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Large eQTL meta-analysis reveals 
differing patterns between cerebral 
cortical and cerebellar brain regions
Solveig K. Sieberts   1 ✉, Thanneer M. Perumal1, Minerva M. Carrasquillo   2, Mariet Allen2, 
Joseph S. Reddy   2, Gabriel E. Hoffman   3,4, Kristen K. Dang   1, John Calley5,  
Philip J. Ebert5, James Eddy1, Xue Wang2, Anna K. Greenwood1, Sara Mostafavi6,7,8,  
The CommonMind Consortium (CMC)*, The AMP-AD Consortium*, Larsson Omberg1, 
Mette A. Peters1, Benjamin A. Logsdon   1, Philip L. De Jager   9, Nilüfer Ertekin-Taner2,10 & 
Lara M. Mangravite   1 ✉

The availability of high-quality RNA-sequencing and genotyping data of post-mortem brain collections 
from consortia such as CommonMind Consortium (CMC) and the Accelerating Medicines Partnership 
for Alzheimer’s Disease (AMP-AD) Consortium enable the generation of a large-scale brain cis-eQTL 
meta-analysis. Here we generate cerebral cortical eQTL from 1433 samples available from four cohorts 
(identifying >4.1 million significant eQTL for >18,000 genes), as well as cerebellar eQTL from 261 
samples (identifying 874,836 significant eQTL for >10,000 genes). We find substantially improved 
power in the meta-analysis over individual cohort analyses, particularly in comparison to the Genotype-
Tissue Expression (GTEx) Project eQTL. Additionally, we observed differences in eQTL patterns 
between cerebral and cerebellar brain regions. We provide these brain eQTL as a resource for use by the 
research community. As a proof of principle for their utility, we apply a colocalization analysis to identify 
genes underlying the GWAS association peaks for schizophrenia and identify a potentially novel gene 
colocalization with lncRNA RP11-677M14.2 (posterior probability of colocalization 0.975).

Introduction
Defining the landscape of genetic regulation of gene expression in a tissue-specific manner is useful for under-
standing both normal gene regulation and how variation in gene expression can alter disease risk. In the latter 
case, a variety of approaches now leverage the association between genetic variants and gene expression changes, 
including colocalization analysis1–7, transcriptome-wide association studies (TWAS)8,9, and gene regulatory net-
work inference10–16.

There has been a relative lack of expression quantitative trait loci (eQTL) studies from the brain. Because of 
the more accessible nature of tissues such as blood or lymphoblastoid cell lines (LCLs), much of the large-scale 
identification of expression quantitative trait loci (eQTL) has occurred in these tissues17–20. For most other tissues, 
obtaining samples for RNA sequencing (RNA-seq) requires invasive biopsy, and brain tissues are typically only 
available in post-mortem brain samples. One effort, the Genotype-Tissue Expression (GTEx) project21,22, has 
profiled a broad range of tissues (42 distinct) for eQTL discovery, however, samples sizes in brain have been small 
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(typically 100–150). Recently, efforts to understand gene expression changes in neuropsychiatric23–26 and neuro-
degenerative diseases27–34 have generated brain RNA-seq from disease and normal tissue, as well as genome-wide 
genotypes. These analyses have found little evidence for widespread disease-specific eQTL, as well as high 
cross-cohort overlap24,35, meaning that most eQTL detected are disease-condition independent. This implies that 
meta-analysis across disease-based cohorts will capture eQTL which are unconfounded by disease state despite 
differences in disease ascertainment of the samples, and leverages thousands of available samples to produce a 
well-powered brain eQTL resource for use in downstream research.

Here we generate a public eQTL resource from cerebral cortical tissue using 1433 samples from 4 cohorts from 
the CommonMind Consortium (CMC)23,24,26 and the Accelerating Medicines Partnership for Alzheimer’s Disease 
(AMP-AD) Consortium30,31, as well as from cerebellum using 261 samples from AMP-AD. We show that eQTL 
discovered in GTEx, which consists of control individuals (without disease) only, are replicated in this larger brain 
eQTL resource. We further show widespread differences in regulation between cerebral cortex and cerebellum. 
To demonstrate one example of the utility of these data, we apply a colocalization analysis, which seeks to identify 
expression traits whose eQTL association pattern appears to co-occur at the same loci as the clinical trait associa-
tion, to identify putative genes underlying the GWAS association peaks for schizophrenia36.

Results
We generated eQTL from the publicly available AMP-AD (ROSMAP27,28,35,37, Mayo RNAseq29,38–40) and 
CMC23,24,26 (MSSM-Penn-Pitt24,26, HBCC26) cohorts with available genotypes and RNA-seq data, using a com-
mon analysis pipeline (Supplementary Table 1) (https://www.synapse.org/#!Synapse:syn17015233). Analyses 
proceeded separately by cohort. Briefly, the RNA-seq data were normalized for gene length and GC content prior 
to adjustment for clinical confounders, processing batch information, and hidden confounders using Surrogate 
Variable Analysis (SVA)41. Genes having at least 1 count per million (CPM) in at least 50% of samples were 
retained for downstream analysis (Supplementary Table 2). Genotypes were imputed to the Haplotype Reference 
Consortium (HRC) reference panel42. eQTL were generated adjusting for diagnosis (AD, control, other for 
AMP-AD cohorts and schizophrenia, control, other for CMC cohorts) and principal components of ancestry 
separately for ROSMAP, Mayo temporal cortex (TCX), Mayo cerebellum (CER), MSSM-Penn-Pitt, and HBCC. 
For HBCC, which had a small number of samples derived from infant and adolescents, we excluded samples with 
age-of-death less than 18, to limit heterogeneity due to differences between the mature and developing brain.

We then performed a meta-analysis using the eQTL from cortical brain regions from the individual cohorts 
(dorsolateral prefrontal cortex (DLPFC) from ROSMAP, MSSM-Penn-Pitt, and HBCC and TCX from Mayo). The 
meta-analysis identifies substantially more eQTL than the individual cohorts (Table 1, Fig. 1). There is a strong 
relationship between the sample size in the individual cohorts and meta-analysis and the number of significant 
eQTL and genes with eQTL (Fig. 1b,c). Notably, the meta-analysis identified significant eQTL (at FDR ≤ 0.05) in 
>1000 genes for which no eQTL were observed in any individual cohort. Additionally, we find significant eQTL 
for 18,295 (18,433 when considering markers with minor allele frequency (MAF) down to 1%) of the 19,392 
genes included in the analysis.

We then compared our cortical eQTL to those from GTEx (v7)21, which is the most comprehensive brain 
eQTL database available in terms of number of available brain tissues (Table 1, Table 2). Due to the substan-
tially larger power in these data, we find >3.8 million eQTL not identified in GTEx cortical regions (Anterior 
Cingulate Cortex, Cortex or Frontal Cortex) and we find eQTL for >11,000 genes with no eQTL in these cortical 
regions in GTEx. While GTEx employs a stricter approach to the control of false discovery rate (FDR), we find 
that re-analysis of the GTEx cortical regions using an approach similar to ours (see Methods) did not account 
for the number of eQTL and genes with eQTL discovered in this analysis, but not in GTEx (3,619,693 and 6,866 
for eQTL and genes, respectively, when using the less conservative approach). Next, we evaluated the replication 
within our cortical and cerebellar eQTL of the region specific eQTL identified in GTEx. The cortical eQTL gen-
erated through the current analyses strongly replicate the eQTL available through GTEx, not only for cortical 
regions, but for all brain regions including cervical spinal cord (Table 2). Interestingly, the replication in these 
cortical eQTL of eQTL derived from the two GTEx cerebellar brain regions (cerebellum and cerebellar hemi-
sphere) is consistently lower than for other brain regions represented in GTEx. However, replication of GTEx 
cerebellar eQTL is high when compared to the cerebellar eQTL generated in this analysis from the Mayo Clinic 
CER samples. We also performed the reverse comparison, by examining the replication of our eQTL in those 
region-specific eQTL identified in GTEx. Unsurprisingly, the replication levels were substantially lower, due to 

Cohort Cis eQTL*
Unique Genes 
with Signif. eQTL

eQTL (Genes) not 
Present in GTEx**

Meta-eQTL (Genes) 
not found in Cohort

Genes w/o eQTL in CMC, 
ROSMAP, HBCC or Mayo TCX

ROSMAP 2,472,838 13,543 2,205,025 (7,829) 2,103,711 (5,079)

Mayo TCX 712,401 8,838 480,507 (4,439) 3,485,381 (9,591)

CMC 1,322,680 12,641 1,062,830 (7,206) 2,948,886 (5,897)

HBCC 577,512 9,112 379,732 (4,645) 3,614,448 (9,337)

Meta-Analysis*** 4,142,776 18,295 3,800,208 (11,395) 1,042

Table 1.  eQTL results from individual cohorts and meta-analysis. *SNP-gene pairs with MAF ≥ 0.02 and 
FDR ≤ 0.05. **GTEx (v7) Anterior Cingulate Cortex, Cortex or Frontal Cortex. ***Additional 36,352 (138) 
eQTL (Genes) with 0.01 ≤ MAF < 0.02.

https://doi.org/10.1038/s41597-020-00642-8
https://www.synapse.org/#!Synapse:syn17015233


3Scientific Data |           (2020) 7:340  | https://doi.org/10.1038/s41597-020-00642-8

www.nature.com/scientificdatawww.nature.com/scientificdata/

the lower power in the GTEx analyses. Replication rates were not substantially changed by using GTEx eQTL 
discovered using our less conservative approach.

Additionally, we compared our eQTL to a publically available fetal brain eQTL resource43 and found good rep-
lication of these eQTL as well (estimated replication rate π1 = 0.909 for the cortical meta-analysis, and π1 = 0.861 
for cerebellum), though somewhat lower than the replication observed in the GTEx cohorts, which are comprised 
of adult-derived samples.

Finally, as a proof of concept, we performed a colocalization analysis between our eQTL meta-analysis and the 
Psychiatric Genomics Consortium (PGC) v2 schizophrenia GWAS summary statistics36. Seventeen genes showed 
posterior probability of colocalization using coloc7 (PP(H4)) > 0.7 (Table 3), with 3 showing PP(H4) > 0.95 
(FURIN, ZNF823, RP11-677M14.2). FURIN, having previously identified as a candidate through colocalization24 
has recently been shown to reduce brain-derived neurotrophic factor (BDNF) maturation and secretion when 
inhibited by miR-338-3p44. ZNF823 has been identified in previous colocalization analyses45,46. RP11-677M14.2, a 
lncRNA located inside NRGN, while not previously identified through colocalization analysis, has been shown to 
be down-regulated in the amygdala of schizophrenia patients47. Noteably, NRGN does not appear to show eQTL 
colocalization (PP(H4) = 0.006), instead showing strong evidence for the eQTL and GWAS associations occurring 
independently (PP(H3) = 0.994). Two additional strong colocalizations THOC7 (PP(H4) = 0.943) and FAM85B 
(PP(H4) = 0.948) show other potential candidates in the region (Supplementary Table 3). At the THOC7 locus, 
the competing gene, C3orf49 shows slightly lower strength for colocalization (PP(H4) = 0.820), and the associ-
ations do not appear to be independent (R2 between best SNPs = 0.979). At the FAM85B locus, the competing 
pseudo gene FAM86B3P shows substantially lower evidence for colocalization (PP(H4) = 0.513) and in this case 
too, the associations appear to be non-independent (R2 = 0.902).
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Fig. 1  eQTL meta-analysis discovers more eQTL than individual cohorts. (a) Quantile-quantile plot of eQTL 
from individual cohorts as well as the meta-analysis of the true (black) and permuted (light blue) data. Number 
of significant eQTL (SNP-gene pairs) (b) or genes with significant eQTL (c) as a function of cohort size.

GTEx Brain Region # eQTL

Replication (π1) of GTEx eQTL Replication (π1) of AMP-AD eQTL in GTEx

Meta-
Analysis ROSMAP

Mayo 
TCX

Mayo 
CER

Meta-
Analysis ROSMAP

Mayo 
TCX

Mayo 
CER

Amygdala 158,270 0.974 0.987 0.986 0.916 0.356 0.421 0.701 0.555

Anterior Cingulate Cortex 
(BA24) 291,898 0.976 0.971 0.962 0.903 0.445 0.516 0.772 0.592

Caudate Basal Ganglia 435,939 0.966 0.961 0.935 0.881 0.488 0.544 0.781 0.636

Cerebellar Hemisphere 575,583 0.896 0.897 0.781 0.962 0.458 0.509 0.719 0.831

Cerebellum 819,435 0.893 0.890 0.711 0.936 0.526 0.577 0.761 0.863

Cortex 478,903 0.980 0.973 0.941 0.892 0.547 0.604 0.834 0.659

Frontal Cortex (BA9) 342,988 0.974 0.967 0.963 0.897 0.489 0.547 0.792 0.632

Hippocampus 221,876 0.967 0.970 0.937 0.905 0.404 0.462 0.710 0.570

Hypothalamus 227,808 0.974 0.966 0.960 0.913 0.392 0.436 0.719 0.580

Nucleus Accumbens Basal 
Ganglia 376,390 0.958 0.952 0.781 0.894 0.453 0.514 0.761 0.622

Putamen Basal Ganglia 293,880 0.966 0.974 0.930 0.890 0.433 0.493 0.764 0.591

Spinal Cord Cervical (c-1) 175,702 0.940 0.952 0.918 0.862 0.330 0.394 0.640 0.514

Substantia Nigra 120,582 0.964 0.951 0.960 0.928 0.297 0.372 0.635 0.479

Table 2.  Replication rates between GTEx and publicly available eQTL from these analyses.
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Discussion
Using resources generated in the AMP-AD and CMC consortia, we have generated a well-powered brain eQTL 
resource for use by the scientific community. Unsurprisingly, we see a strong relationship between the number 
of significant eQTL, as well as genes with significant eQTL, and sample size using analyses from the individual 
cohorts as well as the meta-analysis of those cohorts. This result has previously been shown for lower sample 
sizes21. We also show higher replication of GTEx eQTL in the meta-analysis relative to the individual cohorts. 
These conclusions appear to be independent of methodological differences between our analysis and the one done 
by GTEx.

Notably, we find significant eQTL for nearly every gene in our analysis, which include all but very lowly 
expressed genes (less than 1 cpm in more than 50% of samples). The wide discovery of eQTL is potentially bene-
ficial for analyses utilizing these results, such as colocalization analysis or TWAS imputation, because more genes 
with significant eQTL means more genes can be evaluated with these approaches. Because we have discovered 
eQTL for most genes, further increasing sample size will not substantially increase the number of genes with 
significant eQTL. However it is likely that the number of significant eQTL associations within each gene would 
continue to increase, which may include additional associations tagging the same regulator or independent asso-
ciations tagging weaker regulators, along with the accuracy of estimated effect sizes. This will result in a more 
accurate landscape of regulatory association, which will improve the ability to fine-map causal regions, and colo-
calize eQTL signal with clinical traits of interest. Thus, it will be valuable to continue to update this meta-analysis 
with additional data from these consortia and other resources as they become available, and continue to improve 
this resource as future data permits. Future work may also focus on using well-powered analysis to study the 
landscape of causal variation and co-variation in gene regulation.

We found distinct eQTL patterns across cerebral cortical and cerebellar brain regions in our resource. 
Specifically, comparison of eQTL from our resource with those from GTEx shows high replication for the major-
ity of brain regions. However, cerebellar regions show consistently lower replication with the cerebral cortical 
eQTL generated here. In contrast, the cerebellar eQTL generated from the Mayo Clinic study replicate GTEx 
cerebellar eQTL at a substantially higher rate, suggesting a different pattern of regulatory variation affecting 
expression in cerebellum versus other brain regions. Indeed, epigenomic analyses show substantial differences 
between cerebellar and cerebral cortical regions48–51, particularly in methylation patterns, which could drive dif-
ferent eQTL association patterns. This is further corroborated by the observation of substantial coexpression 
differences between cerebellar and other brain regions52. These effects could be due to differences in cell type 
composition, with cerebellar regions consisting of substantially more neurons than other brain regions53. This is 
supported by a gene enrichment analysis of genes showing different eQTL association patterns between cerebel-
lum and cortex, which showed that many of the top gene sets were neuron or signaling related (Supplementary 
Table 4). One recent report suggests that there are also widespread differences in histone modifications within cell 
types derived from cerebellar and cortical regions54, though this effect had not been noted in other studies. In par-
ticular, Ma et al.54 observed that both neuronal and non-neuronal cell types show differing histone modifications 
across tissue of origin. Further work is necessary to confirm this finding and to develop models to deconvolve 
the cell-type specific regulatory effects in different brain regions55–57, however our analysis demonstrates that this 
meta-analysis is representative of eQTL across the majority of brain regions, with the exception of cerebellum. 
Future meta-analytic analyses may also cast a wider net in terms of brain regions included.

Gene

eQTL Peak Location*

NSNPs

Min(p-value)
Best 
Colocalized 
SNP**

Posterior 
Probability of 
Colocalization

Additional 
Candidates 
at this 
Locus***Chr Start End GWAS eQTL

RERE 1 7412645 9877280 4905 2.72E-09 2.28E-21 rs301792 0.730

PTPRU 1 28563084 30653243 4099 1.28E-09 4.42E-10 rs1498232 0.890

FOXN2 2 47542228 49606348 5437 1.66E-06 8.85E-45 rs79073127 0.782

C3orf49 3 62805378 64834213 4906 2.58E-08 1.10E-13 rs832187 0.820 Yes

THOC7 3 62819766 64848612 4886 2.58E-08 2.21E-39 rs832190 0.943 Yes

TBC1D19 4 25578209 27755954 4432 7.44E-07 7.85E-07 rs6825268 0.900

CLCN3 4 169533866 171644821 4956 1.02E-08 1.91E-09 rs10520163 0.768

PPP1R18 6 29644275 31655438 1055 1.16E-19 5.52E-07 rs2523607 0.827 Yes

LINC00222 6 108073451 110091064 3600 3.37E-08 1.63E-07 rs9398171 0.852

FAM85B 8 8089567 9084121 3725 2.03E-08 5.63E-31 rs2980439 0.948 Yes

ENDOG 9 130581300 132584048 3294 1.92E-06 6.90E-62 rs6478854 0.721 Yes

RP11-677M14.2 11 123614560 125616016 5253 3.68E-12 1.50E-09 rs55661361 0.975

FURIN 15 90414642 92426654 4767 2.30E-12 1.29E-20 rs4702 0.999

CNOT1 16 57553885 59662867 5364 1.15E-08 1.16E-06 rs12325245 0.862

ELAC2 17 11896953 13921426 5651 2.84E-06 3.90E-106 rs1044564 0.856

ZNF823 19 10832190 12840037 3844 1.57E-06 5.38E-10 rs3095917 0.961

PTK6 20 61160251 62960229 4527 4.03E-08 1.09E-26 rs427230 0.897

Table 3.  Top colocalized genes as inferred between meta-analysis eQTL and the PGC2 schizophrenia GWAS. 
*eQTL Peak Location is ±1 Mb around the gene location. **SNP showing the highest PP(H4) between the gene 
and GWAS trait. ***At Posterior Probability of Colocalization ≥ 0.5.
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The replication of fetal eQTL, while significant, is somewhat lower than the replication of adult eQTL repre-
sented in GTEx. This may be due to multiple factors. The fetal eQTL analysis was generated from brain homoge-
nate, rather than dissected brain regions, though the lower replication likely also reflects broad transcriptional 
differences between developing and mature brain58. These transcriptional differences may also explain why we 
find substantially more eQTL than a recently published, similarly sized eQTL analysis which uses samples from 
across developmental and adult timepoints25, and why this meta-analysis shows higher replication of GTEx eQTL.

Previous studies report a lack of widespread disease-specific eQTL observed in schizophrenia (CMC)24 
and Alzheimer’s (ROSMAP)35. In accordance, we find a strong overlap among eQTL across disparate disease 
samples, particularly those with neuropsychiatric and neurodegenerative disorders, as well as normal individ-
uals from these and other cohorts such as GTEx24,35. This suggests that disease-specific eQTL, if they exist, are 
likely few in number and/or small in effect size, relative to condition-independent eQTL in general. If they do 
exist, disease-specific eQTL discovery may be successful in more targeted analyses or with larger sample sizes 
or meta-analyses, but was not explored for the purpose of this general resource. Thus, the heterogeneous sam-
ples derived from different disease-based cohorts can be meta-analyzed to create a general-purpose brain eQTL 
resource representing adult gene regulation, despite comprising samples with different disease backgrounds, 
along with normal controls. Therefore, these eQTL will be useful both within and outside these specific disease 
contexts. For example, since these eQTL are not disease specific they may be used to understand healthy gene 
expression regulation in the brain, as well as to infer colocalization of eQTL signatures with disease risk for any 
disease whose tissue etiology is from the brain, since these signatures are reflective of normal brain regulation. It 
should be stated that while many eQTL are not disease specific, i.e. they are identified under various central nerv-
ous system (CNS) disease diagnoses and in control brains, they may still contribute to common CNS diseases as 
previously demonstrated24,32–34,45,46. While we have demonstrated a proof-of-concept colocalization analysis with 
a previously published schizophrenia GWAS, these eQTL are a broadly useful resource for studying neuropsy-
chiatric and neurodegenerative disorders, as well as for understanding the landscape of gene regulation in brain.

Methods
RNA-seq Re-alignment.  For the CMC studies (MSSM-Penn-Pitt, HBCC), RNA-seq reads were aligned to 
GRCh37 with STAR v2.4.0g159 from the original FASTQ files. Uniquely mapping reads overlapping genes were 
counted with featureCounts v1.5.260 using annotations from ENSEMBL v75.

For the AMP-AD studies (ROSMAP, Mayo RNAseq), Picard v2.2.4 (https://broadinstitute.github.io/picard/) 
was used to generate FASTQ files from the available BAM files, using the Picard SamToFastq function. Picard 
SortSam was first applied to ensure that R1 and R2 reads were correctly ordered in the intermediate SAM file 
before converting to FASTQ. The converted FASTQs were aligned to the GENCODE24 (GRCh38) reference 
genome using STAR v2.5.1b, with twopassMode set as Basic. Gene counts were computed for each sample by 
STAR by setting quantMode as GeneCounts.

RNA-seq normalization.  To account for differences between samples, studies, experimental batch effects 
and unwanted RNA-seq-specific technical variations, we performed library normalization and covariate adjust-
ments for each study separately using fixed/mixed effects modeling. A mixed effect model was required to jointly 
normalize both tissues from the Mayo cohort. All other cohorts contained only one tissue, so a fixed effect model 
was used. The workflow consisted of the following steps:

	 1.	 Gene filtering: Out of ~56 K aligned and quantified genes, only genes showing at least modest expression 
were used in this analysis. Genes that were expressed more than 1 CPM (read Counts Per Million total 
reads) in at least 50% of samples in each tissue and diagnosis category were retained for analysis. Addition-
ally, genes with available gene length and percentage GC content from BioMart December 2016 archive 
were subselected from the above list. This resulted in approximately 14 K to 16 K genes in each study.

	 2.	 Calculation of normalized expression values: Sequencing reads were then normalized in two steps. First, 
conditional quantile normalization (CQN)61 was applied to account for variations in gene length and GC 
content. In the second step, the confidence of sampling abundance was estimated using a weighted linear 
model using the voom-limma package in bioconductor62,63. The normalized observed read counts, along 
with the corresponding weights, were used in the following steps.

	 3.	 Outlier detection: Based on normalized log2(CPM) of expression values, outlier samples were detected 
using principal component analysis (PCA)64,65 and hierarchical clustering. Samples identified as outliers 
using both the above methods were removed from further analysis.

	 4.	 Covariate imputation: Before identifying associated covariates, important missing covariates were imput-
ed. Principally, post-mortem interval (PMI), or the latency between death and tissue collection, which is 
frequently an important covariate for the analysis of gene expression from post-mortem brain tissue, was 
imputed for a portion of samples in Mayo RNAseq data for which true values were unavailable. Genomic 
predictors of PMI were estimated using ROSMAP and MSSM (an additional RNA-seq study available 
through AMP-AD) samples and were used to impute missing values as necessary.

	 5.	 Covariate identification: Normalized log2(CPM) counts were then explored to determine which known 
covariates (both biological and technical) should be adjusted. Except for the HBCC study, we used a step-
wise (weighted) fixed/mixed effect regression modeling approach to select the relevant covariates having a 
significant association with gene expression. Here, covariates were sequentially added to the model if they 
were significantly associated with any of the top principal components, explaining more than 1% of vari-
ance of expression residuals. For HBCC, we used a model selection based on Bayesian information criteria 
(BIC) to identify the covariates that improve the model in more than 50% of genes.
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	 6.	 SVA adjustments: After identifying the relevant known confounders, hidden-confounders were identified 
using the Surrogate Variable Analysis (SVA)41. We used a similar approach as previously defined24 to find 
the number of surrogate variables (SVs), which is more conservative than the default method provided by 
the SVA package in R66. The basic idea of this approach is that for an eigenvector decomposition of permut-
ed residuals each eigenvalue should explain an equal amount of the variation. By the nature of eigenval-
ues, however, there will always be at least one that exceeds the expected value. Thus, from a series of 100 
permutations of residuals (white noise) we identified the number of covariates as shown in Supplementary 
Table 1. We applied the “irw” (iterative re-weighting) version of SVA to the normalized gene expression 
matrix, along with the covariate model described above to obtain residual gene expression for eQTL 
analysis.

	 7.	 Covariate adjustments: We performed a variant of fixed/mixed effect linear regression, choosing 
mixed-effect models when multiple tissues or samples, were available per individual, as shown here: gene 
expression ~ Diagnosis + Sex + covariates + (1|Donor), where each gene was linearly regressed inde-
pendently. Here Donor (individual) was modeled as a random effect when multiple tissues from the same 
individual were present. Observation weights (if any) were calculated using the voom-limma62,63 pipeline, 
which has a net effect of up-weighting observations with inferred higher precision in the linear model 
fitting process to adjust for the mean-variance relationship in RNA-seq data. The diagnosis component was 
then added back to the residuals to generate covariate-adjusted expression for eQTL analysis.

This workflow was applied separately for each study. For the AMP-AD studies, gene locations were lifted over 
to GRCh37 for comparison with the genotype imputation panel (described below). For HBCC, samples with age 
<18 were excluded prior to analysis. Supplementary Table 1 shows the covariates and surrogate variables identi-
fied in each study.

AD diagnosis harmonization.  Prior to RNA-seq normalization, we harmonized the LOAD definition 
across AMP-AD studies. AD controls were defined as patients with a low burden of plaques and tangles, as well 
as lack of evidence of cognitive impairment. For the ROSMAP study, we defined AD cases to be individuals with 
a Braak67 greater than or equal to 4, CERAD score68 less than or equal to 2, and a cognitive diagnosis of probable 
AD with no other causes (cogdx = 4), and controls to be individuals with Braak less than or equal to 3, CERAD 
score greater than or equal to 3, and cognitive diagnosis of ‘no cognitive impairment’ (cogdx = 1). For the Mayo 
Clinic study, we defined disease status based on neuropathology, where individuals with Braak score greater than 
or equal to 4 were defined to be AD cases, and individuals with Braak less than or equal to 3 were defined to be 
controls. Individuals not meeting “AD case” or “control” criteria were retained for analysis, and were categorized 
as “other” for the purposes of RNA-seq adjustment.

Genotype QC and imputation.  Genotype QC was performed using PLINK v1.969. Markers with zero 
alternate alleles, genotyping call rate ≤ 0.98, Hardy-Weinberg p-value < 5e−5 were removed, as well as individu-
als with genotyping call rate < 0.90. Samples were then imputed to HRC (Version r1.1 2016)42 as follows: marker 
positions were lifted-over to GRCh37, if necessary. Markers were then aligned to the HRC loci using HRC-
1000G-check-bim-v4.2 (http://www.well.ox.ac.uk/~wrayner/tools/), which checks the strand, alleles, position, 
reference/alternate allele assignments and frequencies of the markers, removing A/T & G/C single nucleotide 
polymorphisms (SNPs) with minor allele frequency (MAF) > 0.4, SNPs with differing alleles, SNPs with > 0.2 
allele frequency difference between the genotyped samples and the HRC samples, and SNPs not in the reference 
panel. Imputation was performed via the Michigan Imputation Server70 using the Eagle v2.371 phasing algorithm. 
Imputation was done separately by cohort and by chip within cohort, and markers with R2 ≥ 0.7 and minor allele 
frequency (MAF) ≥ 0.01 (within cohort) were retained for analysis.

Genetic ancestry inference.  GEMTOOLs72 was used to infer ancestry and compute ancestry components 
separately by cohort. The GEMTOOLs algorithm uses a significance test to estimate the number of eigenvectors 
(ancestry components) necessary to represent the variability in the data73. For each cohort, we used the top com-
ponents as estimated by the GEMTOOLs algorithm, which resulted in some variation in the number of compo-
nents selected. For MSSM-Penn-Pitt and HBCC, which are multi-ethnic cohorts, only Caucasian samples were 
retained for eQTL analysis.

eQTL analysis.  eQTL were generated separately in each cohort and tissue using MatrixEQTL74 adjusting for 
harmonized Diagnosis and inferred Ancestry components using “cis” gene-marker comparisons: Expression ~ 
Genotype + Diagnosis + PC1 + … + PCn,, where PCk is the kth ancestry component, using Expression variables 
which were previously covariate adjusted as described above. Here we define “cis” as ± 1 MB around the gene, 
and GRCh37 gene locations were used for consistency with the marker imputation panel. Meta-analysis was 
performed via fixed-effect model75 using an adaptation of the metareg function in the gap package in R. In order 
to assess potential inflation of Type 1 error, we performed 5 permutations of the gene expression values, relative 
to genotype and ancestry components, within diagnosis for each cohort, and repeated the regression analyses as 
described above. For each of the 5 iterations of permutation, a meta-analysis was then performed across the 4 
cohorts. We found that Type 1 error was well controlled (Fig. 1a). Given that multiple tissues were present, we also 
evaluated a random-effect model, but found substantially deflated p-values (less significant) in the permutations, 
relative to the expected distribution, suggesting that this model is over-conservative.

Comparison with GTEx and fetal eQTL.  Full summary statistics for the GTEx v721 eQTL for all available 
brain regions were obtained from the GTEx Portal (https://gtexportal.org/), and fetal eQTL were obtained from 
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Figshare76. For each replication comparison (e.g. meta-analysis vs GTEx or meta-analysis vs. fetal eQTL), only 
markers and genes present in both the external eQTL and our analysis were retained for comparison. As this was 
done separately for GTEx and for the fetal eQTL resource, the list of genes and SNPs varies slightly for each com-
parison. The replication rate was estimated as the π1 statistic using the qvalue package77 in R as follows: we 
extracted the meta-analysis p-values for all SNP-gene pairs, which were significant in GTEx at FDR ≤ 0.05. We 
then applied the ‘qvalue’ command to the meta-analysis p-values to generate π π= −� �11 0, which corresponds to 
estimated proportion of non-null p-values77. The ‘smoother’ option was used to estimate π�0 as a function of the 
tuning parameter λ as it approaches 1. The variance around this estimate is relatively small (see Supplementary 
Figures 1 and 2 for example) and does not materially affect the observations in this manuscript.

Conversely, we estimated the replication rate of significant meta-analysis eQTL SNP-gene pairs in GTEx. 
Analogous methods were used to estimate all other replication rates. For the purposes of reporting the total 
number of eQTL not present in GTEx, and genes without eQTL in GTEx (Table 1), we have included genes and 
SNP-gene pairs not present in GTEx in the count, however this accounts for a relatively small proportion of the 
difference (472,995 eQTL and 1481 genes).

GTEx eQTL generation.  In order to verify that the observed power increase and replication imbalances 
were not due to methodological differences between this manuscript and those performed by GTEx, we obtained 
access to the GTEx v7 data, and generated eQTL for cortex, anterior cingulate cortex, and frontal cortex using 
our approach. We used gene expression and imputed genotypes as provided, as well as the provided covariates, 
which included 3 ancestry covariates, 14-15 surrogate variable covariates, sex and platform. We then repeated 
the comparisons with the meta-analysis described in the previous section, using a MAF cutoff of 0.03, which 
best appeared to control Type 1 error, as observed by permutation between genotype and gene expression, while 
maximizing the number of significant eQTL in the true data. Results did not change materially.

Pathway analysis of cerebellar eQTL genes.  In order to identify whether genes showing 
cerebellar-specific eQTL patterns showed any biological coherence, we performed a pathway analysis as fol-
lows. For genes with at least 5 significant cerebellar eQTL, we computed the Spearman correlation of effect-size 
between cerebellum eQTL and cortical eQTL for the loci that were significant in cerebellum. We then selected 
genes for which the effect-sizes did not show positive correlation (Spearman’s ρ < 0.1) between the two tissues as 
showing different eQTL association patterns across the gene and performed a pathway analysis with GO biolog-
ical processes Fisher’s exact test. Note that due to the (power-mediated) greater detection of eQTL in cortex, we 
did not perform the reverse comparison. The results were relatively robust to the choice of minimum number of 
significant eQTL, correlation cutoff, and choice of correlation statistic (Spearman vs Pearson).

Coloc analysis.  We applied Approximate Bayes Factor colocalization (coloc.abf)7 from the coloc R package 
to the summary statistics from the PGC2 Schizophrenia GWAS36 downloaded from the PGC website (http://pgc.
unc.edu), and the summary statistics from the eQTL meta-analysis. Each gene present in the meta-analysis was 
compared to the GWAS in turn, and suggestive and significant GWAS peaks with p-value < 5e-6 were considered 
for analysis.

Data availability
Data for the ROSMAP37 and Mayo cohorts40 are available through the AMP-AD Knowledge Portal31. Data for the 
MSSM-Penn-Pitt and HBCC cohorts are available through the CommonMind Knowledge Portal23.

eQTL results for the ROSMAP78, Mayo TCX79, Mayo CER80 and cortical meta-analysis81 are available through 
the AMP-AD Knowledge Portal. These results include SNP (location, rsid, alleles, and allele frequency) and 
gene (location, gene symbol, strand and biotype) information, as well as estimated effect size (beta), statistic (z), 
p-value, FDR, and expression-increasing allele.

Code availability
An R package with all code for the gene expression normalization is available at https://github.com/Sage-
Bionetworks/ampad-diffexp. All other analyses were generated using packages publicly available from their 
respective authors.
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