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Transparent Methods

General C. elegans methods and strains

C. elegans strains were cultured on Nematode Growth Medium (NGM) in petri plates

(Brenner 1974). All experiments were carried out at 20°C and all strains were maintained at

20°C. C. elegans mitochondria in body wall muscle cells were labelled using an integrated

transgene (bcI78) expressing mitochondrial matrix-targeted GFP under the control of the

body wall muscle-specific promoter myo-3 (Pmyo3::mitoGFP) (Rolland, Motori et al. 2013).

The following alleles were used LGII: fzo-1(tm1133) (National BioResource Project); eat-

3(ad426) (Kanazawa, Zappaterra et al. 2008); LGIV: drp-1(tm1108) (National BioResource

Project) and catp-6(ok3473) (Lambie, Tieu et al. 2013).

Generating the MitoSegNet model

The MitoSegNet model was trained for 20 epochs with 12 fluorescence microscopy images

(1300 x 1030 px), depicting adult C. elegans mitochondria (tubular, elongated, fragmented

and mixed) in body wall muscle cells labelled with mitoGFP (Fig. 1A). The images were

recorded on a fluorescence microscope equipped with a 63x 1.4 NA oil lens (Axioskop 2;

Carl Zeiss Inc.) and a charge-coupled device camera (1300; Micromax). Two expert

annotators manually segmented a set of 6 microscopy images. The image annotations were

generated by drawing separate regions of interest over all mitochondria within one image and

then converting the selections into a binary mask. Raw 3D microscopy images were

converted to 2D images through maximum intensity projection. Based on the expert

annotation of four mitochondrial phenotypes (elongated, fragmented, mixed and tubular), 3

images of each phenotype were used for training. Prior to augmentation each image was

divided into four overlapping 656 x 656 px images due to GPU memory constraints. The
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input tile size was chosen to allow for the 2x2 max-pooling operations during training. Each

image (and the corresponding ground truth) underwent random augmentation using the Keras

library, producing 80 differently augmented images per input image, which involved random

shearing (in a range of 30%), rotations (in a range of 180°), change of zoom (in a range of

30%), brightness change (in a range of 20%), horizontal and vertical flipping, x- and y-shifts

(in a range of 20%) and mirroring. This increased the total number of images used for

training from 48 to 3,840. We used a batch size of 1 and included the weight map as

implemented in the U-Net publication and set wbal to 0.042 (1 dived by the number of

background pixels per object pixel to achieve a 1:1 ratio between object and background

pixels). The MitoSegNet model was trained at a learning rate of 7*10-5 for 20 epochs and

reached its minimum validation loss at epoch 18 (Fig. S4B).

MitoSegNet model prediction

To evaluate the segmentation performance of the MitoSegNet model on all 12 images, we

performed a cross validation and generated 12 separately trained models (in the same manner

as described above) (Fig. S5). Each model was trained with 11 images for 15 epochs and

applied each trained MitoSegNet model to the test image that was excluded from training

(Fig. 1B). Training and prediction were performed using our Python-based MitoS tool on a

Devuan GNU/Linux server with an Nvidia TITAN X (12 GB GDDR5 RAM), using CUDA

10.0 and cuDNN 7.6.1.

The MitoS segmentation and MitoA analysis tool

The MitoS tool is a Python-based, standalone executable application that can be used for

deep learning based segmentation of 2-dimensional microscopy images. The tool can be
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executed in two modes: the “basic mode” is designed for researchers with no prior deep

learning experience (Fig. 1), the “advanced mode” is intended for people with such

experience and allows customizing training parameters (Fig. S1). For those users that do not

have a CUDA-capable GPU, a CPU-only version of the MitoS segmentation tool is available.

The MitoS basic mode

uses the pretrained mitochondria-specific MitoSegNet model and any images depicting

mitochondria images similar to those used for training can be segmented with the MitoS tool

(Fig. 1). If the MitoSegNet model segmentation does not yield satisfactory results, self-

generated training data can be used to finetune the existing segmentation model (Fig. S1A).

Because the MitoSegNet model was generated using 656x656 px image tiles, any images

intended for segmentation are fitted to this pre-set tile size. Images larger than the pre-set tile

size are split into overlapping tiles with a mirrored border to avoid prediction in border

regions. Smaller images are not split but instead a mirrored border is added to increase the

size to the pre-set tile size. After prediction the mirrored parts of the tiles are removed and the

tiles are stitched back together. A final threshold is applied to the fully stitched image to

convert it to an 8-bit binary mask (pi < 128 to 0 and pi >= 128 to 255). Furthermore, any

objects below 10 px in size are considered to be noise and are thus removed from the final

segmentation image. The finetuning module automatically generates weight maps and

augments the novel training data using the following augmentation operations: shearing (in a

range of 30%), rotation (in range of 180°), zoom (in a range of 30%) and brightness change

(in a range of 20%), horizontal and vertical flip, width and height shift (in a range of 20%).

Once augmentation is completed, model training begins with a pre-set learning rate of 0.0001,

a batch size of 1 and a class balance factor of 1/(foreground to background pixel ratio). We

tested the MitoS finetuning module on images depicting adult C. elegans mitochondria

visualised with a non-integrated Pmyo-3::mitoGFP reporter (Rolland, Motori et al. 2013). The
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intensity of the fluorescently labelled mitochondria appeared weaker and hence the

MitoSegNet model failed to accurately segment these images (Fig. S2). One image of weak

fluorescent intensity mitochondria was therefore manually segmented and used to finetune

the pretrained model for 10 epochs, generating a finetuned MitoSegNet model that generated

satisfactory segmentation results (Fig. S2). Alternatively, it is possible to create a custom

segmentation model using the advanced mode of the MitoS tool (Fig. S1B). The advanced

mode consists of four modules: Module 1 automatically generates a folder structure that is

later used for model training. Module 2 enables data augmentation, which allows the user to

specify the range of the above listed augmentation operations. Module 3 carries out the model

training for which the parameters can be freely chosen. Module 4 predicts new segmentations

using the fully trained model (Fig. S2).

The MitoA analyser tool is a separate Python-based application that can be run after

successful segmentation for quantification and visualisation of potential morphological

differences (Fig. S3). It measures 13 different features using both raw and segmented image

for each object: area, minor and major axis length, eccentricity, perimeter, solidity, mean,

max and min intensity, number of branches, branch length, total branch length and curvature

index. The minor or major axis lengths are defined as the lengths of the line segment

connecting the two co-vertices or vertices of an ellipse fitted around an object. The

eccentricity of a conic section is a non-negative real number that characterizes its shape and

the eccentricity for a circle, ellipse and parabola are 0, 0 > x > 1 or 1 respectively. The

solidity is defined as the object area divided by the convex object area. The curvature index

indicates if the branches of the mitochondria are straight or curved and is defined as

�� �
�Min�L �݁n݊�L � ݁�����݁in ����in�݁
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The Euclidean distance is the shorted path between the start and end point of one branch. The

single object features are summarised for each image as average, median, standard deviation,

standard error, minimum and maximum and saved in an Excel table. One table is generated

for a group of images, which can subsequently be compared. Both the two- and multi-

comparison of samples allows to generate a table containing statistically relevant information

and a visualisation using boxplots. Each statistical table contains the descriptors p-value of

the D’Agostino’s K-squared test to determine if the data is normally distributed (D'Agostino

1971, D'Agostino and Pearson 1973). Based on this result and the Levene’s test p-value to

test for equality of variances an appropriate hypothesis test is chosen and the name of the test,

including its p-value are displayed in the table (Levene 1960). For comparison of two

normally distributed datasets with equal variance a Student’s t-test is used . If either of the

two criteria are not met, the Mann–Whitney U test is used. For comparison of multiple

samples with equal variance and normal distributions, a one-way ANOVA is used or

alternatively, the Kruskal-Wallis-Test is applied (Kruskal and Wallis 1952). For a two-

sample comparison the effect size is also calculated, and the boxplot visualisation indicates

statistically significant differences. Furthermore, the two-sample comparison also enables the

user to perform a correlation analysis. The correlation analysis visualises correlation by

letting the user select up to four different descriptors to correlate against each other in both

samples and then have them displayed as scatterplots. The distributions are subjected to the

D’Agostino’s K-squared test to determine the usage of the Pearson or Spearman rank-order

correlation. Correlation coefficients and p-values are displayed in the MitoA terminal or can

be saved to an Excel file. The MitoSegNet Analyser was used for statistical testing and

visualisation of morphological differences for Figure 4 and 5.

Both tools have been tested internally on Windows and Linux platforms and will be actively

maintained on GitHub.
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The MitoSegNet architecture

The MitoSegNet architecture is based on the previously published U-Net (Ronneberger,

Fischer et al. 2015) and was implemented in Keras (Python 3.7.3). It consists of a contracting

path, which follows the standard architecture of convolutional neural networks, consisting of

repeated application of 3x3 convolutions (padded convolutions), each followed by a batch

normalization layer, a rectified linear unit (ReLU) and a 2x2 max pooling operation with a

stride of 2. Unlike the original U-Net, the MitoSegNet does not utilize any drop-out layers at

the end of the contracting path as we have found the batch normalization layer to reduce the

training time. After 1024 feature channels have been generated, the expanding pathway uses

2x2 up-convolutions to halve the number of channels, followed by a concatenation with the

corresponding feature map from the contracting path and subsequent 3x3 convolutions,

followed by a ReLU. The final convolutional layer (1x1) is followed by a sigmoid function.

In total, the MitoSegNet consists of 24 convolutional layers. The optimization algorithm

chosen for the training process is Adam (adaptive moment estimation), which is an extension

to stochastic gradient descent (Diederik P. Kingma 2014). During training, 20% of the data is

excluded from the process and instead used for model validation after each training epoch.

The energy function is computed by a pixel-wise sigmoid function over the final feature map

combined with a binary cross entropy loss function

�� � �
�

� t ݁� i����
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where ak(x) denotes the activation in feature channel k at the pixel position x and pk(x) is the

approximated maximum-function for that feature channel. The binary cross entropy is then

used to calculate the loss at each pixel

� � �
���

�

� � ��
� � log ���

where yi is the predicted probability of the class i, ��
� is the true probability for that class and

w is the weight map. The separation weight map wsep is implemented as described in

(Ronneberger, Fischer et al. 2015) and prevents touching objects to be segmented as one

object by increasing the weights in border regions. The MitoSegNet also includes a class

balancing weight map, which decreases the weight of background pixels by a factor of wbal so

the final weight map is defined as

� � ��i� t ��݁�

Just as in the original U-Net, initial weights are drawn from a Gaussian distribution with a

standard deviation of �th, where N is the number of incoming nodes of one neuron.

Other segmentation methods

All segmentation methods include the removal of uninformative image slices from the stack

and the remaining stack is reduced to a single image via maximum intensity projection. Prior

to all Fiji (ImageJ) segmentation methods a background subtraction (rolling ball algorithm

with a radius of 15 pixels) is applied (Schneider, Rasband et al. 2012). After applying the

three different feature enhancement approaches with Fiji, they are all followed by a final

filter step in which all particles smaller than 10 px in size are removed from the final mask.
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The method denoted as Laplacian is based on the de Boer lab workflow on quantitative

analysis of mitochondrial morphology in C. elegans (de Boer, Smith et al. 2015). It is based

on the application of a local contrast enhancement (CLAHE, in Fiji with a block size = 15,

histogram = 256, maximum = 3) and subsequent object enhancement using a multi-scale

Laplacian operator (FeatureJ Laplacian in Fiji with a compute smoothing setting of 1.0) (De

Vos, Van Neste et al. 2010). The images are then binarized according to a Yen

autothresholding procedure (Yen, Chang et al. 1995).

The Hessian method calculates eigenvalues of a Hessian matrix using the Tubeness plugin in

Fiji with a sigma value of 1.0 (Sato, Nakajima et al. 1998). To generate a binary image the

IsoData autothresholding is used (Huang and Wang 1995).

The Gaussian method calculates the difference of Gaussians by generating two gaussian

blurred versions of the original image and subtracting the blurred image with the higher

sigma (= 4) from the image with lower sigma (= 2). The binary mask is generated using

default autothresholding.

To also include a machine learning segmentation approach we used the open-source software

Ilastik. This software learns from labels provided by the user, using a random forest classifier

in the learning step, in which each pixel’s neighbourhood is characterized by a set of

nonlinear features (Kreshuk and Zhang 2019). To train the classifier, 12 images were used for

training. Each appendant label was created with ilastik by partially marking objects of interest

and background.

Segmentation performance on test set
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We evaluated the segmentation performance of the six approaches with different measures,

each focusing on particular aspects of the segmentation result with specific limitations. The

Dice coefficient (dc, also known as F1 score) (Dice 1945, Sørensen 1948) is a statistic value

used for comparing the similarity of two binary datasets.

�� �
� � ݊Mt�n� �M��L � �M݁�����tn
݊Mt�n� �M��L t �M݁�����tn

On each image, the dc is evaluated on all pixels. The distributions of dice coefficients from

all images were tested for normality using the D’Agostino’s K-squared test and statistical

difference was determined using the Kruskal-Wallis test followed by Dunn’s multiple

comparisons test. Upon comparing the dc’s with the visual segmentation results, we realised

that the dc values do not fully reflect the morphological segmentation accuracy (see Fig. 4B).

To obtain information about morphological segmentation accuracy, we compared single

object shapes. The single object shape comparison uses the following shape descriptors for

comparison: area, eccentricity, aspect ratio (dividing the major axis length by the minor axis

length), perimeter and solidity. The difference between predicted and ground truth shape

descriptor is calculated as fold deviation for each object and defined as

���݁� �
��� � ��݊�

���

where sdp is the predicted and sdgt the ground truth shape descriptor. Object correspondence

was assumed if at least one identical pixel coordinate was found in both the ground truth and

the predicted object. Only objects that were predicted to correspond with a single object in

the ground truth or vice versa were included in this analysis. For single correspondence, a

fold deviation (the predicted value multiplied or divided by that fold deviation would yield

the ground truth value) for all five morphological descriptors from the ground truth is then
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calculated for each object (Fig. 4C). The single object fold deviation values were tested for

normality using the D’Agostino’s K-squared test and statistical differences between methods

were determined using the Kruskal-Wallis test followed by Dunn’s multiple comparisons test.

Because the single object shape comparison neglects false positive predictions, we compared

the predicted shape distribution of all objects per image against the ground truth. The shape

descriptors are the same as used for the single object shape comparison. For segmented

objects, distributions of these five descriptors were obtained and compared to the

distributions of the ground truth images by calculating the energy distance (Fig. 4E). The

energy distance between two distributions d1 and d2 is defined as

� ��๦ �� � ��� � � � � � � � �� � � �� �� ��t�

where X and X’ (resp. Y and Y’) are independent random variables with a probability

distribution of d1 (resp. d2) (Szekely 2002). Energy distance values were normalised prior to

being tested for normality using the D’Agostino’s K-squared test, followed by applying a

Kruskal-Wallis test and a subsequent Dunn’s multiple comparisons test.

All methods to test the performance of each segmentation approach were implemented in

Python 3.7.3 using the following libraries: NumPy, OpenCV, scikit-image, scikit-learn,

scikit-posthocs, Matplotlib, Seaborn, Pandas and SciPy.

Comparison of mitochondrial morphology between catp-6 mutant and wild-type

Images segmented with the pretrained segmentation model were recorded with a fluorescent

microscope, using a 63x 1.4 NA oil lens (Axioskop 2; Carl Zeiss Inc.) and a charge-coupled

device camera (1300; Micromax). The C. elegans strain carrying the bcIs78 transgene and the
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catp-6(ok3473) mutation was compared to the wild-type strain carrying the bcIs78 transgene.

Quantitative analysis was performed using the MitoA tool.

Application of the MitoSegNet model segmentation to mitochondria in HeLa cells

Images segmented with the pretrained segmentation model were recorded with an inverted

Zeiss LSM 880 system equipped with a DPSS 561-nm laser, using a Plan-Apochromat 63x /

1.4 oil DIC objective and a GaAsP detector. Images were collected with the ZEN 2 software

at 1024 x 1024 pixels resolution. To visualize mitochondria, HeLa cells (ATCC) were

transfected with mitoRFP using Lipofectamine 2000. After 24 hours of transfection, the HeLa

cells were either left untreated or treated with 2.5 µM oligomycin (Calbiochem) and 1 µM

antimycin A (Sigma) in fresh growth medium for 3 hours. Segmented and raw images were

subjected to quantitative analysis using the MitoA tool.
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