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Modelling random dynamical systems in continuous time,
diffusion processes are a powerful tool in many areas of
science. Model parameters can be estimated from time-
discretely observed processes using Markov chain Monte
Carlo (MCMC) methods that introduce auxiliary data.
These methods typically approximate the transition densities
of the process numerically, both for calculating the posterior
densities and proposing auxiliary data. Here, the Euler–
Maruyama scheme is the standard approximation technique.
However, the MCMC method is computationally expensive.
Using higher-order approximations may accelerate it, but the
specific implementation and benefit remain unclear. Hence,
we investigate the utilization and usefulness of higher-order
approximations in the example of the Milstein scheme. Our
study demonstrates that the MCMC methods based on
the Milstein approximation yield good estimation results.
However, they are computationally more expensive and
can be applied to multidimensional processes only with
impractical restrictions. Moreover, the combination of the
Milstein approximation and the well-known modified bridge
proposal introduces additional numerical challenges.
1. Introduction
Diffusion processes are used in many areas of science as a
powerful tool to model continuous-time dynamical systems that
are subject to random fluctuations. A diffusion process can be
equivalently described by a stochastic differential equation (SDE).
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If the SDE yields an analytical solution, the transition densities of the corresponding diffusion process

are explicitly known and parameter estimation can be easily performed through a maximum likelihood
approach, as demonstrated in [1]. However, in the majority of applications, this is not the case, and the
transition densities are intractable.

When the transition densities are unknown, another challenge for parameter estimation is the type of
available data. In practice, a process can only be observed at discrete points in time. A comprehensive
overview of the methods for parameter inference from high-frequency data (i.e. where inter-
observation times are small) can be found in [2, ch. 6]. For parameter estimation from low-frequency
observations, Markov chain Monte Carlo (MCMC) techniques have been developed that introduce
imputed data points to reduce the time steps between data points. This concept of Bayesian data
imputation for the inference of diffusions has been used and developed further by many authors such
as [3–6]. These methods are applicable to multidimensional processes and were extended for the case
of latent process components as well as for the occurrence of measurement error. Thus, they are very
promising for the use in real-data applications (e.g. [2,7]).

The concept of these MCMC algorithms is to construct a Markov chain whose elements are samples
from the joint posterior density of the parameter and the imputed data points conditioned on the
observations. This construction is achieved via a Gibbs sampling approach by alternately executing
the following two steps:

(1) drawing the parameter conditional on the augmented path that consists of the observed data points
and imputed data points and

(2) drawing the imputed data points conditional on the current parameter and the observed data points.

In both steps, direct sampling from the corresponding conditional distribution is generally not possible;
therefore, a Metropolis–Hastings algorithm is applied. The (full conditional) posterior densities are
reformulated as the product of the transition densities of the process in both steps and the prior
density of the parameter in the first step. Because the transition densities are intractable, they can only
be numerically approximated.

The numerical approximation of the transition densities of the process is necessary not only for
calculating the posterior densities, but also for proposing the imputed data points. In both contexts,
the Euler–Maruyama scheme is the standard approximation technique in the literature, including all
of the aforementioned references. To reduce the amount of imputed data and the number of necessary
iterations for the computationally expensive estimation method, one possible solution is to employ
higher-order approximation schemes.

Therefore, we investigate the utilization and usefulness of such higher-order approximations on the
example of the Milstein scheme. A closed form of the transition density based on the Milstein scheme is
derived in [8]. In [9], this closed form is used to estimate the parameters of a hyperbolic diffusion process
from high-frequency financial data, but not in the context of Bayesian data augmentation. For the latter,
Elerian et al. [3] propose the possible use of the Milstein scheme. However, the specific implementation
and benefit of this framework, in particular when using sophisticated proposal methods, remain unclear
and, therefore, are the focus of this work. For our investigation, we first explain how to integrate the
Milstein scheme into the framework of Bayesian data augmentation and then assess the effectiveness
of this new combination in a simulation study which is a common approach in the literature (e.g. [10,11]).

This article is organized as follows. In §2, we define diffusion processes, describe the numerical
approximation of their paths, and explain the derivation of the transition densities of the processes
based on these approximations. In §3, we elaborate on the parameter estimation methods for diffusion
processes using Bayesian data augmentation and the approximated transition densities. In §4, we give
some comments about our implementation of these methods and in §5, we explain the set-up of our
simulation study. In §§6 and 7, we present the results and discussion. The source code of our
implementation and the simulation study is publicly available at https://github.com/fuchslab/
Inference_for_SDEs_with_the_Milstein_scheme.
2. Approximation of the transition density of a diffusion process
We consider a d-dimensional time-homogeneous Itô diffusion process, (Xt)t≥0, a stochastic process that fulfils
the following SDE:

dXt ¼ m(Xt, u) dtþ s(Xt, u) dBt, X0 ¼ x0, (2:1)

https://github.com/fuchslab/Inference_for_SDEs_with_the_Milstein_scheme
https://github.com/fuchslab/Inference_for_SDEs_with_the_Milstein_scheme
https://github.com/fuchslab/Inference_for_SDEs_with_the_Milstein_scheme
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with state space X # Rd, starting value x0 [ X , and a q-dimensional Brownian motion, (Bt)t≥0. The model

parameter θ∈Θ is from an open set Q # Rp. In addition, we assume that the drift function
m :X �Q ! Rd and diffusion function s :X �Q ! Rd�q fulfil the Lipschitz condition and growth
bound to ensure that (2.1) has a unique solution (e.g. [12, ch. 5]).

In this work, we use rather simple, well-known examples of such a diffusion process in order to focus
on the investigated estimation methods and make the article easy to follow. Our example for the main
text is the geometric Brownian motion (GBM), and in appendix D, we also provide all relevant details
for the Cox–Ingersoll–Ross (CIR) process. The GBM is described by the following SDE:

dXt ¼ aXt dtþ sXt dBt, X0 ¼ x0, (2:2)

with state space X ¼ Rþ, starting value x0 [ X and the two-dimensional parameter θ = (α, σ)T, where
a [ R and s [ Rþ, Rþ being the set of all strictly positive real numbers. The GBM is especially
suitable as a benchmark model because it has an explicit solution. The stochastic process

Xt ¼ x0 exp a� 1
2
s2

� �
tþ sBt

� �
,

fulfils (2.2) for all t≥ 0. Hence, the multiplicative increments of the GBM are lognormally distributed as
follows:

Xt

Xs
� LN a� 1

2
s2

� �
(t� s), s2(t� s)

� �
,

for t≥ s≥ 0, and the transition density is explicitly known as

p(s, x, t, y) ¼ P(Xt ¼ y jXs ¼ x)

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p(t� s)

p
sy

exp � ( log y� log x� (a� 1
2s

2)(t� s))2

2s2(t� s)

 !
:

(2:3)

A derivation of the solution of the GBM and its transition density can be found in [13].
In different contexts, one often considers the logarithm of the GBM, log Xt, which is simply a

normally distributed random variable for fixed t, with corresponding SDE

d( logXt) ¼ a� 1
2
s2

� �
dtþ sdBt, logX0 ¼ log x0: (2:4)

However, we do not employ this transformation here because of the constant diffusion function in (2.4).
For the log-transformed GBM, the approximation methods that we wish to compare would yield an
identical approximation.
2.1. Approximation of the solution of an SDE
Unlike the GBM, most SDEs do not have an analytical solution; thus, their transition densities are not
explicitly known. Instead, numerical approximation schemes are used for the solution of the SDEs.
Kloeden & Platen [14] have provided a detailed description of these methods. Several of the
approximation schemes are based on the stochastic Taylor expansion. For a general treatment of this
expansion, we refer the interested reader to [14]. The most commonly used approximation is the
Euler(–Maruyama) scheme, which approximates the d-dimensional solution (Xt)t≥0 of an SDE by
setting Y0 = x0 and, then, successively calculating the following:

Ykþ1 ¼ Yk þ m(Yk, u)Dtk þ s(Yk, u)DBk, (2:5)

where Δtk = tk+1− tk, DBk ¼ Btkþ1 � Btk and Yk is the approximation of Xtk for k ¼ 0, 1, 2, . . . . The
approximation improves as the time step Δtk decreases. The Euler scheme contains only the time
component and the stochastic integral of multiplicity one from the stochastic Taylor expansion of
process (Xt)t≥0, and has strong order of convergence 0.5.

A discrete-time approximation YΔ with maximum step size Δ > 0 converges with strong order γ > 0 at
time T to the solution XT of a given SDE if there exists a positive constant C independent of Δ and a Δ0 > 0
such that

E(jXT � YD
T j) � CDg,
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for all Δ∈ (0, Δ0). Strong convergence ensures a pathwise approximation of the solution process (Xt)t≥0 of

the given SDE. The higher the order of strong convergence is, the faster the mean absolute error between
the approximation and the solution decreases as the maximum time step size Δ decreases.

By adding another term of the stochastic Taylor expansion to equation (2.5), one obtains the Milstein
scheme that approximates the d-dimensional process (Xt)t≥0 by setting Y0 = x0 and, then, successively
calculating for the ith component

Y(i)
kþ1 ¼ Y(i)

k þ mi(Yk, u)Dtk þ
Xq
j¼1

sij(Yk, u)DB
(j)
k

þ
Xq
j¼1

Xq
l¼1

Xd
r¼1

srj(Yk, u)
@sil

@y(r)
(Yk, u)

ðtkþ1

tk

ðs
tk
dB(j)

u dB
(l)
s

(2:6)

for k = 0, 1,… and i = 1,…, d.
When σ(Yk, θ) is constant in Yk, the last term vanishes and the Milstein scheme reduces to the Euler

scheme. If μ(Yk, θ) is once continuously differentiable and σ(Yk, θ) is twice continuously differentiable
regarding Yk, then, the Milstein scheme is strongly convergent of order 1.0, which is higher than that
of the Euler scheme. An illustration of this difference in the simulation of SDE trajectories is presented
e.g. in [15]. However, there is a severe restriction on the practical applicability of the Milstein scheme
because the stochastic double integral in the last term of (2.6) only yields an analytical solution for
j = l. Although approximation techniques for the double integral exist (e.g. [14]), they are unsuitable
for our purposes. On the one hand, we wish to avoid adding yet another layer of approximation and,
thus, additional computational time. On the other hand, we must find the distribution of Yk+1 based
on approximation schemes (2.5) and (2.6), which is also not explicitly possible when adding another
approximation. For this reason, we focus on models where the double integral appears exclusively for
the same components of the Brownian motion. For example, this is the case when the process
is driven by a one-dimensional Brownian motion (i.e. the diffusion function σ(Yk, θ) is of dimension
d × 1). Hence, the diffusion model includes only one source of noise that may affect each of the
components of the process. More generally, we require that

srj(Yk, u)
@sil

@y(r)
(Yk, u) ; 0 for j = l, (2:7)

so that only j = l is inside the double integral. Relation (2.7) implies the following:

— if an entry σrj(Yk, θ) is non-zero, then the entries of all other columns and all rows must not depend on
Y(r)
k , and

— if an entry σil(Yk, θ) depends on Y(r)
k , then the entries of all other columns in row r must be zero.

In particular, this means that unless the rth row of the diffusion function contains only zeros, component
Y(r)
k can only appear in one column of the diffusion function (and if it appears, then the entries of all other

columns in row r must be zero). Moreover, each component of the diffusion process (Xt)t≥0 can only be
directly affected by more than one component of the Brownian motion, if the size of all stochastic effects
(i.e. all entries of the diffusion function) does not depend on the respective component of the diffusion
process. Further, if all d components of the diffusion process appear in the diffusion function, then the
process can be affected by at most d components of the Brownian motion. Besides, if all d components
of the diffusion process appear in the diffusion function and the process shall be affected by d
components of the Brownian motion, the diffusion function must be a (possibly column-wise
permuted) diagonal matrix. In many applications, these are not realistic assumptions.

Assume that the ith component of the diffusion process appears in the ith row of the diffusion
function and that the respective entry of the diffusion function does not depend on the remaining
components Y(r)

k , r≠ i (the contrary would impose restrictions on other rows, as described above).
Then, the ith component of the approximated process is

Y(i)
kþ1 ¼ Y(i)

k þ mi(Yk, u)Dtk þ sij(Yk, u)DB
(j)
k

þ sij(Yk, u)
@sij

@y(i)
(Yk, u)

1
2
((DB(j)

k )
2 � Dtk) (2:8)

for k = 0, 1,… and where j is the column index of the one non-zero entry depending on Y(i)
k in the ith row

of the diffusion function.
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Moreover, note that if we consider the approximation Y(i)

kþ1 in equation (2.8) as a function g(DB(j)
k ) of

the increment of the Brownian motion, g is quadratic in DB(j)
k . Therefore, the function g has a global

extremum with value

g� ¼ Y(i)
k � 1

2
sij(Yk, u)

@sij

@y(i)
(Yk, u)

� �
þ mi(Yk, u)� 1

2
sij(Yk, u)

@sij

@y(i)
(Yk, u)

� �
Dtk:

�
(2:9)

Hence, there is a bound on the range of possible values for Y(i)
kþ1 resulting from the Milstein scheme which

might exclude values that the solution process Xtk could take. Whether this is a lower or upper bound
depends on the sign of the diffusion function and its derivative. The second derivative of g is given by

@2g(DB(j)
k )

@(DB(j)
k )

2
¼ sij(Yk, u)

@sij

@y(i)
(Yk, u) ¼: g00:

Thus, the extremum g� is a maximum and puts an upper bound on the possible values of Y(i)
kþ1 if g

00 < 0,

and g� is a minimum and puts a lower bound on Y(i)
kþ1 if g00 > 0. For the case where g00 = 0, the Milstein

scheme reduces to the Euler scheme.
Since our example, the GBM, is a one-dimensional process, the double integral in equation (2.6)

vanishes and the Milstein scheme for the GBM yields the following:

Ykþ1 ¼ Yk þ aYkDtk þ sYkDBk þ 1
2
s2Yk((DBk)

2 � Dtk),

for k ¼ 0, 1, . . ., where the first three summands also correspond to the Euler scheme. Figure 1 illustrates the
two approximation schemes. It presents three trajectories of the GBM, which are represented by red points
and which were simulated by setting a seed for the random number generator and, then, sampling from
the explicit transition density (2.3). The same seed was used to sample the increments of the Brownian
motion from the normal density and then transform them by (2.5) and (2.6) to obtain the Euler (black) and
the Milstein (blue) approximation of the trajectories. We observe that in almost all cases, the Milstein
approximation is either closer to or as close to the points of the trajectories as the Euler approximation.

2.2. Transition densities based on approximation schemes
While sampling diffusion paths is fairly straightforward for both approximation schemes as described
above, determining the corresponding transition density is less apparent for the Milstein scheme.
Since the Euler scheme is a linear transformation of DBk � N (0,

ffiffiffiffiffiffiffi
Dtk

p
Iq), where Iq denotes the

m-dimensional identity matrix, the transition density derived from the Euler scheme is also a
multivariate Gaussian density:

pEuler(Ykþ1jYk) ¼ f(Ykþ1jYk þ m(Yk, u)Dtk, s(Yk, u)sT(Yk, u)Dtk),

where ϕ(y|a, b) denotes the multivariate Gaussian density with mean a [ Rd and covariance matrix
b [ Rd�d evaluated at y.

For the Milstein scheme, deriving the transition density is more complicated, even in the case of a one-
dimensional diffusion process, which we consider here. Elerian [8] derived the transition density by first
rearranging the Milstein scheme to obtain a transformation of a non-central chi-squared distributed
variable for which the density is known, and then applying the random variable transformation
theorem. In appendix A, we present an alternative derivation that directly applies the random variable
transformation theorem to ΔBk. Both approaches produce the same result. For simplicity of notation, we
set μk := μ(Yk, θ), σk : = σ(Yk, θ) and s0

k :¼ @s(y, u)=@y jy¼Yk
. Then, the transition density based on the

Milstein approximation for a one-dimensional diffusion process is as follows:

pMil(Ykþ1jYk) ¼
exp �Ck(Ykþ1)

Dk

� �
ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffi
Dtk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak(Ykþ1)

p � exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak(Ykþ1)

p
Dk

 !
þ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak(Ykþ1)

p
Dk

 !" #

with

Ak(Ykþ1) ¼ (sk)
2 þ 2sks

0
k Ykþ1 � Yk � mk �

1
2
sks

0
k

� �
Dtk

� �
,

Ck(Ykþ1) ¼ sk þ s0
k Ykþ1 � Yk � mk �

1
2
sks

0
k

� �
Dtk

� �
,

Dk ¼ sk(s0
k)
2Dtk
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Figure 1. Three trajectories of a GBM (2.2) with α = 1 and σ2 = 0.25 and their approximations by the Euler and the Milstein
scheme.
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and for

Ykþ1 � Yk � 1
2
sk

s0
k
þ mk �

1
2
sks

0
k

� �
Dtk, if sks

0
k . 0 (2:10)

and

Ykþ1 � Yk � 1
2
sk

s0
k
þ mk �

1
2
sks

0
k

� �
Dtk, if sks

0
k , 0: (2:11)

The bounds in (2.10) and (2.11) coincide with the bound (2.9) on the range of possible values Yk+1 resulting
from the Milstein scheme in §2.1. For values of Yk+1 within the respective bound, Ak(Yk+1) is non-negative
and its square root takes real values; otherwise, the transition density is equal to zero. Hence, there is a
lower or an upper bound on the support of πMil. Moreover, one can show that the value of the
transition density tends to infinity as Yk+1 approaches the bound. However, the interval for which the
density increases towards infinity may be arbitrarily narrow depending on the parameter setting.

For the GBM, we have σ(Xt, θ) = σXt with parameter σ > 0, the process taking values in Rþ. Therefore,
we obtain a lower bound for the possible values of Yk+1

Ykþ1 � Yk
1
2
þ a� 1

2
s2

� �
Dtk

� �
: (2:12)

Depending on the parameter combination θ = (α, σ)T, this lower bound may be negative, in which case the
support of the transition density includes the entire state space of the GBM.

In figure 2, we illustrate the transition densities based on the GBM solution, Euler scheme andMilstein
scheme for two different parameter settings. We observe that the Milstein transition density better
approximates the mode of the transition density of the solution than the Euler transition density does.
On the other hand, while the support of the Euler transition density is the set of all real numbers, the
Milstein transition density puts zero weight on the values of Yk+1 that are below the lower bound, even
though some of the values are feasible according to the transition density of the solution process.

Other approximation methods for the transition densities were developed for example in [16–18].
Here, we focus on the numerical approximation methods described above. Because for the estimation
methods introduced in the next section, it is crucial to not only be able to approximate the transition
density, but also sampling from the resulting density needs to be possible and fast.
3. Bayesian data augmentation for the parameter estimation of diffusions
With low-frequency observations Xobs ¼ (Xt0 , . . . , XtM ) of the process (Xt)t≥0 described by the SDE (2.1),
we wish to estimate parameter θ. In this work, we assume that all observations are complete (i.e. there
are no latent or unobserved components for all observations) and that there are no measurement errors.
The approximation schemes for the solution of the SDE as introduced in §2 are only appropriate for
small time steps. Therefore, we introduce additional data points Ximp at intermediate time points (as
visualized in figure 3 and explained in detail in §3.2) and estimate the parameter θ from the augmented
path fXobs, Ximpg. To this end, a two-step MCMC approach is used to construct the Markov chain
fu(i), Ximp

(i) gi¼1,...,L, the elements of which are samples from the joint posterior distribution π(θ, Ximp | Xobs):

Step (1) Parameter update: Draw u(i) � p(u(i) jXobs, Ximp
(i�1)),

Step (2) Path update: Draw Ximp
(i) � p(Ximp

(i) jXobs, u(i)).
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?

?
? ?

?

Xti Xt1

Xt2

Xt3

Xti+1
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i+1

Figure 3. Augmented path segment: filled circles represent observed data points and open circles represent imputed points.
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Figure 2. Transition densities for a transition from Yk to Yk+1 with a time step of Δtk = 0.1 for two different parameter settings
based on the GBM solution, Euler scheme and Miltstein scheme, respectively. (a) α = 1, σ2 = 0.25 and Yk = 100, (b) α = 1, σ2 = 2
and Yk = 100.
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A general introduction to MCMC methods is presented in [19]. The resulting MCMC chain
fu(i), Ximp

(i) gi¼lþ1,... , L, after discarding the first l elements as burn-in, can be considered a sample drawn
from the joint posterior distribution π(θ, Ximp | Xobs) and can be used for a fully Bayesian analysis.
The two steps of the algorithm are described in detail in the following two subsections. We use π to
denote the exact densities of the process that is the (full conditional) posterior densities as well as the
transition densities. The meaning becomes clear from the arguments. Approximated densities are
indicated by a corresponding superscript.
3.1. Parameter update
In Step (1), a parameter proposal θ� is drawn from a proposal density q(θ� | θ, Xobs, Ximp) which may or
may not depend on the imputed and observed data. If a proposal θ� = θ + u with an update u that is
independent of the current parameter value θ is used, the proposal strategy is called a random walk
proposal. Proposal θ� is accepted with the following probability:

z(u�, u) ¼ 1 ^ p(u� jXobs, Ximp) q(u j u�, Xobs, Ximp)
p(u jXobs, Ximp) q(u� j u, Xobs, Ximp)

:

Otherwise, the previous θ value is kept.
Due to Bayes’ theorem and the fact that a diffusion process has the Markov property, the (full

conditional) posterior density can be represented as

p(u jXobs, Ximp)/
Yn�1

k¼0

p(Xtkþ1 jXtk , u)

 !
p(u),

where p(Xtkþ1 jXtk , u) denotes the transition density of the process (Xt)t≥0, n + 1 is the total number of data
points in the augmented path, and p denotes the prior density of the parameter. We choose a random
walk proposal where the r components of θ� that take values on the entire real line R are drawn from
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the normal distribution N (uj, g2j ) for j ¼ 1, . . . , r and some predefined gj [ Rþ. The (remaining) strictly

positive components are drawn from a lognormal distribution LN ( log uj, g2j ), for j = r + 1,…, p. In this
case, the acceptance probability reduces to

z(u�, u) ¼ 1 ^
Yn�1

k¼0

p(Xtkþ1 jXtk , u
�)

p(Xtkþ1 jXtk , u)

 !
p(u�)
p(u)

Yp
j¼rþ1

u�j
uj

0
@

1
A, (3:1)

as derived in [2, ch. 7.1.3].
The transition density p(Xtkþ1 jXtk , u) is generally not explicitly known, but it can be approximated by

the Euler or Milstein scheme as described in §2.
rnal/rsos
R.Soc.Open
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3.2. Path update
Since a diffusion process has the Markov property, the likelihood function of parameter θ factorizes as

p(Xt0 , . . . , XtM j u) ¼ p(Xt0 j u)
YM
i¼1

p(Xti jXti�1 , u), (3:2)

and the latent path segments between observations are conditionally independent given the observations.
Hence, it is sufficient to consider the imputation problem in Step (2) only for one path segment between two
consecutive observations Xti and Xtiþ1 . As figure 3 illustrates, the time interval between the two
observations is divided into m subintervals, such that the endpoints of these intervals are
ti ¼ t0 , t1 , . . . , tm ¼ tiþ1 and the time steps are Δtk = tk+1− tk for k ¼ 0, . . . , m� 1. We denote the
observations by Xobs

fti ,tiþ1g ¼ fXti , Xtiþ1g and the imputed data points by Ximp
(ti ,tiþ1)

¼ fXt1 , . . . , Xtm�1g.
After initializing the imputed data by linear interpolation, the path is updated using the Metropolis–

Hastings algorithm. A proposal Ximp�
(ti ,tiþ1)

is drawn from a distribution with density q, which may depend
on the observed data, current imputed data and parameter θ. It is accepted with the following
probability:

z(Ximp�
(ti ,tiþ1)

, Ximp
(ti ,tiþ1)

) ¼ 1 ^ p(Ximp�
(ti ,tiþ1)

��Xobs
fti ,tiþ1g, u) q(X

imp
(ti ,tiþ1)

��Ximp�
(ti ,tiþ1)

, Xobs
fti ,tiþ1g, u)

p(Ximp
(ti ,tiþ1)

��Xobs
fti ,tiþ1g, u) q(X

imp�
(ti ,tiþ1)

��Ximp
(ti ,tiþ1)

, Xobs
fti ,tiþ1g, u)

: (3:3)

Otherwise, the proposal is discarded and the previously imputed data Ximp
(ti ,tiþ1)

is kept. Due to the Markov
property, we have:

p(Ximp�
(ti ,tiþ1)

��Xobs
fti ,tiþ1g, u)

p(Ximp
(ti ,tiþ1)

��Xobs
fti ,tiþ1g, u)

¼
Ym�1

k¼0

p(X�
tkþ1

jX�
tk , u)

p(Xtkþ1 jXtk , u)
,

where X�
t0 ¼ Xt0 ¼ Xti , X

�
tm ¼ Xtm ¼ Xtiþ1 and p(Xtkþ1 jXtk , u) denotes the transition density of process

(Xt)t≥0.
The challenging aspect of the path update step involves determining how to propose new points. The

simplest approach uses the (approximated) transition density to propose a new point by conditioning
only on the point to the left of the new point. We call this proposal method the left-conditioned proposal
and illustrate it in figure 4a. The proposal density of an entire path segment is simply the product

qLC(X
imp�
(ti ,tiþ1)

��Xti ,, u) ¼
Ym�2

k¼0

p(X�
tkþ1

jX�
tk , u),

where X�
t0 ¼ Xti . Thus, the acceptance probability reduces to

z(Ximp�
(ti ,tiþ1)

, Ximp
(ti ,tiþ1)

) ¼ 1 ^
Ym�1

k¼0

p(X�
tkþ1

jX�
tk , u)

p(Xtkþ1 jXtk , u)

 ! Ym�2

k¼0

p(Xtkþ1 jXtk , u)
p(X�

tkþ1
jX�

tk , u)

 !

¼ 1 ^ p(Xtiþ1 jX�
tm�1

, u)
p(Xtiþ1 jXtm�1 , u)

,

where X�
tm ¼ Xtm ¼ Xtiþ1 . Here, the transition density can again be approximated by the Euler or Milstein

scheme from §2.
This proposal strategy considers the information from the observation Xti on the left, while the

proposed path segment is independent of the observation Xtiþ1 on the right. This may lead to a large
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Figure 4. Different proposal strategies (a)–(b) and realizations using different approximation schemes (c)–(g). (a) Left-conditioned
proposal, (b) bridge proposal, (c) left-conditioned Euler proposal, (d ) left-conditioned Milstein proposal, (e) modified bridge Euler
proposal, ( f ) modified bridge Milstein proposal, (g) diffusion bridge Milstein proposal.
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jump in the last step from Xtm�1 to Xtiþ1 , as can be seen in figure 4c,d, and hence, to an improbable
transition. Therefore, the acceptance probability for the left-conditioned proposal Ximp�

(ti ,tiþ1)
, and

consequently, the acceptance rate of the MCMC sampler is usually low.
A number of more sophisticated proposal strategies have been suggested. Ch. 7.1 in [2] reviews some

of these. Here, we first consider the modified bridge (MB) proposal, which conditions on both the previous
data point and the following observation on the right, as visualized in figure 4b. This strategy was
originally proposed by Durham & Gallant [20] and first applied in the Bayesian framework in [21].
More recently, Whitaker et al. [10] suggested improved bridge constructs, and van der Meulen &
Schauer [22] proposed the so-called guided proposals.

For the MB proposal, the proposal density of an entire path segment factorizes again as follows:

qMB(X
imp�
(ti ,tiþ1)

��Xti ,, Xtiþ1 , u) ¼
Ym�2

k¼0

p(X�
tkþ1

jX�
tk , Xtiþ1 , u),

where X�
t0 ¼ Xti . We apply Bayes’ theorem and the Markov property to rewrite the left- and right-

conditioned proposal density of one point as

p(X�
tkþ1

jX�
tk , Xtiþ1 , u)/ p(X�

tkþ1
jX�

tk , u)p(Xtiþ1 jX�
tkþ1

, u), (3:4)

for k ¼ 0, . . . , m� 2.
In [20], it is suggested to approximate the two transition densities on the right-hand side by the Euler

scheme and to further approximate m(X�
tkþ1

, u) and s(X�
tkþ1

, u) by m(X�
tk , u) and s(X�

tk , u), respectively. This
way, they obtain that (3.4) is approximately proportional to a Gaussian density which we will use for the
MB proposal based on the Euler scheme

pEuler(X�
tkþ1

jX�
tk , Xtiþ1 , u)

¼ f X�
tkþ1

���X�
tk þ

Xtiþ1 � X�
tk

tiþ1 � tk

� �
Dtk,

tiþ1 � tkþ1

tiþ1 � tk

� �
S(X�

tk , u)Dtk

� �
,

(3:5)

where S(X�
tk , u) ¼ s2(X�

tk , u) and ϕ is defined in §2.2.
We now consider the Milstein approximation for the two factors on the right-hand side of (3.4). The

first factor resembles the Milstein transition density stated in §2.2. With the same notation, Δ+ = tm− tk+1,
and tm = τi+1, the second factor is as follows:

pMil(Xtm jX�
tkþ1

, u) ¼ exp (�Fm(X�
tkþ1

)=Gm(X�
tkþ1

))ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffi
Dþ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em(X�

tkþ1
)

q

� exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em(X�

tkþ1
)

q
Gm(X�

tkþ1
)

0
@

1
Aþ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Em(X�

tkþ1
)

q
Gm(X�

tkþ1
)

0
@

1
A

2
4

3
5
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with

Em(X�
tkþ1

) ¼ (s�
kþ1)

2 þ 2s�
kþ1s

�0
kþ1 Xtm � X�

tkþ1
� m�

kþ1 �
1
2
s�
kþ1s

�0
kþ1

� �
Dþ

� �
,

Fm(X�
tkþ1

) ¼ s�
kþ1 þ s�0

kþ1 Xtm � X�
tkþ1

� m�
kþ1 �

1
2
s�
kþ1s

�0
kþ1

� �
Dþ

� �
,

Gm(X�
tkþ1

) ¼ s�
kþ1(s

�0
kþ1)

2Dþ,

for Em(X�
tkþ1

) � 0 (which cannot be rearranged for X�
tkþ1

in general); otherwise, the density is equal to zero.
The terms m�

kþ1 and s�
kþ1 are similar to μk+1 and σk+1, but Xtkþ1 is replaced by X�

tkþ1
. Here, we do not

respectively approximate μk+1 and σk+1 by μk and σk because doing so does not lead to simplification.
Moreover, there is no closed formula for the normalization constant needed to scale the product of the
two transition densities to a proper density.

For the GBM, we have Xt > 0 and s�
kþ1 ¼ sX�

tkþ1
. 0 and thus, obtain the following bounds for

pMil(Xtm jX�
tkþ1

, u), the second factor in (3.4):

X�
tkþ1

� Xtm
1
2 þ (a� 1

2s
2)Dþ

¼: u2nd, if
1
2
þ a� 1

2
s2

� �
Dþ . 0 (Case I),

X�
tkþ1

� Xtm
1
2 þ (a� 1

2s
2)Dþ

¼: l2nd, if
1
2
þ a� 1

2
s2

� �
Dþ , 0 (Case II)

and X�
tkþ1

� 0, if
1
2
þ a� 1

2
s2

� �
Dþ ¼ 0 (Case III):

From (2.12), we obtain the following lower bound for pMil(X�
tkþ1

jX�
tk , u), the first factor in (3.4):

X�
tkþ1

� X�
tk

1
2
þ a� 1

2
s2

� �
Dtk

� �
¼: l1st:

At the same time, proposals X�
tkþ1

for the GBM should always be strictly positive to be in the state space.
Let l: = max{0, l1st}. The constraints on X�

tkþ1
derived from the two factors in (3.4) lead to three cases for the

set D of feasible points of X�
tkþ1

for the GBM (assuming Xtm . 0)

D ¼
;, if (Case I) applies and l1st . u2nd,
[l, u2nd], if (Case I) applies and l1st � u2nd,
[l, 1), if (Case II) or (Case III) apply:

8<
:

Since the MB proposal takes into account information not only from the left data point but also from
the observation on the right, it does not have a large jump in the last step as the left-conditioned proposal
does. This is also apparent in the simulations in figure 4e,f. Therefore, the acceptance probability and
acceptance rate are usually higher for the MB proposal than for the left-conditioned proposal. As
appendix B demonstrates, the acceptance probability is even equal to 1 for the MB proposal if only
one data point is imputed between two observations (i.e. the number of inter-observation intervals is
m = 2). This holds when using the Milstein scheme to approximate the transition density for the
likelihood function and proposal density, but also when using the Euler scheme without the
approximation of μk+1 and σk+1 by μk and σk, respectively.

The density of the MB proposal based on the Euler scheme in equation (3.5) can also be interpreted as
the density that results from applying the Euler scheme to the following diffusion process:

dXt ¼ Xtiþ1 � Xt

tiþ1 � t

� �
dtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tiþ1 � tkþ1

tiþ1 � t

s
s(Xt, u) dBt

for t∈ [tk, tk+1]. See [10] for a detailed discussion of the connection between the modified bridge and the
continuous-time conditioned process. Applying the Milstein scheme to this process yields another
proposal scheme to which we refer as the diffusion bridge Milstein (DBM) proposal. For the DBM
proposal, the proposal density of a path segment also factorizes as:

qDBM(Ximp�
(ti ,tiþ1)

��Xti ,, Xtiþ1 , u) ¼
Ym�2

k¼0

p(X�
tkþ1

jX�
tk , Xtiþ1 , u),

where X�
t0 ¼ Xti , and each factor p(X�

tkþ1
jX�

tk , Xtiþ1 , u) corresponds to the density based on the Milstein
scheme from §2.2 where we replace μk by (Xtiþ1 � Xtk )=(tiþ1 � tk), σk by
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(tiþ1 � tkþ1)=(tiþ1 � tk)

p
s(Xtk , u), and σk0 by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(tiþ1 � tkþ1)=(tiþ1 � tk)

p
@s(y, u)=@y jy¼Xtk

. Like the MB
proposal, the DBM proposal takes into account information from the observation on the right, and,
therefore, it does not have a large jump in the last step as illustrated in figure 4g.

Thus far, our path update has only been applied to imputed points between two observations. It can
easily be extended to a case with several observations along the path by simply decomposing the
path into independent path proposals, multiplying the respective acceptance probabilities and
collectively accepting or rejecting the proposals. Moreover, the entire path does not have to be
updated all at once, but can be divided into several path segments that are successively updated.
Different algorithms for choosing the update interval are summarized in [2] and appendix C describes
one of them.

Another challenge in the context of Bayesian data augmentation and the MCMC scheme discussed
above is the dependence between the parameter components included in the diffusion function and
the missing path segments between two observations. Roberts & Stramer [5] were the first to
highlight that, in the discretized setting (as we consider it here), the dependence leads to a slower
convergence of the MCMC algorithm as the number of imputed points m increases. All estimation
methods compared here are affected by this issue in the same way; we hence do not further consider
it here.

We have introduced a number of possible options for the choices to be made when constructing an
estimation method in the framework as described so far:

— approximate the transition densities in the likelihood function based on the Euler or Milstein scheme,
— use the left-conditioned, the MB or the DBM proposal, and
— use the Euler or Milstein scheme for the proposal densities (for the left-conditioned or MB proposal).

In the following, we will omit the left-conditioned proposal due to the inefficiency that we already
pointed out. Instead, we will consider the following four combinations:

(MBE-E) MB proposal and transition density both based on the Euler scheme,
(MBE-M) MB proposal based on the Euler scheme and transition density based on the Milstein scheme,
(MBM-M) MB proposal and transition density both based on the Milstein scheme, and
(DBM-M) DBM proposal (which is based on the Milstein scheme) and transition density based on the

Milstein scheme.

Combination MBE-M merges the Euler and Milstein scheme. We include it here because it combines the
faster scheme for the proposals (where accuracy is less important) and the more accurate scheme for the
acceptance probability.

To our knowledge, we are the first to use the Milstein scheme in the MCMC context described above.
4. Implementation
The implementation is relatively straightforward for the majority of the estimation procedures, and only
the combination of the MB proposal and the Milstein approximation requires additional explanation. As
mentioned, when approximating the two factors on the right-hand side of (3.4) by the transition density
based on the Milstein scheme, there is no closed formula for the normalization constant to obtain a
proper density. The normalization is necessary because the proposal density for a path segment is the
product of several of the terms from (3.4), where the condition on the left point, X�

tk , differs between a
newly proposed segment and the last accepted segment if several consecutive points are imputed.
Therefore, the normalization constants differ and do not cancel out in the acceptance probability.
Normalization is not necessary only in the case where just one point is imputed between two
observations (i.e. m = 2 subintervals) because the left point, Xtk , is always a (fixed) observed point that
is not updated. Thus, the normalization constants cancel out in the acceptance probability. For m > 2,
we numerically integrate the product (3.4) over Xtkþ1 to obtain the normalization constant. The
product in (3.4) may be very small (but not zero everywhere in a non-empty feasible set D) and may
thus numerically integrate to zero, especially when the upper interval bound of the feasible set is
infinite. To overcome this problem, we take two measures. First, we do not integrate over the entire
set of feasible points but determine the maximum of the product numerically and then integrate over
the interval that includes all points with a function value of at least 10−20 times this maximum.
Second, we rescale the product in (3.4) by dividing by the maximum before integrating.
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To sample from the Milstein MB proposal density, we employ rejection sampling. For this,
normalization of the product in (3.4) is not necessary. Again, we numerically determine the maximum
dmax of the product, and the interval I that includes all points with a function value of at least 10−20

times this maximum. Then, we uniformly sample (u1, u2) from rectangle I � (0, dmax) and accept u1 as
a proposal X�

tkþ1
if the unnormalized density value of (3.4) at u1 is at most u2.

For the combinationof theMBproposal and theMilstein approximation, the set of feasibleproposal points
maybe empty. In this case, our implementation shifts to theEuler approximation for this point, i.e. the point is
proposedwith theMBproposal based on the Euler scheme and also the corresponding factor of the proposal
density in the acceptance probability is based on the Euler scheme. In addition, for all methods, a negative
point may be proposed, which is not feasible for a GBM. Therefore, in this case, we propose a new point.
For both cases, we count the number of times that they occur during the estimation procedure. In the
following simulation study, no cases of switching to the Euler scheme occurred and negative proposals
occurred only very rarely (less than 1‰ of the number of iterations in the very worst case).

We implemented the described estimation procedures in R v. 3.6.2 [23]. The source code of our
implementation and the following simulation study is publicly available at https://github.com/
fuchslab/Inference_for_SDEs_with_the_Milstein_scheme.
pen
Sci.7:200270
5. Simulation study
In this section, we study the computational performance of the competing inference methods on the
(relatively simple) benchmark model GBM. As a second (on the application side more often studied)
benchmark model, the CIR process is investigated in appendix D. In this work, we focus on Bayesian
inference by data augmentation and compare the four approaches listed at the end of §3.2.
Conceptually different inference procedures, as summarized e.g. in [2], are not considered as
competitors here as they would be employed in different data contexts. There are two aspects that are
important to consider when we want to evaluate the different methods:

(a) the accuracy with which the true posterior distribution is approximated based on one of the
approximation schemes and a given number m and

(b) the accuracy with which we are able to draw from this approximated posterior distribution.

We are interested in the overall accuracy, i.e. the combination of (a) and (b), achieved within a fixed
amount of computational time.

For the simulation study, we generated 100 paths of the GBM in the time interval [0, 1] using the
solution (2.3) with the parameter combination θ = (α, σ2)T = (1, 2)T and initial value x0 = 100. Figure 5
illustrates some of these paths. From each path, we took M = 20 equidistant points (i.e. the inter-
observation time Δt was 0.05) and applied each of the four described estimation methods once. We
imputed data such that we got m = 2 and m = 5 inter-observation intervals. We also included the case
m = 1, i.e. no data were imputed and only Step (1) from §3, the parameter update, was repeated in the
estimation procedure where the likelihood of the path in the acceptance probability is approximated
by the Euler or the Milstein scheme. For the prior distribution of the parameters, we assumed that
they were independently distributed with a � N (0, 10) and σ2∼ IG(κ0 = 2, ν0 = 2), where IG denotes
the inverse gamma distribution with shape parameter κ0 and scale parameter ν0. The a priori
expectations of the parameters are thus E(a) ¼ 0 and E(s2) ¼ 2.
Each of the estimation procedures performs the following steps:

(1) Draw initial values for the parameters α and σ2 from the prior distributions.
(2) Initialize Yimp by linear interpolation.
(3) Repeat the following steps:

— Parameter update: Apply random walk proposals.
(a) Draw a proposal a� � N (ai�1, 0:25).
(b) Draw a proposal s2� � LN ( logs2

i�1, 0:25).
(c) Accept both or none.

— Path update:
(a) Choose an update interval (ta, tb) as described in appendix C with λ = 5.
(b) Draw a proposal Ximp�

(ta,tb)
according to the investigated method.

(c) Accept or reject the proposal.

https://github.com/fuchslab/Inference_for_SDEs_with_the_Milstein_scheme
https://github.com/fuchslab/Inference_for_SDEs_with_the_Milstein_scheme
https://github.com/fuchslab/Inference_for_SDEs_with_the_Milstein_scheme
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Figure 5. Trajectories used in the simulation study. The solid black line represents the expected value of the GBM solution
E[Xt ] ¼ X0 exp(at) ¼ 100 exp(t). The coloured lines are 10 examples of the 100 trajectories used in the simulation study.
The grey-shaded area shows the range of the 100 trajectories. Each trajectory consists of 20 points used as observations.
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We let each procedure run for 1 h and evaluate the overall accuracy of the obtained sample compared to a
sample from the true posterior distribution (as described below).

Figures 6 and 7 present the output from one estimation procedure on the example of the combination
MBM-M of the MB proposal and the Milstein approximation for the proposal density and the likelihood
function. From each estimation procedure, we obtained an MCMC chain of dimension n(m− 1) + 2. For
each chain, we used the two components for parameters α and σ2 and calculated the mean, the median,
and the variance after cutting off a burn-in phase of 5000 iterations. To justify our use of independent
proposals for the parameter update, we show in appendix E that the parameters are not strongly
correlated.

As a benchmark, we also sampled from the true parameter posterior distribution based on the
solution of the GBM. We used the Stan software [24,25] which provides an efficient C++
implementation of Hamiltonian Monte Carlo (HMC) sampling with the No-U-turn sampler to
sample from the true parameter posterior distribution. For each posterior distribution corresponding
to one of the 100 sample paths, we generated four HMC chains with 500 000 iterations each.
The first half of the chains was discarded as warm-up and the remaining draws were combined to
give a sample of size 106. We calculated the multivariate effective sample size (ESS) as defined in [26]
which provides the size of an independent and identically distributed sample equivalent to our
samples in terms of variance and found that the ESS of the obtained samples from the true posterior
distribution is well over 500 000. For each of these samples, we also calculated the mean, the median
and the variance.

The estimation procedures and time measurements were performed on a cluster of machines with the
following specifications: AMD Opteron™ Processor 6376 (1.40 GHz), 512GB DDR3-RAM.
6. Results
Figures 8 and 9 and tables 1 and 2 summarize the results of running each of the methods once for 1 h for
each of the 100 GBM trajectories. Figures 8 and 9 show the density plots of the difference between the
respective statistic (mean, median or variance) calculated for a sample from the approximated
posterior distribution obtained by the respective method and the statistic for a sample from the true
posterior distribution of the same sample path. Each density plot aggregates 100 such difference
values, one for each of the 100 GBM trajectories. Table 1 tabulates the root mean square error (RMSE)
based on these differences for each of the considered methods, discretization levels m and statistics.
We use the RMSE as the measure of the overall accuracy. The lower the RMSE is, the higher the
accuracy of the respective method. Table 2 empirically evaluates the computational efficiency of the
considered methods, including the number of iterations completed after 1 h, the multivariate ESS
based on the obtained sample after discarding a burn-in phase of 5000 iterations, and the acceptance
rates of the parameter and the path proposals. Each of these quantities is averaged over the 100 GBM
trajectories and the coefficient of variation is also stated.

For the drift parameter α of the GBM, the four considered schemes perform comparably for m = 2 and
m = 5. In particular, the use of the Milstein approximation does not improve the accuracy of the posterior
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mean and median for the same discretization level m. The accuracy of the posterior variance is slightly
improved by the use of the Milstein approximation when data are imputed. Moreover, for MBE-E, the
accuracy does not consistently improve as m is increased. Whereas, the accuracy for the methods
including the Milstein scheme improves considerably when imputed data are introduced (i.e. m > 1)
and it improves slightly when m is increased from 2 to 5.

For the diffusion parameter σ2 of the GBM, we clearly see an improvement in overall accuracy for the
methods involving the Milstein scheme. Combination DBM-M turns out to be the most accurate, closely
followed by MBE-M in case of the mean and median.
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According to table 2, the number of iterations completed within 1 h varies substantially among the
different estimation procedures. It is always higher for the procedures that use the Euler
approximation, while especially combination MBM-M is very time-consuming and thus completes
fewer iterations. Similarly, the multivariate ESS varies substantially among the different estimation



Table 1. Empirical characteristics for evaluating the overall accuracy of the parameter estimation procedures for different numbers
m of subintervals between two observations aggregated over 100 deviations between the respective statistics calculated for the
sample from the approximated posterior and for the sample from the true posterior distribution, one for each of the 100 sample
paths of the GBM. The lowest RMSE (root mean square error) per m and per statistic is printed in bold.

method

RMSEs for α RMSEs for σ2

mean median variance mean median variance

m = 1 Euler 0.282 0.244 0.456 0.638 0.600 0.471

Milstein 0.851 0.780 1.158 0.282 0.265 0.176

m = 2 MBE-E 0.266 0.238 0.526 0.211 0.198 0.141

MBE-M 0.311 0.302 0.476 0.109 0.106 0.057

MBM-M 0.315 0.305 0.470 0.112 0.107 0.057

DBM-M 0.318 0.308 0.485 0.101 0.099 0.044

m = 5 MBE-E 0.277 0.254 0.524 0.113 0.098 0.127

MBE-M 0.288 0.274 0.474 0.031 0.031 0.050

MBM-M 0.292 0.278 0.492 0.040 0.037 0.058

DBM-M 0.291 0.275 0.472 0.031 0.030 0.037

Table 2. Empirical characteristics for evaluating the computational efficiency of the parameter estimation procedures for different
numbers m of subintervals between two observations aggregated over 100 trajectories of the GBM. Each of the procedures was
run for 1 h. Acceptance rates are defined to take values between 0 and 1. For m = 1, no data points were imputed and only
Step (1), the parameter update, was repeated in the estimation procedure. Specifications for the computing power are stated in
the main text. c.v. denotes the coefficient of variation.

method

number of iterations
after 1 h

multivariate effective
sample size

acceptance rate
of the
parameters

acceptance rate
of the path

mean c.v. mean c.v. mean c.v. mean c.v.

m = 1 Euler 25 134 301 0.03 1 273 744 0.16 0.518 0.02 — —

Milstein 454 863 0.03 146 362 0.41 0.425 0.14 — —

m = 2 MBE-E 8 583 614 0.03 170 827 0.19 0.442 0.01 0.842 0.04

MBE-M 1 816 144 0.03 24090 0.38 0.417 0.03 0.799 0.05

MBM-M 300 870 0.03 6881 0.21 0.417 0.03 1.000 0.00

DBM-M 754 024 0.10 28 089 0.31 0.417 0.03 0.839 0.04

m = 5 MBE-E 6 765 054 0.10 49 885 0.18 0.310 0.01 0.892 0.02

MBE-M 892 487 0.02 5033 0.24 0.304 0.01 0.844 0.03

MBM-M 78 215 0.04 573 0.20 0.304 0.01 0.978 0.01

DBM-M 879 227 0.03 5535 0.21 0.304 0.01 0.884 0.02
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procedures. It is higher for m = 2 than for m = 5 for each of the considered estimation procedures. The
acceptance rate of the parameters is slightly lower when the Milstein scheme is used for the
approximation of the likelihood function. In addition, the acceptance rate of the parameters decreases
as the number of imputed points increases. The acceptance rate of the path is highest for combination
MBM-M. For MBE-E, it would be just as high if one would not substitute μk+1 and σk+1 by μk and σk.
For MBE-E, MBE-M and DBM-M, the acceptance rate of the path increases as the number of imputed
points increases.
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7. Summary and discussion

We have demonstrated how to implement an algorithm for the parameter estimation of SDEs from
low-frequency data using the Milstein scheme to approximate the transition density of the
underlying process. Our motivation was to improve numerical accuracy and thus reduce the
amount of imputed data and computational overhead. However, our findings are rather
discouraging: we found that this method can be applied to multidimensional processes only with
impractical restrictions. Moreover, we showed that the combination of the MB proposal with the
Milstein scheme for the proposal density may lead to an empty set of possible proposal points,
which would require switching to the Euler scheme in order to proceed. One of the strengths of
the original (Euler-based) MCMC scheme is its generic character and applicability. Through this, it
possesses a practical advantage over otherwise more sophisticated methods such as the Exact
Algorithm [27]. This strength does not translate to the Milstein-based MCMC scheme due to the
limited applicability of the Milstein approximation especially in the multidimensional setting.
Thus, methods like the Exact Algorithm may be a reasonable alternative. The limited applicability
of the Milstein approximation would also persist for advanced forms of the discussed MCMC
scheme like the innovation scheme in [6] or for even more generic algorithms like particle MCMC
as studied in [28].

In our simulation study, we found that the overall accuracy for the estimates for the drift parameter
of the GBM does not necessarily improve when the Milstein scheme is used. Fewer iterations are
completed for the methods involving the Milstein scheme and also the ESS is substantially lower.
Thus, the poor sampling efficiency might outweigh the (potential) increase in accuracy of the
approximation of the posterior distribution. Especially, the combination MBM-M results in a
particularly low number of iterations and a low ESS. Owing to the already quite low ESS achieved
by the Milstein-based methods for m = 5 subintervals between two observations, we did not
consider higher discretization levels. Moreover, note that tuning the variance hyperparameters for
the random walk proposals of the parameters in Step (3) in the simulation study to reach an
optimal acceptance rate might lead to a higher ESS. However, since the acceptance rates achieved in
the simulation study lie in a range where the sampling efficiency is rather robust to changes in the
acceptance rate as shown in [29] (in the high-dimensional limit), we do not expect the change in the
ESS after tuning to be substantial.

For the estimates for the GBM diffusion parameter, the overall accuracy is increased by the use of
the Milstein scheme. DBM-M turns out to be the most effective combination in terms of overall
accuracy.

We conducted another simulation study on the example of the CIR process, as shown in appendix D,
and the results are very similar as for the GBM. The use of the Milstein approximation does not
consistently improve the overall accuracy for the drift parameter; however, it does improve the
accuracy for the diffusion parameter. Again combination DBM-M achieves the highest accuracy,
closely followed by MBE-M.

It was expected that the use of the Milstein scheme would make a difference for the estimates for the
diffusion parameters because the additional term added by the Milstein scheme compared to the Euler
scheme involves the diffusion function and its derivative. Nevertheless, the general applicability of the
Euler scheme remains a great advantage and the search for different proposal schemes such as in
[10,22] rather than for different numerical discretization schemes may be a more promising way
towards more efficient estimation algorithms for diffusion processes.
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Appendix A. Derivation of the transition density based on the Milstein

scheme
The Milstein scheme

Ykþ1 ¼ Yk þ m(Yk, u)Dtk þ s(Yk, u)DBk þ 1
2
s(Yk, u)

@s

@y
(Yk, u)((DBk)

2 � Dtk),

can be considered a variable transformation of the random variable Z � N (0, 1) with density ϕ(z) using
the transformation function

f(z) ¼ az2 þ bzþ c,

where the coefficients are defined as

a ¼ 1
2
s(Yk, u)

@s

@y
(Yk, u)Dtk,

b ¼ s(Yk, u)
ffiffiffiffiffiffiffi
Dtk

p
and c ¼ Yk þ m(Yk, u)� 1

2
s(Yk, u)

@s

@y
(Yk, u)

	 

Dtk,

and whose derivative and inverse function are

f 0(z) ¼ 2azþ b

and

f�1(y) ¼ � b
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+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4a(y� c)
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4a
þ c:

By applying the random variable transformation theorem as found in [30, p. 269] or [31, p. 27], the
density ρY of Yk+1 can be derived as follows:

rY(y) ¼
X

fz[R:f (z)¼yg

f(z)
jf 0(z)j

¼
f � b

2a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a(y�c)

p
2a

� �

f 0 � b
2a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a(y�c)

p
2a

� �����
����
þ

f � b
2a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a(y�c)

p
2a

� �

f 0 � b
2a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a(y�c)

p
2a

� �����
����

¼
1ffiffiffiffi
2p

p exp � 1
2 � b

2a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a(y�c)

p
2a

� �2
 !

bþ 2a � b
a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a(y�c)

p
2a

� �����
����

þ
1ffiffiffiffi
2p

p exp � 1
2 � b

2a þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a(y�c)

p
2a

� �2
 !

bþ 2a � b
2a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2þ4a(y�c)

p
2a

� �����
����

¼ 1ffiffiffiffiffiffi
2p

p exp � 1
8a2 b2 þ 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4a(y� c)

p þ b2 þ 4a(y� c)
� �� �

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4a(y� c)

p�� ��
 

þ exp � 1
8a2 b2 � 2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4a(y� c)

p þ b2 þ 4a(y� c)
� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4a(y� c)

p�� ��
!

¼ exp (�b2þ2a(y�c)
4a2 )ffiffiffiffiffiffi

2p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 4a(y� c)
p exp � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4a(y� c)

p
4a2

 !
þ exp

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4a(y� c)

p
4a2

 ! !

¼ exp (�b2þ2a(y�c)
4a2 )ffiffiffiffiffiffi

2p
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 4a(y� c)
p � 2 cosh b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ 4a(y� c)

p
4a2

 !
:

After substituting the coefficients a, b and c and abbreviating μk := μ(Yk, θ), σk := σ(Yk, θ) and
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s0
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, we obtain the transition density based on the Milstein scheme

pMil(Ykþ1jYk, u) ¼
exp � sk

ffiffiffiffiffi
Dtk

p� �2
þ212sks

0
kDtk(Ykþ1�Yk�(mk�1

2sks
0
k)Dtk)

4(12sks
0
kDtk)

2

 !
ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sk

ffiffiffiffiffiffiffi
Dtk

p� �2þ4 1
2sks

0
kDtk(Ykþ1 � Yk � (mk � 1

2sks
0
k)Dtk)

q

� exp �
sk

ffiffiffiffiffiffiffi
Dtk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sk

ffiffiffiffiffiffiffi
Dtk

p� �2þ4 1
2sks

0
kDtk(Ykþ1 � Yk � (mk � 1

2sks
0
k)Dtk)

q
4( 12sks

0
kDtk)

2

0
@

1
A

2
4

þ exp
sk

ffiffiffiffiffiffiffi
Dtk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sk

ffiffiffiffiffiffiffi
Dtk

p� �2þ4 1
2sks

0
kDtk(Ykþ1 � Yk � (mk � 1

2sks
0
k)Dtk)

q
4( 12sks

0
kDtk)

2

0
@

1
A
3
5

¼ exp (�Ck(Ykþ1)
Dk

)ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffi
Dtk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak(Ykþ1)

p � exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak(Ykþ1)

p
Dk

 !
þ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak(Ykþ1)

p
Dk

 !" #

with

Ak(Ykþ1) ¼ (sk)
2 þ 2sks

0
k Ykþ1 � Yk � mk �

1
2
sks

0
k

� �
Dtk

� �

Ck(Ykþ1) ¼ sk þ s0
k Ykþ1 � Yk � mk �

1
2
sks

0
k

� �
Dtk

� �

Dk ¼ sk(s0
k)
2Dtk

and for

Ykþ1 � Yk � 1
2
sk

s0
k
þ mk �

1
2
sks

0
k

� �
Dtk, if sks

0
k . 0

and Ykþ1 � Yk � 1
2
sk

s0
k
þ mk �

1
2
sks

0
k

� �
Dtk, if sks

0
k , 0:

In the case of σk = 0, Yk+1 conditioned on Yk is deterministic. For σ0k = 0, the Milstein scheme reduces to the
Euler scheme.
Appendix B. Derivation of the acceptance probability for the MB proposal
for m = 2 inter-observation intervals
As stated in §3.2, the acceptance probability for the path update between two consecutive observations
Xti and Xtiþ1 with the MB proposal is

z(Ximp�
(ti ,tiþ1)

, Ximp
(ti ,tiþ1)
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where X�
t0 ¼ Xt0 ¼ Xti and X�

tm ¼ Xtm ¼ Xtiþ1 . For the case where only one data point is imputed between
two observations (i.e. m = 2) this reduces to
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This relation holds for any (approximated) transition density p(Xtkþ1 jXtk , u).
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Appendix C. Choice of path update interval

For choosing the update interval, we use the random block size algorithm as suggested in [3]. Assuming
that the augmented path contains a total of n + 1 data points Y0,…, Yn, it is divided into update segments
Y(c0,c1), Y(c1,c2), . . . by the following algorithm:

(1) Set c0 = 0 and j = 1.
(2) While cj−1 < n:

(a) Draw Z ∼ Po(λ) and set cj ¼ minfc j�1 þ Z, ng.
(b) Increment j.

Here, Z∼ Po(λ) denotes the Poisson distribution with parameter λ.
Such a random choice of the path update interval is a simple way to vary the set of points that are

updated together within one iteration.
 R.Soc.Open
Sci.7:200270
Appendix D. Additional example: Cox–Ingersoll–Ross process
The one-dimensional CIR process fulfils the SDE

dXt ¼ a(b� Xt) dtþ s
ffiffiffiffiffi
Xt

p
dBt, X0 ¼ x0,

with starting value x0 [ Rþ and parameters α, β, s [ Rþ. If 2αβ > σ2, the process is strictly positive (i.e.
X ¼ Rþ) otherwise it is non-negative (i.e. X ¼ R0). The transition density is explicitly known as

p(s, x, t, y) ¼ c
v
u

� �h=2
e�(uþv)Ih(2

ffiffiffiffiffiffi
uv

p
)

for t > s≥ 0, where

c ¼ 2a
s2(1� e�a(t�s))

, u ¼ cx e�a(t�s), v ¼ cy, h ¼ 2ab
s2 � 1,

and Ih denotes the modified Bessel function of the first kind of order η, i.e.

Ih(z) ¼
X1
k¼0

z
2

� �2kþh 1
k!G(k þ hþ 1)

for z [ R, where Γ is the Gamma function.
For the CIR process, we have s(Xt, u) ¼ s

ffiffiffiffiffi
Xt

p
with parameter σ > 0, the process taking values in R0.

We therefore obtain a lower bound for the possible values of Xtkþ1 when applying the Milstein scheme

Xtkþ1 � a(b� Xtk )�
1
4
s2

� �
Dtk ¼: lleft:

The second bound that occurs when combining the MB proposal with the Milstein scheme is as follows:

Xtkþ1 � b� 1
a

1
Dþ

Xtm þ 1
4
s2

� �
¼: lright:

The set D of feasible points of Xtkþ1 for the CIR process when combining the MB proposal with the
Milstein scheme is thus D ¼ [l, 1) with l := max(0, lleft, lright).

For the simulation study, we generated 100 paths of the CIR process in the time interval [0, 1] with the
parameter combination θ = (α, β, σ2)T = (1, 1, 2)T and initial value x0 = 10. From each path, we took 20
equidistant points and ran each of the described estimation methods once for 1 h to perform inference
for the parameters β and σ2, assuming α to be known. For the prior distribution of the parameters, we
assumed that they were independently distributed with β∼ IG(κb = 3, νb = 3) and σ2∼ IG(κs = 3, νs = 4).
The a priori expectations of the parameters are thus E(b) ¼ 3

2 and E(s2) ¼ 2. For each estimation
procedure, the steps as outlined in §5 were taken. As proposal densities for the parameters in Step (3),
we used b� � LN ( logbi�1, 0:25) and s2� � LN ( logs2

i�1, 0:25).
The sampling results are summarized in figures 10 and 11 and tables 3 and 4. Similar to the results for

the GBM, the use of the Milstein approximation does not consistently improve the overall accuracy for
the drift parameter β. The accuracy increases for increasing m for most of the methods. Only
combination MBM-M has lower accuracy for m = 5 due to the low sampling efficiency and the
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Figure 10. Sampling results for β obtained by each of the estimation procedures. Each density plot aggregates 100 deviations
between the respective statistics (left: mean, middle: median, right: variance) calculated for the sample from the approximated
posterior and for the sample from the true posterior distribution, one for each of the 100 sample paths of the CIR process.
The rows show results for different numbers m of subintervals between two observations. For m = 1, no data points were
imputed and only Step (1) from §3, the parameter update, was repeated in the estimation procedure.
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Figure 11. Sampling results for σ2 as described in figure 10.
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resulting low ESS. For the diffusion parameter σ2, the use of the Milstein approximation and increasing m
both improve the overall accuracy. Again combination DBM-M achieves the highest accuracy, closely
followed by MBE-M.



Table 3. Empirical characteristics for evaluating the overall accuracy of the parameter estimation procedures for different numbers
m of subintervals between two observations aggregated over 100 deviations between the respective statistics calculated for the
sample from the approximated posterior and for the sample from the true posterior distribution, one for each of the 100 sample
paths of the CIR process. The lowest RMSE per m and per statistic is printed in bold.

method

RMSEs for β RMSEs for σ 2

mean median variance mean median variance

m = 1 Euler 0.0179 0.0115 0.0478 0.1603 0.1530 0.0673

Milstein 0.0174 0.0110 0.0587 0.1306 0.1233 0.0595

m = 2 MBE-E 0.0099 0.0064 0.0265 0.0910 0.0865 0.0417

MBE-M 0.0105 0.0063 0.0413 0.0656 0.0619 0.0309

MBM-M 0.0151 0.0120 0.0462 0.0658 0.0625 0.0325

DBM-M 0.0097 0.0061 0.0330 0.0653 0.0617 0.0308

m = 5 MBE-E 0.0052 0.0036 0.0144 0.0400 0.0380 0.0194

MBE-M 0.0077 0.0049 0.0375 0.0271 0.0259 0.0156

MBM-M 0.0307 0.0204 0.1103 0.0509 0.0420 0.0615

DBM-M 0.0085 0.0052 0.0321 0.0270 0.0256 0.0156

Table 4. Empirical characteristics for evaluating the computational efficiency of the parameter estimation procedures for different
numbers m of subintervals between two observations aggregated over 100 trajectories of the CIR process. Each of the procedures
was run for 1 h. Acceptance rates are defined to take values between 0 and 1. For m = 1, no data points were imputed and
only Step (1) from §3, the parameter update, was repeated in the estimation procedure. Specifications for the computing power
are stated in the main text. c.v. denotes the coefficient of variation.

method

number of iterations
after 1 h

multivariate effective
sample size

acceptance rate
of the
parameters

acceptance rate
of the path

mean c.v. mean c.v. mean c.v. mean c.v.

m = 1 Euler 23 461 023 0.11 2 422 521 0.14 0.443 0.03 — —

Milstein 4 685 450 0.03 480 549 0.08 0.442 0.03 — —

m = 2 MBE-E 8 482 241 0.06 422 034 0.10 0.384 0.03 0.964 0.01

MBE-M 1 944 229 0.05 94 071 0.10 0.383 0.03 0.957 0.01

MBM-M 186 588 0.06 9429 0.13 0.383 0.03 1.000 0.00

DBM-M 1 905 354 0.04 95 262 0.10 0.383 0.03 0.968 0.01

m = 5 MBE-E 6 851 197 0.05 114 344 0.10 0.272 0.03 0.976 0.01

MBE-M 966 579 0.04 15 599 0.13 0.272 0.03 0.965 0.01

MBM-M 37 648 0.12 574 0.25 0.272 0.03 0.993 0.00

DBM-M 906 791 0.08 14 881 0.14 0.272 0.03 0.975 0.01
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Also for the CIR process, the number of iterations completed after 1 h and the multivariate ESS of the
obtained sample vary substantially between the different procedures. Both quantities are highest for
combination MBE-E, they are similar for MBE-M and DBM-M, and particularly low for MBM-M.
Appendix E. Analysis of the correlation between the parameters
In this section, we provide several plots (see figures 12–15) showing that the parameters of the two
benchmark models are not strongly correlated in order to justify our use of independent parameter
proposals in the simulation study.
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