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Concordant peripheral lipidome signatures in two
large clinical studies of Alzheimer’s disease
Kevin Huynh 1,2,28, Wei Ling Florence Lim 3,4,28, Corey Giles1, Kaushala S. Jayawardana1, Agus Salim1,5,6,7,

Natalie A. Mellett1, Adam Alexander T. Smith1, Gavriel Olshansky1, Brian G. Drew1,2,

Pratishtha Chatterjee 3,8,9, Ian Martins 3,4, Simon M. Laws 3,10,11, Ashley I. Bush 12,

Christopher C. Rowe12,13, Victor L. Villemagne13,14, David Ames15, Colin L. Masters12, Matthias Arnold 16,17,

Kwangsik Nho18,19,20, Andrew J. Saykin 18,20,21, Rebecca Baillie 22, Xianlin Han 23,

Rima Kaddurah-Daouk 16,24,25,29✉, Ralph N. Martins3,4,8,9,26,27,29✉ & Peter J. Meikle 1,2,29✉

Changes to lipid metabolism are tightly associated with the onset and pathology of Alzheimer’s

disease (AD). Lipids are complex molecules comprising many isomeric and isobaric species,

necessitating detailed analysis to enable interpretation of biological significance. Our expanded

targeted lipidomics platform (569 species across 32 classes) allows for detailed lipid separation

and characterisation. In this study we examined peripheral samples of two cohorts (AIBL, n=
1112 and ADNI, n= 800). We are able to identify concordant peripheral signatures associated

with prevalent AD arising from lipid pathways including; ether lipids, sphingolipids (notably GM3

gangliosides) and lipid classes previously associated with cardiometabolic disease (phosphati-

dylethanolamine and triglycerides). We subsequently identified similar lipid signatures in both

cohorts with future disease. Lastly, we developed multivariate lipid models that improved

classification and prediction. Our results provide a holistic view between the lipidome and AD

using a comprehensive approach, providing targets for further mechanistic investigation.
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A lzheimer’s disease (AD) is a neurodegenerative disease
characterised by progressive decline in cognitive function,
usually presenting with memory loss. In the sporadic form

of AD, symptoms usually begin to manifest after the age of 65,
and with the ageing global population, the number of people with
AD has been estimated to reach 81 million worldwide by 2040
(ref. 1). The failure of many AD clinical trials over recent years
has led to the call for a paradigm shift in AD research. It is now
recognised that additional underlying mechanisms are involved in
the pathogenesis of AD. We seek to provide a deeper molecular
understanding of metabolic pathways implicated in AD to iden-
tify key enzymes, transporters and signalling molecules that are
most amenable for therapeutic targeting. As there are no
appropriate sporadic mouse models of AD, human studies are
essential for better understanding pathogenesis of AD. In parti-
cular, statistically powered studies are needed to detect the
associations beneath the natural human biological variation.

Lipids are fundamental to every living system. These diverse
and biologically important molecules comprise thousands of
individual species, spanning multiple classes and subclasses. In
plasma, the majority of lipids are small amphiphilic molecules
(including cholesterol) that make up the circulating lipoprotein
particles such as high- and low-density lipoprotein (HDL and
LDL). With recent advances to mass spectrometry and high-
performance liquid chromatography, it is now feasible to examine
in detail the comprehensive plasma lipidome in a human popu-
lation or clinical study2. Quantification and characterisation of
these diverse lipid molecules form the foundation of the field
known as lipidomics.

Evidence that lipids are involved in AD have been demon-
strated via alterations observed in phospholipid3–5, plasmalo-
gens6, ceramide7, ganglioside8 and sulfatide7,9 compositions in
the brain. Several recent studies indicate that altered phospholipid
metabolism associated with AD pathogenesis is also observed in
the blood5,10,11, thus encouraging discovery studies for blood-
based lipid markers. Furthermore, a recent large-scale genome-
wide association meta-analysis has identified genes involved in
lipid metabolism as key risk factors for AD12.

The plasma lipidome is complex and consists of many iso-
meric and isobaric species13, these are species that share similar
or identical elemental composition but might be structurally
different and display specific associations with biological out-
comes. Existing lipidomic studies often employ techniques that
either have limited coverage of the lipidome (e.g., focusing on
one or two lipid classes) and/or provide poor resolution of lipid
species5,14–17. Limited specificity of lipidomic platforms can
result in the aggregation of multiple species in one signal,
limiting interpretation and reproducibility. Comprehensive
approaches using untargeted lipidomics can provide greater
coverage of the lipidome18,19, but can sometimes result in
ambiguous identifications. More recent studies into lipidomics
and dementia with updated methodology have shown that
more structural granularity can lead to improved interpretation
of results20. We have recently expanded our lipidomic platform
to better characterise isomeric lipid species, now measuring
569 lipids from 32 classes and subclasses. Our methodology
focuses on lipid and lipid-like compounds utilising chroma-
tographic separation. We have applied this methodology to
two large independent studies: The Australian Imaging,
Biomarkers and Lifestyle (AIBL) flagship study of ageing21 and
the Alzheimer’s Disease Neuroimaging Initiative baseline
(ADNI) cohort. Here we show the importance of capturing the
comprehensive lipidome and highlight the necessity of
obtaining molecular structural detail to identify key lipid
pathways to link the plasma lipidome with AD and the future
onset of AD.

Results
Lipidomic analysis of the AIBL and ADNI cohort. Between the
two cohorts, a total of 5733 samples (including quality controls
and blanks) on 1912 unique individuals were analysed. The
characteristics of individuals in the cross-sectional and long-
itudinal analysis are shown in Table 1 and further breakdowns are
provided in Supplementary Table 1.

We developed our platform to better characterise the lipids in
human plasma22. In total, we are able to examine 32 lipid classes
and subclasses (conditions detailed in Supplementary Table 2) for
both cohorts. In general, a similar correlation structure was
observed within the AIBL and ADNI cohorts between lipid
classes and many clinical measures (Fig. 1). Many commonly
reported lipid species associated with AD, such as sphingolipids
and ether lipids, are often reported with ambiguous annotations,
where the reported species are the sum of several isomers. Here
we report the detailed characterisation of these species.

Sphingolipids are structurally resolved through collision-
induced dissociation (CID), where fragments correspond to the
sphingoid base, with the exception of sphingomyelins. Dissocia-
tion of sphingomyelin species under normal conditions results in a
product ions that yields only sum composition data, i.e. the
sphingomyelin species, SM(42:2). To determine sphingomyelin
structural composition, we repeated the mass spectrometry
analysis on pooled plasma samples in the presence of lithium
acetate as described previously22. The lithiated adduct of
sphingomyelins produces product ions corresponding to the
sphingoid base and n-acyl chain (Fig. 1a) allowing for structural
identification. Alignment through chromatography highlights that
our measurement of SM(42:2), for example, is chromatographi-
cally separated into SM(d18:1/24:1) and SM(d18:2/24:0) (Fig. 1a).

Similarly, this approach was repeated with the different
glycerophospholipid classes to capture isomeric and isobaric
structural details where they were chromatographically resolved.
Examination of the transition m/z 770.6/184.1 corresponding
to the phosphatidylcholine/alkylphosphatidylcholine/alkenylpho-
sphatidylcholine species PC(35:3)/PC(O-36:3)/PC(P-36:2) results
in nine distinct peaks (Fig. 1b). Here we report the complete
separation of diacyl odd-numbered phosphatidylcholine species,
the non-plasmalogen ether lipids PC(O) and the plasmalogen
ether lipids, PC(P). Results were confirmed by exploiting the
susceptibility of plasmalogens to acid hydrolysis (Fig. 1b). The
correlation structure of all 32 classes and subclasses along with
clinical variables is depicted in Fig. 1c.

Concordance of associations between two studies with AD.
After adjustment for covariates (including age, sex, body mass
index (BMI), total cholesterol, HDL-C, triglycerides, site of sample
collection, APOE ε4 alleles, omega-3 supplementation and statin
use). There were 12 and 3 classes significantly associated with AD in
the AIBL and ADNI1 cohorts, respectively, after false discovery rate
(FDR) correction (Fig. 2), corresponding to 147 and 87 lipids,
respectively (219 and 157 uncorrected, Fig. 3). Meta-analysis
using a fixed-effects model identified 197 lipids and 11 classes
associated with AD between both cohorts (Figs. 2 and 3). The
lipid classes associated were predominately from the sphingolipid
classes: dihydroceramides (dhCer), trihexosylceramides (Hex3Cer),
GM3 gangliosides (GM3), GM1 gangliosides (GM1) and ether
lipids classes: alkylphosphatidylcholine [PC(O)], alkenylpho-
sphatidylcholine [PC(P)], alkylphosphatidylethanolamine [PE(O)],
alkenylphosphatidylethanolamine [PE(P)], alkyldiacylglycerol
[TG(O)].

While all plasmalogens (alkenyl classes) are ether lipids, not all
ether lipids are plasmalogens. This distinction is important when
factoring in their biological significance. Independent of multiple
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covariates, the majority of the ether lipid classes were negatively
associated with AD (Figs. 2 and 3a). This effect is compounded
when the ether lipids are esterified with omega-3 fatty acids, such
as the 22:6 acyl chain (docosahexaenoic acid, DHA). However, it
should be noted that ether lipids with polyunsaturated fatty acids
other than omega-3 were still negatively associated with AD
(Fig. 3b and Supplementary Table 3), highlighting that the effect
is not necessarily driven by omega-3 fatty acids. A non-
glycerophospholipid subclass of ether lipids, alkyldiacylglycerols,
TG(O), were negatively associated with AD, despite the species
measured predominately containing saturated or monounsatu-
rated species (Figs. 2 and 3).

Ceramide and sphingomyelin species presented with both
positive and negative associations with AD resulting in no
significant associations at the class level. In both cohorts, dhCer
was notability negatively associated with AD. Negative associa-
tions were primarily driven by 22:0 and 24:0 saturated species in
the sphingolipid n-acyl moiety, while positive associations were
predominately the shorter 18:0, 20:0 and monounsaturated
24:1 species. The sphingoid base had no apparent influence on
the association in AD. This sphingolipid pattern in AD is much
weaker in the ADNI1 cohort (Fig. 3 and Supplementary Table 3).

This effect was also seen for other complex sphingolipids,
where a positive association or trend was observed at the class
level (monohexosylceramide, HexCer, dihexosyolceramide, Hex2-
Cer, Hex3Cer, GM3 and GM1 gangliosides) in both AIBL and

ADNI cohorts (Fig. 2), but individual species within these classes
present with the same opposing relationship (negative association
with the n-acyl chains 22:0 and 24:0, and positive association with
the 18:0, 20:0 and 24:1 species). This combined trend resulted in
no association with 22:0 and 24:0 n-acyl sphingolipids but an
increased association in sphingolipids with n-acyl chains 18:0,
20:0 and 24:1, such as GM3(d18:1/24:1) which has the strongest
positive association with AD (Fig. 3 and Supplementary Table 3).

A notable pattern observed in both AIBL and ADNI cohorts,
even after adjustment for clinical measures of cholesterol and
triglycerides (TGs), was the positive associations of the lipid
classes phosphatidylethanolamine (PE) and TG (Fig. 3). This
effect has been noted in diseases where dyslipidemia is prevalent
such as type 2 diabetes23.

Similar lipids are associated with cross sectional and long-
itudinal analysis of AD in both cohorts. Using Cox regression
models, we explored lipids associated with the risk of developing
AD in the future. Baseline characteristics of this analysis are
presented in Supplementary Table 1. We noted that in both
cohorts, there was also a higher proportion of individuals with
mild cognitive impairment (MCI) in the conversion group. After
adjustment for covariates (age as time scale, sex, BMI, total
cholesterol, HDL-C, TGs, site of sample collection, APOE ε4
alleles, omega-3 supplementation and statin use), there were

Table 1 Study characteristics.

AIBL Prevalent analysis (latest time pointsa) Incident AD analysis (baseline samples)

Control AD P value Non-converters Converters P value

n 696 268 714 68
Age (years)b 75.27 (6.53) 81.40 (7.91) 2.96 × 10−32 70.30 (6.90) 77.00 (6.86) 5.83 × 10−14

Gender (% female)c 408 (58.6) 159 (59.3) 0.899 412 (57.7) 36 (52.9) 0.529
BMI (kg/m2)b 26.29 (4.35) 25.52 (3.71) 0.01 26.46 (4.19) 24.77 (3.64) 0.001
Cholesterol (mmol/l)b 5.26 (1.12) 5.39 (1.31) 0.106 5.49 (1.06) 5.50 (1.08) 0.886
HDL-C (mmol/l)b 1.58 (0.43) 1.50 (0.41) 0.008 1.67 (0.45) 1.68 (0.51) 0.853
Triglycerides (mmol/l)b 1.26 (0.63) 1.50 (0.78) 9.42 × 10−7 1.31 (0.61) 1.34 (0.55) 0.784
Site (%Melbourne)c 402 (57.8) 185 (69.0) 0.002 398 (55.7) 44 (64.7) 0.195
ApoE (no. of ε4 alleles)c 7.31 × 10−33 1.02 × 10−10

0 523 (75.1) 99 (36.9) 516 (72.3) 25 (36.8)
1 163 (23.4) 131 (48.9) 177 (24.8) 33 (48.5)
2 10 (1.4) 38 (14.2) 21 (2.9) 10 (14.7)

Time to conversion/last follow-up (years) 6.15 (2.18) 3.06 (2.03) 3.31 × 10−27

Number of MCI individuals (%) 47 (6.5) 50 (73.5) 2.63 × 10−56

ADNI Prevalent analysis (baseline samples) Incident AD analysis (baseline samples)

Control AD P value Non-converters Converters P value

n 210 178 397 166
Age (years)b 75.78 (4.93) 75.21 (7.52) 0.364 75.28 (6.34) 75.09 (7.06) 0.754
Gender (%female)a 103 (49.0) 88 (49.4) 1 164 (41.3) 64 (38.6) 0.608
BMI (kg/m2)b 26.76 (4.34) 25.57 (3.97) 0.005 26.69 (4.20) 25.69 (4.03) 0.009
Cholesterol (mmol/l)b 4.72 (0.94) 4.77 (0.94) 0.611 4.75 (0.97) 4.84 (1.09) 0.331
HDL-C (mmol/l)b 1.38 (0.45) 1.37 (0.44) 0.838 1.36 (0.44) 1.43 (0.46) 0.08
Triglycerides (mmol/l)b 1.43 (0.81) 1.42 (0.68) 0.951 1.40 (0.84) 1.36 (0.65) 0.586
No. of non-fasting 19 (9.0) 13 (7.3) 0.662 34 (8.6) 14 (8.4) 1
ApoE (No. ε4 alleles)c 1.52 × 10−15 1.91 × 10−10

0 154 (73.3) 60 (33.7) 257 (64.7) 58 (34.9)
1 51 (24.3) 85 (47.8) 118 (29.7) 83 (50.0)
2 5 (2.4) 33 (18.5) 22 (5.5) 25 (15.1)

Time to conversion/last follow-up (years) 2.76 (0.91) 1.67 (0.89) 4.19 × 10−34

Number of MCI individuals (%) 197 (49.6) 163 (98.2) 2.04 × 10−27

aLatest time point utilises the most recent/last available sample for each participant out of all samples acquired for lipidomics.
bTwo-group ANOVA.
bChi-square.
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ADNI

AIBL

Dihydroceramide [dhCer]
Ceramide [Cer]
Monohexosylceramide [HexCer]
Dihexosylceramide [Hex2Cer]
Trihexosylceramide [Hex3Cer]
GM3 ganglioside [GM3]
GM1 ganglioside [GM1]
Sulfatide [Sulfatide]
Sphingomyelin [SM]
Phosphatidylcholine [PC]
Alkylphosphatidylcholine [PC(O)]
Alkenylphosphatidylcholine [PC(P)]
Lysophosphatidylcholine [LPC]
Lysoalkylphosphatidylcholine [LPC(O)]
Lysoalkenylphosphatidylcholine [LPC(P)]
Phosphatidylethanolamine [PE]
Alkylphosphatidylethanolamine [PE(O)]
Alkenylphosphatidylethanolamine [PE(P)]
Lysophosphatidylethanolamine [LPE]
Lysoalkenylphosphatidylethanolamine [LPE(P)]
Phosphatidylinositol [PI]
Lysophosphatidylinositol [LPI]
Phosphatidylserine [PS]
Phosphatidylglycerol [PG]
Cholesteryl ester [CE]
Cholesterol [COH]
Dehydrocholesteryl ester [DE]
Acylcarnitine [AC]
Diacylglycerol  [DG]
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Fig. 1 Characterisation of lipid isomeric species and the relationship of lipid classes and subclasses within the AIBL and ADNI cohorts.
a Characterisation of sphingomyelin isomers. Black trace corresponds to the chromatogram seen under normal conditions. Additional experimental
results in the green and blue traces used for identification, corresponding to SM(d18:1/24:1) and SM(d18:2/24:0) respectively. b Characterisation of
glycerophospholipid isomers. Black trace corresponds to the chromatogram seen under normal conditions. Red trace is the same scan after sample
acid hydrolysis. c Spearman correlation of total lipid classes, subclasses and commonly reported clinical measures (bolded) for the AIBL baseline and
ADNI studies.
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Fig. 2 Associations of lipid class totals with prevalent and incident Alzheimer’s disease. Forest plots of lipid class associations for a prevalent
Alzheimer’s disease (logistic regression, AIBL= 268 cases, 696 control, ADNI= 178 cases, 210 controls) and b incident Alzheimer’s disease (Cox
regression, AIBL= 68 cases, 714 controls, ADNI= 166 cases, 397 controls). Lipid classes are generated by the sum of each individual species measured in
each class. Regressions are adjusted for age, sex, BMI, total cholesterol, HDL-C, triglycerides, number of APOE4 alleles, statin use and omega-3
supplementation. AIBL was further adjusted for time points (only in logistic regression analysis) and site of blood collection. ADNI was further adjusted for
fasting status.
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71 species associated with incident AD in the meta-analysis
(Fig. 4 and Supplementary Table 4). One hundred and sixty-one
lipids had uncorrected p values < 0.05 and the majority of these
show the same direction of association as observed for AD
(Fig. 4a). These include individual species from the ether lipids,
sphingolipids, PE and TG classes. If we further adjust for indi-
viduals diagnosed with MCI, only three species remain significant
after FDR correction, the sterol ester DE(18:1) and two plasma-
logen species.

Multivariate modelling to identify lipids important in diag-
nosing prevalent or predicting future onset of AD. Due to the
feature selection process (selecting features based on frequency
incorporating into a multivariate model), we observed that
informatively prognostic lipids, but are otherwise highly corre-
lated, would frequently be selected once in each model inter-
changeably, reducing their individual frequency count. We
utilised the correlation data to identify lipid clusters of highly
correlated species. The frequency of these clusters were then used
to rank (sum of individual incorporations), with the most
incorporated lipid in each cluster used as the representative for
the multivariate models (Supplementary Table 5).

In the disease classification model where AIBL was the
discovery set and ADNI the replication, we observed a final
concordance statistic (C-statistic) of 0.752 (0.747–0.757) through
the incorporation of 10 lipid species on top of the base model of
age, sex, BMI and APOE ε4 count (C-statistic of 0.731
[0.726–0.736]) with a Net Reclassification Index (NRI) of 0.40

when tested on the ADNI study. For incident AD, we observed a
final C-statistic of 0.675 (0.671–0.680), up from 0.644
(0.640–0.648) obtained from the base model alone (NRI of
0.40). The summary of results is presented in Table 2.

In the parallel analysis, where the ADNI was the discovery and
AIBL was the replication, the disease classification model had a
final C-statistic of 0.869 (0.866–0.871) through the incorporation
of 10 lipid species on top of the base model of age, sex, BMI and
APOE ε4 count (C-statistic of 0.820 [0.817–0.823]) with an NRI
of 0.84 when tested on the AIBL study. For prediction of future
disease onset, we observed a final C-statistic of 0.733
(0.727–0.740), up from 0.716 (0.709–0.723) obtained from the
base model alone (NRI of 0.45). The summary of results is
presented in Table 2.

Discussion
Here we present our initial results from the lipidomic analysis of
the AIBL and ADNI cohorts. Our goal was to define the complex
associations between lipids and AD using our updated metho-
dology by examining each cohort independently and subse-
quently combining them in a single meta-analysis. The
independent nature of these two studies allows for confidence in
identifying lipids that are important in AD pathology.

The positive associations of PE, diacylglycerol and triacylgly-
cerol with AD is similar to the associations seen with both pre-
diabetes and type 2 diabetes23. These species tend to correlate
closely with clinically elevated levels of TGs and reduced HDL
cholesterol (dyslipidemia). Adjustment for these clinical lipid
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Fig. 3 Associations of individual lipid species with prevalent Alzheimer’s disease. Forest plot outlining the logistic regression results of individual
species, between controls and prevalent AD in both the AIBL (blue n= 268 cases, 696 controls) and ADNI (red, n= 178 cases, 210 controls) cohorts with
the combined meta-analysis in the middle (green). P value was corrected for multiple comparison using approach by Benjamini and Hochberg. Covariates
include age, sex, BMI, total cholesterol, HDL-C, triglycerides, number of APOE4 alleles, statin use and omega-3 supplementation. Additional covariates for
AIBL include site of blood collection and time point while ADNI includes fasting status. Open circles, not significant; closed dark circles, significant after
FDR correction; coloured circles, top 20 associations ranked by p value.
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measures resulted in a loss of significance at the class level;
however, multiple species within these classes retained a sig-
nificant association with AD (Fig. 3). Interestingly, we observe
mostly monounsaturated acyl species driving the associations
within these classes. Several studies have highlighted the asso-
ciation of dyslipidemia and insulin resistance with the risk of both
vascular dementia and AD24,25. It may also be possible that the
positive association observed with the PE class is a compensatory
increase due to the decreases of PE(P) species, a phenomenon
that has been reported in plasmalogen-deficient mice26.

A key difference between plasmalogens and non-plasmalogen
ether lipids is the vinyl-ether bond in the sn1 position, which is
susceptible to oxidation27. Little of the recently reported meta-
bolomic literature with respect to AD has differentiated these two
classes5,14–17. To further complicate this issue, studies which have
obtained data from unit resolution mass spectrometers were
unable to differentiate these species from isobaric species (odd
numbered di-acyl lipids), unless extensive chromatography has
also been employed. For example, PC(35:2) has a mass difference
of 0.036 Da from PC(O-36:2) and PC(P-36:1), of which the latter
two share identical masses (isomeric). When measured on a unit-
resolution instrument without chromatography5, these all con-
tribute to the same signal. This can raise issues in instances where
these species associate differently with the outcome. This is
exemplified in the inverse relationship of odd-chain and ether
lipids with AD (Supplementary Table 3), highlighting the
importance of differentiating these species.

It has been proposed that plasmalogens act as endogenous
antioxidants through their vinyl-ether bond and that increased

oxidative stress may explain the lower levels observed in AD
patients28. However, both plasmalogen and non-plasmalogen
ether species showed similar associations with AD. Alkyl ether
lipids are less susceptible to oxidation compared to their plas-
menyl counterparts, suggesting associations with AD more likely
reflect changes to the biosynthetic pathway. In support of this,
Grimm et al.29 reported dysregulation of the peroxisomal enzymes
relating to plasmalogen synthesis in AD. Plasmalogens have been
reported to be involved in several physiological functions
including maintenance of lipid raft domains30 which are impor-
tant for secretase function, responsible for Aβ production31,
cholesterol efflux32 and cellular survival33. Importantly, peripheral
intravenous administration of plasmalogens has been shown to
inhibit Aβ accumulation in a study involving neuroinflamma-
tion34. Impairment to the synthetic pathway of ether lipids may
have deleterious downstream effects, and, in fact, these species
have been proposed as potential therapeutic compounds35.

We have observed diverse associations of specific n-acylated
ceramides with AD: positive associations were observed with
species containing 18:0, 20:0 and 24:1 fatty acids, whereas nega-
tive or neutral associations were observed for species containing
22:0, 24:0 and 26:0 fatty acids, irrespective of the sphingoid base.
In contrast, significant associations of sphingolipids with incident
AD were only observed for species containing nervonic acid
(24:1). This effect was much stronger in the AIBL study, while
ADNI exhibited similar trends but were not significant after FDR
correction. Despite this, the meta-analysis of sphingolipid asso-
ciations resulted in much more power than utilising the AIBL
study alone (Supplementary Table 3).
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Fig. 4 Associations of individual lipid species with future onset Alzheimer’s disease. Forest plot outlining the Cox regression results of individual species,
between non-converters and future converters in both the AIBL (cyan n= 68 cases, 714 controls) and ADNI (orange, n= 166 cases, 397 controls) cohorts
with the combined meta-analysis in the middle (purple). P value was corrected for multiple comparison using approach by Benjamini and Hochberg.
Covariates include age (set as timescale), sex, BMI, total cholesterol, HDL-C, triglycerides, number of APOE4 alleles, statin use and omega-3
supplementation. Open circles, not significant; closed dark circles, uncorrected p value; coloured squares, top 10/20 associations ranked by p value.
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Synthesis of 24:1 is likely through elongation of 18:1 which
itself is synthesised through unsaturation via stearoyl-CoA
desaturase 1 (SCD-1). Interestingly, increased SCD-1 activity
has previously been associated with AD36, and this may be
contributing to the increased abundance of these mono-
unsaturated lipid species. We observed similar positive associa-
tions with 18:1 relative to 18:0 in many of our measured lipid
species, particularly species with a single fatty acid (e.g. LPC and
CE species, Supplementary Table 3). Interestingly SCD-1 is
associated with insulin resistance and adiposity, and mouse
experiments have shown that disrupting SCD-1 function can
potentially reduce body adiposity and improve insulin sensitiv-
ity37. This is relevant as obesity, insulin resistance and diabetes
type II are all likely linked to increased risk of AD38

Specific ceramide synthases are responsible for the n-acylation
of ceramide species, in particular, ceramide synthase 2 (20:0 to
26:0) and 3 (22:0 to 26:0)39. Decreases in the activity of ceramide
synthase 2 (CerS2) have been observed in AD, early in patho-
genesis40. Thus, the negative association of Cer(22:0), Cer(24:0)
and Cer(26:0) may be driven by decreases of CerS2, while the
positive association of Cer(24:1) driven by SCD-1 cancels out the
negative association observed with CerS2, which would, on its
own, be expected to result in decreased levels of this species.

Gangliosides are a group of sphingolipids with oligosaccharide
groups linked to the sphingoid base. GM3 gangliosides, the most
abundant circulating ganglioside class, is positively associated
with AD. Gangliosides have been reported to accelerate Aβ
aggregation, leading to deposition in the brain41. While the
mechanism leading to increased circulating gangliosides is cur-
rently not known, gangliosides are not commonly measured, and
thus far no other reports have described an association between
circulating GM3 gangliosides and AD.

The demographic and study design differences between the
AIBL and ADNI cohorts presented a unique opportunity to
validate some of the lipid markers in this study. Despite the
geological differences with the two studies, the cross-sectional
associations identify fairly similar associations and patterns
within the lipidome and disease outcome. However, one challenge
was the study design differences, where the distribution of con-
trol, MCI and AD cases were quite different (approximately
7:1:2.5 for AIBL and 1:2:1 for ADNI) which resulted in some
differences of important variables in the multivariate modelling,
thus requiring retraining of the coefficients in the replication set
despite normalisation. Nonetheless, we were able to identify
several lipids that appear to be key in identifying individuals who
have, or are at, risk of developing AD. These lipids highlight
unique features that provide information on top of easily
obtained anthropometric (age, sex, BMI) and biochemical fea-
tures (APOE ε4 alleles). While we were able to test and validate
these models across the two cohorts, ultimately a population
study will be required to fully assess model performance.

While our lipidomic methodology offers a broad coverage of
the lipidome, in the absence of stable isotope standards for each
of the 569 lipid species, lipidomics will not provide exact quan-
tification. We include a single internal standard per lipid class
to provide quantitative data, while acknowledging that differential
response factors will lead to slight offsets of the calculated
concentration relative to their true concentration. However, this
does not impact the association analyses performed in this study
nor the multivariate modelling to predict prevalent and
incident AD.

Cross-sectional studies have some inherent limitations. We
observed strong associations between 218 plasma lipid species
and AD. However, dysregulation of the lipidome can arise from
sources other than the disease pathology (reverse causation), for
example, dietary and activity changes arising as AD progresses.T
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To address this, we were also able to perform association studies
with incident AD where we identified similar, albeit weaker,
associations with the majority of the same lipid species.

The AIBL and ADNI cohorts represent two powerful studies to
characterise AD and the combination provides the opportunity to
validate findings across studies. However, these cohorts were
selected to be high risk for AD and so traditional risk factors,
including age and APOE genotype, are stronger predictors than
in an unselected population. As a consequence, these cohorts
likely underestimate the performance of risk models for incident
AD and further studies on balanced population cohorts will be
required.

To conclude, we have performed one of the most compre-
hensive lipidomic analysis of AD to date by utilising two large,
independent clinical studies in AD. We have provided a holistic
picture of lipid dysregulation associated with both prevalent and
incident AD. Our plasma lipid dataset expands the scientific lit-
erature by providing greater resolution and allowing fine-granular
analysis of the lipidome. Here we have highlighted specific
changes to the ether lipid pathway, where plasmalogens are not
the only drivers of ether lipid associations. Class-wide and
species-specific changes highlight the necessity of a broad and
detailed assay to capture these minute differences in the lipidome.
We have demonstrated the potential of plasma lipids as the
markers to improve assessment of prevalent and incident AD,
highlighting the importance of these small molecules in both
disease prognostics and understanding the metabolic changes
occurring with the disease.

Methods
Participants. The AIBL study recruited 1112 individuals over the age of 60 years
into a longitudinal study42. At baseline, this comprised 768 cognitively normal, 133
with mild cognitive impairment and 211 with AD. Time points for blood/data
collection were every 18 months from baseline. Detailed description of the parti-
cipants was adapted from Ellis et al.42. We analysed all available fasted plasma
samples (4106) from baseline up to the fifth time point. After filtering for missing
values and problematic samples, the breakdown of sample numbers used in sta-
tistical analysis is presented in Table 1. In total, there were 1073, 963, 731, 702 and
564 samples at baseline, and follow-up times 1–4, respectively. While there were
decreasing number of samples at successive time points, this was not completely
driven by attrition, as some were missing owing to low sample material or were
unobtainable at the start of the lipidomics study.

The ADNI1 study started in 2004 and recruited about 800 individuals at
baseline. The initial goal was to recruit 200 participants with mild AD and 200
controls as well as 400 participants with MCI. Study data analysed here were
obtained from the ADNI database, which is freely available online (http://adni.loni.
usc.edu/). We utilised serum samples from the ADNI1 baseline cohort and follow-
up data from the 6-, 12-, 18-, 24- and 36-month recalls for incident AD analysis.

Classification of disease state. Classification of MCI and AD in the AIBL cohort
has been described extensively in previous publications42. Clinical criteria used to
determine disease status included Mini Mental State Examination score of less than
28, failure on the Logical Memory test (in accordance with the ADNI criteria),
other evidence of possible significant cognitive difficulty on neuropsychological
testing, a Clinical Dementia Rating score of 0.5 or greater, a medical history sug-
gestive of the presence of illnesses likely to impair cognitive function, an informant
or personal history suggestive of impaired cognitive function, or who were con-
suming medications or other substances that could affect cognition42. A more in-
depth description of the ADNI cohort diagnostic criteria is reported elsewhere43;
briefly, AD dementia diagnosis was established using NINDS‐ADRDA criteria for
probable AD. Classification as MCI followed the Petersen et al.44 criteria described
previously.

Lipid extraction and liquid chromatography mass spectrometry. Lipids were
extracted from 10 μl plasma (AIBL) or serum (ADNI), with the addition of an
internal standard mix (Supplementary Table 2), using the single-phase butanol/
methanol extraction method45. In brief, 10 μl of samples were mixed with 100 μl of
1:1 butanol:methanol containing the internal standards22, the samples were vor-
texed, sonicated on a sonicator bath and centrifuged (13,000 × g, 10 min). The
supernatants were transferred into glass vials and stored at −80 °C. On average,
486 samples were extracted per day. Prior to mass spectrometry analysis, samples
were thawed for 1 h at room temperature, vortexed and sonicated on the sonicator
bath for 15 min and left to sit at 25 °C for 2 h prior to analysis.

Analysis of plasma extracts was performed on an Agilent 6490 QQQ mass
spectrometer with an Agilent 1290 series HPLC system. Mass spectrometry settings
and transitions for each lipid class are shown in Supplementary Table 2.

Mass spectrometer running conditions were gas temperature 150 °C, gas flow
rate 17 l/min, nebulizer gas pressure 20 psi, sheath gas temperature 200 °C,
capillary voltage 3500 V and sheath gas flow 10 l/min. Isolation widths for Q1 and
Q3 were set to “unit” resolution (0.7 amu). The Agilent 1290 HPLC conditions
were as follows: The composition of running solvents A and B comprised 50:30:20
and 1:9:90 water, acetonitrile and isopropanol, respectively. A ZORBAX eclipse
plus C18 (2.1 × 100 mm 1.8 mm, Agilent) column was used. Solvents were run at a
flow rate of 0.4 ml/min with the column compartment temperature set to 60 °C.
The solvent gradient was as follows: starting at 10% B and increasing to 45% B over
2.7 min (while diverting to waste for the first minute), then to 53% B over 0.1 min,
to 65% B over 6.2 min, to 89% B over 0.1 min, to 92% B over 1.9 min and finally to
100% over 0.1 min. The solvent was then held at 100% B for 0.8 min and returned
to 10% B over 0.1 min (a combined total of 12 min). The column was re-
equilibrated in 10% B at an adjusted flow rate (0.4 ml/min for 0.9 min, then
0.6 ml/min for 1 min, then back to 0.4 ml/min for 0.9 min) prior to the next
injection.

Additional experiments using pooled samples were utilised under varying
conditions to get acyl composition data. To obtain further structural detail of
isomeric and isobaric lipid species under the presented chromatographic
conditions, we performed additional fragmentation experiments using pooled
samples22. The additional experiments to characterise the lipid species include acid
hydrolysis, which selectively depletes plasmalogens leaving non-plasmalogen ether
species intact, fragmentation in the presence of lithium ions in positive ionisation
mode and fragmentation in negative ionisation mode, both of which yield
characteristic product ions for structural elucidation under our reported analytical
conditions22.

Data integration, batch alignment and statistical analysis. Peak area of the lipid
species was related to the internal standards to generate concentration data. To
remove technical batch variation, the lipid data in each analytical batch
(approximately 486 samples a batch) were aligned by using the median value of
each lipid of the plasma quality control samples. As most lipid species were
positively skewed, final lipid concentrations were log10 transformed prior to sta-
tistical analysis. Lipid class totals were generated by summing the individual species
within each class.

All statistical analyses were performed in the R statistical platform (version 3.4.1+).
For logistic and Cox regression, lipid data were scaled by the standard deviation and
mean centred within each cohort. When examining associations with prevalent disease,
we excluded MCI individuals from the analysis in both studies to provide a clean
distinction between disease and non-disease. Furthermore, to maximise the number of
AD samples in the prevalent disease analysis, we utilised the last acquired sample for
each participants and have added covariates corresponding to each time point to adjust
for possible confounding effects.

For examining incident disease analysis, we utilised the baseline samples only.
This analysis included healthy and MCI individuals. For both analyses, the meta-
analysis was performed using the “meta” package in R and was performed using a
fixed effects model.

Correlation analysis was performed using Spearman correlation, with
hierarchical clustering of co-linear lipids (complete distance method) followed by
tree cutting using the Dynamic cut R package (hybrid method), resulting in 150
and 148 clusters for the AIBL and ADNI lipid data, respectively.

Common covariates utilised in statistical analysis include age, sex, BMI, HDL
cholesterol, total cholesterol, clinical TGs, statin use and omega-3 supplementation.
FDR correction was performed using the method of Benjamini and Hochberg46

using the nominal p values from each univariate analysis (569 comparisons for
individual lipid species and 32 comparisons for lipid classes). Meta-analysis to
combine the results between the two cohorts was conducted using an inverse-
variance weighted averaged fixed effect meta-analysis, with similar FDR corrections
applied to the nominal p values. For modelling, each cohort was Z-scored
independently.

Multivariate modelling of AD. We leveraged the availability of two independent
cohorts to train and test different lipid models to diagnose prevalent disease
(logistic models) and identify individuals at risk of future AD onset (Cox models).
We used one cohort to define a set of features (discovery) for a multivariate model
(common clinical variables+multiple lipid species) and used the second cohort to
test these features for their predictive performance (replication). We then repeated
this process switching the cohorts around.

With the AIBL cohort, we used a 2:1 age–sex-matched baseline subset
(Supplementary Table 1) due to the low incidence of conversion and the large age
difference between converters and non-converters within the cohort. Similarly, we
did not adjust for MCI in these models to better allow the predictive performance
of the lipidomic markers to be assessed. Due to the different population
distribution and characteristics of the two cohorts (AIBL and ADNI) we retrained
the model (using the selected features) on the replication cohort. This was also
done in a cross-validated framework to avoid overfitting.
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To define a feature list in the discovery cohort, we generated a series of models
using forward stepwise regression, adding lipid species to the existing covariates (to
a maximum of 5 lipids for the Cox model and 10 for the logistic model), while
minimising the Akaike Information Criterion, within a 10-fold cross validation
framework.

We rationalised that a stepwise approach would help us to maximise model
performance while incorporating a minimum number of lipid species into the
model, producing a simpler model to minimise the potential of overfitting. We
used the frequency of incorporation into the training models, after accounting for
clustering of co-linear lipids, to define a set of features that were subsequently
validated in the replication cohort.

The need to consider highly correlated lipids within clusters in our selection
process was due to the tendency of these lipid species to be selected in different
cross-validation folds, and thus reduce the ranking of these correlated lipid species
despite being strong predictors of AD. By considering these correlated lipids within
clusters, ranking the clusters and selecting only the top ranked lipid within each
cluster, we optimised the ranking of the most powerful predictors while avoiding
the selection of highly correlated lipid species.

For replication, the features selected from the discovery cohort were modelled
in the replication cohort, also within a 10-fold cross-validation framework. The C-
statistic and NRI were calculated after 200 repeats from the replication results. This
process was repeated such that AIBL and ADNI were utilised as both discovery and
replication sets.

Naming convention of lipid species. The lipid naming convention used here
follows the guidelines established by the Lipid Maps Consortium and the short-
hand notation established by Liebisch et al.47–49. We identified several species of
interest that are not structurally resolved. These species separated chromato-
graphically but incompletely characterised were labelled with an (a) or (b) to
differentiate them, for example PC(P-17:0/20:4) (a) and PC(P-17:0/20:4) (b) where
(a) and (b) represent the elution order. Separated isoforms that contain a 16:0
methyl branched fatty acid are presented as MHDA (methylhexadecanoic acid).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data to support these findings are available online and upon request. The entire ADNI
lipidomic and clinical characteristic data are available online (adni.loni.usc.edu,
specifically, ADMC Lipidomics Meikle Lab Baseline Data Matrix [ADNI1]) and the
remaining data (AIBL) used in this study are available from both the corresponding
authors and online at https://aibl.csiro.au upon reasonable request. Source data are
provided with this paper.
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