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Haploinsufficiency due 
to a novel ACO2 deletion causes 
mitochondrial dysfunction 
in fibroblasts from a patient 
with dominant optic nerve atrophy
Marie Anne‑Catherine Neumann1,2,15, Dajana Grossmann1,15*, 
Simone Schimpf‑Linzenbold3,4, Dana Dayan5, Katarina Stingl6, Reut Ben‑Menachem7, 
Ophry Pines7,8, François Massart1, Sylvie Delcambre1, Jenny Ghelfi1, Jill Bohler1, 
Tim Strom9, Amit Kessel5, Abdussalam Azem5, Ludger Schöls10,11, Anne Grünewald1,12, 
Bernd Wissinger4,6 & Rejko Krüger1,13,14*

ACO2 is a mitochondrial protein, which is critically involved in the function of the tricarboxylic acid 
cycle (TCA), the maintenance of iron homeostasis, oxidative stress defense and the integrity of 
mitochondrial DNA (mtDNA). Mutations in the ACO2 gene were identified in patients suffering from 
a broad range of symptoms, including optic nerve atrophy, cortical atrophy, cerebellar atrophy, 
hypotonia, seizures and intellectual disabilities. In the present study, we identified a heterozygous 
51 bp deletion (c.1699_1749del51) in ACO2 in a family with autosomal dominant inherited isolated 
optic atrophy. A complementation assay using aco1‑deficient yeast revealed a growth defect for the 
mutant ACO2 variant substantiating a pathogenic effect of the deletion. We used patient‑derived 
fibroblasts to characterize cellular phenotypes and found a decrease of ACO2 protein levels, while 
ACO2 enzyme activity was not affected compared to two age‑ and gender‑matched control lines. 
Several parameters of mitochondrial function, including mitochondrial morphology, mitochondrial 
membrane potential or mitochondrial superoxide production, were not changed under baseline 
conditions. However, basal respiration, maximal respiration, and spare respiratory capacity were 
reduced in mutant cells. Furthermore, we observed a reduction of mtDNA copy number and reduced 
mtDNA transcription levels in ACO2‑mutant fibroblasts. Inducing oxidative stress led to an increased 
susceptibility for cell death in ACO2‑mutant fibroblasts compared to controls. Our study reveals that 
a monoallelic mutation in ACO2 is sufficient to promote mitochondrial dysfunction and increased 
vulnerability to oxidative stress as main drivers of cell death related to optic nerve atrophy.
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Optic atrophy is found either as an isolated disease or as part of syndromic  disorders1,2. Maternally inherited 
Leber’s hereditary optic neuropathy (LHON) and autosomal dominant atrophies are the most common inher-
ited optic atrophies, accounting for 30–50% of inherited optic  neuropathies3,4. These disorders can be caused 
by mutations either in the nuclear or in the mitochondrial genome, and most frequently involve genes linked 
to mitochondrial  function5–8.

To date, a number of families or isolated patients with mutations in the Aconitase 2 (ACO2) gene were 
described, clinically presenting with neurodegenerative or metabolic disease of variable severity. ACO2-linked 
pathologies are inherited as an autosomal recessive trait, as all described patients carry homozygous or compound 
heterozygous missense or frameshift mutations,  respectively5,9–14.

ACO2 is a nuclear gene localized on human chromosome 22q13.2, which encodes for the mitochondrial 
monomeric protein Aconitase 2 (ACO2). ACO2 catalyzes the conversion of citrate to isocitrate within the tri-
carboxylic acid cycle (TCA)15. This enzymatic reaction is catalyzed by an iron (Fe)–Sulphur (S) cluster, which 
contains one particularly labile iron ion and is characteristic for the aconitase  superfamily16,17. Furthermore, the 
Fe–S cluster functions not only in providing the enzymatic activity of ACO2 in the TCA cycle, but also senses 
and regulates mitochondrial iron  homeostasis18 via the enzymatic conversion of citrate to isocitrate. The down-
regulation of ACO2 preserves a higher level of citrate, which transports iron into mitochondria and thereby 
ensures the required iron  levels19. Iron is an essential element and crucial for many processes, but iron accumu-
lation also promotes oxidative stress. As it is especially susceptible to different inducers of oxidative  stress20,21, 
ACO2 functions as a sensitive redox  sensor22. This sensitivity might explain the observed accumulation of ACO2 
during oxidative stress, subsequently causing mitochondrial oxidative  damage23,24.

Furthermore, ACO2 was described to play a crucial role for the maintenance of mtDNA in human  cells10,13 
and in yeast, independent of its enzymatic activity in the TCA 25. Due to its crucial function in central metabolic 
pathways, ACO2 is reported to play a role in a various number of metabolic diseases such as  diabetes26 or onco-
logical  ailments27,28, as well as neurodegenerative  diseases5,9–13.

In the present study, we identified a heterozygous 51 bp in-frame deletion in ACO2 in a family with dominant 
inherited isolated optic atrophy. We used fibroblasts derived from the index patient in order to characterize 
mitochondrial phenotypes. Fibroblasts expressing mutant ACO2 revealed decreased levels of ACO2 protein, 
a reduction of mtDNA copy number and decreased mitochondrial respiration. We also observed a higher vul-
nerability to oxidative stress in these cells, leading to increased cell death. From these results, we conclude that 
impaired mitochondrial function caused by heterozygous mutations in the ACO2 gene are sufficient to cause 
neurodegeneration leading to optic nerve atrophy observed in the patient.

Results
Identification of the deletion c.1699_1749del51 in the ACO2 gene in a patient with dominant 
inherited optic nerve atrophy. We screened 9 unrelated German patients suffering from autosomal dom-
inant optic nerve atrophy for mutations using whole exome sequencing (WES). For the selection of putative 
disease-causing genes, we considered a sub panel of genes associated with optic atrophy, including OPA1, OPA3, 
TMEM126A, WFS1, MFN2, SPG7, ACO2, RTN4IP1 and AFG3L2, and identified one male individual with the 
heterozygous deletion c.1699_1749del51 in the ACO2 gene (NCBI reference NM_001098.3; hereafter referred to 
as ACO2-mutant or ACO2.mut) (Fig. 1a; individual III.4). The deletion was subsequently validated in genomic 
DNA of the index patient by Sanger sequencing (Fig. 1b). The same deletion in ACO2 was found in all three 
other clinically affected family members, including the index patient’s son (individual IV.2), his first-degree 
female cousin (individual III.2) and her son (individual IV.1). The index patient’s daughter (individual IV.3) also 
carried the mutation but did not show clinical signs of disease when examined at the age of 16 years (Fig. 1a). 
From the WES data, we could exclude mutations in OPA1, OPA3, TMEM126A, WFS1, MFN2, SPG7, RTN4IP1 
and AFG3L2 and the common mtDNA mutations associated with LHON at positions 11778/ND4, 3460/ND1 
and 14484/ND6 in the index patient.

The patient was 26 years old at diagnosis. Clinical examination of the patient was performed at the age of 
55 years at the Institute for Ophthalmic Research and the Section for Clinical Neurogenetics of the University 
Clinic of Tübingen, Germany. The optic nerve atrophy manifested with a decreased visual acuity on the right eye 
(0.7 decimal, corresponding to approx. LogMAR 0.2), while the left eye was amblyopic in the course of esotropia 
with an acuity of 0.08 (decimal, LogMAR 2.1). During 30 years of disease progression, the best corrected visual 
acuity decreased to 0.2 (decimal, LogMAR 0.7) on the right eye, while remaining constant on the left eye. Visual 
field examination revealed central scotomas on both eyes (Fig. 1c).

Ophthalmological examination showed a distinct temporal pallor of the optic nerve on funduscopy, indicating 
an atrophy of the optic nerve, with otherwise normal morphological findings of the anterior and posterior eye 
segment (Fig. 1d). Examination of the retinal nerve fiber layer via spectral domain optical coherence tomography 
(SD-OCT) shows thinning of the optical nerve fibers in the temporal regions (Fig. 1e).

The outer retinal function for the central visual field assessed by multifocal electroretinogram, as well as by 
the full-field electroretinogramm, was normal. The outer retina of the macular area on OCT was normal.

Neurological examination revealed normal findings apart from visual deficits described above. Especially, 
there were no signs of cerebellar ataxia or cognitive deficits reported before in carriers of biallelic ACO2 
 mutations5,9–11,13,14. Laboratory tests found increased levels of ferritin (79 µg/dl; norm: 3–30) with normal levels 
of iron and transferrin.

Quantitative cDNA analysis with RNA from whole blood of the index patient revealed no evidence of 
impaired transcript splicing (data not shown). Translation of mutant transcripts thus results in an in-frame 
deletion of 17 amino acids (p.567_583del17) in the ACO2 protein (XP_024308018.1) in a region which is con-
served in eukaryotic mitochondrial aconitases.



3

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16736  | https://doi.org/10.1038/s41598-020-73557-4

www.nature.com/scientificreports/

Visualization of the overall structure of ACO2 shows that the deleted 571–583 segment lies far from the active 
site, and faces the surrounding solvent on one side (Fig. 1f). Still, the deletion is likely to affect the enzymatic 
activity of the protein because the deleted region includes several charged amino acids (FDKWDGKDLEDLQ), 
some of which form salt-bridges with key positions in the protein (Fig. 1g, black dashed lines).

This includes mainly the following: Two salt bridges between Asp-572 in segment 571–583 and two arginine 
residues (Arg-679 and Arg-684), and one salt bridge between Asp-575 in segment 571–583 and Arg-656. In 
addition, the evolutionary conserved Phe-571 interacts with the highly conserved Arg-679 via π–π and cation–π 
interactions (Fig. 1g, blue dashed lines).

The three arginine residues interacting with segment 571–583 are part of a long segment (656–684) that 
passes through the active site, and which interacts directly with the substrate. These interactions are mediated 
via Ser-670 and Arg-671.

The segment containing the two residues also contains Ser-669, which together with Arg-671 participate in 
catalysis. Deletion of segment 571–573 is likely to cause a movement of segment 656–684, and in turn disrupt 
its catalytically important interactions with the substrate. This may happen in at least two ways: (i) by removing 
the salt bridges and π interactions described above, resulting in segment 669–684 being free to move, or (ii) by 
removing the stabilizing electrostatic masking of the arginine residues by Phe-571 and Asp-572 + 575, which 
will ensue a strong repulsion between the arginine residues.

The repulsion between Arg-679 and Arg-684, both located on the same α-helix, is likely to distort the helix. In 
addition, the repulsion between Arg-679 + 684 and Arg-656, which is on a separate β-strand, is likely to push the 
first two away from the third, and in turn induce a movement of the entire segment (656–684). Since the catalytic 
residues located on this segment are accurately positioned to interact with the substrate and perform catalysis, 
the above distortion and movement of segment 656–684 are likely to disrupt substrate binding and catalysis.

The deletion c.1699_1749del51 in the ACO2 gene leads to a growth defect of a Δaco1 yeast 
strain. Aconitase is highly conserved across species and sequence alignment of human ACO2 (NP_001089.1)29 
and S. cerevisiae ACO1 (NP_013407.1) generated by  MUSCLE30 reveals a high similarity of both amino acid 
sequences (see Supplementary Fig. S1) of 66.41% (identity matrix created by Clusta12.1). We investigated the 
pathogenic potential of the ACO2 mutations by complementation analysis in S. cerevisiae with deletion of the 
yeast aco1 gene (Δaco1). Yeast cells were grown on galactose (Fig. 2a) or on ethanol medium (Fig. 2b) at different 
dilutions. When grown on galactose medium, yeast cells are forced to use mitochondrial respiration to maintain 
their energy  supply31,32. Yeast devoid of aco1, expressing only the empty Yep51 vector showed a slight growth 
defect at 30 °C, while growth at 35 °C was severely affected. Expression of the human wildtype ACO2 or ACO2-
S112R9 missense mutant rescued the growth defect of Δaco1. In contrast, expression of the p.567_583del17 
mutant ACO2 (ACO2.mut) was not sufficient to rescue the growth defect of Δaco1, indicating that mitochon-
drial respiration was impaired by this mutation (Fig. 2a).

The growth of yeast cells on a two-carbon substrate like ethanol requires a functional TCA 32. Δaco1 yeast 
and Δaco1 yeast expressing the p.567_583del17 mutant ACO2 were not able to grow on ethanol substrate, while 
Δaco1 yeast expressing ACO2-WT or ACO2-S112R9 showed similar growth on ethanol substrate at 30 °C and 
35 °C (Fig. 2b).

Overall, these results suggest that loss of aco1 and the p.567_583del17 mutant ACO2 cause defects of the 
TCA and the mitochondrial respiration.

Disease‑associated ACO2 mutations cause impaired mtDNA maintenance. We obtained fibro-
blasts from a skin biopsy of the patient and of healthy, age- and gender-matched control individuals. Western 
blot analyses revealed a significant decrease of ACO2 protein levels in ACO2-mutant fibroblast, compared to 
control fibroblasts (Fig. 3a,b).

As ACO2 is a mitochondrial protein, we also assessed the abundance of the mitochondrial marker protein 
Tom20 by Western blot (Fig. 3c). Here, we did not observe changes of protein levels between the fibroblast lines 
(Fig. 3d).

Given the reduced ACO2 protein levels in ACO2-mutant fibroblasts, we further determined ACO2 enzyme 
activity using a spectrophotometric assay. In order to avoid distortion of the assay by also measuring the enzyme 
activity of the cytosolic isoform Aconitase 1 (ACO1), we used mitochondrial fractions. Our results revealed that 
despite reduced protein levels, ACO2-mutant fibroblasts showed no alteration of overall ACO2 enzyme activity, 
using NADP+ as a substrate (Fig. 3e).

Together, our results suggest that the heterozygous 17 amino acid deletion in ACO2 likely leads to a reduction 
of ACO2 protein level, probably by increased degradation of the mutant protein. But apparently, the wild type 
proportion of ACO2 protein is sufficient to maintain the overall enzyme activity in patient-derived fibroblasts 
under baseline conditions.

Compound heterozygous mutations in ACO2 were previously shown to cause a ~ 50% reduction of mtDNA 
copy  number10, leading us to further investigate mtDNA maintenance in ACO2-mutant fibroblasts by RT-PCR. 
Our analysis revealed that mtDNA copy number (Fig. 3f) and mtDNA transcription (Fig. 3g) were significantly 
reduced in ACO2-mutant fibroblasts compared to control cells, while we did not observe changes of the amount 
of deletions in the major arc of the mitochondrial genome (Fig. 3h).

ACO2‑mutant fibroblasts display reduced mitochondrial respiratory function. ACO2 is an 
important enzyme of the TCA and is therefore critically involved in mitochondrial metabolism, which was 
assessed by measurement of the oxygen consumption rate (OCR) in whole fibroblasts (Fig.  4a). The OCR 
measurement enables the calculation of several parameters of the respiratory chain function: Basal respiration 
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(Fig. 4b), maximal respiration (Fig. 4c), spare respiratory capacity (Fig. 4d) and proton leak (Fig. 4e) were signifi-
cantly reduced in ACO2-mutant fibroblasts, compared to control fibroblasts, whereas ATP production (Fig. 4f) 
and the coupling efficiency (Fig. 4g) were not changed. These results suggest that mitochondrial respiration is 
impaired in fibroblasts under baseline conditions.

The assessment of mitochondrial respiration was further completed by measurements of the extracellular 
acidification rate (ECAR; Fig. 4h), which allows conclusions on glycolysis. Results show that neither glycolysis 
(Fig. 4i), glycolytic capacity (Fig. 4j), glycolytic reserve (Fig. 4k), nor non-glycolytic acidification (Fig. 4l) were 
changed in ACO2-mutant fibroblasts.

From these results, we conclude that ACO2-mutant fibroblasts are able to maintain their energy supply by 
glycolysis under normal cell culture conditions. By contrast, the observed reduction of mitochondrial respira-
tion in the presence of mutant ACO2 suggests that patient cells may not be able to adapt their metabolism to 
challenging conditions.

ACO2‑mutant fibroblasts are more susceptible to oxidative stress. The observed alterations of 
mitochondrial respiration in ACO2-mutant fibroblasts led us to investigate the consequence of mutant ACO2 on 
mitochondrial integrity. First, we analyzed mitochondrial morphology in fibroblasts under baseline conditions 
(Fig. 5a) and found no changes of mitochondrial aspect ratio, indicative for length (Fig. 5b), or mitochondrial 
form factor, indicating branching (Fig. 5c), in ACO2-mutant fibroblasts compared to control cells.

Also, we did not observe alterations of mitochondrial membrane potential in ACO2-mutant fibroblasts using 
TMRE staining, neither under baseline conditions, nor under Valinomycin treatment (Fig. 5d). Furthermore, 
we did not observe changes of mitochondrial superoxide production in ACO2-mutant fibroblasts, compared 
to control cells, when using MitoSOX staining under baseline conditions and under complex I inhibition with 
Piericidin A (Fig. 5e).

Finally, we investigated the effect of oxidative stress on cell viability by using the LDH assay. Cell viability 
in ACO2-mutant fibroblasts was comparable to control fibroblasts under baseline conditions, however, after 
oxidative challenge by treatment with  H2O2, we observed a significant increase of cell death in ACO2-mutant 
fibroblasts compared to control cells (Fig. 5f).

Figure 1.  Identification of the deletion c.1699_1749del51 in the ACO2 gene in a patient with dominant 
inherited optic nerve atrophy. (a) Family pedigree of the patient. Grey symbol: family members carrying the 
ACO2 deletion c.1699-1749del51. Red point: clinically affected family member with optic atrophy. Arrow head 
points to the index patient, from whom we obtained skin fibroblasts for the present study. Deceased individuals 
are marked with a line. (b) Results of Sanger sequencing of genomic DNA obtained from a healthy individual 
(ACO2 WT) and the index patient (ACO2 mutant), confirming the identified deletion c.1699-1749del51. (c) 
Visual field from the ophthalmologic examination of the patient (done in 2011) showing central scotoma of 
the left (LE) and the right eyes (RE). Dots represent defects surrounded by normal visual field, called scotomas 
(range: white > 5 dioptries (dB) to black > 30 dB). (d) Funduscopy of the ophthalmologic examination (done in 
2011). Temporal paleness of the optic nerve in both eyes. (e) Retinal fibre layer of the optic nerve heads show 
thinning of the optical nerve fibers in the temporal regions via spectral domain optical coherence tomography 
(SD-OCT). The retinal fiber layer thickness is shown on the upper right side along the circular scan line 
(highlighted by green color on the upper left panel). The normal layer thickness is indicated by the green area on 
the lower right panel. The pathologically thinning of the layer in the temporal sectors of both eyes is indicated 
by yellow and red color. N nasal, NS/NI nasal superior/inferior, T temporal, TS/TI temporal superior/inferior. (f) 
Overall structure of the human ACO2 protein. The substrate-binding region is highlighted in blue. The region 
affected by the deletion is highlighted in red. (g) The stabilizing interactions between the segment 571–583 
affected by the deletion (red backbone) and segment 656–684 (green), which passes through the active site and 
interacts with the substrate. Salt bridges are shown as black dashed lines, and the combined π-π and cation-π 
interactions are shown as blue dashed line.

◂

Figure 2.  The deletion c.1699_1749del51 in the ACO2 gene leads to a growth defect of a Δaco1 yeast strain. 
(a) Drop dilution assay of yeast grown on galactose medium or (b) on ethanol medium at 30 °C or 35 °C and at 
different dilutions (optic densities (OD) ranging from 0.1, 0.01, 0.001 to 0.0001). Yeast cells with deletion of the 
aco1 gene expressed either human ACO2 wild-type (WT) or the ACO2 deletion-mutant (ACO2.mut) or ACO2-
S112R, respectively. Expression of an empty Yep51 vector served as negative control.
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Together, the results suggest that mutations in ACO2 lead to an increased susceptibility to oxidative stress.

ACO2 enzyme activity correlates with the severity of the clinical phenotype, but not with the 
protein amount of ACO2. A number of studies reported cases of patients carrying mutations in the ACO2 
gene, including analyses in patient-derived fibroblasts. From the available literature, we noticed that the enzy-
matic activity of mutant ACO2 does not correlate with the protein level, fitting to our observation of reduced 
ACO2 protein level (Fig. 3a,b) in spite of unchanged enzyme activity (Fig. 3e). Metodiev and colleagues described 
clinical presentation and cellular phenotypes in families with different mutations in ACO2 and found that the 
compound heterozygous mutations c.220 C>G (p.Leu74Val)/c.1981 G>A (p.Gly661Arg) results in 20% protein 
level and 66% enzyme activity, while the homozygous mutation c.776 G>A (p.Gly259Asp) does not affect pro-
tein levels, but reduced enzyme activity to 5%5. Protein levels were reduced to 20% and enzyme activity to 31% 

Figure 3.  Disease-associated ACO2 mutations cause impaired mtDNA maintenance. (a) Representative image 
of Western blot analysis of ACO2 protein. (b) Quantification of Western blot analysis of ACO2 protein levels 
normalized to β-Actin. Significance calculated by Mann–Whitney test (n = 3). (c) Western blot image and (d) 
the corresponding quantification of Tom20 protein, normalized to β-Actin. Significance calculated by Mann–
Whitney test (n = 3). (e) Biochemical measurement of ACO2 enzyme activity in mitochondrial fractions from 
fibroblasts. Significance calculated by Mann–Whitney test (n = 5). (f) mtDNA copy number was analyzed by 
RT-PCR and indicated as ratio of the copy numbers of the mitochondrial gene ND1 to the nuclear encoded 
gene B2M. Significance was calculated by Mann–Whitney test (n = 9). (g) mtDNA transcription was analyzed by 
RT-PCR and indicated as ratio of the copy numbers of the D-Loop to the mitochondrial gene ND1. Significance 
was calculated by Mann–Whitney test (n = 3). (h) Major arc deletions in the mitochondrial genome were 
analyzed by RT-PCR and indicated as the ratio of the copy numbers of ND4, which is located on the minor arc, 
to ND1, which is located on the major arc of the mtDNA. Significance was calculated by Mann–Whitney test 
(n = 3). All data were indicated as mean ± SEM. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.
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in a compound heterozygous carrier of the mutations c.2208 G>C (p.Lys736Asp)5. Other studies also reported 
unchanged ACO2 protein levels, while the enzyme activity was reduced to 20% (compound heterozygous muta-
tions c.2135 C>T; p.Pro712Leu10), or 25% (homozygous c.1240T>G; p.Phe414Val33), respectively (Fig. 6).

We blotted the ACO2 enzyme activity against the protein levels reported in several studies and noticed that 
the level of ACO2 enzyme activity seems to correlate with the severity of the clinical phenotype (Fig. 6). Patients 
with higher enzymatic activity display milder clinical symptoms, e.g. a patient carrying compound heterozygous 
mutations c.220 C>G (p.Leu74Val)/c.1981 G>A (p.Gly661Arg) showed 66% enzyme activity in fibroblasts and 
displayed optic  atrophy5, while the homozygous mutation c.776 G>A (p.Gly259Asp) was associated with 5% 
enzyme activity and severe symptoms including optic atrophy, ataxia, cerebellar atrophy and  seizures5. Fitting 
to this observation, the patient described in the present study presented with an isolated optic atrophy (Fig. 1) 
and an unaffected ACO2 enzyme activity in patient-derived fibroblasts (Figs. 3e, 6).

Discussion
In the present study, we provide first evidence for haploinsufficiency of the ACO2 gene as a cause of autosomal 
dominant isolated optic atrophy. We used WES to identify potential disease-causing mutations and found a 
novel heterozygous deletion, c.1699-1749del51, in the ACO2 gene, resulting in a shortened ACO2 protein with 
an internal 17 amino acid deletion.

Mutations in ACO2 have been described in the context of early fatal or neurodegenerative disease in homozy-
gous or compound heterozygous state. The clinical symptoms range from mildly affected patients, suffering from 
isolated optic  atrophy9, to severely diseased patients, presenting with cortical or cerebellar atrophy, hypotonia, 
seizures or intellectual disabilities starting in early  infancy5,9–13. Based on the genetic results, we reason that the 
identified heterozygous c.1699_1749del51 ACO2 mutation causes an autosomal dominant inherited isolated 
optic atrophy with reduced penetrance in the herein described family.

The pathogenic nature of the ACO2 deletion c.1699_1749del51 identified in our study was further substanti-
ated by performing a yeast complementation assay. The deletion of the mitochondrial aco1 gene caused a severe 
growth defect on galactose medium as well as on ethanol medium. Complementation with a vector expressing 
the ACO2-mutant variant (ACO2 c.1699_1749del51) was not sufficient to rescue this phenotype, indicating that 
both, mitochondrial respiration and the TCA cycle were affected. Similar phenotypes of aco1-deficient yeast 
complemented with different ACO2 variants were reported in previous  studies5,9,25.

The biochemical analysis of mitochondrial function in patient-derived fibroblasts and Δaco1-yeast high-
lights the pathogenic relevance of the herein described ACO2 c.1699-1749del51 deletion. It is worth noting that 
expression of the S112R mutation showed at least a partial complementation of Δaco1-yeast, notwithstanding 
that this mutation was previously described to cause a recessively inherited syndrome of infantile cerebellar-
retinal  degeneration9.

Mitochondrial aconitase is an evolutionary strongly conserved protein that is involved in the TCA cycle and 
in the maintenance of mitochondrial function. Therefore, we used patient-derived fibroblasts to further analyze 
the cellular mechanisms of the underlying pathology.

Recent studies suggested that the ACO2 enzyme activity in patient-derived cells seem to generally correlate 
with the severity of clinical  symptoms5,11,13. Indeed, the ACO2 enzyme activity varied considerably in the different 
studies, ranging from 5 to > 60% in cells derived from patients with either homozygous or compound heterozy-
gous mutations, and patients with higher ACO2 enzyme activity presented with milder clinical  phenotypes5,9,10,13. 
This finding fits to the comparatively mild clinical phenotype of isolated optic nerve atrophy in the herein 
described patient and the unaffected ACO2 enzyme activity in the patient-derived fibroblasts.

In contrast, several studies showed that ACO2 enzyme activity does not correlate with ACO2 protein levels. 
In 2014, Metodiev and colleagues analyzed ACO2 protein levels and enzyme activity in fibroblasts from patients 
with ACO2 mutations. Cells with the lowest levels of ACO2 protein (~ 20%) showed the highest levels of remain-
ing mutant ACO2 enzyme activity (~ 30% to > 60%, respectively), while fibroblasts expressing the highest levels 
of ACO2 protein (unchanged levels compared to control fibroblasts) had the lowest enzyme activities (~ 5%)5. 
Additionally, the studies of Sadat et al. and Bouwkamp et al. showed that ACO2 enzyme activity was reduced 
to 20% or 25%, respectively, while the ACO2 protein levels were unchanged in patient-derived  fibroblasts10,33.

Despite the fact that ACO2 enzyme activity was not significantly affected in fibroblasts derived from the 
patient, the mitochondrial respiration was impaired. Basal respiration, maximal respiration and spare respira-
tory capacity were significantly decreased, suggesting that ACO2-mutant cells have a reduced capacity to cope 
with metabolically demanding conditions. Sadat and colleagues previously observed a similar impairment of 
mitochondrial respiration in ACO2-mutant patient-derived fibroblasts, accompanied with a 50% reduction of 
mtDNA copy  number10.

Hence, it was not surprising to find that fibroblasts with mutations in ACO2 in this study showed a 50% 
reduction of mtDNA copy number, which was likely the cause of impaired mitochondrial respiration. In yeast, 
the mitochondrial ACO1 protein, which corresponds to human ACO2, was found to be crucial for mtDNA 
maintenance. A diploid yeast strain with heterozygous depletion of aco1 showed drastic reduction of mtDNA 
 abundance25. This function of ACO1 was independent of the ACO1 catalytic activity and rather depending on 
retrograde metabolic  pathways25. Therefore, we conclude that optic nerve atrophy may be caused by heterozygous 
mutations in the ACO2 gene independent of its enzymatic activity. We postulate that the reduction of ACO2 
protein levels leads to defects in mtDNA maintenance, which subsequently impair mitochondrial respiratory 
function.

In addition, we further investigated mitochondria-related phenotypes by assessment of the ECAR, which 
indicates glycolytic function, mitochondrial morphology, mitochondrial membrane potential and mitochon-
drial superoxide production, none of which showed changes in ACO2-mutant fibroblasts compared to control 
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Figure 4.  ACO2-mutant fibroblasts display reduced mitochondrial respiratory function. (a) Overview 
of measurement of oxygen consumption rate (OCR) in whole fibroblasts sequentially treated with 1 µM 
Oligomycin, 250 nM FCCP and 5 µM Antimycin A + Rotenone. OCR data were normalized to the total 
protein concentration in each well after cell lysis. Data indicated as mean ± SEM, (n = 5). (b) Basal respiration, 
(c) maximal respiration, (d) spare respiratory capacity, (e) proton leak, (f) ATP production and (g) coupling 
efficiency calculated from OCR data shown in (a). Data indicated as mean ± SEM. Significance calculated by 
Mann–Whitney test, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, (n = 5). (h) Overview of measurement of the extra-
cellular acidification rate (ECAR) in whole fibroblasts. During measurement, cells were sequentially treated with 
1 mM Glucose, 10 µM Oligomycin and 10 mM 2-deoxyglucose (2-DG). ECAR data were normalized to the total 
protein concentration in each well after cell lysis. Data indicated as mean ± SEM, (n = 3). (i) Glycolysis rate, (j) 
Glycolytic capacity, (k) Glycolytic reserve and (l) non-glycolytic acidification were calculated from ECAR data 
shown in (h). Data indicated as mean ± SEM. * p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, Mann–Whitney test (n = 3).
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fibroblast lines. These results are not surprising given the fact that fibroblasts are able to maintain their energy 
demand by glycolysis.

We finally assessed cell viability in our fibroblast lines and were not able to detect differences at baseline 
conditions. However, when cells were challenged with oxidative stress using  H2O2 treatment, ACO2-mutant 
fibroblasts showed a markedly increased level of cell death compared to control cells. ACO2 was previously 
described to be sensitive to oxidative  stress20,21 and to play a role in oxidative stress-related  pathways22–24. In 
2011, Cantu et al. showed that paraquat-induced inhibition of ACO2 caused an increased production of  H2O2 
and ferrous iron accumulation with subsequent increased apoptosis of rat dopaminergic N27 cells. The authors 
concluded that ACO2 protects cells from apoptosis by the regulation of  H2O2 production and iron accumulation 
in a mitochondrial metabolism-dependent  manner34.

Additionally, it was shown that overexpression of ACO2 prevents  H2O2-induced mtDNA damage and the 
resulting mitochondrial translocation of p53 and apoptosis in alveolar epithelial cells, while knockdown of 
ACO2 enhanced  H2O2-induced mtDNA damage and subsequent  apoptosis35. In the light of these results, we 
can conclude that the observed increased susceptibility of ACO2-mutant fibroblasts to  H2O2-induced oxidative 
stress is linked to impaired ACO2 function and subsequent mitochondria-induced cell death.

Given the insufficiency of the ACO2 mutant protein to rescue the growth defect of Δaco1-yeast, together 
with the phenotypes described in ACO2-mutant fibroblasts and the autosomal dominant inheritance of the 
heterozygous mutation, we reason that the c.1699-1749del51 deletion causes a haploinsufficiency.

It is worth noting that temporal pallor of the optic nerve is a common trait of mitochondrial defects and 
autosomal dominant optic atrophy (ADOA; i.e. Kjer´s syndrome)36,37. Up to 70% of ADOA cases are caused by 
mutations in the OPA1  gene38. Interestingly, recent studies showed that OPA1 and ACO2 are involved in similar 
mechanisms, thereby possibly explaining shared clinical phenotypes in patients carrying mutations in ACO2 
or OPA1. In particular, OPA1 regulates mtDNA integrity by tethering nucleoids to the inner mitochondrial 
membrane, subsequently influencing mtDNA replication and  distribution39,40. Consequently, knockout of OPA1 
caused disorganization of the cristae and a decrease of mtDNA copy number in mouse embryonic  fibroblasts39. 
Furthermore, knockdown of OPA1 induced by siRNA in murine neurons led to a decrease of baseline mitochon-
drial respiratory function and aconitase enzyme activity while at the same time aconitase protein levels were 
not affected. In addition, neurons with OPA1 knockdown were more susceptible to oxidative stress, resulting in 
elevated rotenone-induced cell death, likely due to an impairment of the ROS defence in these  cells41. However, 
mutations in OPA1 were excluded in the herein described patient.

In summary, our study provides evidence for a novel mutation in the ACO2 gene causing haploinsufficiency 
in a pedigree with autosomal-dominant inherited optic nerve atrophy. Thereby, our study adds further details 
to the complex picture of mitochondrial defects as underlying cause of optic nerve atrophy caused by mutations 
in ACO2.

Material and methods
Clinical investigations, blood collection, informed consent. Informed consent was obtained from 
all participants. Venous blood samples were used to extract genomic DNA using standard protocols. The study 
was conducted in accordance with the principles of the Declaration of Helsinki and approved by the institutional 
review board of the Ethics Committee of the University Hospital of Tübingen, Germany (ref. 112/2001).

The index patient was examined at the Centre for Ophthalmology, University of Tübingen, Germany. The 
last follow-up examination was performed in 2014, including bst corrected visual acuity (BCVA), slit lamp 
examination and funduscopy in mydriasis, spectral domain optical coherence tomography (SD-OCT), static 
30° perimetry (Octopus 900; Haag-Streit International, Wedel, Germany), full-field and multifocal electroreti-
nography according to ISCEV (International Society for Clinical Electrophysiology of Vision) standards with 
an Espion E2/E3 (Diagnosys LLC, Cambridge, UK).

Exome sequencing. We performed whole exome sequencing (WES) in a cohort of 9 unrelated patients 
with dominant inherited optic atrophy. Exomes were enriched using the SureSelect XT Human All Exon 50 Mb 
kit, versions 4 or 5 (Agilent Technologies, Santa Clara, CA, USA). Sequencing was performed on HiSeq 2500 
systems (Illumina, San Diego, CA, USA). We considered a sub panel of genes, which are associated with optic 
atrophy: OPA1, OPA3, EM126A, WFS1, MFN2, SPG7, ACO2, RTN4IP1 and AFG3L2. Reads were aligned 
against the human assembly hg19 (GRCh37) using Burrows-Wheeler Aligner version 0.7.542. We performed 
variant calling using SAMtools version 0.1.1843, PINDEL version 0.2.4t44 and ExomeDepth version 1.0.045. Sub-
sequently, variants were filtered using the SAMtools varFilter script and custom scripts. Shortly, only SNVs 
and indels in coding regions (nonsense, missense and canonical splice site variants as well as frameshift indels) 
having a potential effect on protein function in silico (assessed using predictions from PolyPhen-2 (https ://
genet ics.bwh.harwa rd.edu/pph2/), SIFT (https ://sift.bii.a-star.edu.sg/) and CADD (https ://cadd.gs.washi ngton 
.edu/) were considered. From those, only private variants or those with a minor allele frequency < 1% in a cohort 
of more than 66,000 control individuals (ExAC Browser; https ://exac.broad insti tute.org/); and 6742 in-house 
exomes were kept for subsequent analyses.

Sanger sequencing. A 700  bp fragment encompassing exon 13 and 14 of the human ACO2 gene was 
amplified from genomic DNA with primers ACO2_Ex13F (5′ TTG GTA GGT GCA GGA GAC AG 3′) and ACO2_
Ex14R2 (5′ AAA CCT CCC TTC CAT CTC CC 3′) in a 25 µl PCR reaction with AmpliTaqII buffer (Applied Bio-
systems, Weiterstadt, Germany), 200 µM each dNTP, 200 nM each primer, 1 U Firepol Taq Polymerase (ATG 
Biosynthetics GmbH, Merzhausen, Germany), and 100 ng of total genomic DNA. PCR cycling was carried out 
with an initial denaturation for 4 min at 94 °C, 35 cycles of 20 s 95 °C, 30 s 59 °C and 90 s at 72 °C, and a final 

https://genetics.bwh.harward.edu/pph2/
https://genetics.bwh.harward.edu/pph2/
https://sift.bii.a-star.edu.sg/
https://cadd.gs.washington.edu/
https://cadd.gs.washington.edu/
https://exac.broadinstitute.org/
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extension for 7 min at 72 °C. The PCR fragment was purified by ExoSAP treatment (Thermo Fisher Scientific 
GmbH, Dreieich, Germany) and used for cycle sequencing using BigDye 1.1 chemistry (Applied Biosystems) 
and nested primer ACO2_Ex14R1 (5′ GTT CAT GGC CCT TCC CGA T 3′). Sequencing products were purified 
by isopropanol precipitation and separated on an ABI 3130XL sequencer (Applied Biosystems). Raw data were 
processed with SeqA 5.1 and sequence alignment was done using the SeqMan software (Lasergene, Madison, 
WI, USA).

Figure 5.  ACO2-mutant fibroblasts are more susceptible to oxidative stress. (a) Representative images of 
control and ACO2-mutant fibroblasts stained with MitoTracker green FM for live cell imaging of mitochondria. 
Images were obtained with a 40 × objective. Scale bars indicate 50 µm. Images were used to analyse parameters 
of mitochondrial morphology, indicating (b) mitochondrial length, reflected by aspect ratio and (c) 
mitochondrial branching, reflected by form factor. Data indicated as mean ± SEM (n = 4). (d) Mitochondrial 
membrane potential of fibroblasts was analyzed by FACS. Cells were treated with 5 nM Valinomycin for 14 h in 
order to decrease the mitochondrial membrane potential and afterwards stained with TMRE. Data indicated as 
mean ± SEM, significance calculated by 2way ANOVA with post hoc Tukey’s multiple comparison test (n = 4). 
(e) Mitochondrial superoxide production was measured in fibroblasts using FACS analysis of MitoSOX staining. 
Cells were first treated with 20 nM Piericidin A for 14 h in order to inhibit the activity of the respiratory chain 
complex I. Data indicated as mean ± SEM, significance calculated by Mann–Whitney test (n = 3). (f) Cell 
viability was assessed using the Lactic Acid Dehydrogenase (LDH) assay. Fibroblasts were incubated with 5 mM 
 H2O2 for 4 h and afterwards the proportion of cell death was calculated from the amount of released LDH 
(n = 5). Data indicated as mean ± min./max. values. Significance calculated by Mann–Whitney test. *p ≤ 0.05, 
**p ≤ 0.01, ***p ≤ 0.001.
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Quantitative cDNA analyses. Total blood RNA was reverse transcribed into single-stranded cDNA with 
the SuperScript II First-Strand Synthesis Kit (Invitrogen GmbH, Karlsruhe, Germany) using ACO2 gene-spe-
cific primers (oligonucleotide sequences available upon request).

Structural analysis of deleted segment 571–583 in human ACO2. To predict the effects of delet-
ing positions 571–583 in ACO2 we used a three-dimensional structure of the analyzed protein and inspected 
non-covalent interactions (hydrogen bonds, salt bridges) in the structure. The structure of human ACO2 
(NP_001089.1) has not been solved yet. However, its amino acid sequence is 96.5% identical to the sequence of 
the same enzyme from pig (pdb entry 1b0j). Therefore, we used this structure as a template to predict the struc-
ture of human  ACO214. The structure was predicted using the homology-modelling software  MODELLER46. 
The MolProbity web-server47 was then used to optimize side chain orientations and to add hydrogen atoms to 
the structure.

Yeast drop dilution assay. The growth assay of yeast was done as described  before9,32. Strains harbouring 
the appropriate plasmids were grown at 30 °C in synthetic depleted (SD) medium containing 0.67% (wt/vol) 
yeast nitrogen base (Difco, Detroit, MI) and 2% galactose or 3% ethanol supplemented with the appropriate 
amino acids (50 mg/ml) overnight, followed by drop dilution growth on the indicated media agar plates.

Fibroblast cell culture. Informed consent was obtained from all individuals included in this study prior to 
skin biopsy collection. Skin biopsies were obtained from one male patient with the c.1699_1749del51 deletion in 
ACO2. Age- and gender-matched healthy control individuals were recruited from the Luxembourg Parkinson’s 
study and fibroblasts were provided by the Integrated Biobank Luxembourg (IBBL) within the framework of 
the National Centre for Excellence in Research on Parkinson’s disease (NCER-PD48). All fibroblasts were grown 
in cell culture approved flasks and plates (BD Bioscience, Heidelberg, Germany; Corning, Kaiserslautern, Ger-
many; Greiner Bio-One GmbH, Frickenhausen, Germany; Thermo Fisher Scientific, Braunschweig, Germany) 
with DMEM +/+ medium (4.5 g/l Glucose + 15% FBS + 1% Pen/Strep) and were incubated at 37 °C and 5%  CO2. 
Fibroblasts were splitted with trypsin–EDTA (0.25%) phenol red (Thermo Fisher Scientific, Braunschweig, Ger-
many). Cell cultures were tested for mycoplasma contamination once per month using the Plasmo Test™ Detec-
tion Kit (InvivoGen). For all experiments, fibroblasts were used below passage 9.

Western blot (WB) analysis. Fibroblasts were grown under standard conditions and lysed with RIPA 
buffer containing Complete Protease Inhibitor (Roche, Germany). For each sample, we harvested ~ 500,000 cells 
and loaded 30 µg of total protein on 10% polyacrylamide gels and resolved by one-dimensional discontinuous 
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins were blotted on nitrocellulose 
membrane (Invitrogen GmbH, Karlsruhe, Germany) by using the iBlot 2 device (Invitrogen GmbH, Karlsruhe, 
Germany) for 7 min at 20 V. Proteins of interest were labeled with primary antibodies against ACO2 (anti-rabbit; 
Abcam: ab129069; dilution: 1:1000), β-Actin (anti-mouse; Cell signal: 37005; dilution: 1:5000), TOM20 (anti-
rabbit; Santa Cruz: Sc-11415; dilution: 1:1000) and secondary antibodies goat anti-mouse IgG (Novex: A24524; 
dilution: 1:10,000) or goat anti-rabbit IgG (Novex: A24537; 1:5000), respectively. Protein bands were visualized 
with Amersham ECL Western Blotting Detection Reagent (GE healthcare, Freiburg, Germany) on the ODYS-

Figure 6.  ACO2 enzyme activity correlates with the severity of the clinical phenotype, but not with the protein 
amount of ACO2. Overview of patients with mutations in ACO2 from different studies, showing the correlation 
between ACO2 enzyme activity, protein level and severity of the clinical phenotype. Patients with mild clinical 
phenotype are represented with green dots, patients with intermediate phenotype are highlighted by orange dots 
and patients depicted by red dots show severe clinical phenotypes.
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SEY chemiluminescence 2800 Fc (Li-COR, Lincoln, USA). Three independent samples per cell line (n = 3) were 
assessed. Image J software was used for relative signal quantification.

Mitochondrial fractionation for measurement of Aconitase 2 activity. For measurement of ACO2 
enzyme activity, mitochondrial fractions were prepared from fibroblasts as described  before49. Fibroblasts 
were collected using trypsin–EDTA (0.25%) phenol red (Thermo Fisher Scientific, Braunschweig, Germany). 
Obtained cell pellets contained ~ 6 × 106 to 10 × 106 cells and were mixed with 240  µl homogenization buffer 
(10 mM Tris, pH7.4; 1 mM EDTA; 250 mM Sucrose; Complete Protease Inhibitor (Roche, Germany)) on ice. 
Cells were homogenized for 1 min and samples were subsequently mixed with homogenization buffer to a total 
volume of 4 ml. The homogenate was centrifuged for 10 min at 4 °C, 1500×g. The supernatant was centrifuged 
again for 10 min at 4 °C, 1500×g. The supernatant from this step was afterwards centrifuged for 10 min at 4 °C, 
10,000 rpm and this step was repeated once. The resulting supernatant contained the cytoplasmic fraction and 
the pellet contained the crude mitochondria fraction.

Biochemical measurement of Aconitase 2 activity. The Aconitase-340 assay (Bioxytech, Foster City, 
USA) was used to measure enzymatic activity of ACO2, according to the manufacturer’s protocol. Measurements 
were performed on the monochromatic spectrophotometer SPECORD 210Plus (Analytic Jena AG, Jena, Ger-
many). Crude mitochondria fractions were used as described above. The OD values from the beginning (OD1) 
and the end (OD2) of the phase of linear increase was used to calculate the ACO2 enzyme activity. Absorp-
tion rate: �A340/min =

OD2−OD1
time  . Net rate was determined by subtraction of the blank rate form the samples 

rate: Net�A340/min = �A340/min
(

Sample
)

−�A340/min (Blank) . Aconitase activity (mU) was calculated in 
consideration of the molar extinction coefficient,ε , for NADPH ( ε (NADPH) = 6220 M−1 cm−1, the temperature 
correction coefficient, c (c = 2.4435) and the assay dilution, d (d = 4): Aconitase activity ( mU) =

NetA340/min

c·ε · d . 
The enzyme activity of aconitase was corrected to the dilution and normalized to protein concentration of the 
sample. Sample Dilution Correction  (mU1) = mU

Dilution . Protein Correction:  mU2 = mU1

Protein concentration .

mtDNA analysis. Mitochondrial major arc deletions, transcription-associated 7S DNA and copy number 
were quantified using a real-time PCR (RT-PCR) approach with TaqMan probes as previously  described50. In 
brief, three probes targeting different regions within the mitochondrial genome are quantified simultaneously. 
A probe in the mtDNA gene ND1, which is located in the minor arc and typically spared from deletions, is 
measured relatively to a probe in the mtDNA gene ND4, which is located within the major arc in a region that 
is commonly affected by the 4977 bp deletion. In addition, with a probe targeting the mitochondrial D-loop, the 
abundance of 7S DNA is measured relative to ND1 to determine the proportion of mtDNA molecules currently 
undergoing  transcription51. Finally, the nuclear encoded single-copy gene B2M was used as a reference to quan-
tify the amount of wildtype mtDNA copies (ND1:B2M).

Seahorse–XFe96 extracellular flux analyser. Measurement of oxygen consumption rate (OCR). We 
used whole cells to analyse OCR with the  XFe96 extracellular flux Analyzer (Seahorse Bioscience, USA) as previ-
ously  reported52,53. Twenty-four hours before the measurement, 14,000 cells per well were seeded into SF96 cell 
culture microplates (Seahorse Bioscience, USA) and incubated over night at 37 °C. The preparation of the assay 
cartridge, assay media and cell culture microplate for the measurement was done according to manufacturer’s 
protocol (Seahorse Bioscience, USA). During measurement, cells were subsequently treated with 1 µM Oligo-
mycin, 250 nM FCCP and a 5 µM mixture of Rotenone and Antimycin A (all chemicals obtained from Sigma 
Aldrich, Germany). For normalization of OCR to total protein concentration per well, the cells were lysed in the 
well after OCR measurement, using a lysis buffer with Triton X-100 and Complete Protease Inhibitor (Roche 
Applied Science, Mannheim, Germany) for 10 min at room temperature. Protein concentrations were measured 
using Bradford solution (Bio-Rad Laboratories, Munich, Germany) according to the manufacturer’s protocol. 
OCR raw data were normalized to total protein concentration in each well.

Measurement of extracellular acidification rate (ECAR). ECAR was measured in whole cells using the Glycoly-
sis stress test on the  XFe96 extracellular flux Analyzer according to the manufacturer’s protocol (Seahorse Biosci-
ence, Santa Clara, USA). On the day before the measurement, 14,000 cells per well were seeded into SF96 cell 
culture microplates (Seahorse Bioscience, USA) and allowed to grow for 24 h. The assay media was composed of 
bicarbonate-free basal DMEM (Sigma Aldrich Chemie GmbH, Munich, Germany) and 1% l-Glutamine (Sigma 
Aldrich Chemie GmbH, Munich, Germany) without Glucose. During measurement, cells were sequentially 
treated with 1 mM Glucose (Sigma Aldrich Chemie GmbH, Munich, Germany), 10 µM Oligomycin (Sigma 
Aldrich Chemie GmbH, Munich, Germany) and 10 mM of the Glucose analogue 2-deoxyglucose (2-DG; Sigma 
Aldrich Chemie GmbH, Munich, Germany). ECAR raw data were normalized to total protein concentration per 
well, similar to OCR.

Live cell imaging microscopy. For live cell imaging, fibroblasts were cultured under standard growth 
conditions and seeded into Nunc Lab-Tek Chamber slides (Thermo Fisher Scientific, Braunschweig, Germany). 
Fibroblasts were stained with 0.1  nM MitoTracker green FM (Thermo Fisher Scientific, Braunschweig, Ger-
many) in DMEM+/+ for 20 min at 37 °C and 5%  CO2. We used an Axiovert 2000 microscope with spinning 
disc (Carl Zeiss Microimaging GmbH, Jena, Germany), including an incubation chamber for the maintenance 
of a humidified atmosphere containing 5%  CO2 at 37 °C during imaging. MatLab was used for data analysis on 
single cell level, using the parameters perimeter, area, major axis and minor axis in order to calculate the Form 
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Factor (FF = (perimeter2)/(4*π*area)) as indicator of mitochondrial branching and Aspect Ratio (AR = major 
axis/minor axis) as indicator of mitochondrial length. For each cell line, between 75 and 85 cells were imaged 
and analyzed.

Flow cytometry. Flow cytometry measurement was performed with the BD LSR Fortessa (Becton, Dick-
inson and Company, Ermbodegem, Belgium). At least 10,000 cells per sample were measured and analysed 
using the Flowjo software (Flowjo LLC, Oregon, USA). An unstained control was included in every experiment 
in order to determine the autofluorescence level of each fibroblast line. Fibroblasts were grown under standard 
conditions at a density of 200,000 cells per well in 6 well plates. For measurement of the mitochondrial mem-
brane potential, cells were treated with 5 nM Valinomycin (Sigma Aldrich Chemie GmbH, Munich Germany) 
for 14  h. Fibroblasts were harvested with trypsin and stained with 20  µM TMRE (Thermo Fisher Scientific, 
Germany) for 20 min at 37 °C. For measurement of mitochondrial ROS, the growth medium was exchanged 
to low Glucose medium (DMEM 1.5 g/l Glucose + 1% Pen/Strep) without FBS 24 h prior to the experiment. 
Cells were subsequently treated with 20 nM Piericidin A (Santa Cruz, Dallas, Texas) for 14 h in order to inhibit 
complex I of the respiratory chain. Cells were harvested in trypsin and washed twice with HBSS (Thermo Fis-
cher Scientific, Braunschweig, Germany). Then, cells were stained with 2.25 µM MitoSOX™ Red Mitochondrial 
Superoxide Indicator (Thermo Fischer Scientific, Braunschweig, Germany) for 20 min at 37 °C in a  CO2-free 
incubator. Afterwards, cells were washed once with HBSS (Thermo Fischer Scientific, Braunschweig, Germany) 
before measurement.

LDH cytotoxicity assay. The Lactate dehydrogenase (LDH) cytotoxicity assay (Thermo Fisher Scientific, 
Braunschweig, Germany) was used according to the manufacturer’s protocol in order to analyse cell viability. 
Fibroblasts were grown under standard conditions in 96 well plates at a density of 15,000 cells per well. Cells 
were treated with 5 mM hydrogen peroxide  (H2O2) for 4 h at 37 °C. Colorimetric measurements were performed 
on the Microplate Cytation 5 M Cell imaging Multi Mode Reader (Bio-Rad laboratories GmbH, Munich, Ger-
many).

Statistical analyses. Graph-Pad Prism 8.0 software was used to assess the statistical significance. All meas-
urements were independently repeated three times or more, as indicated in the figure legends (n indicates the 
number of independent biological replicates). In order to account for small sample size, we used non-parametric 
tests throughout as detailed in the figure legends.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author on 
reasonable request.
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