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SUMMARY

While the analysis of mitochondrial morphology has emerged as a key tool in the
study of mitochondrial function, efficient quantification of mitochondrial micro-
scopy images presents a challenging task andbottleneck for statistically robust con-
clusions. Here, we present Mitochondrial Segmentation Network (MitoSegNet), a
pretrained deep learning segmentation model that enables researchers to easily
exploit the power of deep learning for the quantification of mitochondrial
morphology. We tested the performance of MitoSegNet against three feature-
based segmentation algorithms and themachine-learning segmentation tool Ilastik.
MitoSegNet outperformed all other methods in both pixelwise and morphological
segmentation accuracy. We successfully applied MitoSegNet to unseen fluores-
cence microscopy images of mitoGFP expressing mitochondria in wild-type and
catp-6ATP13A2 mutant C. elegans adults. Additionally, MitoSegNet was capable of
accurately segmenting mitochondria in HeLa cells treated with fragmentation
inducing reagents. We provide MitoSegNet in a toolbox for Windows and Linux
operating systems that combines segmentation with morphological analysis.

INTRODUCTION

Cellular organelles are integral to eukaryotic cells and their functions. One organelle that has always been

of particular interest is the mitochondrion, which plays an essential role in several metabolic pathways

including that of Adenosine triphosphate (ATP). Mitochondria are often represented as static, bean-

shaped organelles but actually form highly dynamic ‘tubular’ networks that often undergo changes in dis-

tribution and morphology (Tilokani et al., 2018; Chan, 2020). The steady-state morphology of mitochondria

in a cell is a result of a balance between two opposing processes, mitochondrial fusion and fission. Changes

in this balance result in changes in mitochondrial morphology. It has been shown that changes in

morphology allow mitochondria to respond to metabolic or environmental stresses, while maintaining ho-

meostasis (Tondera et al., 2009; Rolland et al., 2013; Wai and Langer, 2016). While partially damaged mito-

chondria can be rescued by exchanging their contents with functional mitochondria through mitochondrial

fusion, mitochondrial fission enables the removal of damaged mitochondria and can also facilitate

apoptosis during increased levels of cellular stress (Pernas and Scorrano, 2016). Mitochondrial fusion

and fission are regulated by a conserved family of dynamin-related GTPases and have been well studied

in Caenorhabditis elegans (van der Bliek et al., 2017). In C. elegans, the membrane anchored dynamin-

related GTPases FZO-1MFN and EAT-3OPA1 are required for the fusion of the outer- and inner mitochondrial

membranes, respectively. The loss of function of either of these two proteins results in mitochondria with a

‘fragmented’ morphology (Breckenridge et al., 2008; Ichishita et al., 2008; Kanazawa et al., 2008; Tan et al.,

2008; Rolland et al., 2009).

Mitochondrial fission inC. elegans ismediatedbyDRP-1DRP�1, a cytosolicdynamin-relatedGTPase.Depletionof

DRP-1 has been shown to result in mitochondria with an ‘elongated’ morphology (Labrousse et al., 1999). Muta-

tions in the human orthologs of the genes encoding these proteins have been associated with several diseases,

including neurodegenerative diseases (Chan, 2020). For this reason, understanding mitochondrial fusion and

fission is not only an important basic biological question but is critical for our ability to understand the pathology

of thesediseases and todevelop novel therapeutics to treat them.However, such studies havebeen hinderedby

the fact that is difficult to assess mitochondrial morphology in different genetic backgrounds or physiological
iScience 23, 101601, October 23, 2020 ª 2020 The Authors.
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conditions in an unbiased and quantitative manner. Specifically, the diversity of shapes among mitochondria

(elongated, fragmented, tubular, as well as ‘mixed’ morphologies) poses a challenge to the automated quanti-

ficationofmitochondrialmorphology.For this reason, researchersoften resorted to theuseof a simplequalitative

assessment ofmitochondrial morphology. As a result, subtle differences inmorphology and, hence, phenotypes

are often not detected. To analyze mitochondrial morphology, for example, in C. elegans, mitochondria are

labeled using either a mitochondria-specific fluorescent dye (such as TMRE) or a transgene expressing a mito-

chondrial-targeted GFP (mitoGFP) (Regmi and Rolland, 2017) and a fluorescent microscopy image is acquired.

In order to quantify the mitochondrial morphology in an automated and unbiased manner, the next critical

step is tosegment theobjects in thefluorescent image.The simplest formof imagesegmentation is thresholding,

which is only successful if features arewell separated and their intensities vary considerably from the background

(TorborgandFeller, 2004).These requirementsare seldommet in live cell imagingduetoautofluorescence,noise

or fluctuating intensities. Thresholding segmentation can be improved through the prior application of feature

enhancement algorithms based on intensity derived features, such as the Difference-of-Gaussians (DoG), Deter-

minant ofHessian (Satoet al., 1998) or Laplacian-of-Gaussian (LoG),which are also knownasblobdetectors. DoG

is used to enhance the visibility of edges by removing high frequency information but at the cost of reducing the

overall image contrast,while LoG is useful fordetectingedges that appear atdifferent image scales ordegreesof

focus (Marr andHildreth, 1980; Lindeberg, 1994). Curvilinear structures (such as nerve fibers or blood vessels) can

besegmentedusing theeigenvaluesof aHessianmatrix,withwhichonecancalculate theobject curvature. There

are a many other methods available used in segmentation workflows, such as morphological filtering (dilation,

erosion, etc.), region accumulation (watershed transform), deformable model fitting (active contour model)

and machine learning (k-means clustering, random forest, etc.) (Meijering, 2012). Most of these methods can

now be implemented by biologists through free and opensource tools such as Fiji (Schindelin et al., 2012), Cell-

Profiler (McQuin et al., 2018) or Ilastik (Berg et al., 2019).

All of these segmentation methods have shown varying degrees of success depending on the images they

were supposed to segment (de Boer et al., 2015; Li et al., 2015; Akram et al., 2017; Berg et al., 2019). How-

ever, with rising image complexity as well as a decreased signal-to-noise ratio, most of the methods

perform poorly. For such cases, the only option in the past was manual segmentation, which is highly labo-

rious and introduces a varying degree of bias on each labeled image. With the recent emergence of deep

learning and in particular the development of convolutional neural networks (CNNs) (LeCun et al., 1989;

Krizhevsky et al., 2012) automated approaches that perform these tasks with human accuracy have become

available. CNNs were inspired by the research of Hubel and Wiesel on the primary visual cortex of cats

(Wiesel and Hubel, 1963). CNN’s can classify data based on convolution and pooling operations. Convo-

lution describes the extraction of features from an image by sliding filters across the image and generating

feature maps. Pooling reduces the dimensionality of each feature map, while retaining the most important

information. It also reduces the number of network parameters, prevents overfitting, and makes the

network invariant to small distortions in the input image (Scherer et al., 2010). Through the successive

and repetitive application of convolution and pooling, CNNs are capable of classifying highly complex im-

ages with great accuracy (Szegedy et al., 2014). To perform semantic segmentation, which is the assign-

ment of a class label to each pixel, one must use a fully convolutional neural network (FCNN) (Long

et al., 2014). A popular FCNN in the biological community is the U-Net that was specifically developed

for biomedical image segmentation (Ronneberger et al., 2015). It has been successfully applied to many

different biomedical image segmentation tasks and yields good results with only a few hand-segmented

images (Chlebus et al., 2018; De Fauw et al., 2018; Stember et al., 2018).

In this study, we trained a U-Net, which we namedMitochondrial Segmentation Network (MitoSegNet), to learn

howtosegmentmitochondria inadultC.elegansbodywallmusclecells, compared itsperformanceandtested its

generalizability in biologically relevant applications that demonstrateC. elegans animals carrying a loss-of-func-

tion mutation in the gene catp-6ATP13A2 exhibit a previously unreported mitochondrial morphology phenotype.

We also show that MitoSegNet can be successfully used to analyze mitochondrial morphology in HeLa cells.
RESULTS

The MitoSegNet Model

The MitoSegNet model was generated by training a modified U-Net with a training set of 12 1300 3 1030

pixel fluorescent microscopy, maximum-intensity projection images, depicting mitochondria in body wall

muscle cells of adult C. elegans worms (mitochondria were visualized using a transgene expressing mito-

chondrial matrix-targetedGFP under the control of a body wall muscle-specific promoter (Pmyo3::mitoGFP))
2 iScience 23, 101601, October 23, 2020
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Figure 1. Training the MitoSegNet Model and Using It with the MitoS Tool

(A) The original training data is comprised 12 raw images and the appendant hand-generated ground truth images. Each

image is split into 4 overlapping tiles of equal length. For each tile, a weight map is generated and subsequently all three

set of tiles (raw images, ground truth, and weight maps) are augmented 80 times, increasing the size of the training data to

3,840 image tiles. Prior to training, the augmented training data is split into training (80%) and validation data (20%). The

pretrained MitoSegNet model can now be used to segment new images of mitochondria.

(B) We performed a cross validation for which 12 separate MitoSegNet models were trained each with 11 images,

excluding one image that was later used to test the prediction accuracy against other segmentation methods.
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(Figure 1A and Methods). Our U-Net modification entails the removal of dropout layers at the end of the

contracting pathway and instead placing batch normalization layers after every convolutional layer prior to

ReLU activation in the contracting pathway. This modification decreased the amount of necessary training

time. Each image was split into 4 overlapping tiles. For each tile, 80 augmented copies were generated for

training themodel. A cross validation was performed to estimate the performance of theMitoSegNet on an

unseen test set and to compare it against other segmentation methods (Figure 1B).
Visual Comparison of Segmentation Performance

To qualitatively evaluate the performance of the MitoSegNet, we compared the predicted segmentations

against manually segmented ground truth in an unseen test set. The same procedure was repeated for four

other segmentation methods. We considered three classical feature enhancement methods (Gaussian,

Hessian, and Laplacian) followed by different thresholding algorithms, all implemented in ImageJ/Fiji.

The fourth method is the machine-learning segmentation tool Ilastik (Kreshuk and Zhang, 2019). The

Gaussian, Hessian, Laplacian, and Ilastik methods failed to consistently prevent false positive and/or false

negative segmentation on all phenotypes (Figure 2). The Gaussian segmentation produced large sections

of false positive predictions in the mixed and tubular phenotype (indicated by yellow arrows). The Hessian

and Laplacian segmentation largely avoided false positive predictions but instead often failed to recognize

mitochondria, resulting in false negative segmentations in the elongated, mixed, and tubular phenotype

(and fragmented for the Laplacian segmentation) (Figure 2). The Ilastik-based segmentation produced

only very little false negative predictions but like the Gaussian segmentation, predicted large amounts

of false positives in all but the fragmented phenotype. The MitoSegNet segmentation drastically reduces

the amount of false negative or false positive segmentation when compared to the other methods and

yielded consistent results across all different phenotypes (Figure 2).
iScience 23, 101601, October 23, 2020 3
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Figure 2. MitoSegNet Visually Outperforms Feature-Based Segmentation Approaches

On the left side, four images of elongated, fragmented, tubular, and mixed C. elegansmitochondria and their respective

ground truth are shown. The masks on the right show the results of MitoSegNet and the four segmentation methods

applied to each image, displaying the false negative segmentation in red, the false positive segmentation in turquoise,

the true negative segmentation as black, and the true positive segmentation as white. The yellow arrows indicate areas in

which false segmentation occured. The scale bar is 5 mm.
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Quantitative Comparison of Segmentation Performance

To compare the methods’ performance more quantitatively, we evaluated the pixelwise segmentation ac-

curacy using the dice coefficient (Taha and Hanbury, 2015). The MitoSegNet outperforms the feature-

based and Ilastik-generated segmentations (Figure 3A) with a median dice coefficient of 0.89 and a lower

and upper 95% confidence interval of 0.87 and 0.91 (N = 12) significantly (p = 5.11*10�5, Kruskal-Wallis test).

However, pixelwise accuracy as measured by the dice coefficient does not necessarily guarantee correct

prediction of morphology (Figure 3B). Because segmented images in biology are often used for morpho-

logical quantification (de Boer et al., 2015; Abdolhoseini et al., 2019; Orozco-Fuentes et al., 2019), we as-

sessed the morphological accuracy with two other approaches. The single object shape deviation per ob-

ject was measured for five shape descriptors (area, eccentricity, aspect ratio, perimeter, and solidity) and

averaged over 12 images (Figure 3C). The MitoSegNet with a median average fold deviation of 1.09 and

a lower and upper 95% confidence interval of 1.07 and 1.12 (N = 60) outperforms all other methods in

the accurate prediction of single object morphology (p = 7.4*10�10, Kruskal-Wallis test) (Figure 3D).

Because the single object shape deviation method does not consider false negative predictions, we also

compared all segmented objects in ground truth and prediction. For each image and each of the five ob-

ject descriptors, the energy distance between the ground truth and predicted distributions was calculated

(Figure 3E). Due to the different value ranges among the descriptors the values were normalized prior sta-

tistical analysis. The MitoSegNet segmentation achieves a median normalized energy distance of 0.20 with

a lower and upper 95% confidence interval of 0.16 and 0.23 (N = 60) and again statistically outperforms all

other non-deep learning segmentation methods (p = 3.3*10�18, Kruskal-Wallis test) (Figure 3F).
Comparison of Mitochondrial Morphology between Catp-6ATP13A2 Mutant and Wild-type

To evaluate the applicability of the MitoSegNet on a different, unseen set of images, we decided to use the

MitoSegNet to determine whether a loss-of-function mutation of the gene catp-6ATP13A2, ok3473 (hereafter

referred to as catp-6(lf)), causes a mitochondrial morphology phenotype. catp-6ATP13A2 encodes a member

of the family of P-type ATPases, which transport various compounds across membranes using ATP hydro-

lysis as energy source (Moller et al., 1996; Lambie et al., 2013; Anand et al., 2020). In addition, catp-6ATP13A2
4 iScience 23, 101601, October 23, 2020
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Figure 3. MitoSegNet’s Pixelwise Accuracy Outperforms Non-Deep Learning Segmentation Methods

(A) The average dice coefficient achieved with the MitoSegNet is significantly higher than with the four other

segmentation approaches. The data was statistically evaluated by using the Kruskal-Wallis test followed by a Dunn’s

multiple comparisons test.

(B) The dice coefficient is limited as a predictor of morphological segmentation performance: A dice coefficient close to

1.0 does not guarantee correct prediction of morphology. Contrary, a low dice coefficient does not rule out an accurate

shape prediction. Ground truth segmentation is shown in orange, and the predicted segmentation in green.

(C) To gain insight into how accurately the shape of ground truth objects is predicted, five object shape descriptors (area,

eccentricity, aspect ratio, perimeter, and solidity) are compared by calculating the fold deviation. Predicted objects that

correspond to more than one ground truth object (or vice versa) are excluded from this analysis.

(D) The MitoSegNet shows the lowest average fold deviation between predicted and ground truth object shape

descriptors. The data were statistically evaluated by first testing for normality using D’Agostino’s K-squared test and then

subsequently using the Kruskal-Wallis test followed by a Dunn’s multiple comparisons test. N = 60.

(E) To determine the total morphological prediction accuracy, the same five shape descriptors were measured for each

image. The descriptor distributions in the ground truth and predicted images were statistically evaluated for differences

by calculating the energy distances between predicted and ground truth distribution. The energy distances for each

shape descriptor and image were normalized prior to statistical analysis.

(F) The MitoSegNet shows the lowest normalized energy distance, statistically outperforming all other segmentation

approaches. The data were first tested for normality using the D’Agostino’s K-squared. After determining that all

distributions were non-parametric, a Kruskal-Wallis test was used followed by a Dunn’s multiple comparisons test. N = 60.

*p < 0.05, **0.001 < p < 0.01, ***p < 0.001 for (A), (D) and (F).
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is the human ortholog of ATP13A2, mutations of which leads to Kufor-Rakeb syndrome, a form of inherited

juvenile-onset Parkinsons disease (Ramirez et al., 2006; Di Fonzo, Chien et al., 2007). No abnormal differ-

ences in mitochondrial morphology has so far been reported for the catp-6(lf). Consistent with this,

upon brief visual inspection, no obvious differences in mitochondrial morphology are noticeable (Fig-

ure 4A). We applied the MitoSegNet (Figures 4A) to 19 fluorescence microscopy images of each genotype
iScience 23, 101601, October 23, 2020 5
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Figure 4. Wild-type and Catp-6 Mutant Mitochondria Show Significant Morphological Differences

(A) Visual comparison of catp-6 mutant and wild-type mitochondrial morphology. Raw images are at the top and

MitoSegNet model segmentations at the bottom. The scale bar is 3 mm.

(B) Mitochondrial shape descriptor comparison.

(C) Mitochondrial branch descriptor comparison. Average area, minor andmajor axis length (see scheme for explanation),

perimeter, number of mitochondria, average branch length, and number of branches were measured in segmented

images of wild-type and catp-6mutant mitochondria. *p < 0.05, **0.001 < p < 0.01, ***p < 0.001 using the Mann-Whitney

U test. N = 19.
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and subsequently analyzed the data with the MitoA tool (Figure 4B). Segmentation masks (Figure 4A) visu-

ally matched the raw images closely and subsequent quantification revealed a statistically significant

morphological difference between mitochondria in wild-type and catp-6(lf) mutants. Compared to wild-

type, mitochondria are significantly thinner and longer in catp-6(lf) mutants, as determined by the average

minor (p = 0.047, independent two-sample t test) and major axis length (p = 0.029, independent two-sam-

ple t test) (Figure 4B). Furthermore, the averagemitochondrial area is larger (p = 0.00039, independent two-

sample t test) and the perimeter is longer (p = 0.043, independent two-sample t test) in wild-type compared

to catp-6(lf) mutants (Figure 5B). Excessive mitochondrial fission (i.e. mitochondrial fragmentation) as a

cause for these observations can be excluded since the numbers of mitochondria in wild-type and catp-

6(lf) mutants are similar (p = 0.56, independent two-sample t test) (Figure 4B). Differences were also found
6 iScience 23, 101601, October 23, 2020
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Figure 5. MitoSegNetModel Segmentation andMorphological Quantification Can Be Applied toMitochondria of

Mammalian Cells

Comparing untreated HeLa cells and HeLa cells treated with oligomycin or antimycin for a duration of 3 h.

(A) Visual comparison of untreated and treated mitochondrial morphology. Raw images are at the top and MitoSegNet

model segmentations at the bottom. The scale bar is 2.5 mm.

(B) Average area, eccentricity, perimeter, and branch length of mitochondria were measured in segmented images of

treated and untreated mitochondria. *p < 0.05, ***p < 0.001 using an independent two-sample t test. N = 8.
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in terms of mitochondrial branch morphology (Figure 4C). While the average mitochondrial branch length

in catp-6(lf) mutants is larger than in wild-type (p = 0.01, independent two-sample t test), the average

number of mitochondrial branches was found to be significantly smaller in catp-6(lf) mutants (p = 0.009,

Mann-Whitney U test). Altogether these results indicate that catp-6(ok3473) causes a previously unre-

ported mitochondrial morphology phenotype that cannot be detected by simple visual inspection.
MitoSegNet Segmentation of Mitochondria in HeLa Cells

To test the generalizability of our model even further, we applied the MitoSegNet to segment 8 confocal

microscopy images depictingmitochondria in HeLa cells (Figure 5A). The fragmentation of mitochondria in

HeLa cells treated with oligomycin and antimycin for 3 hr was captured in the segmentation both visually

and quantitatively. As expected, the average mitochondrial area is significantly larger in untreated cells

compared to treated HeLa cells (p = 0.0068, independent two-sample t test) (Figure 5B). The average ec-

centricity is lower for the fragmented mitochondria compared to the untreated mitochondria, indicating a

more circular shape (p = 1.32*10�8, independent two-sample t test) (Figure 5B). The average perimeter dis-

tribution reflects a similar pattern as found for the area, showing the fragmented mitochondria to have a

smaller perimeter on average (p = 0.00037, independent two-sample t test) (Figure 5B). The average branch

length is also significantly smaller in the treated mitochondria compared to the untreated mitochondria

(p = 1.30*10�5, independent two-sample t test) (Figure 5B).
The MitoS Segmentation and MitoA Analysis Tool

To enable non-experts, we implemented the MitoSegNet in an easy-to-use tool, the MitoS segmentation

tool, a Python-based, standalone executable. MitoS can be executed in a basic mode, which utilizes the

pretrained MitoSegNet for segmentation of mitochondria and allows us to easily apply the model without

prior deep learning experience (Figure 1). We applied the MitoS image segmentation using the pretrained
iScience 23, 101601, October 23, 2020 7
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MitoSegNet on two different systems. For all cases 10 images of each 1300 3 1030 px size (8-bit) were

segmented. TheMitoSGPU segmentation was run using anNVIDIAGeForce GTX 960M andNVIDIA TITAN

X and segmentation took 65 and 15 s, respectively. Segmentation using the MitoS CPU version was per-

formed on an Intel(R) Core(TM) i7-6700HQ CPU and a system using four Intel(R) Xeon(R) CPU E5-2680 v4

processors and lasted 7.5 min and 65 s, respectively. The basic mode also includes a fine-tuning module,

which allows us to optimize the pretrained on new images (Figure S1A). The MitoS advanced mode can be

used if other structures besides mitochondria should be segmented or if the user wishes to build a self-

configured deep learning segmentation model (Figure S1B). The MitoA analyzer is a separate Python-

based, standalone executable tool that can be run after successful segmentation for quantification and

visualization of potential morphological differences (Figure S3). It measures ten different morphological

and three intensity-based features for each object and summary statistics for all object features per image

are generated. The tables of two or multiple samples containing these summary statistics can then be sub-

jected to hypothesis testing, visualization, and correlation analysis. The MitoS and MitoA tools require no

installation and no prerequisite installations (such as frameworks), and they are available for both Windows

and Linux.

DISCUSSION

We present MitoSegNet, a segmentation model that exploits the power of deep learning to address the

challenging problem of accurate mitochondria segmentation. We show that the MitoSegNet outperforms

feature-based, non-deep learning-based algorithms and that it is generalizable to unseen images from

C. elegans and mammalian cells.

MitoSegNet Model Segmentation Performance

While the superior visual and quantitative performance of the MitoSegNet model segmentation might not

come as a surprise to researchers acquainted with the capabilities of deep learning-based segmentation,

we believe these results to be interesting to researchers who commonly use feature-based segmentation

methods. For accuracy evaluation, we did not rely only on pixel-based accuracy, as we found this to be an

insufficient measure of morphological accuracy but extended our analysis. Our single object shape com-

parison as well as the calculation of energy distances for five different feature descriptors per image

demonstrate that the MitoSegNet model segmentation yields the best morphological accuracy compared

with commonly applied segmentation methods.

Comparison of Mitochondrial Morphology between Catp-6ATP13A2 Mutants and Wild-type

The visual comparison of mitochondrial morphology in wild type and catp-6(lf) mutants did not reveal any

obvious differences in morphology. In both cases, mitochondria appeared to be largely tubular. However, the

quantitative analysis using theMitoSegNet revealed that average area, perimeter, andminor axis length ofmito-

chondria in catp-6(lf) mutants are smaller than in wild-type. Since the average number of mitochondria per cell is

the same as in wild-type, we concluded that catp-6(lf) causes a reduction in overall mitochondrial mass. This is

consistent with observations of Anand et al., who found that oxygen consumption is lower inC. elegans catp-6(lf)

mutants than inwild type (Anand et al., 2020). Inmammalian cells, mutation ofATP13A2 has been found to cause

impairment of mitochondrial function and induce mitochondrial fragmentation (Gusdon et al., 2012; Ramonet

et al., 2012). However, this is associated with increased mitochondrial mass due to inefficient autophagic clear-

ance (Grünewald et al., 2012). The differences between the mutant phenotypes observed in C. elegans and

mammalian cells is likely to reflect the multiple roles of ATP13A2 and CATP-6 transport substrates (polyamines)

in maintaining mitochondrial function (van Veen et al., 2020). Further research on properties of catp-6 deficient

mitochondria, such asmembrane potential or levels of reactive oxygen species, might uncover the cause for the

observed differences in mitochondrial morphology.

Application of the MitoSegNet to Mitochondria in HeLa Cells

Although the pretrained model was generated with standard fluorescence microscopy images, depicting

mitoGFP-labeled mitochondria in C. elegans, the same pretrained model was able to generate visually ac-

curate segmentations of mitoRFP labeledmitochondria in HeLa cells using a laser scanning confocal micro-

scope. This demonstrates the high robustness and generalization capabilities of our pretrained MitoSeg-

Net model and that it can be used for segmentation of mitochondria in organisms other than C. elegans.

Furthermore, our MitoSegNet Analysis tool quantitatively confirmed the morphological differences of

mitochondria between untreated HeLa cells and HeLa cells treated with oligomycin or antimycin.
8 iScience 23, 101601, October 23, 2020
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MitoSegNet Model Architecture

Although the MitoSegNet architecture is largely based on the U-Net, through testing various changes in

the original architecture, we found that the validation dice coefficient as well as the validation loss

improved upon removing the dropout layers and instead placing a batch normalization layer (Ioffe and

Szegedy, 2015) after every convolution layer in the contracting pathway. Interestingly, a recent study found

that the combined usage of batch normalization followed by dropout (forming an independent component

layer) stabilized the training process, increased convergence speed, and improved the convergence limit

(Chen et al., 2019). It would require further testing to find out if the usage of an independent component

layer would improve the current MitoSegNet performance even further.
MitoS and MitoA Tools

Most deep learning applications in the field of biological image segmentation were created for the purpose of

2D cell segmentation (Chen et al., 2017; Al-Kofahi et al., 2018; Falk et al., 2019; Kusumoto and Yuasa, 2019),

while organelle-specific deep learning applications are scarce. Although most tools allow the user to retrain

available 2D cell segmentation models to segment other biological structures of interest, this often requires

computer science-related skills, such as familiarity with programming languages, shell interaction or knowledge

on how to install various deep learning frameworks. One of the main motivations behind MitoSegNet and the

MitoS andMitoA toolbox was to make deep learning segmentation accessible to researchers that do not have

an extensive background in computer science or deep learning. TheMitoS tool can be run without installation.

The simple graphical user interface allows users to quickly navigate theMitoS andMitoA tools. TheMitoS basic

mode also comeswith a fine-tuningmodule that allows researchers that would like to segment other organelles

or images taken under different conditions than those used for training the MitoSegNet model. Since the sub-

sequent step after segmentation is usually the analysis, we included theMitoA tool to save researchers the time

to look up appropriate analysis tools and instead be able to quickly obtain potentially interesting insights.
Conclusion

The MitoSegNet has been shown to outperform both conventional feature-based and machine-learning-

based segmentation of mitochondria. The pretrained model can be easily applied to new 2D microscopy

images of mitochondria through the usage of the MitoS tool, which is available for both standard and high-

end Windows and Linux systems. Successfully segmented images of mitochondria can be subjected to

quantification, statistical testing, and visualization with the MitoA tool.
Limitations of the Study

The MitoSegNet model used for segmentation of images depicting fluorescently labeled mitochondria in

C. elegans and HeLa cells was trained with 12 pairs of raw images and the appendant hand-labeled ground

truth images. Although both the visual and quantitative segmentation accuracy was shown to be high in this

study, there remains a bias which is based on the two annotators who generated 6 ground truth images each.

To reduce the ground truth bias and increase the generalizability of the MitoSegNet model, more images

labeled by different annotators can be added. Furthermore, image sections in which single mitochondria

were not clearly distinguishable due to optical constraints of the microscope used to generate the image,

made it difficult for the annotator to create labeled images that accurately represent the ground truth. This

uncertainty introduced to the MitoSegNet model can be decreased by adding images recorded with higher

resolution, thus reducing the sections in which such visually indistinguishable mitochondria exist.
Resource Availability

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Carsten Marr (carsten.marr@helmholtz-muenchen.de).

Materials Availability

Images used for training and testing the model are available upon request.

Data and Code Availability

The software documentation for the MitoS andMitoA tool can be found at https://github.com/mitosegnet.

The MitoSegNet segmentation model, the MitoA analysis and MitoS segmentation tool (GPU/CPU) for
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Linux and Windows are available at https://zenodo.org/search?page=1&size=20&q=mitosegnet. The Py-

thon code used for generating the figures displayed in the manuscript is available at https://github.com/

MitoSegNet/MitoSegNet_AccuracyTesting_Manuscript.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101601.
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Transparent Methods

General C. elegans methods and strains

C. elegans strains were cultured on Nematode Growth Medium (NGM) in petri plates

(Brenner 1974). All experiments were carried out at 20°C and all strains were maintained at

20°C. C. elegans mitochondria in body wall muscle cells were labelled using an integrated

transgene (bcI78) expressing mitochondrial matrix-targeted GFP under the control of the

body wall muscle-specific promoter myo-3 (Pmyo3::mitoGFP) (Rolland, Motori et al. 2013).

The following alleles were used LGII: fzo-1(tm1133) (National BioResource Project); eat-

3(ad426) (Kanazawa, Zappaterra et al. 2008); LGIV: drp-1(tm1108) (National BioResource

Project) and catp-6(ok3473) (Lambie, Tieu et al. 2013).

Generating the MitoSegNet model

The MitoSegNet model was trained for 20 epochs with 12 fluorescence microscopy images

(1300 x 1030 px), depicting adult C. elegans mitochondria (tubular, elongated, fragmented

and mixed) in body wall muscle cells labelled with mitoGFP (Fig. 1A). The images were

recorded on a fluorescence microscope equipped with a 63x 1.4 NA oil lens (Axioskop 2;

Carl Zeiss Inc.) and a charge-coupled device camera (1300; Micromax). Two expert

annotators manually segmented a set of 6 microscopy images. The image annotations were

generated by drawing separate regions of interest over all mitochondria within one image and

then converting the selections into a binary mask. Raw 3D microscopy images were

converted to 2D images through maximum intensity projection. Based on the expert

annotation of four mitochondrial phenotypes (elongated, fragmented, mixed and tubular), 3

images of each phenotype were used for training. Prior to augmentation each image was

divided into four overlapping 656 x 656 px images due to GPU memory constraints. The
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input tile size was chosen to allow for the 2x2 max-pooling operations during training. Each

image (and the corresponding ground truth) underwent random augmentation using the Keras

library, producing 80 differently augmented images per input image, which involved random

shearing (in a range of 30%), rotations (in a range of 180°), change of zoom (in a range of

30%), brightness change (in a range of 20%), horizontal and vertical flipping, x- and y-shifts

(in a range of 20%) and mirroring. This increased the total number of images used for

training from 48 to 3,840. We used a batch size of 1 and included the weight map as

implemented in the U-Net publication and set wbal to 0.042 (1 dived by the number of

background pixels per object pixel to achieve a 1:1 ratio between object and background

pixels). The MitoSegNet model was trained at a learning rate of 7*10-5 for 20 epochs and

reached its minimum validation loss at epoch 18 (Fig. S4B).

MitoSegNet model prediction

To evaluate the segmentation performance of the MitoSegNet model on all 12 images, we

performed a cross validation and generated 12 separately trained models (in the same manner

as described above) (Fig. S5). Each model was trained with 11 images for 15 epochs and

applied each trained MitoSegNet model to the test image that was excluded from training

(Fig. 1B). Training and prediction were performed using our Python-based MitoS tool on a

Devuan GNU/Linux server with an Nvidia TITAN X (12 GB GDDR5 RAM), using CUDA

10.0 and cuDNN 7.6.1.

The MitoS segmentation and MitoA analysis tool

The MitoS tool is a Python-based, standalone executable application that can be used for

deep learning based segmentation of 2-dimensional microscopy images. The tool can be
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executed in two modes: the “basic mode” is designed for researchers with no prior deep

learning experience (Fig. 1), the “advanced mode” is intended for people with such

experience and allows customizing training parameters (Fig. S1). For those users that do not

have a CUDA-capable GPU, a CPU-only version of the MitoS segmentation tool is available.

The MitoS basic mode

uses the pretrained mitochondria-specific MitoSegNet model and any images depicting

mitochondria images similar to those used for training can be segmented with the MitoS tool

(Fig. 1). If the MitoSegNet model segmentation does not yield satisfactory results, self-

generated training data can be used to finetune the existing segmentation model (Fig. S1A).

Because the MitoSegNet model was generated using 656x656 px image tiles, any images

intended for segmentation are fitted to this pre-set tile size. Images larger than the pre-set tile

size are split into overlapping tiles with a mirrored border to avoid prediction in border

regions. Smaller images are not split but instead a mirrored border is added to increase the

size to the pre-set tile size. After prediction the mirrored parts of the tiles are removed and the

tiles are stitched back together. A final threshold is applied to the fully stitched image to

convert it to an 8-bit binary mask (pi < 128 to 0 and pi >= 128 to 255). Furthermore, any

objects below 10 px in size are considered to be noise and are thus removed from the final

segmentation image. The finetuning module automatically generates weight maps and

augments the novel training data using the following augmentation operations: shearing (in a

range of 30%), rotation (in range of 180°), zoom (in a range of 30%) and brightness change

(in a range of 20%), horizontal and vertical flip, width and height shift (in a range of 20%).

Once augmentation is completed, model training begins with a pre-set learning rate of 0.0001,

a batch size of 1 and a class balance factor of 1/(foreground to background pixel ratio). We

tested the MitoS finetuning module on images depicting adult C. elegans mitochondria

visualised with a non-integrated Pmyo-3::mitoGFP reporter (Rolland, Motori et al. 2013). The
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intensity of the fluorescently labelled mitochondria appeared weaker and hence the

MitoSegNet model failed to accurately segment these images (Fig. S2). One image of weak

fluorescent intensity mitochondria was therefore manually segmented and used to finetune

the pretrained model for 10 epochs, generating a finetuned MitoSegNet model that generated

satisfactory segmentation results (Fig. S2). Alternatively, it is possible to create a custom

segmentation model using the advanced mode of the MitoS tool (Fig. S1B). The advanced

mode consists of four modules: Module 1 automatically generates a folder structure that is

later used for model training. Module 2 enables data augmentation, which allows the user to

specify the range of the above listed augmentation operations. Module 3 carries out the model

training for which the parameters can be freely chosen. Module 4 predicts new segmentations

using the fully trained model (Fig. S2).

The MitoA analyser tool is a separate Python-based application that can be run after

successful segmentation for quantification and visualisation of potential morphological

differences (Fig. S3). It measures 13 different features using both raw and segmented image

for each object: area, minor and major axis length, eccentricity, perimeter, solidity, mean,

max and min intensity, number of branches, branch length, total branch length and curvature

index. The minor or major axis lengths are defined as the lengths of the line segment

connecting the two co-vertices or vertices of an ellipse fitted around an object. The

eccentricity of a conic section is a non-negative real number that characterizes its shape and

the eccentricity for a circle, ellipse and parabola are 0, 0 > x > 1 or 1 respectively. The

solidity is defined as the object area divided by the convex object area. The curvature index

indicates if the branches of the mitochondria are straight or curved and is defined as

�� �
�Min�L �݁n݊�L � ݁�����݁in ����in�݁

݁�����݁in ����in�݁
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The Euclidean distance is the shorted path between the start and end point of one branch. The

single object features are summarised for each image as average, median, standard deviation,

standard error, minimum and maximum and saved in an Excel table. One table is generated

for a group of images, which can subsequently be compared. Both the two- and multi-

comparison of samples allows to generate a table containing statistically relevant information

and a visualisation using boxplots. Each statistical table contains the descriptors p-value of

the D’Agostino’s K-squared test to determine if the data is normally distributed (D'Agostino

1971, D'Agostino and Pearson 1973). Based on this result and the Levene’s test p-value to

test for equality of variances an appropriate hypothesis test is chosen and the name of the test,

including its p-value are displayed in the table (Levene 1960). For comparison of two

normally distributed datasets with equal variance a Student’s t-test is used . If either of the

two criteria are not met, the Mann–Whitney U test is used. For comparison of multiple

samples with equal variance and normal distributions, a one-way ANOVA is used or

alternatively, the Kruskal-Wallis-Test is applied (Kruskal and Wallis 1952). For a two-

sample comparison the effect size is also calculated, and the boxplot visualisation indicates

statistically significant differences. Furthermore, the two-sample comparison also enables the

user to perform a correlation analysis. The correlation analysis visualises correlation by

letting the user select up to four different descriptors to correlate against each other in both

samples and then have them displayed as scatterplots. The distributions are subjected to the

D’Agostino’s K-squared test to determine the usage of the Pearson or Spearman rank-order

correlation. Correlation coefficients and p-values are displayed in the MitoA terminal or can

be saved to an Excel file. The MitoSegNet Analyser was used for statistical testing and

visualisation of morphological differences for Figure 4 and 5.

Both tools have been tested internally on Windows and Linux platforms and will be actively

maintained on GitHub.
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The MitoSegNet architecture

The MitoSegNet architecture is based on the previously published U-Net (Ronneberger,

Fischer et al. 2015) and was implemented in Keras (Python 3.7.3). It consists of a contracting

path, which follows the standard architecture of convolutional neural networks, consisting of

repeated application of 3x3 convolutions (padded convolutions), each followed by a batch

normalization layer, a rectified linear unit (ReLU) and a 2x2 max pooling operation with a

stride of 2. Unlike the original U-Net, the MitoSegNet does not utilize any drop-out layers at

the end of the contracting path as we have found the batch normalization layer to reduce the

training time. After 1024 feature channels have been generated, the expanding pathway uses

2x2 up-convolutions to halve the number of channels, followed by a concatenation with the

corresponding feature map from the contracting path and subsequent 3x3 convolutions,

followed by a ReLU. The final convolutional layer (1x1) is followed by a sigmoid function.

In total, the MitoSegNet consists of 24 convolutional layers. The optimization algorithm

chosen for the training process is Adam (adaptive moment estimation), which is an extension

to stochastic gradient descent (Diederik P. Kingma 2014). During training, 20% of the data is

excluded from the process and instead used for model validation after each training epoch.

The energy function is computed by a pixel-wise sigmoid function over the final feature map

combined with a binary cross entropy loss function

�� � �
�

� t ݁� i����
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where ak(x) denotes the activation in feature channel k at the pixel position x and pk(x) is the

approximated maximum-function for that feature channel. The binary cross entropy is then

used to calculate the loss at each pixel

� � �
���

�

� � ��
� � log ���

where yi is the predicted probability of the class i, ��
� is the true probability for that class and

w is the weight map. The separation weight map wsep is implemented as described in

(Ronneberger, Fischer et al. 2015) and prevents touching objects to be segmented as one

object by increasing the weights in border regions. The MitoSegNet also includes a class

balancing weight map, which decreases the weight of background pixels by a factor of wbal so

the final weight map is defined as

� � ��i� t ��݁�

Just as in the original U-Net, initial weights are drawn from a Gaussian distribution with a

standard deviation of �th, where N is the number of incoming nodes of one neuron.

Other segmentation methods

All segmentation methods include the removal of uninformative image slices from the stack

and the remaining stack is reduced to a single image via maximum intensity projection. Prior

to all Fiji (ImageJ) segmentation methods a background subtraction (rolling ball algorithm

with a radius of 15 pixels) is applied (Schneider, Rasband et al. 2012). After applying the

three different feature enhancement approaches with Fiji, they are all followed by a final

filter step in which all particles smaller than 10 px in size are removed from the final mask.
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The method denoted as Laplacian is based on the de Boer lab workflow on quantitative

analysis of mitochondrial morphology in C. elegans (de Boer, Smith et al. 2015). It is based

on the application of a local contrast enhancement (CLAHE, in Fiji with a block size = 15,

histogram = 256, maximum = 3) and subsequent object enhancement using a multi-scale

Laplacian operator (FeatureJ Laplacian in Fiji with a compute smoothing setting of 1.0) (De

Vos, Van Neste et al. 2010). The images are then binarized according to a Yen

autothresholding procedure (Yen, Chang et al. 1995).

The Hessian method calculates eigenvalues of a Hessian matrix using the Tubeness plugin in

Fiji with a sigma value of 1.0 (Sato, Nakajima et al. 1998). To generate a binary image the

IsoData autothresholding is used (Huang and Wang 1995).

The Gaussian method calculates the difference of Gaussians by generating two gaussian

blurred versions of the original image and subtracting the blurred image with the higher

sigma (= 4) from the image with lower sigma (= 2). The binary mask is generated using

default autothresholding.

To also include a machine learning segmentation approach we used the open-source software

Ilastik. This software learns from labels provided by the user, using a random forest classifier

in the learning step, in which each pixel’s neighbourhood is characterized by a set of

nonlinear features (Kreshuk and Zhang 2019). To train the classifier, 12 images were used for

training. Each appendant label was created with ilastik by partially marking objects of interest

and background.

Segmentation performance on test set
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We evaluated the segmentation performance of the six approaches with different measures,

each focusing on particular aspects of the segmentation result with specific limitations. The

Dice coefficient (dc, also known as F1 score) (Dice 1945, Sørensen 1948) is a statistic value

used for comparing the similarity of two binary datasets.

�� �
� � ݊Mt�n� �M��L � �M݁�����tn
݊Mt�n� �M��L t �M݁�����tn

On each image, the dc is evaluated on all pixels. The distributions of dice coefficients from

all images were tested for normality using the D’Agostino’s K-squared test and statistical

difference was determined using the Kruskal-Wallis test followed by Dunn’s multiple

comparisons test. Upon comparing the dc’s with the visual segmentation results, we realised

that the dc values do not fully reflect the morphological segmentation accuracy (see Fig. 4B).

To obtain information about morphological segmentation accuracy, we compared single

object shapes. The single object shape comparison uses the following shape descriptors for

comparison: area, eccentricity, aspect ratio (dividing the major axis length by the minor axis

length), perimeter and solidity. The difference between predicted and ground truth shape

descriptor is calculated as fold deviation for each object and defined as

���݁� �
��� � ��݊�

���

where sdp is the predicted and sdgt the ground truth shape descriptor. Object correspondence

was assumed if at least one identical pixel coordinate was found in both the ground truth and

the predicted object. Only objects that were predicted to correspond with a single object in

the ground truth or vice versa were included in this analysis. For single correspondence, a

fold deviation (the predicted value multiplied or divided by that fold deviation would yield

the ground truth value) for all five morphological descriptors from the ground truth is then
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calculated for each object (Fig. 4C). The single object fold deviation values were tested for

normality using the D’Agostino’s K-squared test and statistical differences between methods

were determined using the Kruskal-Wallis test followed by Dunn’s multiple comparisons test.

Because the single object shape comparison neglects false positive predictions, we compared

the predicted shape distribution of all objects per image against the ground truth. The shape

descriptors are the same as used for the single object shape comparison. For segmented

objects, distributions of these five descriptors were obtained and compared to the

distributions of the ground truth images by calculating the energy distance (Fig. 4E). The

energy distance between two distributions d1 and d2 is defined as

� ��๦ �� � ��� � � � � � � � �� � � �� �� ��t�

where X and X’ (resp. Y and Y’) are independent random variables with a probability

distribution of d1 (resp. d2) (Szekely 2002). Energy distance values were normalised prior to

being tested for normality using the D’Agostino’s K-squared test, followed by applying a

Kruskal-Wallis test and a subsequent Dunn’s multiple comparisons test.

All methods to test the performance of each segmentation approach were implemented in

Python 3.7.3 using the following libraries: NumPy, OpenCV, scikit-image, scikit-learn,

scikit-posthocs, Matplotlib, Seaborn, Pandas and SciPy.

Comparison of mitochondrial morphology between catp-6 mutant and wild-type

Images segmented with the pretrained segmentation model were recorded with a fluorescent

microscope, using a 63x 1.4 NA oil lens (Axioskop 2; Carl Zeiss Inc.) and a charge-coupled

device camera (1300; Micromax). The C. elegans strain carrying the bcIs78 transgene and the
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catp-6(ok3473) mutation was compared to the wild-type strain carrying the bcIs78 transgene.

Quantitative analysis was performed using the MitoA tool.

Application of the MitoSegNet model segmentation to mitochondria in HeLa cells

Images segmented with the pretrained segmentation model were recorded with an inverted

Zeiss LSM 880 system equipped with a DPSS 561-nm laser, using a Plan-Apochromat 63x /

1.4 oil DIC objective and a GaAsP detector. Images were collected with the ZEN 2 software

at 1024 x 1024 pixels resolution. To visualize mitochondria, HeLa cells (ATCC) were

transfected with mitoRFP using Lipofectamine 2000. After 24 hours of transfection, the HeLa

cells were either left untreated or treated with 2.5 µM oligomycin (Calbiochem) and 1 µM

antimycin A (Sigma) in fresh growth medium for 3 hours. Segmented and raw images were

subjected to quantitative analysis using the MitoA tool.
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