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Simple Summary: Radiomic risk models are usually based on imaging features, which are extracted
from the entire gross tumour volume (GTVentire). This approach does not explicitly consider the
complex biological structure of the tumours. Therefore, in this retrospective study, we investigated
the prognostic value of radiomic analyses based on different tumour sub-volumes using computed
tomography imaging of patients with locally advanced head and neck squamous cell carcinoma who
were treated with primary radio-chemotherapy. The GTVentire was cropped by different margins to
define the rim and corresponding core sub-volumes of the tumour. Furthermore, the best performing
tumour rim sub-volume was extended into surrounding tissue with different margins. As a result,
the models based on the 5 mm tumour rim and on the 3 mm extended rim sub-volume showed an
improved performance compared to models based on the corresponding tumour core. This indicates
that the consideration of tumour sub-volumes may help to improve radiomic risk models.

Abstract: Imaging features for radiomic analyses are commonly calculated from the entire gross
tumour volume (GTVentire). However, tumours are biologically complex and the consideration
of different tumour regions in radiomic models may lead to an improved outcome prediction.
Therefore, we investigated the prognostic value of radiomic analyses based on different tumour
sub-volumes using computed tomography imaging of patients with locally advanced head and neck
squamous cell carcinoma. The GTVentire was cropped by different margins to define the rim and
the corresponding core sub-volumes of the tumour. Subsequently, the best performing tumour rim
sub-volume was extended into surrounding tissue with different margins. Radiomic risk models
were developed and validated using a retrospective cohort consisting of 291 patients in one of the six
Partner Sites of the German Cancer Consortium Radiation Oncology Group treated between 2005
and 2013. The validation concordance index (C-index) averaged over all applied learning algorithms
and feature selection methods using the GTVentire achieved a moderate prognostic performance
for loco-regional tumour control (C-index: 0.61 ± 0.04 (mean ± std)). The models based on the
5 mm tumour rim and on the 3 mm extended rim sub-volume showed higher median performances
(C-index: 0.65± 0.02 and 0.64± 0.05, respectively), while models based on the corresponding tumour
core volumes performed less (C-index: 0.59 ± 0.01). The difference in C-index between the 5 mm
tumour rim and the corresponding core volume showed a statistical trend (p = 0.10). After additional
prospective validation, the consideration of tumour sub-volumes may be a promising way to improve
prognostic radiomic risk models.

Keywords: radiomic; image-based risk modelling; machine learning; personalised therapy;
radiation oncology

1. Introduction

The individualisation of radiation oncology is a major objective in modern cancer therapy [1].
Radiomics aims to characterise the tumour phenotype using advanced image features to predict
patient-specific outcome. Commonly, radiomic features are computed and extracted using the entire
gross tumour volume (GTVentire) [2–5]. Such an approach assumes that the individual tumour is
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either homogeneous or heterogeneous, but uniformly distributed over the entire tumour volume.
However, tumours are biologically complex and exhibit substantial spatial variation, e.g., in gene
expression and in microscopic structure [6]. Such spatial variation may be caused by, e.g., hypoxia and
necrosis which may appear in the tumour core and high cell proliferation and infiltrating tumour cell
growth, which may occur at the tumour periphery [7]. Some of these regional tumour variations are
apparent in imaging data, e.g., necrosis or tumour vascularisation detected by magnetic resonance
imaging (MRI) or tumour hypoxia measured by 18F-fluoromisonidazole positron emission tomography
(FMISO-PET) [8–12]. Furthermore, different regions within an individual tumour may differ in
radio-sensitivity, which may depend on the distribution of cancer stem cells and localised genetic or
molecular alterations [13,14]. In the case of head and neck squamous cell carcinoma (HNSCC), several
studies have shown that the tumour micro-environment plays a major role for cancer development
and progression [15]. Alsahafi et al. [16] showed that the poor response to therapy and the aggressive
nature of HNSCC are not only caused by the complex alterations in intracellular signalling pathways,
but are also influenced by the behaviour of the extracellular micro-environment. As consequences,
such spatial variations may affect the performance of image-based risk models.

Thus far, only few studies have investigated and analysed specific tumour sub-volumes for
radiomic risk modelling. Recently, Algohary et al. [17] showed that the combination of peri-tumoural
and intra-tumoural radiomic features derived from prostate bi-parametric MR images leads to an
improved risk assessment of prostate cancer patients. Furthermore, Grove et al. [18] showed that the
expressions of 2-dimensional radiomic features computed on the rim of the tumour differed from those
calculated on the tumour core. The ratio of tumour rim and core features led to an improved prediction
of overall survival (OS) in non-small cell lung cancer patients. Wu et al. [6] identified clinically relevant
tumour sub-volumes to characterise the regional heterogeneity of tumours in breast cancer patients
based on dynamic contrast enhanced magnetic resonance imaging. The resulting risk models based
on the identified sub-volumes also showed an improved outcome prediction compared to models
based on the GTVentire. In a further study, Wu et al. [19] identified different tumour sub-volumes
using computed tomography (CT) and 18F-fluorodeoxyglucose PET (FDG-PET) imaging of lung cancer
patients. It was shown that spatially distinct sub-volumes are linked to higher risk of recurrence
compared to the GTVentire, resulting in an improved model prediction of OS.

Aside from these initial findings, in most of the previously described studies, only individual
clinical parameters or radiomic features (e.g., tumour volume) were investigated. Therefore, systematic
investigations of the potential of radiomic risk models based on different tumour sub-volumes are
still sparse.

In the present study, we systematically compared radiomic models based on two different
sub-volumes of the GTVentire, the outer tumour rim and the complementary tumour core, using
pre-treatment CT imaging [20,21]. A multi-centre cohort of 291 patients with locally advanced HNSCC
treated by primary radio-chemotherapy was considered. For the prediction of loco-regional tumour
control (LRC), risk models were developed and independently validated. Patients were stratified into
groups at low and high risk of loco-regional recurrence. Furthermore, we investigated the prognostic
performance of the developed models for sub-groups of small and large tumours and extended the
tumour rim beyond the GTVentire to account for potential sub-microscopic spread, leading to the
clinical target volume [22].

2. Materials and Methods

2.1. Characteristics of Patient Cohorts

A retrospective multi-centre cohort consisting of 291 patients with histologically confirmed
loco-regionally advanced HNSCC was used. All patients received primary radio-chemotherapy (RCT)
and underwent a CT scan with or without contrast-enhancement for treatment-planning purpose.
The multi-centre cohort was divided into an exploratory and a validation cohort by an approximate
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ratio of 2:1. In the exploratory cohort, 149 of the 206 patients were treated in one of the six Partner
Sites of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG) between 2005 and
2011 [23]. The remaining 57 patients were treated at the University Hospital Dresden (UKD) between
1999 and 2006. The validation cohort consisted of 85 patients from which 51 patients received their
treatment within a prospective clinical trial (ClinicalTrials.gov Identifier: NCT00180180) at the UKD
between 2006 and 2012 [9,12]. The remaining 34 patients were treated at the UKD or the Radiotherapy
Centre Dresden-Friedrichstadt between 2005 and 2009 as well as at the University Hospital Tübingen
between 2008 and 2013. Patient characteristics for the exploratory and the independent validation
cohort are summarised in Table 1.

Radiomic risk models were developed to predict the primary clinical endpoint LRC, which was
defined as the time from the first day of RCT to the date of loco-regional recurrence (event) or to the
end of follow-up (censoring). Ethical approval for the multi-centre retrospective analyses of clinical
and imaging data was obtained from the Ethics Committee at the Technische Universität Dresden
(EK177042017, May 2017). All analyses were carried out in accordance with the relevant guidelines
and regulations. Informed consent was obtained from all patients.

Table 1. Patient characteristics of the exploratory and the independent validation cohort.

Clinical Variable Exploratory Cohort Validation Cohort p-Value

Number of patients 206 85 -

Gender
male 174 74

0.70 2
female 32 11

Age in years
median 59.0 55.0 0.023 3

range 39.2–84.5 37.0–76.0 -

cTN staging
T stage 1/2/3/4 2/23/51/130 2/9/30/44 0.21 1

N stage 0/1/2/3/missing 30/7/154/15/0 9/8/64/3/1 0.097 1

UICC stage 2010
I/II/III/IV 0/0/15/191 1/2/9/73 0.039 1

GTV (cm3)
median 29.1 40.6 0.067 3

range 4.5–321.7 2.7–239.1 -

Tumour site
oropharynx/oral cavity/
hypopharynx/larynx 93/51/62/0 29/23/28/5 0.003 3

p16 status
negative/positive/missing 148/28/30 52/5/28 0.26 1

Loco-regional tumour recurrence 84 (41%) 28 (33%) 0.26 3

Follow up time (months)
median 21.2 24.3 -
range 1.2–131.9 1.3–107.2 0.64 3

Abbreviations: T, clinical tumour stage; N, clinical nodal stage; UICC, Union internationale contre le cancer;
Gy, Gray; DNA, deoxyribonucleic acid; GTV, primary gross tumour volume; 1 χ2 test; 2 exact Fisher test;
3 Wilcoxon–Mann–Whitney test.

2.2. Tumour Sub-Volume Definition and Feature Computation

The analysis was divided into two subsequent steps, which are shown in Figure 1. The GTVentire,
i.e., the primary gross tumour volume, was manually delineated on each planning CT scan by a
radiation oncologist using the CT image information only. Subsequently, the image voxel spacing was
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resampled using cubic spline image interpolation to an isotropic voxel size of 1.0 × 1.0 × 1.0 mm3 to
correct for differences in voxel spacing and slice thickness between the cohorts [2,24].

Based on the delineated GTVentire, two distinct sub-volumes were generated. The outer contour
of the GTVentire was cropped by different margins (3 and 5 mm) to define the rim of the tumour
(GTV3mm-rim and GTV5mm-rim, respectively). The corresponding remaining sub-volumes were defined
as tumour core (GTV3mm-core and GTV5mm-core, respectively). The minimum core volume was
restricted to 40% of the entire tumour volume to avoid disappearance of the core sub-volume in
small tumours. Furthermore, the best performing tumour rim sub-volume was extended (GTVrim+ext)
into surrounding tissue with different distances (1, 2, 3 and 5 mm) to assess the prognostic performance
of the microscopic tumour extension.

Nine additional images were created by applying spatial filtering to the base image to emphasise
image characteristics, such as edges and blobs. Eight additional images were created by applying
a stationary coiflet-1 wavelet high-/low-pass filter along each of the three spatial dimensions.
One further image was created by applying a Laplacian of Gaussian (LoG) filter consisting of
five different filter kernel widths (1.0, 2.0, 3.0, 5.0 and 6.0 mm). Subsequently, the tumour mask
was re-segmented to include only soft tissue voxels between −150 and 180 Hounsfield units,
thereby removing voxels containing air or bone, which may affect feature expression. Features
were implemented in compliance with the Image Biomarker Standardisation Initiative [25]. A total
of 1538 features were computed and extracted from each sub-volume. A total of 18 statistical,
38 histogram-based and 95 texture features were calculated on the base image and on the nine
transformed images. Moreover, 28 morphological features were determined on the base image only.
The configuration settings for the image feature computation and extraction is summarised in Table A2.

HNSCC patients (n=291)

Entire tumour

GTVentire
Core

GTVcore

GTVrim

GTVrim+ext

Rim

Feature computation (~1500)

Extension
(1, 2, 3, and 5 mm)

Sub-volumes
(3 and 5 mm)

Risk modelling

Exploration (n=206) Validation (n=85)

(I) Prognostic performance

(II) Patient stratification

Loco-regional tumour control

(III) Signature analysis

Figure 1. Experimental design. A multi-centre cohort of 291 patients with loco regionally advanced
head and neck squamous cell carcinoma (HNSCC) was used to generate different sub-volumes based on
the delineated entire tumour. In particular, the outer contour of the entire primary cross tumour volume
(GTVentire) was cropped by different margins (3 and 5 mm) to define the rim of the tumour (GTVrim)
and the corresponding core (GTVcore). Furthermore, the best performing tumour rim sub-volume was
extended (GTVrim+ext) into surrounding tissue with different distances (1, 2, 3, and 5 mm) to assess
the prognostic performance of the microscopic tumour extension. The entire cohort was split into an
exploratory and an independent validation cohort for risk modelling. Prognostic model performance
and patient risk group stratification were assessed on the validation cohort. Selected features within
the developed signatures were analysed in terms of their univariate association with loco-regional
tumour control using the entire cohort.
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2.3. Radiomic Risk Modelling

Radiomic risk models were developed using an end-to-end modelling framework, which consists
of five steps: (I) feature pre-processing; (II) feature selection; (III) hyper-parameter optimisation;
(IV) model development; and (V) model validation. The risk models were generated as previously
described [4]. Briefly, after feature normalisation and clustering, feature selection was performed
multiple times using 1000 bootstrap samples of the exploratory cohort. Subsequently, model training
was conducted on 1000 bootstrap samples of the exploratory cohort, using the highest ranked features
as well as the optimised hyper-parameter set. Finally, an ensemble prediction was made by averaging
the predicted risk scores of each model for both the exploratory and the independent validation
cohort separately.

Combinations of five feature selection methods and six learning algorithms were used for model
development to reduce the risk of incidental findings, based on the recommendation in Leger et al. [4].
The following feature selection methods were used: Spearman correlation, mutual information
maximisation (MIM), mutual information feature selection (MIFS), minimum redundancy maximum
relevance (MRMR) and random forest variable importance (RFVI). The six learning algorithms
comprised: Cox proportional hazard model (Cox), boosted tree-Cox (BT-Cox), boosted gradient
linear model-Cox (BGLM-Cox), random survival forest (RSF) and maximally selected rank statistics
random forest (MSR-RF) as well as the full-parametric BT-Weibull model. Table A3 summarises
the definition of the hyper-parameters of the feature selection methods and of the machine learning
algorithms, which were used during the hyper-parameter optimisation.

2.4. Performance Assessments

(I) The prognostic performance of the radiomic models was assessed on the exploratory and on
the independent validation cohort using the concordance index (C-index) [26,27]. The C-index is a
generalisation of the area under the curve for continuous time-to-event survival data and a C-index
of 0.5 describes a random prediction, whereas a perfectly predicting model has C-index of 1.0. Risk
models were developed based on GTVentire, GTV3mm-rim and GTV5mm-rim, as well as the corresponding
core volumes GTV3mm-core and GTV5mm-core.

The median C-indices over all combination of feature selection methods and machine learning
algorithms were determined based on the exploratory and the validation cohort for each tumour
sub-volume. For the considered feature selection methods and machine learning algorithms,
the model performance was statistically compared between the GTV3mm-rim and GTV5mm-rim and
their corresponding core volumes using a multi-level model approach (MLA), which is described in
Appendix A.1 [5]. Subsequently, representative model combinations for each sub-volume were selected,
consisting of one feature section method and one learning algorithm. To choose this representative
model, the median performances of every feature selection method over all learning algorithms and
vice versa were determined. The model generated by the feature selection method with a C-index
closest to the median feature selection performances and the learning algorithm with a C-index
closest to the median learning algorithm performances was then selected. For the further analyses,
the representative models based on the sub-volume of (a) the GTVentire; (b) the tumour rim; (c) the
corresponding core and (d) the extended rim were investigated in more detail. In addition, we assigned
the patients of the validation cohort into two sub-groups according their initial tumour volume using
20 cm3 as a threshold value, which corresponds to a tumour radius of approximately 1.5 cm in the case
of a spherical tumour. Subsequently, we investigated the prognostic performance of the developed
models using the resulting sub-groups individually.

(II) Risk-based patient stratification into groups at low and high risk of loco-regional recurrence
was performed for each tumour sub-volume and for all model combinations. The results for the selected
models (a)–(d) were analysed in more detail. Patients were stratified into a low and high risk group
based on the predicted risk of the radiomics models. The cut-off value used for stratification was based
on the median predicted risk (medianrisk) determined on the exploratory cohort. This cut-off value
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was directly applied to the validation cohort. Survival curves were estimated using the Kaplan–Meier
method and the stratification was compared using log-rank tests. Log-rank test p-values < 0.05 were
considered to be statistically significant.

(III) Radiomic signatures were analysed in detail for the models trained on the different selected
tumour sub-volumes (a)–(d). Features included in the signatures and their expression values were
depicted as heatmaps for the exploratory and the validation cohort. For this purpose, all patients
were sorted according to their predicted risk and to their risk group stratification. To quantify the
overall importance of the identified features, univariate significance of the individual radiomic features
included in the signatures were tested by the Cox model on the entire patient cohort.

3. Results

The number of loco-regional recurrences was 84 for the exploratory and 28 for the independent
validation cohort, respectively. The primary endpoint LRC showed no significant difference between
both cohorts (p = 0.26). The median follow-up time was 21.2 months (range: 1.2–131.9 months)
for the exploratory and 24.3 months (range: 1.3–107.2 months) for the validation cohort (p = 0.64).
The median GTVentire was 29.2 cm3 (range: 4.4–322.2 cm3) in the exploratory cohort and 40.1 cm3

(range: 2.7–239.0 cm3) in the validation cohort (p = 0.067, Table 1). For further analyses, 3 mm and 5 mm
margins were subtracted from the GTVentire, respectively. The median volume fractions of the resulting
tumour rim sub-volumes were 47.7% (range: 26.1–59.5%) for the GTV3mm-rim and 52.8% (range:
33.1–59.9%) for the GTV5mm-rim sub-volumes in the exploratory cohort and 46.4% (range: 26.1–59.5%)
and 52.1% (range: 33.1–59.9%) in the validation cohort (p = 0.066 and p = 0.081, respectively).

3.1. Prognostic Performance

Radiomic models were developed and validated based on the different (sub-)volumes of the
tumour. Their performance for the prognosis of LRC is summarised in Table 2 for both cohorts.
The median C-index on the exploratory cohort was between 0.72 and 0.76 for the considered
sub-volumes. For the validation cohort, models based on the GTVentire achieved a median prognostic
performance of 0.61 ± 0.04 (median ± standard deviation (SD)), while the models based on the
tumour rim sub-volumes showed a slightly better median performance on the validation cohort
(C-index: GTV3mm-rim: 0.63 ± 0.03 and GTV5mm-rim: 0.65 ± 0.02, respectively). The core-based risk
models revealed the lowest prognostic performance on the validation cohort (C-index: GTV3mm-core:
0.60± 0.02 and GTV5mm-core: 0.59± 0.01, respectively). The difference in C-index between GTV5mm-rim

and GTV5mm-core showed a statistical trend (MLA: p = 0.10), while the difference between GTV3mm-rim

and GTV3mm-core was not statistically significant (MLA: p = 0.50). The median performances of
the sub-group analyses showed similar results for small GTVentire (≤20 cm3) between the tumour
rim- and core-based models (3 mm: 0.62 vs. 0.63 and 5 mm: 0.67 vs. 0.69, respectively), whereas,
the differences between rim and core were larger for larger GTVentire (3 mm: 0.61 vs. 0.57 and 5 mm:
0.61 vs. 0.57) in the validation cohort. Furthermore, overall performance was higher for the sub-group
of smaller tumours.

The C-indices of the representative models for each tumour sub-volume are shown in
Table 3. Among all GTVentire-based risk models, the RSF algorithm in combination with the
RFVI feature selection method was selected as representative model for further analysis (C-index:
0.75, 95% confidence interval [0.71–0.81]). On the validation cohort, this model achieved a
C-index of 0.63 ([0.49–0.67]). The RSF–MIM model trained on the GTV5mm-rim was selected as
representative model compared to all other rim-based models on the exploratory cohort (C-index: 0.77,
[0.72–0.82]). This model attained an improved performance on the validation cohort (C-index: 0.66,
[0.52–0.69]), which was slightly higher compared to the GTVentire-based model. The corresponding
GTV5mm-core-based model (RSF–MIM) showed a lower prognostic performance on the validation
cohort (C-index: 0.61, [0.49–0.69]) compared to the GTV5mm-rim model. Figures A1 and A2 show the
prognostic performance for the considered feature selection methods and learning algorithms based
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on the GTVentire, GTV3mm-rim and GTV5mm-rim, as well as the corresponding core sub-volumes on the
exploratory and the validation cohorts.

Table 2. Median concordance indices (C-index) of radiomic models using the entire gross tumour
volume (GTVentire) and the different sub-volumes, i.e., tumour rim (GTVrim), extended tumour rim
(GTVrim+ext) and tumour core (GTVcore) for the endpoint loco-regional tumour control. Results are
presented for the exploratory and the validation cohort. Median results over all feature selection
methods and learning algorithms are shown (top) as well as C-indices of the representative model
combinations and the p-values of the log-rank tests of stratified patient groups (bottom).

Tumour Sub-Volume Exploratory Cohort Validation Cohort
All All GTV ≤ 20 cm3 GTV > 20 cm3

(n = 206) (n = 85) (n = 20) (n = 65)

GTVentire 0.75 ± 0.05 0.61 ± 0.04 0.61 ± 0.07 0.59 ± 0.02
GTV3mm-rim 0.76 ± 0.06 0.63 ± 0.03 0.62 ± 1.00 0.61 ± 0.02
GTV3mm-core 0.74 ± 0.06 0.60 ± 0.02 0.63 ± 0.05 0.57 ± 0.02
GTV5mm-rim 0.76 ± 0.06 0.65 ± 0.02 0.67 ± 0.07 0.61 ± 0.01
GTV5mm-core 0.72 ± 0.04 0.59 ± 0.01 0.69 ± 0.07 0.57 ± 0.04
GTV5mm-rim+1mm-ext 0.76 ± 0.06 0.62 ± 0.03 0.58 ± 0.07 0.65 ± 0.03
GTV5mm-rim+2mm-ext 0.76 ± 0.07 0.63 ± 0.03 0.67 ± 0.04 0.66 ± 0.04
GTV5mm-rim+3mm-ext 0.75 ± 0.08 0.64 ± 0.05 0.61 ± 0.05 0.65 ± 0.05
GTV5mm-rim+5mm-ext 0.75 ± 0.07 0.63 ± 0.04 0.65 ± 0.06 0.62 ± 0.05

GTV: primary gross tumour volume; sd: standard deviation; CI: confidence interval.

Table 3. Concordance indices (C-index) of the representative radiomic combinations and the p-values
of the log-rank tests of stratified patient based on the entire gross tumour volume (GTVentire) and the
different sub-volumes, i.e., tumour rim (GTVrim), extended tumour rim (GTVrim+ext) and tumour core
(GTVcore) for the endpoint loco-regional tumour control. Results are presented for the exploratory and
the validation cohort.

Representative Model Exploratory Cohort Validation Cohort
(n = 206) (n = 85)

C-Index 95% CI p-Value C-Index 95% CI p-Value

GTVentire
RSF-RFVI 0.75 [0.71–0.81] <0.001 0.63 [0.49–0.67] 0.012

GTV3mm-rim
BT-Cox-MRMR 0.76 [0.71–0.82] <0.001 0.63 [0.52–0.70] 0.005

GTV3mm-core
BT-Cox-MIM 0.75 [0.70–0.80] <0.001 0.63 [0.50–0.70] 0.069

GTV5mm-rim
RSF-MIM 0.77 [0.72–0.82] <0.001 0.66 [0.52–0.69] 0.006

GTV5mm-core
RSF-MIM 0.71 [0.66–0.77] <0.001 0.61 [0.49–0.69] 0.11

GTV5mm-rim+3mm-ext
RSF-RFVI 0.77 [0.69–0.80] <0.001 0.67 [0.60–0.77] <0.001

GTV: primary gross tumour volume; sd: standard deviation; CI: confidence interval; RSF: random survival
forest; BT-Cox: boosted tree-Cox proportional hazard model; RFVI: random forest variable importance;
MRMR: minimum redundancy maximum relevance; MIM: mutual information maximisation.

The GTV5mm-rim sub-volume, which achieved the highest prognostic performance among all
rim-based models was subsequently extended by different margins beyond the originally delineated
tumour into surrounding tissue. The tumour extensions GTV5mm-rim+2mm-ext and GTV5mm-rim+3mm-ext

showed the highest median performances on the validation cohort (C-indices: 0.63 ± 0.03 and
0.64 ± 0.05, respectively). The C-index of the representative models trained on the different tumour
extensions are shown in Table 2. The representative model trained on the GTV5mm-rim+3mm-ext

(RSF–RFVI) achieved a slightly better performance in validation compared to the model based on
the GTVentire and on the GTV5mm-rim (C-index: 0.67, [0.60–0.77]). The resulting C-indices for all
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extended sub-volumes and developed radiomic risk models on the exploratory and validation cohort
are summarised in Figures A3 and A4, respectively. The hyper-parameters including the optimised
values for the representative models are given in Table A4.

3.2. Risk-Based Patient Stratification

Patients were stratified into groups at low and high risk for loco-regional recurrence based on the
model prediction of the exploratory cohort. Table 3 shows the p-values of the log-rank test for LRC
for all representative models on the validation cohort based on the medianrisk cut-off. The RSF–RFVI
model trained on GTVentire was able to stratify patients into low and high risk groups with a significant
difference in LRC (p = 0.012). A slightly improved stratification could be achieved by the GTV3mm-rim-
and GTV5mm-rim-based models (p = 0.005 and p = 0.006, respectively) as well as by the extended
volume GTV5mm-rim+3mm-ext (p < 0.001). Stratification based on the predicted risk of the corresponding
GTV5mm-core model (RSF–MIM) did not lead to significant differences in LRC between both groups
(p = 0.11).

Figure 2 shows the Kaplan–Meier curves using the medianrisk cut-off for the representative models
based on (a) GTVentire, (b) GTV5mm-rim, (c) GTV5mm-core and (d) GTV5mm-rim+3mm-ext, respectively,
for the validation cohort. The resulting p-values for all considered sub-volumes and developed
radiomic risk models on the validation cohort are summarised in Figures A5 and A6.
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Figure 2. Kaplan–Meier curves for the prediction of loco-regional tumour control of the representative
models based on the (a) entire primary gross tumour volume (GTVentire); (b) 5 mm rim of the tumour
(GTV5mm-rim); (c) corresponding tumour core (GTV5mm-core) and (d) 3 mm extension of the 5 mm
tumour rim (GTV5mm-rim+3mm-ext) sub-volumes for patients of the validation cohort. Patients were
stratified into low (LR) and high (HR) risk groups based on the median risk of loco-regional recurrence
determined on the exploratory cohort.

3.3. Radiomic Signature Analysis

Radiomics signatures were investigated for the representative models based on GTVentire,
GTV5mm-rim, GTV5mm-core and GTV5mm-rim+3mm-ext. Figure 3 shows the feature expressions of the
developed signatures for each patient in a heatmap. Image features within the signatures are listed in
Table A5.

The developed signatures for the different models (a)–(d) consist of two to ten imaging features
extracted from the original and wavelet transformed images. The selected features typically comprise
first-order statistical or texture-based features. For instance, the ’statistics energy’ feature, which
describes the overall density of the tumour volume, appears in all four signatures as a single or as a
feature within a cluster [2]. Furthermore, the signatures of the trained models (a) and (b) consist of
the same intensity-volume histogram feature (i.e., ‘ivh_diff_v10_v90’) computed and extracted from
the wavelet transformed images. This feature describes the difference between the largest volume
fractions at two different intensity values of at least 10% and 90% [25,28]. The selected features



Cancers 2020, 12, 3047 10 of 26

for (a) and (b) were mostly based on the low-pass wavelet transformed images, which may contain
reduced noise. Features within the signatures (c) and (d) were mostly computed on the high-pass
wavelet transformed images, which may characterise edges and blobs within the considered regions.
For all developed signatures (a)–(d), almost all features were significantly associated with LRC based
on univariate Cox analyses using the entire patient cohort.

Exploratory cohort Validation cohort
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Figure 3. Heatmaps showing different expression patterns of the radiomic features of the
developed signatures for the representative models based on the (a) entire primary gross tumour
volume (GTVentire); (b) 5 mm rim of the tumour (GTV5mm-rim); (c) corresponding tumour core
(GTV5mm-core); and (d) 3 mm extension of the 5 mm tumour rim (GTV5mm-rim+3mm-ext) sub-volumes.
Feature expression values are sorted according to the predicted risk and the risk group based on the
determined medianrisk cut-off values. Loco-regional tumour control (LRC) during follow-up (yes, light;
no, dark) and features with a significant association with LRC are shown (* p < 0.05 and ** p < 0.001).
A detailed description of the feature abbreviations can be found in Table A5. Abbreviations: F̄ cluster
feature consisting of several features represented by the mean value as a new meta-feature, FS first
order statistical feature, FM morphological, FIH intensity histogram, FIVH intensity volume histogram
and FT texture feature.
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4. Discussion

Tumours may contain biologically complex structures and exhibit substantial spatial variation.
Thus, the main objective of this study was to compare radiomic models based on different sub-volumes
of the tumour, i.e., on the tumour rim, the tumour core and the macroscopic tumour extensions,
in order to identify potential regions containing the most relevant prognostic information for LRC.
Using CT imaging of patients with locally advanced HNSCC revealed that radiomic risk models based
on tumour rim sub-volumes achieved a slightly improved prognostic performance and better patient
stratification compared to models based on the corresponding core regions. Furthermore, sub-group
analyses showed that the differences in prognostic performance between rim and core regions were
larger for large tumours compared to small tumours. In general, our analysis showed a good median
performance and a better patient stratification for the models based on the GTV5mm-rim, while the
corresponding core-based models performed slightly less. This may indicate that the tumour rim
contains more prognostic information. The statistical comparison between both sub volumes led to a
borderline statistical trend (MLA: p = 0.10), i.e., the presented findings require additional validation in
the future.

These results are in-line with previously published data of other tumour entities [10,11,29].
For example, Dou et al. [30] showed that models based on CT-imaging features of the 3 mm rim of
the GTV lead to an improved prediction of distant metastasis compared to the model based on the
entire GTV for patients with locally advanced non-small cell lung cancer (NSCLC). Furthermore,
Hosney et al. [31] developed a deep learning-based prediction model using a 3D convolutional
neuronal network for the prediction of OS for NSCLC patients and observed that the network tended
to focus on the interface between the tumour and stroma (parenchyma or pleura) regions in the CT
images. In contrast to that, Keek et al. [32] concluded that the consideration of the tumour rim did not
lead to an improved prediction of overall survival, loco-regional recurrence and distant metastases
in stage III and IV HNSCC patients. However, for the prediction of loco-regional recurrence, a better
prediction could be observed for the 5 mm rim-based model compared to the model using the GTVentire

in the exploratory and validation cohort (C-index: 0.86/0.59 and 0.81/0.52, respectively). In addition,
Grove et al. [18] showed that tumour-rim-based radiomic features (i.e., entropy) were higher expressed
compared to features extracted from corresponding tumour-core sub-volumes in NSCLC patients.
While, the entropy feature and their ratios of core and rim regions were associated with overall survival
in the exploratory cohort, but not in the independent validation cohort.

The biological characteristics of the tumour rim were already discussed by published data from
the Danish Head and Neck Cancer (DAHANCA) group [33]. Based on experience from pathological
examination of surgical resections, the DAHANCA group concluded that for primary tumours, the risk
of sub-clinical microscopic spread was around 50% of which more than 99% was within 5 mm and 95%
within 4 mm of the rim of the primary tumour. Furthermore, Apolle et al. [22] showed that most solid
tumours exhibit microscopic tumour extension in particular for head and neck cancer. Our findings
suggest that biological processes such as microscopic spread capacity are associated with macroscopic
CT imaging.

Defining the precise extent of the macroscopic tumour prior to and during RCT is difficult,
especially using CT imaging without contrast enhancement [34]. Slight extensions of the delineated
tumour volume into normal tissue did not reduce the performance of the radiomic risk models, which
indicates that these regions may also contain prognostic information. In addition, slight extensions
of the tumour may be useful for assessing feature stability, simulating different tumour delineations
of different observers [35]. Furthermore, uncertainties in the delineation of the GTVentire may affect
radiomic features and in turn the results of radiomic analyses. In the current study, the GTVentire

was manually delineated by one expert radiation oncologist. The consideration of multiple tumour
delineations of different experts or the usage of semi-automatic segmentation algorithms as well as
contour randomisation techniques may help to increase the robustness of the radiomics features and
improve the corresponding risk model performance, which should be investigated in the future [35–37].
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The presented study is motivated form the assumption that hypoxic or necrotic regions preferantly
appear in the tumour core due to inadequate vascular supply, and that proliferating cancer cells mainly
occur in the tumour periphery [38]. Our retrospective patient cohort contains tumours with a wide
range of different volumes. While necrotic and hypoxic regions will be minimal in small tumours they
may be substantial in larger tumours, i.e., the prognostic value of tumour core and rim may change
depending on the tumour volume. Therefore, we performed a subgroup analysis considering patients
with small and large tumours separately. We found larger differences in prognostic performance
between rim and core regions for larger tumours in validation, supporting this hypothesis. Still,
the inclusion of patients with small and large tumours in our main analyses may affect the difference
in performance between the rim- and core-based risk models. Moreover, necrotic/hypoxic regions
may be heterogeneously distributed in the tumour and not be sufficiently captured by our simple
approach of defining the tumour core and rim, which in addition does not consider other complex
spatial and temporal variations in the tumour micro-environment. This may lead to smaller observable
differences in the performance between the rim- and core-based models [14,39]. The identification and
incorporation of tumour specific regional variations by more sophisticated image analysis techniques
may help to overcome this gap. For instance, differential information from multi-modal imaging
data, such as PET-CT or functional MRI may be used. Moreover, super-voxel algorithms can be
applied to group voxels into super-voxel segments based on their grey value, e.g., using the FDG
uptake value [40]. Subsequently, the resulting super-voxel segments can be further merged to generate
tumour sub-volumes, e.g., by hierarchical or fuzzy c-means clustering algorithms across the entire
patient cohort. Wu et al. [19] proposed such a two-stage clustering process, for the identification and
determination of sub-volumes based on CT imaging combined with FDG-PET scans in lung cancer
patients. Furthermore, the consideration of regions with temporal changes, e.g., due to RCT-induced
tumour shrinkage or re-oxygenation using in-treatment CT images in combination with functional
imaging may offer the potential to enhance radiomic risk models in future [5,39]. However, due to
missing functional imaging, it was not possible to use such imaging data in this study.

In addition to radiomic features, clinical parameters may be relevant for the prediction of treatment
outcome. On our cohort, from the parameters shown in Table 1, only the primary tumour volume
and the derived tumour sub-volumes were significantly related to LRC (p < 0.01). These parameters
revealed C-indices between 0.62 and 0.63 in the validation cohort using univariable Cox regression
model. This was slightly lower than observed for the presented radiomic models based on the
GTV5mm-rim and the GTV5mm-rim+3mm-ext (C-index: 0.65 and 0.67, respectively). While the radiomic
signature based on the GTV5mm-rim contained two CT features with a strong Spearman correlation
(ρ) to the tumour volume (ρ > 0.85), the features of the signature based on the GTV5mm-rim+3mm-ext

showed only moderate correlations to the tumour volume (ρ range: [−0.61–0.40]). This indicates
that additional imaging features, which are not related to the tumour volume, may improve the risk
model performance.

One limitation of this retrospective study is the different distribution of the clinical characteristics
between the exploratory and validation cohort, e.g., in tumour site and UICC stage (Table 1).
Despite these differences, the validation of the presented radiomic models was successful, and due
to the definition of both cohorts that was based on independent clinical trials, the presented results
should be more robust compared for example to a random split of the data. Furthermore, other factors
related to the retrospective nature of our study may have implications on the presented results [41].
For instance, the variety of different CT imaging acquisition and reconstruction parameters may affect
the feature robustness and thereby the results of risk modelling (Table A1). Therefore, open and
standardised protocols for image acquisition, reconstruction, and analysis may help to increase the
robustness of radiomic risk model [42–44]. In addition, the biological meaning of the selected imaging
features within the developed signatures and the differences between the features of the tumour rim
and core remains still unclear. Therefore, these open questions should be investigated systematically
in the future for a better understanding of the underlying mechanisms.
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5. Conclusions

In the present study, we showed that radiomic models based on the rim of locally advanced
HNSCC achieved a slightly higher prognostic performance for LRC after primary radio-chemotherapy
compared to models using the tumour core. This supports our initial hypothesis that the tumour
rim is biologically more diverse and important treatment-related processes occur primarily in this
region, which may be visible in clinical imaging data. Therefore, after additional prospective validation
the consideration of tumour sub-volumes may be a promising way to improve prognostic radiomic
risk models.
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Cox Cox proportional hazard model
CT computed tomography
DKTK-ROG German Cancer Consortium Radiation Oncology Group
FDG 18F-fluorodeoxyglucose
FMISO 18F-fluoromisonidazole
GTV gross tumour volume
HNSCC head and neck squamous cell carcinoma
MIFS mutual information feature selection
MIM mutual information maximisation
MLA multi-level model approach
MRI magnetic resonance imaging
MRMR minimum redundancy maximum relevance
MSR-RF maximally selected rank statistics random forest
OS overall survival
PET positron emission tomography
RCT radio-chemotherapy
RFVI random forest variable importance
RSF random survival forest
UKD University Hospital Dresden

Appendix A

Appendix A.1. Multi-Level Model

The multi-level model approach (MLA) was developed for assessing the differences in
concordance index between the rim-based and the corresponding core-based models independent
from the effects of the feature selection methods and learning algorithms, similar as in [5]. For this
purpose, we defined a multi-level model consisting of three levels (L) representing the different factors:

L0 (volume):
yi,j = αmethod,i,j + βvolxvol + εvol

εvol ∼ N (0, σ2
vol),

L1 (machine learning algorithms):

αmethod,ij = α f s,i + βlearner,j + εlearner,j

εlearner,j ∼ N (0, σ2
learner,j),

L2 (feature selection methods):
αfs,i = βfs,i + εfs,i

εfs,i ∼ N (0, σ2
fs,i).

(A1)

In the multi-level model, the top level describes the effect of the tumour sub-volume. yij is the
concordance index of a bootstrap sample using feature selection method i and learning algorithm
j. αmethod,i,j is an offset term, modelled separately in levels L1 and L2. x(vol) is a contrast variable,
which has the values 0 or 1 for the two specific sub-volume that are to be compared, e.g., rim versus
core. β(vol) is the effect of the specific sub-volume compared to the other sub-volume and has a weakly
informative prior N (0, 1) and is limited to the range [−1, 1]. The error term εvol is modelled with
a normal distribution with mean 0 and standard deviation σvol ε [0, 1]. Level L1 models the effect
of learner j with feature selection method i. αfs,i is an offset modelled separately in L2. βlearner,j is
the effect of learner j. It has a weakly informative prior N (0, 1) and is limited to the range [−1, 1].
The error term ε learner,j is modelled with a normal distribution with mean 0 standard deviation σlearner,j,
with σlearner,j ε [0, 1]. Level L2 models the effect of feature selection method i, βfs,i. βfs,i has a weakly
informative prior N (0.5, 1), as a concordance index takes the baseline value of 0.5 for random data,
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and is limited to the range [0, 1]. The error term εfs,i is modelled with a normal distribution with mean
0 standard deviation σfs,i, with σfs,i ε [0, 1]. The model was fitted using Markov chain Monte Carlo
in STAN 2.21.2 (Stan Development Team (2020). RStan: the R interface to Stan. R package version
2.21.1. http://mc-stan.org/), using 7 chains with 500 warm-up iterations and 500 sample iterations
each. Model convergence was checked using the R-hat statistic.

Table A1. Computed tomography acquisition and reconstruction settings for the exploratory and the
validation cohort.

Image Acquisition Parameters Exploratory Cohort (n = 206) Validation Cohort (n = 85)

Voxel spacing in-plane (mm)
0.85/0.87/0.88/0.90 1/2/1/1 0/0/0/0
0.92/0.93/0.94/0.96 1/1/3/2 0/0/0/0
0.97/0.98/1.17/1.27/1.36 3/113/21/26/29 0/13/0/14/58

Spacing in z-direction (mm)
2.0/2.5/3.0/3.75/5.0 36/22/74/1/63 0/0/27/0/58

Reconstruction kernel
B10s/B20f/s/B30f/s/B31f/s 20/3/1/2/29/19/16 1/51/1/0/0/12/0
B40f/s/B50s/Missing 1/1/9/12/93 0/0/0/0/20

Mean exposure (mA) 181.3 (Missing: 59) 76.8 (Missing: 14)
Mean exposure time (ms) 733.8 (Missing: 59) 508.8 (Missing: 14)
Tube voltage (kV)

120/130/140/Missing 86/9/16/95 71/0/0/14
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0.79
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0.75
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(0.61 - 0.73)
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Figure A1. Concordance indices (C-index) for the feature selection methods (columns) and the learning
algorithms (rows) trained on the GTVentire, the GTV3mm-rim, the GTV5mm-rim and the corresponding
core sub-volumes on the exploratory cohort. Furthermore, the 95% confidence intervals for each model
combination are shown (in parentheses).
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Figure A2. Concordance indices (C-index) for the feature selection methods (columns) and the learning
algorithms (rows) trained on the GTVentire, the GTV3mm-rim, the GTV5mm-rim and the corresponding
core sub-volumes on the validation cohort. Furthermore, the 95% confidence intervals for each model
combination are shown (in parentheses).
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Figure A3. Concordance indices (C-index) for the feature selection methods (columns) and the
learning algorithms (rows) trained on the tumour extension GTV5mm-rim+1mm-ext, GTV5mm-rim+2mm-ext,
GTV5mm-rim+3mm-ext and GTV5mm-rim+5mm-ext sub-volumes for the exploratory cohort. Furthermore,
the 95% confidence intervals for each model combination are shown (in parentheses).
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Figure A4. Concordance indices (C-index) for the feature selection methods (columns) and the
learning algorithms (rows) trained on the tumour extension GTV5mm-rim+1mm-ext, GTV5mm-rim+2mm-ext,
GTV5mm-rim+3mm-ext and GTV5mm-rim+5mm-ext sub-volumes for the validation cohort. Furthermore,
the 95% confidence intervals for each model combination are shown (in parentheses).
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Figure A5. Resulting p-values of the log-rank tests for loco-regional tumour control in the validation
cohort for the feature selection methods (columns) and the learning algorithms (rows) trained on
the GTVentire, the GTV3mm-rim, the GTV5mm-rim and the corresponding core sub-volumes based on
medianrisk cut-off values using the predicted risk values. The cut-off values used for stratification were
determined on the exploratory cohort and applied to the validation cohort unchanged.
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Figure A6. Resulting p-values of the log-rank tests for loco-regional tumour control on the validation
cohort for the feature selection methods (columns) and the learning algorithms (rows) trained on the
GTV5mm-rim+1mm-ext, the GTV5mm-rim+2mm, the GTV5mm-rim+3mm-ext and the GTV5mm-rim+5mm-ext

based on medianrisk cut-off values using the predicted risk values. The cut-off values used
for stratification were determined on the exploratory cohort and applied to the validation
cohort unchanged.
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Table A2. Configuration settings for the image feature computation and extraction.

Configuration Settings Configuration Value(s)

Image interpolation
Interpolation method Cubic spline
Voxel dimensions 1.0 × 1.0 × 1.0 mm3

Anti-aliasing smoothing parameter β 0.98
RoI interpolation

Interpolation method Cubic spline
Inclusion threshold 0.5

Discretisation
Discretisation method Fixed Bin Number (FBN) of 32 bins
Intensity Volume Histogram discretisation method Fixed Bin Number (FBN) of 1000 bins

Image transformation
Wavelet coiflet-1
Mean-Intensity Laplacian of Gaussian kernel widths: 1.0, 2.0, 3.0, 5.0, 6.0 mm

Texture matrices

Grey-level Run Length Matrix (GLRLM) Calculation method: 3D
Merge method: volume merge

Grey-level Size Zone Matrix (GLSZM) Calculation method: 3D
Neighbourhood Grey Tone Difference Matrix (NGTDM) Calculation method: 3D

Neighbourhood Grey Level Dependence Matrix (NGLDM)
Distance for neighborhood: 1.8 voxels

Difference level: 0.0
Calculation method: 3D

Grey Level Co-occurrence Matrix (GLCM)
Distance for neighborhood: 1.0 voxels

Calculation method: 3D
Merge method: volume merge

Grey Level Distance Zone Matrix (GLDZM) Calculation method: 3D

RoI: region of interest.

Table A3. Definition of the hyper-parameters of the feature selection methods and of
the machine learning algorithms, which were used during the hyper-parameter optimisation.
The hyper-parameters for the feature selection methods were kept fixed and not optimised during
hyper-parameter optimisation.

Algorithm Hyper-Parameter Name Hyper-Parameter Value(s)

Cox proportional
hazard model Signature size 2, 3, 4, 5, 7, 10

Boosted tree and
boosted gradient models Signature size: 2, 3, 4, 5, 7, 10

α: 0.001, 0.01, 0.05
ω: lambda.min 1, lambda.1se 2

mStop: 200
Random survival forest Signature size: 2, 3, 4, 5, 7, 10

ntree: 2000, 5000
mtry: 100

node-Size: 25–50, step size 1
maxDepth: 10, 15, 20, 25, 40

nSplit: 1, 2, 100
splitRule: logrank, logrankscore

Maximally selected rank
statistics random forest Signature size: 2, 3, 4, 5, 7, 10

ntree: 2000, 5000
mtry: 100

node-Size: 25–50, step size 1
minprop: 0.1

α: 0.1, 0.5
splitRule: C, maxstat
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Table A3. Cont.

Algorithm Hyper-Parameter Name Hyper-Parameter Value(s)

Minimum redundancy
maximum relevance topFeatures 100

RelativeImportanceThreshold 0
Mutual information
feature selection topFeatures 100

RelativeImportanceThreshold 0.05
Random forest
variable importance topFeatures 20

nTree 1000
K 2

nRepetition 50
nSteps 2
nSplits 1

splitrule logrank
nodeSize 45

mTry 500
nVariables 10

1 Minimum mean cross-validated error; 2 Error within one standard error of the minimum.

Table A4. Hyper-parameters and their optimised values for the representative models.

Sub-Volume Hyper-Parameter Value(s)

GTVentire
RSF-RFVI Signature size: 5

ntree: 5000
mtry: 100
node-Size: 10
maxDepth: 25
nSplit: 1
splitRule: logrankscore

GTV5mm-rim
RSF-MIM Signature size: 10

ntree: 5000
mtry: 100
node-Size: 5
maxDepth: 40
nSplit: 1
splitRule: logrank

GTV5mm-core
RSF-MIM Signature size: 5

ntree: 5000
mtry: 100
nodeSize: 7
maxDepth: 40
nSplit: 1
splitRule: logrank

GTV5mm-rim+3mm-ext
RSF-RFVI Signature size: 7

ntree: 5000
mtry: 100
node-Size: 5
maxDepth: 15
nSplit: 1
splitRule: logrankscore
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Table A5. Radiomic signatures for predicting loco-regional tumour control for the representative
models based on the GTVentire, the GTV5mm-rim and the GTV5mm-core as well as the GTV5mm-rim+3mm-ext

tumour sub-volumes. The mathematical description and the abbreviations of features can be found in
Zwanenburg et al. [25].

Tumour Sub-Volume Feature Name Synonym Image Cluster

GTVentire

ivh_diff_v10_v90 F1IVH wav_coif1_llh no
morph_integ_int, stat_energy F2M/S base, wav_coif1_lll yes
ivh_v10 F3IVH wav_coif1_llh no
rlm_gl_var_3d_avg F4T wav_coif1_lhl no
rlm_srhge_3d_avg F5T base no

GTV5mm-rim

ivh_diff_v10_v90 F1IVH wav_coif1_llh no
dzm_ldhge_3d F2T base no
dzm_lgze_3d, dzm_sdlge_3d,
szm_lgze_3d, szm_szlge_3d

F3T base yes

ivh_v10 F4IVH wav_coif1_llh no
dzm_ldhge_3d F5T wav_coif1_lll no
morph_integ_int, stat_energy F6M/S base, wav_coif1_lll yes
dzm_hgze_3d, szm_hgze_3d, szm_szhge_3d F7T base yes
cm_auto_corr_d1_3d, cm_joint_avg_d1_3d,
cm_sum_avg_d1_3d, ih_mean,
ngl_hgce_d1_a0.0_3d, rlm_hgre_3d_avg

F8IH/T base yes

cm_info_corr2_d1_3d_avg F9T base no
ngt_strength_3d, rlm_rlnu_3d_avg F10T wav_coif1_llh yes

GTV5mm-core

morph_integ_int, stat_energy F1S base, wav_coif1_lll yes
ngt_strength_3d, rlm_rlnu_3d_avg F2T wav_coif1_llh yes
dzm_gl_var_3d, szm_gl_var_3d F3T wav_coif1_hhl yes
dzm_glnu_3d, szm_glnu_3d F4T wav_coif1_llh yes
ivh_i50 F5IVH wav_coif1_lhl no

GTV5mm-rim+3mm-ext

morph_moran_i F1M base no
stat_energy F2S wav_coif1_hhl no
ih_kurt,rlm_glnu_norm_3d_avg, stat_kurt F3IH/T wav_coif1_lhl yes
rlm_gl_var_3d_avg F4T wav_coif1_lhh no
stat_max, stat_min, stat_range F5S wav_coif1_hhl yes
ngl_dc_var_d1_a0.0_3d F6T wav_coif1_lhh no
stat_cov F7S base, wav_coif1_lll yes

l: low pass, h: high pass, wav_coif1: coiflet-1 wavelet high-/low-pass filter; M: morphological, S: first order
statistic, T: texture-based feature; IH: intensity histogram, IVH: intesnity volume histogram feature; F: cluster
of features represented by the mean value as a new meta-feature.
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