4

and transformations as in the previous propositions.5

Proposition A.5. Let α = α0 and α0 < −
(

Φ̃′(0)
)−1

. Then, there exists a unique solution6

g ∈ C0((0, z0]) ∩ C1((0, z0)) to (2.5). There is a C > 0 such that the function q̂ defined as in7

Propositions A.2 and A.3 is holomorphic for s ∈ C with <(s) > C and satisfies for all n ∈ N8

and s ∈ C with <(s) > C,9

q̂(s+ n) = q̂(s)
1− Φ̃(s+ n)

1− Φ̃(s)

n∏
k=1

(s+ k − 1)− α+ α Φ̃(s+ k − 1)

s+ k
. (A.6)10

11

Furthermore, for all s ∈ C with <(s) > C and all n ∈ N it holds that q̂(s) 6= 0, 1− Φ̃(s+n) 6= 0,12

and f(s) := s− α+ α Φ̃(s) 6= 0.13

Proof. Let α = α0 and α0 < −
(

Φ̃′(0)
)−1

. By Lemma 2.8, we know that there is a unique solution14

g ∈ C0((0, z0])∩C1((0, z0)) to (2.5). Using the same rescaling as in the proof of Proposition A.2,15

i.e., g(z) =
(
z0
z

)α
h
(
− log( zz0 )

)
or equivalently h(t) = e−αt g(z0 e

−t), we obtain a solution h ∈16

C0([0,∞)) ∩ C1((0,∞)) to17

h′(t) = −
t∫

0

Φ̌(t− σ)h(σ)
d
dσ (eσ − 1)α

(et − 1)α
dσ and h(0) = 1, (A.7)18

19

where Φ̌(t) := Φ(e−t) e−t. We aim to apply the Laplace transform to the function q that again20

defined as in the proof of Proposition A.2 by q(t) := h(t)
(
et − 1

)α
. Therefore, we show that the21

Laplace transforms of q(t) and α q(t)
1−e−t exist by applying the Grönwall-Bellman inequality [4, p.22

266] to the function |h|.23

Renaming t to τ and integrating (A.7) over τ from 0 to t yields24

h(t)− h(0) = −
t∫

0

τ∫
0

Φ̌(τ − σ)h(σ)
d
dσ (eσ − 1)α

(eτ − 1)α
dσdτ,25

h(t) = 1−
t∫

0

τ∫
0

Φ̌(τ − σ)h(σ)
d
dσ (eσ − 1)α

(eτ − 1)α
dσdτ.26

27

We take the absolute value and interchange the order of the integration,28

|h(t)| ≤ 1 +

t∫
0

τ∫
0

Φ̌(τ − σ) |h(σ)|
d
dσ (eσ − 1)α

(eτ − 1)α
dσdτ,29

|h(t)| ≤ 1 +

t∫
0

t∫
σ

Φ̌(τ − σ) (eτ − 1)−α dτ
d

dσ
(eσ − 1)α |h(σ)| dσ.30

31

26



Define B(σ, t) :=
∫ t
σ Φ̌(τ−σ) (eτ − 1)−α dτ d

dσ (eσ − 1)α. In order to apply the Grönwall-Bellman1

inequality, B must not depend on t. As B is increasing in t, we estimate2

B(σ, t) ≤
∞∫
σ

Φ̌(τ − σ) (eτ − 1)−α dτ
d

dσ
(eσ − 1)α3

≤ ‖Φ‖L∞([0,1])

∞∫
σ

e−τ

(eτ − 1)α
dτ eσ α eσ (eσ − 1)α−1 .4

5

We develop an upper bound for the integral on the right-hand side as otherwise the Grönwall-6

Bellman inequality gives the estimate |h(t)| ≤ ∞, i.e., we require the following integral to be7

finite8

t∫
0

∞∫
σ

e−τ

(eτ − 1)α
dτ α e2σ (eσ − 1)α−1 dσ =

t∫
0

τ∫
0

α e2σ (eσ − 1)α−1 dσ
e−τ

(eτ − 1)α
dτ

+

∞∫
t

t∫
0

α e2σ (eσ − 1)α−1 dσ
e−τ

(eτ − 1)α
dτ.

(A.8)9

10

Using that with the transformation x = eσ yields11

t∫
0

α e2σ (eσ − 1)α−1 dσ =

et∫
1

αx (x− 1)α−1 dx =

[
(x− 1)α (αx+ 1)

α+ 1

]x=et

x=1

12

=
1

α+ 1

(
et − 1

)α (
αet + 1

)
.13

14

Thus, we obtain for (A.8),15

t∫
0

∞∫
σ

e−τ

(eτ − 1)α
dτ α e2σ (eσ − 1)α−1 dσ16

=
1

α+ 1

t∫
0

α+ e−τ dτ +
1

α+ 1

(
et − 1

)α (
α et + 1

) ∞∫
t

e−τ

(eτ − 1)α
dτ17

≤ α t

α+ 1
+

1

α+ 1

[
−e−τ

]τ=t

τ=0
+

1

α+ 1

(
et + 1

)α (
α et + 1

) (
et − 1

)−α ∞∫
t

e−τ dτ18

=
α t+ 1− e−t

α+ 1
+
α+ e−t

α+ 1
=
αt+ α+ 1

α+ 1
.19

20

We estimate21

|h(t)| ≤ 1 +

t∫
0

‖Φ‖L∞([0,1])

∞∫
σ

e−τ

(eτ − 1)α
dτ α e2σ (eσ − 1)α−1 |h(σ)| dσ22

23

and therefore the Grönwall-Bellman inequality yields for t ≥ 024

|h(t)| ≤ e
∫ t
0 ‖Φ‖L∞([0,1])

∫∞
σ

e−τ
(eτ−1)α

dτ α e2σ(eσ−1)α−1 dσ ≤ e‖Φ‖L∞([0,1])
αt+α+1
α+1 = Ces0 t,25

26

27



where C := e‖Φ‖L∞([0,1]) > 0 and s0 := α ‖Φ‖L∞([0,1]) /(α+ 1) > 0.1

With the transformation q(t) = h(t)
(
et − 1

)α
, we obtain for all t ≥ 0 that2

|q(t)|
(
et − 1

)−α ≤ Ces0t.3
4

Therefore,5

|q(t)| ≤ Ces0t
(
et − 1

)α
= Ce(s0+α)t

(
1− e−t

)α ≤ Ce(s0+α)t
6
7

and it follows that both the Laplace transform q̂(s) of q(t) and the Laplace transform of α q(t)
1−e−t8

exist for <(s) > s0 + α. Furthermore, q satisfies equation (A.1).9

Now, we can take the Laplace transform of equation (A.1) and obtain for all s ∈ C with10

<(s) > s0 + α,11

α q̂(s) =
1− Φ̃n+1(s)

1− Φ̃(s)
s q̂(s)− 1− Φ̃n+1(s+ 1)

1− Φ̃(s+ 1)
(s+ 1) q̂(s+ 1)12

+ Φ̃n+1(s)L
{
α q(t)

1− e−t
}

(s)− Φ̃n+1(s+ 1)L
{
αq(t)

1− e−t
}

(s+ 1).13

14

As in the proof of Proposition A.3, we can now take the limit n → ∞ because we know that15 ∣∣∣Φ̃(s)
∣∣∣ ≤ Φ̃(<(s)) < 1 for <(s) > s0 + α > 0. Recursively, we obtain (A.6), i.e., for all n ∈ N16

and s ∈ C with <(s) > s0 + α,17

q̂(s+ n) = q̂(s)
1− Φ̃(s+ n)

1− Φ̃(s)

n∏
k=1

(s+ k − 1)− α+ α Φ̃(s+ k − 1)

s+ k
.18

19

The Laplace transform q̂ of q is analytic, i.e., holomorphic, on <(s) > s0 + α. We know by20

Lemma 2.8 that g(z0) = 1 and g ∈ C0((0, z0]) ∩ C1((0, z0)). Therefore, there is a set of positive21

measure where q is strictly positive.22

If there is a s ∈ C with <(s) > s0 + α and q̂(s) = 0, then q̂(s + n) = 0 for all n ∈ N by23

(A.6). Hence, q̂ vanishes on a sequence of equidistant points along a line parallel to the real axis,24

therefore q = 0 a.e. by [13, Theorem 5.3]. This is a contradiction to q > 0 on a set of positive25

measure. Therefore, q̂(s) 6= 0 for s ∈ C with <(s) > s0 + α.26

In particular, due to (A.6) it also follows that for all s ∈ C with <(s) > s0 + α and for all27

n ∈ N that 1− Φ̃(s+ n) 6= 0, and f(s) := s− α+ αΦ̃(s) 6= 0. �28

We have shown that the function q̂(s) is defined in a right half-plane (<(s) > C > 0) and29

satisfies the iteration formula (A.6). Next, we use now the iteration formula (A.6) to extend the30

function q̂ to a function q̂∗ defined on the right half-plane given by <(s) > −ε for some ε > 0.31

Proposition A.6. If α = α0 and α0 < −
(

Φ̃′(0)
)−1

, then there exists an ε > 0 such that the32

function q̂ defined in Propositions A.2 and A.3 can be extended to a holomorphic function q̂∗ on33

the half-plane <(s) ≥ −ε.34

Proof. By Proposition A.5, there is a C > 0 such that for all s ∈ C with <(s) > C the function35

q̂(s) is holomorphic, q̂ satisfies (A.6) for all n ∈ N, q̂(s) 6= 0, 1− Φ̃(s+ n) 6= 0 for all n ∈ N, and36

f(s) := s− α+ α Φ̃(s) 6= 0.37

As q̂(s) 6= 0 for s ∈ C with <(s) > C, we can write equivalently to (A.6) for <(s) > C38

q̂(s) = q̂(s+ n)
1− Φ̃(s)

1− Φ̃(s+ n)

n∏
k=1

s+ k

(s+ k − 1)− α+ α Φ̃(s+ k − 1)
. (A.9)39

40

28



We use (A.9) to construct an extension of q̂ to s ∈ C with <(s) > −ε for some ε > 0.1

Let m ≥ dC + 2e, where dxe denotes the ceiling function that maps x to the least integer2

greater than or equal to x. First, we show that the right-hand side of (A.9) is well-defined, i.e.,3

that 1− Φ̃(s+n) 6= 0 and f(s+ k− 1) := (s+ k− 1)−α+α Φ̃(s+ k− 1) 6= 0 for all s ∈ C with4

<(s) > −ε, k ∈ N, for some ε > 0, and for n = m.5

By the choice of m we already know that 1− Φ̃(s+m) 6= 0 for all s ∈ C with <(s) > −1. It6

remains to show that f(z) 6= 0 for <(z) > −ε. With z = a+ ib for a > −1 and b ∈ R,7

f(z) = z − α+ αΦ̃(z) = a+ ib− α+ α

1∫
0

ua+ibΦ(u) du8

= a− α+ ib+ α

1∫
0

ua(cos(b log(u)) + i sin(b log(u)))Φ(u) du9

= a− α+ α

1∫
0

ua cos(b log(u))Φ(u) du+ i

b+ α

1∫
0

ua sin(b log(u))Φ(u) du

 .10

11

As f(z) = 0 if and only if <(f(z)) = 0 and =(f(z)) = 0, we are searching for a, b ∈ R satisfying12

both13

f1(a, b) :=

1∫
0

ua cos(b log(u))Φ(u) du+
a

α

!
= 1 and14

f2(a, b) :=

1∫
0

ua sin(b log(u))Φ(u) du+
b

α

!
= 0.15

16

We see that (a, b) is a solution to f1(a, b) = 1 and f2(a, b) = 0 if and only if (a,−b) is a solution.17

Therefore, it suffices to consider b ≥ 0.18

For b = 0, it holds that f2(a, 0) = 0 for all a ∈ R. The partial derivative of f2 w.r.t. b is19

∂bf2(a, b) =

1∫
0

ua cos(b log(u)) log(u) Φ(u) du+
1

α
,20

∂bf2(a, 0) =

1∫
0

ua log(u) Φ(u) du+
1

α
= Φ̃′(a) +

1

α
.21

22

The function Φ̃′ is negative and strictly increasing (this follows directly from the properties of23

Φ, see proofs of Propositions A.3 and A.4). As 0 < α < −1/Φ̃′(0) there is an l < 0 such that24

α = −1/Φ̃′(l) by continuity of Φ̃′. Hence,25

∂bf2(a, 0) = Φ̃′(a)− Φ̃′(l) > 026
27

29



if and only if a > l. For b > 0,1

∂bf2(a, b) =

1∫
0

ua cos(b log(u)) log(u) Φ(u) du− Φ̃′(l)2

=

1∫
0

log(u) Φ(u)
(
ua cos(b log(u))− ul

)
du.3

4

For u ∈ (0, 1), log(u) < 0, Φ(u) ≥ 0, and5

ua cos(b log(u))− ul ≤ ua − ul ≤ 06
7

if a > l. Therefore, for a > l, ∂bf2(a, b) ≥ 0 for all b > 0 and ∂bf2(a, 0) > 0, i.e., there cannot be8

a solution to f2(a, b) = 0 other than b = 0. If b = 0, then we are looking for a real solution to9

f(s) = s − α + α Φ̃(s) = 0. In this case we know that s = 0 is a solution. Moreover, f ′(s) > 010

for s ≥ 0, f ′(s) = 1 + α Φ̃′(s) = 0 if and only if s = l by definition of l, and f ′′(s) > 0 for all11

s ∈ R. Therefore, f(s) < 0 for s ∈ (l, 0) and the only solution to f(s) = 0 in (l,∞) is s = 0.12

Define ε := min{−l, 1}/2, then f(z) = 0 only for z = 0 and f(z) 6= 0 for all z ∈ C with z 6= 013

and <(z) ≥ −ε.14

We rewrite (A.9) with n = m, where m ≥ dC + 2e,15

q̂(s) =
q̂(s+m) (s+ 1)

1− Φ̃(s+m)

1− Φ̃(s)

s− α+ α Φ̃(s)

m∏
k=2

s+ k

(s+ k − 1)− α+ α Φ̃(s+ k − 1)
. (A.10)16

17

For s ∈ C \ {0} with <(s) ≥ −ε the expression on the right-hand side is holomorphic as it18

is the product of holomorphic functions. The function q̂ is holomorphic as it is the Laplace19

transform of q and the fact that Φ̃ is holomorphic is easily checked using the definition of Φ̃.20

With L’Hôpital’s rule for analytic functions of a complex variable (see, e.g., [39, Theorem 3.3]),21

lim
z→0

1− Φ̃(z)

z − α+ α Φ̃(z)
= lim

z→0

−Φ̃′(z)

1 + α Φ̃′(z)
=

−Φ̃′(0)

1 + α Φ̃′(0)
,22

23

which is finite by the assumption α > −1/Φ̃′(0). Therefore, the right-hand side of (A.10) is24

holomorphically extendable to z = 0 by the Riemann removable singularities theorem (see, e.g.,25

[19, Theorem 4.1.1]) and the following extension of q̂ is holomorphic, for s ∈ C with <(s) ≥ −ε,26

q̂∗(s) =



q̂(s+m)(s+1)

1−Φ̃(s+m)

1−Φ̃(s)

s−α+αΦ̃(s)

m∏
k=2

s+k
(s+k−1)−α+αΦ̃(s+k−1)

, if <(s) ∈ [−ε,m], s 6= 0,

q̂(m)

1−Φ̃(m)

−Φ̃′(0)

1+αΦ̃′(0)

m∏
k=2

k
(k−1)−α+αΦ̃(k−1)

, if s = 0,

q̂(s), if <(s) > m.

27

28

The function q̂∗(s) is holomorphic as for <(s) > m it agrees with the holomorphic function q̂(s),29

for <(s) ∈ (−ε,m) and s 6= 0 it is a product and quotient of holomorphic functions, and for30

s = 0 we defined q̂∗ such that it is holomorphic by the Riemann removable singularities theorem.31

It thus only remains to argue that q̂∗ is holomorphic at <(s) = m. By definition of q̂∗ and since32

q̂ is holomorphic and satisfies equation (A.9) for all <(s) > C > 0 where m ≥ C + 2, it follows33

that q̂∗(s) = q̂(s) for all <(s) ∈ (m− ε,m+ ε). Thus, q̂∗ is holomorphic at <(s) = m because q̂34

is holomorphic. �35

30



We are now ready to gather the results of Propositions A.2 to A.6 and finish the proof of1

Theorem 2.9.2

Proof of Theorem 2.9.3

Step 1: From the solution g to the conditions on the parameters.4

Assume there is a solution g ∈ C0((0, z0]) ∩ C1((0, z0)) for (2.4), then Propositions A.2 to A.45

directly give the conditions on α and α0.6

Step 2: From the conditions on the parameters to the unique solution g.7

Lemma 2.8 gives existence of a unique solution g ∈ C0((0, z0]) ∩ C1((0, z0)) to (2.5). It remains8

show that the solution g to (2.5) is also a solution to (2.4), i.e., that g satisfies9

lim
z→0+

g(z) = 0, g(z) ≥ 0 for all z ∈ (0, z0), and

z0∫
0

(z0 − z)αg(z)

b(z)
dz <∞.10

11

In the following, we use Propositions A.5 and A.6, take the inverse Laplace transform of q̂∗,12

L−1{q̂∗(s)}(t) =: q∗(t), and show that q(t) = q∗(t) for a.e. t ≥ 0.13

If14

lim
s→∞

q̂∗(s) = 0 and lim
s→∞

s q̂∗(s) <∞,15
16

then the inverse Laplace transform q∗ of q̂∗ exists [16, p. 135]. We know that17

0 = lim
t→0+

q(t) = lim
s→∞

s q̂(s),18

19

by the Initial Value Theorem (see, e.g., [13, Theorem 33.5]), and for s ∈ C with <(s) ≥ −ε and20

|s| > δ > 0 and for m := dC + 2e,21

q̂∗(s) = q̂(s+m)
1− Φ̃(s)

1− Φ̃(s+m)

m∏
k=1

s+ k

(s+ k − 1)− α+ α Φ̃(s+ k − 1)
.22

23

Since24 ∣∣∣Φ̃(s)
∣∣∣ ≤ Φ̃(<(s)) ≤ Φ̃(−ε) <∞25

26

and for all k ∈ N, k ≤ m, and all |s| > δ > 027

s+ k

s+ k − 1− α+ α Φ̃(s+ k − 1)
=

1 + k
s

1 + k−1−α
s + α Φ̃(s+k−1)

s

<∞,28

29

it holds that q̂∗(s) = h(s) q̂(s + m) for some function h that is bounded for all s ∈ C with30

<(s) ≥ −ε and |s| > δ > 0. Therefore,31

lim
s→∞

s q̂∗(s) = 032
33

and the inverse Laplace transformation q∗ of q̂∗ exists.34

Due to uniqueness of the inverse Laplace transform (see, e.g., [13, Theorem 5.4]), q∗ and q are35

a.e. equal. In particular, with q(t) = g(z0e
−t)
(
1− e−t

)α
and the change of variables z = z0e

−t,36

q̂∗(0) =

∞∫
0

q∗(t) dt =

∞∫
0

q(t) dt =

z0∫
0

g(z)

(
1− z

z0

)α 1

z
dz37

= z−α0

z0∫
0

g(z) (z0 − z)α
z

dz <∞.38

39

31



Therefore, g(z)/z is integrable at z = 0. As g ∈ C0
(
(0, z0]

)
with g(z0) = 1 there are δ > 0 and1

a c > 0 such that2

g(z) (z0 − z)α
z (z0 − z)

≤ c (z0 − z)α
z0 − z

for all z ∈ [z0 − δ, z0],3

4

it holds that g(z) (z0−z)α
z (z0−z) is integrable at z = z0. Hence,5

lim
z→0+

g(z) = 0 and

z0∫
0

g(z)(z0 − z)α
b(z)

dz <∞.6

7

Step 3: Positivity of the solution g.8

The function v(z) := C(z0 − z)αg(z) for some C > 0 is a solution to (2.3) by Lemma 2.6 and9

v ≥ 0 if and only if g ≥ 0 on (0, z0). We know that lim
z→0+

v(z) = 0, v(z0) = 0, and v is positive in10

a neighborhood of z0 as g(z0) = 1 and g is continuous in (0, z0]. With α = α0, integrating (2.3)11

from z to z0 yields12

v(z0)− v(z) = −α z0

z0∫
z

v(z′)

z′(z0 − z′)
dz′ + α z0

z0∫
z

z0∫
y

Φ
( y
z′

)
v(z′)

(z′)2(z0 − z′)
dz′dy.13

14

By change of variables ξ = y
z′ , we obtain15

v(z) = α z0

 z0∫
z

v(z′)

z′(z0 − z′)
dz′ −

z0∫
z

1∫
z/z′

Φ(ξ) dξ
v(z′)

z′(z0 − z′)
dz′

16

= α z0

z0∫
z

z/z′∫
0

Φ(ξ) dξ
v(z′)

z′(z0 − z′)
dz′.17

18

Due to continuity of v, v can only be negative if there is a z ∈ (0, z0) such that v(z) = 0. Let19

z∗ ∈ (0, z0) be the largest z ∈ (0, z0) such that v(z) = 0, i.e., v(z) > 0 for all z ∈ (z∗, z0).20

Therefore,21

v(z∗) = α z0

z0∫
z∗

z∗/z′∫
0

Φ(ξ) dξ
v(z′)

z′(z0 − z′)
dz′.22

23

By definition of z∗, it holds that24

v(z′)

z′(z0 − z′)
> 0 for all z ∈ (z∗, z0).25

26

Moreover, there is an ε > 0 such that for all z′ ∈ (z∗, z∗ + ε)27

z∗/z′∫
0

Φ(ξ) dξ > 0.28

29

Therefore, v(z∗) > 0, which is a contradiction to the definition of z∗, v(z∗) = 0. This means30

that there is no z∗ with v(z∗) and thereby v(z) > 0 for all z ∈ (0, z0). Hence, g ≥ 0 and g(z) > 031

for all z ∈ (0, z0].32

32



Overall, we have shown that the unique solution g ∈ C0
(
(0, z0]

)
∩ C1

(
(0, z0)

)
to (2.5) is also a1

solution to (2.4) in Step 2. Since every solution to (2.4) is also a solution to (2.5) the function g is2

the unique solution to (2.4). Moreover, because of v(z) > 0 for z ∈ (0, z0), v(z) = C (z0−z)αg(z)3

with C > 0, and g(z0) = 1 it follows that g(z) > 0 for z ∈ (0, z0]. �4

Appendix B. Other proofs5

Proof of Theorem 3.2. The proof is lengthy but consists of straightforward computations.6

We define U(z, t) := eλt U(z). Then, U(z) > 0 for all z ∈ (0, z0) and U is a solution to (3.1).7

Furthermore, we define ψ(z, t) := e−λtΨ(z). Then ψ is a solution to the dual equation of (3.1),8

i.e., it is a solution to9


− ∂tψ(z, t)− b(z)∂zψ(z, t) = − (β(z) + µ(z))ψ(z, t) + β(z)

z∫
0

k(z′, z)ψ(z′, t) dz′,

ψ(z, t) ≥ 0 for all z ∈ (0, z0) and t ≥ 0,

z0∫
0

ψ(z, t)U(z, t) dz = 1.

(B.1)10

With these definitions, we obtain11

Ψ(z)U(z)H

(
ũ(z, t)

U(z)

)
= Ψ(z) e−λt eλt U(z)H

(
ũ(z, t) eλt

U(z) eλt

)
12

= ψ(z, t)U(z, t)H

(
u(z, t)

U(z, t)

)
.13

14

Recall that as H is absolutely continuous, it is differentiable a.e. and the derivative H ′ is15

Lebesgue-integrable. For the sake of brevity, we omit the arguments of ψ, U , and u everywhere16

except in the integrals. It holds that17

∂t

[
ψ U H

( u
U

)]
+ ∂z

[
b(z)ψ U H

( u
U

)]
18

= (∂tψ) U H
( u
U

)
+ ψ (∂tU) H

( u
U

)
+ ψ U H ′

( u
U

)
∂t

( u
U

)
19

+ (∂zψ) b(z)U H
( u
U

)
+ ψ ∂z(b(z)U)H

( u
U

)
+ ψ b(z)U H ′

( u
U

)
∂z

( u
U

)
20

= U H
( u
U

)
[∂tψ + b(z) ∂zψ] + ψH

( u
U

)
[∂tU + ∂z(b(z)U)]21

+ ψ U H ′
( u
U

) [
∂t

( u
U

)
+ b(z) ∂z

( u
U

)]
.22

23

33



Now, we use the fact that ψ is a solution to (B.1) and U is a solution to (3.1):1

∂t

[
ψUH

( u
U

)]
+ ∂z

[
b(z)ψUH

( u
U

)]
2

= UH
( u
U

)(β(z) + µ(z))ψ − β(z)

z∫
0

k(z′, z)ψ(z′, t) dz′

3

+ ψH
( u
U

)− (β(z) + µ(z))U +

z0∫
z

β(z′) k(z, z′)U(z′, t) dz′

4

+ ψ U H ′
( u
U

) [
∂t

( u
U

)
+ b(z) ∂z

( u
U

)]
5

= −
z0∫

0

β(z) k(z′, z)ψ(z′, t)U(z, t)H

(
u(z, t)

U(z, t)

)
dz′6

+

z0∫
0

β(z′) k(z, z′)ψ(z, t)U(z′, t)H

(
u(z, t)

U(z, t)

)
dz′7

+ ψ U H ′
( u
U

) [
∂t

( u
U

)
+ b(z) ∂z

( u
U

)]
.8

9

We compute that10

∂t

( u
U

)
+ b(z) ∂z

( u
U

)
=
∂tu

U
− u ∂tU

U2
+ b(z)

(
∂zu

U
− u ∂zU

U2

)
11

=
1

U

−∂z(b(z)u)− (β(z) + µ(z))u+

z0∫
z

β(z′) k(z, z′)u(z′, t) dz′ + b(z) ∂zu

12

− u

U2

−∂z(b(z)U)− (β(z) + µ(z))U +

z0∫
z

β(z′) k(z, z′)U(z′, t) dz′ + b(z) ∂zU

13

=

z0∫
0

β(z′) k(z, z′)

(
u(z′, t)

U(z, t)
− U(z′, t)u(z, t)

U2(z, t)

)
dz′14

+
1

U

[
−∂z(b(z)u) + b(z) ∂zu−

u

U
(−∂z(b(z)U) + b(z) ∂zU)

]
15

=

z0∫
0

β(z′)k(z, z′)
U(z′, t)

U(z, t)

(
u(z′, t)

U(z′, t)
− u(z, t)

U(z, t)

)
dz′ +

1

U

[
−b′(z)u− u

U

(
−b′(z)U

)]
,16

17

34



then the last summand is zero. Therefore, we obtain1

∂t

[
ψ U H

( u
U

)]
+ ∂z

[
b(z)ψ U H

( u
U

)]
= −

z0∫
0

{
β(z)k(z′, z)ψ(z′, t)U(z, t)H

(
u(z, t)

U(z, t)

)
2

− β(z′) k(z, z′)ψ(z, t)U(z′, t)H

(
u(z′, t)

U(z′, t)

)}
dz′3

+

z0∫
0

β(z′) k(z, z′)ψ(z, t)U(z′, t)

[
H

(
u(z, t)

U(z, t)

)
−H

(
u(z′, t)

U(z′, t)

)]
dz′4

+ ψ U H ′
( u
U

) z0∫
0

β(z′) k(z, z′)
U(z′, t)

U(z, t)

(
u(z′, t)

U(z′, t)
− u(z, t)

U(z, t)

)
dz′5

= −
z0∫

0

{
β(z) k(z′, z)ψ(z′, t)U(z, t)H

(
u(z, t)

U(z, t)

)
6

− β(z′) k(z, z′)ψ(z, t)U(z′, t)H

(
u(z′, t)

U(z′, t)

)}
dz′7

+

z0∫
0

β(z′) k(z, z′)ψ(z, t)U(z′, t)

[
H

(
u(z, t)

U(z, t)

)
−H

(
u(z′, t)

U(z′, t)

)]
dz′8

+

z0∫
0

β(z′) k(z, z′)ψ(z, t)U(z′, t)H ′
(
u(z, t)

U(z, t)

)(
u(z′, t)

U(z′, t)
− u(z, t)

U(z, t)

)
dz′.9

10

Together with11

ψ(z, t)U(z, t) = Ψ(z)U(z) and
u(z, t)

U(z, t)
=
ũ(z, t)

U(z)
12

13

this finishes the proof. �14

Proof of Lemma 3.3. Following [25], we start with the formula in Theorem 3.2 and integrate it15

w.r.t. z from 0 to z0. Then, the second summand on the left-hand side is16

b(z) Ψ(z)U(z)H

(
ũ(z, t)

U(z)

)∣∣∣∣z=z0
z=0

= 0,17

18

as
∫ z0

0 Ψ(z)U(z) dz = 1, by Assumption (A5), U > 0, and since ũ is bounded for every t ≥ 0.19

The third summand on the left-hand side is20

z0∫
0

z0∫
0

β(z) k(z, z′) Ψ(z′)U(z)H

(
ũ(z, t)

U(z)

)
dz′dz21

−
z0∫

0

z0∫
0

β(z′) k(z, z′) Ψ(z)U(z′)H

(
ũ(z′, t)

U(z′)

)
dzdz′ = 0.22

23

35



Therefore,1

d

dt

z0∫
0

Ψ(z)U(z)H

(
ũ(z, t)

U(z)

)
dz =

z0∫
0

z0∫
0

β(z′) k(z, z′) Ψ(z)U(z′)

[
H

(
ũ(z, t)

U(z)

)
2

−H
(
ũ(z′, t)

U(z′)

)
+H ′

(
ũ(z, t)

U(z)

)[
ũ(z′, t)

U(z′)
− ũ(z, t)

U(z)

]]
dz′dz,3

4

which shows the second part of the lemma.5

Since H is convex and a.e. differentiable it holds for almost all x, y ∈ R that H(x) ≥6

H(y) +H ′(y)(x− y) or equivalently H ′(y)(x− y) ≤ H(x)−H(y). Hence,7

H

(
ũ(z, t)

U(z)

)
−H

(
ũ(z′, t)

U(z′)

)
+H ′

(
ũ(z, t)

U(z)

)[
ũ(z′, t)

U(z′)
− ũ(z, t)

U(z)

]
≤ 08

9

and10

d

dt
HΨ(ũ| U) ≤ 0,11

12

i.e., the map t 7→ HΨ(ũ| U) is non-increasing. �13
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7. À. Calsina and J. Saldaña, A model of physiologically structured population dynamics with a nonlinear indi-26

vidual growth rate, J. Math. Biol. 33 (1995), 335–364.27

8. V. Calvez, M. Doumic-Jauffret, and P. Gabriel, Self-similarity in a General Aggregation-Fragmentation Prob-28

lem: Application to Fitness Analysis, J. Math. Pures Appl. 98 (2012).29

9. F. Campillo, N. Champagnat, and C. Fritsch, Links between deterministic and stochastic approaches for30

invasion in growth-fragmentation-death models, J. Math. Biol. 73 (2016), 1781–1821.31

10. N. Casali and A. Preston (eds.), E. coli Plasmid Vectors: Methods and Applications, Methods in Molecular32

Biology, vol. 235, Humana Press, Totowa, NJ, 2003.33

11. D. P. Clark and N. J. Pazdernik, Biotechnology, 2nd ed., Elsevier AP Cell Press, Amsterdam, 2015.34

12. J. M. Cushing, An Introduction to Structured Population Dynamics, Society for Industrial and Applied Math-35

ematics, Philadelphia, 1998.36

13. G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer, Berlin,37

Heidelberg, 1974.38

14. M. Doumic, Analysis of a population model structured by the cells molecular content, Math. Model. Nat.39

Phenom. 2 (2007), 121–152.40

15. M. Doumic-Jauffret and P. Gabriel, Eigenelements of a General Aggregation-Fragmentation Model, Math.41

Models Methods Appl. Sci. 20 (2010), 757–783.42

16. S.M. Focardi and F.J. Fabozzi, The mathematics of financial modeling and investment management, Frank43

J. Fabozzi Series, John Wiley & Sons, 2004.44

17. V. V. Ganusov, A. V. Bril’kov, and N. S. Pechurkin, Mathematical Modeling of Population Dynamics of45

Unstable Plasmid-bearing Bacterial Strains under Continuous Cultivation in a Chemostat, Biophysics 4546

(2000), 881–887.47

36



18. L. M. Graves, The Theory of Functions of Real Variables, 2nd ed., The International Series in Pure and1

Applied Mathematics, McGraw-Hill, New York, 1956.2

19. R.E. Greene and S.G. Krantz, Function theory of one complex variable, 3rd ed., Graduate studies in mathe-3

matics, vol. 40, American Mathematical Society, Providence, RI, 2006.4

20. H.J.A.M. Heijmans, The Dynamical Behaviour of the Age-Size-Distribution of a Cell Population, The Dy-5

namics of Physiologically Structured Populations (J. A. J. Metz and O. Diekmann, eds.), Lecture Notes in6

Biomathematics, vol. 68, Springer, Berlin, Heidelberg, 1986, pp. 185–202.7

21. H. Kuo and J. D. Keasling, A Monte Carlo Simulation of Plasmid Replication During the Bacterial Division8

Cycle, Biotechnol. Bioeng. 52 (1996), 633–647.9

22. P. Magal and S. Ruan (eds.), Structured Population Models in Biology and Epidemiology, Lecture Notes in10

Mathematics, vol. 1936, Springer-Verlag, Berlin, Heidelberg, 2008.11

23. J. A. J. Metz and O. Diekmann (eds.), The Dynamics of Physiologically Structured Populations, Lecture Notes12

in Biomathematics, vol. 68, Springer, Berlin, Heidelberg, 1986.13

24. P. Michel, Existence of a Solution to the Cell Division Eigenproblem, Math. Models Methods Appl. Sci. 1614

(2006), 1125–1153.15

25. P. Michel, S. Mischler, and B. Perthame, General relative entropy inequality: an illustration on growth models,16

J. Math. Pures Appl. 84 (2005), 1235–1260.17

26. S. Million-Weaver and M. Camps, Mechanisms of plasmid segregation: have multicopy plasmids been over-18

looked?, Plasmid 75 (2014), 27–36.19

27. S. Mischler and J. Scher, Spectral analysis of semigroups and growth-fragmentation equations, Ann. Inst. H.20
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