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Abstract: 

 

Background - The P-wave duration (PWD) is an electrocardiographic (ECG) measurement that 

represents cardiac conduction in the atria. Shortened or prolonged PWD is associated with atrial 

fibrillation (AF). We used exome chip data to examine the associations between common and 

rare variants with PWD.  

Methods - Fifteen studies comprising 64,440 individuals (56,943 European, 5,681 African, 

1,186 Hispanic, 630 Asian), and ~230,000 variants were used to examine associations with 

maximum PWD across the 12-lead ECG. Meta-analyses summarized association results for 

common variants; gene-based burden and SKAT tests examined low-frequency variant-PWD 

associations. Additionally, we examined the associations between PWD loci and AF using 

previous AF GWAS.  

Results - We identified 21 common and low-frequency genetic loci (14 novel) associated with 

maximum PWD, including several AF loci (TTN, CAND2, SCN10A, PITX2, CAV1, SYNPO2L, 

SOX5, TBX5, MYH6, RPL3L). The top variants at known sarcomere genes (TTN, MYH6) were 

associated with longer PWD and increased AF risk. However, top variants at other loci (e.g., 

PITX2 and SCN10A) were associated with longer PWD but lower AF risk.  

Conclusions - Our results highlight multiple novel genetic loci associated with PWD, and 

underscore the shared mechanisms of atrial conduction and AF. Prolonged PWD may be an 

endophenotype for several different genetic mechanisms of AF.  
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Nonstandard Abbreviations and Acronyms 

AF: atrial fibrillation 

cMAC: cumulative minor allele count 

GWAS: genome-wide association studies  

LV: left ventricle 

MAF minor allele frequency 

PWD: P-wave duration  

RAA: right atrial appendage  

SKAT: sequence kernel association test 

 

 

 

 

 

P-wave duration (PWD) is an electrocardiographic measurement that reflects cardiac conduction 

through the atria. PWD variability may implicate intrinsic or acquired properties in the function 

and structure of atrial conductivity.1 Shortened and prolonged PWD have been repeatedly 

associated with atrial fibrillation (AF),2, 3 a common and heritable4 arrhythmia that predisposes to 

stroke, heart failure, and increased mortality.5-7 

Although PWD is heritable8, 9 only two genome-wide association studies (GWAS) have 

been conducted.10, 11 Given the relationship between PWD and AF, examining the genetic 

determinants of PWD may provide insights into the pathophysiology of AF. Moreover, 

assessment of coding variation may facilitate identification of AF-specific genes. Therefore, we 

conducted an exome-chip based analysis focused on rare and common genetic determinants of 

PWD. 
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Methods 

Each study was reviewed and approved by the local or institutional IRB, and each participant 

provided consent. Study-specific details are provided in Supplemental Material, under 

“Description of participating studies” and in Supplemental Table 1.  In our primary analysis, we 

considered loci/genes significantly associated with PWD if a common variant (minor allele 

frequency [MAF] ≥ 5%) or a gene-based test, including burden or sequence kernel association 

test [SKAT]12 comprising low-frequency variants [MAF < 5% or MAF <1%]) exceeded exome-

wide significance in meta-analyses, after Bonferroni correction. We reported low-frequency 

variants that exceeded exome-wide significance at significant loci identified in gene-based 

analyses. The full Methods section is available in the Supplemental Material (under “Methods”). 

Data supporting the findings of this study can be made available, following reasonable request to 

the corresponding author. 

 

Results 

A total of 64,440 individuals from 4 ethnic groups (56,943 European, 5,681 African, 630 Asian, 

1,186 Hispanic) and 15 studies were included in our meta-analysis. The per-study mean age 

ranged from 46.2-72.6 years; roughly 60% of participants were women (Table 1). For the multi-

ethnic single variant analyses, we tested ~26,000 common variants (see Supplemental Table 3 

for the exact number of variants included in each analysis). The Quantile-Quantile plots show a 

small degree of inflation for both PWD residuals (λ=1.10) and inverse normal transformed PWD 

residuals (λ=1.13; Supplemental Figures 1a-1b). We performed meta-analyses in ethnicity-

specific groups (European: λ=1.10-1.13; African: λ=1.03; Supplemental Figures 1c-1f). LD score 

regression intercepts were 1 (multi-ethnic analyses) and 0.95 (European-specific analyses), 
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suggesting the inflation was mainly due to polygenicity. Meta-analysis results from PWD 

residuals, and inverse normal transformed PWD residuals were highly correlated across analyses 

(Pearson’s rho≥0.99, P<2.2×10-16; Supplemental Figure 2).  

Common variant analyses 

We identified 41 exome-wide significant variants at 18 loci (P-value <1.9×10-6; Supplemental 

Figure 3) in our multi-ethnic meta-analysis of PWD residuals (Table 2). Eleven of the 18 PWD 

loci are novel, representing the following nearest genes: PKP1 (rs1626370, P=2×10-6), TTN 

(rs2042995, P=4×10-7), PITX2 (rs17042171, P=8×10-11), ARHGAP10 (rs6845865, P=2×10-10), 

TCF21 (rs2327429, P=2×10-7), CDK6 (rs2282978, P=2×10-8), SYNPO2L (rs3812629, P=4×10-

7), SOX5 (rs17287293, P=3×10-7), HMGA2 (rs8756, P=7×10-7), GORS4 (rs17608766, P=9×10-

15), and MC4R (rs12970134, P=1×10-6). Another novel locus was associated only with the 

inverse normal transformed PWD (JAZF1, P=1×10-6; Table 2; Supplemental Table 4). The PWD 

variance explained by each of the top variants ranged from 0.04% to 0.44%; the top variants in 

aggregate explained ~1.6% of the phenotypic variance. Associations for SCN10A and PITX2 

regions were moderately heterogeneous across individual studies (I2 ≥45%; Table 2). Of these 19 

multi-ethnic significantly associated loci, 13 were significantly associated with PWD residuals in 

the European ancestry subset, and one (SCN10A) was observed in individuals of African ancestry 

(Supplemental Table 4). No additional loci were observed in analyses restricted to either 

European or African ancestry (Supplemental Figure 4 for Manhattan plots). 

In conditional analyses, we identified additional signals from SCN5A and SCN10A 

(Supplemental Table 5). For inverse normal transformed PWD residuals, an additional signal 

(rs10033464, P-value=2×10-7) was observed in the PITX2 region. In addition to the 7 previously 
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known loci that exceeded exome-wide significance, we observed 2 nominally significant 

associations with PWD at SSBP3 and EPAS1 (P <0.001; Supplemental Table 6).10 

Gene-based analyses 

We performed burden and SKAT tests for associations with PWD for 16,949 genes with a 

cumulative minor allele count (cMAC) ≥10, including 192,455 low-frequency and rare variants, 

in the multi-ethnic sample. We identified 4 genes associated with PWD using SKAT tests 

aggregating functional variants with MAF <5% (TTN, P=6×10-27; DLEC1, P=2×10-13; SCN10A, 

P=7×10-8; and RPL3L, P=9×10-7; Table 3). We identified an additional association (TTC21A, 

P=1×10-6) using inverse normal transformed PWD residuals in the European-specific analysis. 

Using burden tests, we identified TTN and MUC5B as PWD-associated genes in the multi-ethnic 

and European-specific analyses. We did not observe any significant associations for variants 

with MAF <1%, suggesting that identified associations were mainly driven by low-frequency, 

not rare, variants. Among these significant genes, we identified two additional low-frequency 

missense variants exceeding exome-wide significance for association (DLEC1, rs116202356, 

Glu264Lys, P=2×10-10; RPL3L, rs113956264, Val262Met, P=1×10-6; Table 2), which were not 

reported in our single variant tests. 

eQTL analyses between genes at PWD loci and gene expression 

We assessed eQTL associations for top variants and proxies (linkage disequilibrium (LD): 

r2>0.8; 1000 Genomes: phase 3 version 5, all individuals from LDlink13) in two heart tissues 

from GTEx version 7 (right atrial appendage (RAA) and left ventricle (LV); Supplemental Table 

7).14 Six loci were associated with significant changes in gene expression, especially in the RAA, 

including 2 known PWD loci (HCN1, FADS1) and 4 novel loci (TTN, TCF21, JAZF1, 

SYNPO2L) (Supplemental Table 7). The alleles associated with longer PWD at HCN1 and 
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SYNPO2L had lower expression of these genes in RAA tissues. In contrast, alleles at the JAZF1 

and FADS1 loci were associated with higher gene expression in the RAA and LV, respectively. 

Gene expression directionality was consistent across RAA and LV tissues. Expression level 

changes of JAZF1 and MYOZ1 per allele in RAA tissue were significantly higher than in the LV. 

We observed more significant eQTLs in the RAA than the LV, as expected, because P-wave 

duration reflects atrial conduction.  

Relation of the PWD with ECG traits identifies 4 novel and 5 known loci 

We examined associations between PWD loci and other ECG measurements from large-scale 

association studies (Supplemental Table 8). We identified 8 novel (TTN, DLEC1, ARHGAP10, 

JAZF1, SYNPO2L, SOX5, HMGA2, GOSR2), and 5 known (SCN10A, CAV1, FADS1, TBX5, 

MYH6) PWD loci, all previously reported to be associated with PR interval, PR segment, QRS 

duration, QT interval, or RR interval.  Variants at TCF21, SYNPO2L, and MYH6 were associated 

with PR interval in recent large-scale genetic association studies,15-17 but the top variants in our 

PWD analysis were in low to moderate linkage disequilibrium with top variants from these 

earlier analyses (LD: r2 <0.8; 1000 Genomes: phase 3 version 5, all individuals) . 

Overlap between PWD loci and AF 

Fourteen PWD loci were associated with AF risk in a recent AF GWAS18 (P <0.0024=0.05/21 

loci; Figure 1 and Supplemental Table 8). Two loci in well-known AF gene regions, PITX2 and 

TTN, were novel PWD loci. Among these 14 loci, 6 were associated with longer PWD and 

higher AF risk (TTN, TCF21, SOX5, GOSR2, MC4R, MYH6), whereas 8 were associated with 

longer PWD but lower AF risk (DLEC1, PITX2, CDK6, SYNPO2L, CAND2, SCN10A, CAV1, 

TBX5). 
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Discussion 

In a multi-ancestry study comprising ~65,000 individuals, we identified 12 novel and 7 

previously reported loci related to PWD in a meta-analysis of common exome chip variants. 

After aggregating rare and low-frequency exonic variants, we identified 6 genes, including 2 

additional low-frequency variants potentially related to PWD, and loci with specific patterns of 

association for PWD and AF risk. These findings suggest that AF may result from multiple 

genetic mechanisms, and PWD may be an endophenotype for these mechanisms.  

Our study extends the literature on the genetic components underlying atrial conduction, 

and the relationship between PWD and AF risk. In comparison to earlier genetic association 

studies of PWD,10, 11 we predominantly focused on genetic variants in coding regions (Table 2). 

In total, we identified 21 common variant loci related to PWD. The top common variants explain 

~1.6% of the phenotypic variance in PWD. Our gene-based analyses also highlight the 

importance of low-frequency variants contributing to PWD in genes such as TTN, SCN10A, and 

RPL3L.  

Our findings have two major implications. First, associated loci span genes involved in 

the development and maintenance of adult cardiac tissue (PITX2, TCF21, HMGA2, NKX2-5, 

TBX5, CAND2, CDK6), muscle and sarcomere structure (TTN, SYNPO2L, SOX5, MYH6, 

RPL3L), ion channel function (HCN1, SCN10A), and cell-cell contact (PKP1, ARHGAP10, 

CAV1). We additionally noted several genes with a role in metabolism (JAZF1, CDK6, HMGA2, 

MC4R) though the connection to AF is less clear.19-22 The transcription factor PITX2 is the top 

susceptibility locus for AF. Decreased Pitx2 expression in the adult left atrium is associated with 

AF in humans,23 and abnormal cardiac conduction and low-voltage P-waves in knockout mice.24 

PITX2 is activated by TBX5 to co-regulate a number of membrane effector genes (such as 
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SCN5A, GJA5 and RYR2). Reduction of Tbx5 expression in a mouse model decreased 

myocardial automaticity.25 TCF21 is a transcription factor required during embryogenesis for 

formation of heart tissue, and is involved in fibroblast generation after injury in adults.26 The 

nuclear scaffolding protein HMGA2 trans-activates the heart specific transcription factor NKX2-

5.27 HMGA overexpression in mice mediates the response to pressure-overload induced cardiac 

remodeling.28 CAND2 suppresses myogenin degradation and directs cardiac progenitor cells 

towards a myocyte fate.29   

Titin (TTN) is a major structural component of the sarcomere, required for contractile 

function in cardiomyocytes. Loss of function mutations in TTN are associated with early-onset 

AF30 and dilated cardiomyopathy.31 Cytoskeletal Heart-enriched Actin-associated Protein 

(CHAP, aka SYNPO2L), is a Z-disc protein; zebrafish knockdown models display hypertrophy 

and delayed conduction,32 and the locus has been associated with AF in GWAS.18 SOX5 is a 

master regulator of cell fate in embryonic development.33 In drosophila, SOX5 knockdown 

results in decreased heart rate and increased cardiac wall thickness.34 MYH6, specifically 

expressed in the atria, forms the thick filament in cardiac smooth muscle; mutations are 

associated with cardiomyopathies,35 sinus node dysfunction,36 and congenital heart disease.37 

Some identified genes are important for atrial conduction, including HCN138 and SCN10A39 

which govern potassium, and late sodium channel currents, respectively. The proteins 

ARHGAP10,40 PKP1,41 and CAV1,42 are involved in cell-cell contact and are necessary for 

efficient signal conduction. The ribosomal protein RPL3L is specifically expressed in skeletal 

muscle and heart; coding variants in this gene are associated with AF.43 

Second, our study implicates PWD as a powerful endophenotype for understanding the 

biological mechanisms of AF. Fifteen loci identified in our study were associated with AF risk in 
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a recent AF GWAS,18 underscoring the genetic correlation between atrial conduction and AF 

risk. Epidemiological data indicate that PWD variability is associated with AF risk,2, 3 AF 

recurrence after cardioversion44 and ablation,45 as well as ischemic stroke.46 Generally, we 

observed that top variants at known sarcomere genes (e.g., TTN, MYH6) were associated with 

increased PWD and increased AF risk, implicating atrial myopathic pathways in AF 

susceptibility. We speculate that myopathic pathways predispose individuals to AF via delayed 

conduction velocity, increased propensity for reentry, and susceptibility to ectopic atrial activity. 

Similarly, TCF21 and SOX5 are two transcription factors associated with increased PWD and 

increased AF risk. 

In contrast, top variants at SCN10A were associated with increased PWD but reduced AF 

risk. Other PWD-associated genes, such as PITX2, CAND2, TBX5, and CDK6, contained variants 

associated with longer PWD and reduced AF risk. The directionality of gene associations 

observed for PWD and AF risk underscore the complexity of AF susceptibility, while 

highlighting the potential to leverage PWD to elucidate AF-specific pathways (Figure 2). 

Whether studying PWD can lead to insights relevant for therapeutic targeting remains unclear.  

Our results should be interpreted within the context of our study design. First, the 

majority of our sample consisted of individuals of European ancestry and may have limited 

generalizability to non-European ancestries. Studies with broader ethnic/racial diversity are 

warranted. Second, top variants identified in our study may not directly modulate PWD, a 

limitation of most genetic association studies. Biological characterization of loci is needed to 

conclusively link variants to function. Third, ascertainment of rare variation is limited using the 

exome-chip, and future analyses of sequence data are warranted. Fourth, despite a relatively 

large sample, our findings explained a small proportion of phenotypic variance. Because the 
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additive SNP-based heritability of PWD has been estimated to be as high as 19%,8 our results 

highlight the fact that much of the genetic susceptibility to PWD remains unexplained. Larger 

samples, genome-wide assessments, and examination of rare variation may be necessary to 

identify additional loci for PWD. 

In conclusion, we identified 14 novel loci in common and low-frequency variant analyses 

and 6 gene regions in a low-frequency variant analysis for PWD. Our findings highlight the 

shared genetic components of atrial conduction and AF risk, and illustrate the diverse biological 

pathways affecting atrial conduction and mechanisms leading to AF.  
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Table 1. Study participant characteristics* 
 

Study  Ancestry N Age, years, 
mean±SD 

Sex, 
women, % 

P-wave duration, 
milliseconds, 

mean±SD 

RR interval, 
milliseconds, 

mean±SD 

ARIC European 8861 53.9±5.7 54.1 106.0±11.8 920.5±133.8 
 African 2922 53.3±5.8 62.2 111.5±11.9 924.2±148.6 
BRIGHT European 195 60.5±8.9 57.4 121.1±19.4 976.1±186.0 
CAMP European 1887 59.9±10.4 37.4 106.0±15.8 936.8±171.3 
CHS European 2648 72.3±5.4 60.7 109.9±13.0 950.0±145.8 
 African 445 72.6±5.6 64.5 112.2±13.1 912.8±156.4 
ERF European 514 49.0±14.3 54.1 111.2±12.4 963.4±152.9 
FHS European 5677 47.2±13.3 55.0 105.0±12.0 973.7±155.9 
INTER99 European 5872 46.2±7.9 51.6 104.3±12.5 920.4±150.5 
KORA European 2435 47.1±12.8 51.9 108.0±11.1 939.7±147.7 
LIFELINES European 1914 45.2±13.0 59.8 112.1±12.4 897.3±144.5 
UHP European 1657 38.5±12.5 55.8 109.1±14.6 956.5±152.4 
MESA European 2083 61.8±10.1 51.8 104.4±12.9 1054.5±158.9 
 African 1131 61.3±10.3 52.9 107.9±12.3 1054.4±170.2 
 Hispanic 1186 60.6±10.3 50.1 105.2±12.0 1061.0±154.5 
 Asian 630 61.3±10.3 50.2 101.7±11.7 1059.0±140.3 
NEO European 5119 55.6±6.0 51.9 114.2±13.9 933.8±150.5 
RS European 1740 69.5±8.4 51.4 120.1±12.4 859.8±140.6 
SHIP-0 European 2653 46.5±15.4 51.8 109.5±11.2 853.6±147.8 
SHIP-Trend European 2922 47.9±14.6 52.5 113.1±11.9 911.3±134.5 
WHI European 10766 65.8±6.6 100 107.2±11.9 914.3±134.2 
  African 1183 64.3±6.5 100 110.6±11.5 920.2±143.7 

 
*N: sample size 
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Table 2. Top exome-wide significant variants for P-wave duration in multi-ethnic meta-analysis* 
 

        Residuals Inverse normal transformed residuals 
Locus Closest gene Location rsID EA Function N EAF Beta SE P h2(%) I2(%) Beta SE P h2(%) I2(%) 
Novel loci        
1 PKP1 1q32.1 rs1626370 A missense 64431 0.2 0.39 0.08 2×10-6 0.04 2 0.03 0.01 2×10-6 0.04 0 

2 TTN† 2q31.2 rs2042995 C intron 64410 0.3 0.41 0.08 4×10-7 0.04 8 0.03 0.01 5×10-7 0.04 12 
3 DLEC1‡ 3p22.2 rs116202356 G missense 64331 0.98 1.72 0.27 2×10-10 0.06 20 0.14 0.02 2×10-10 0.06 19 
4 PITX2 4q25 rs17042171 C intergenic 64399 0.9 0.64 0.10 8×10-11 0.07 45 0.06 0.01 2×10-11 0.07 50 

5 ARHGAP10 4q31.23 rs6845865 C intron 64437 0.2 0.54 0.09 2×10-10 0.06 0 0.05 0.01 9×10-11 0.07 0 

6 TCF21/TARID 6q23.2 rs2327429 C upstream 64434 0.3 0.39 0.07 2×10-7 0.04 13 0.03 0.01 1×10-7 0.04 9 

7 JAZF1 7p15.1 rs864745 C intron 64388 0.5 0.32 0.07 2×10-6 0.04 0 0.03 0.01 1×10-6 0.04 0 

8 CDK6 7q21.2 rs2282978 C intron 64424 0.4 0.39 0.07 2×10-8 0.05 0 0.03 0.01 5×10-8 0.05 6 

9 SYNPO2L 10q22.2 rs3812629 A missense 64423 0.2 0.47 0.09 4×10-7 0.04 0 0.04 0.01 7×10-7 0.04 0 

10 SOX5 12p12.1 rs17287293 A intergenic 64429 0.9 0.49 0.10 3×10-7 0.04 0 0.04 0.01 3×10-7 0.04 0 

11 HMGA2 12q14.3 rs8756 C 3‘-UTR 64418 0.5 0.33 0.07 7×10-7 0.04 0 0.03 0.01 5×10-7 0.04 0 

12 RPL3L‡ 16p13.3 rs113956264 C missense 64403 0.97 0.99 0.20 1×10-6 0.04 0 0.08 0.02 4×10-6 0.03 10 

13 GOSR2 17q21.32 rs17608766 C intron 64435 0.1 0.80 0.10 9×10-15 0.09 0 0.07 0.01 1×10-15 0.10 0 

14 MC4R 18q21.32 rs12970134 A intergenic 64430 0.3 0.38 0.08 1×10-6 0.04 0 0.03 0.01 7×10-6 0.03 0 
Previously reported loci           

15 
CAND2 3p25.2 rs11718898 T missense 52472 0.3 0.39 0.08 9×10-7 0.05 0 0.03 0.01 8×10-7 0.05 0 

CAND2 3p25.2 rs3732675 T missense 64395 0.4 0.34 0.07 1×10-6 0.04 0 0.03 0.01 3×10-7 0.04 0 

16 SCN10A 3p22.2 rs6800541 C intron 64423 0.4 1.18 0.07 4×10-63 0.44 51 0.10 0.01 2×10-65 0.45 45 

17 HCN1 5p12 rs6892594 T intron 64427 0.4 0.43 0.07 2×10-10 0.06 0 0.04 0.01 3×10-10 0.06 0 

18 CAV1 7q31.2 rs3807989 A intron 64430 0.4 0.47 0.07 2×10-12 0.08 0 0.04 0.01 8×10-13 0.08 0 

19 FADS1 11q12.2 rs174546 C 3’-UTR 64430 0.7 0.50 0.07 2×10-11 0.07 9 0.04 0.01 6×10-12 0.07 9 

20 TBX5 12q24.21 rs883079 C 3’-UTR 64435 0.3 0.80 0.07 9×10-28 0.19 17 0.07 0.01 6×10-29 0.19 11 

21 MYH6 14q11.2 rs452036 A intron 64422 0.4 0.68 0.07 8×10-23 0.15 0 0.06 0.01 1×10-23 0.16 0 
*EA: effect allele, N: sample size, EAF: effect allele frequency, Beta: the changes of (inverse normal transformed) P-wave duration residuals per 1 effect allele increment, SE: 
standard error, h2: SNP heritability estimate. P-values in bold are at exome-wide significance. 
†Locus with minor allele frequency <5% is also identified from gene-based analysis 
‡Locus with minor allele frequency <5% identified from gene-based analysis
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Table 3. Top gene in low frequency variant gene-based analyses of P-wave duration stratified by ancestral group.  
 

 Multi-ethnic European African 

 
Var# 

 Residuals 

Inverse 
normal 

transformed 
residuals 

Var# 

 Residuals 

Inverse 
normal 

transformed 
residuals 

Var# 

 Residuals 

Inverse 
normal 

transformed 
residuals 

Gene cMAC P† P cMAC P P cMAC P P 

SKAT             

TTN 775 276986 5×10-27 5×10-26 704 215801 5×10-27 1×10-26 536 23041 0.59 0.71 

DLEC1 57 10419 2×10-13 2×10-13 55 6937 2×10-12 3×10-12 39 2568 0.70 0.73 

TTC21A 37 12207 1×10-5 5×10-6 32 10900 4×10-6 1×10-6 28 1250 0.98 0.98 

SCN10A 61 16550 7×10-8 9×10-9 47 12804 2×10-7 4×10-8 34 524 0.84 0.81 

RPL3L 26 8510 1×10-6 4×10-6 25 6742 2×10-6 1×10-5 18 265 0.33 0.21 

Burden             

TTN 775 276986 1×10-14 8×10-14 704 215801 1×10-20 4×10-18 536 23041 0.26 0.27 

MUC5B 68 36414 7×10-6 1×10-5 63 25110 3×10-6 6×10-6 58 2846 0.59 0.56 

 
Var#: number of variants included in the gene set, cMAC: cumulative minor allele count. 
P-values in bold exceed the exome-wide significance threshold (P-value <3.0×10-6, 3.1×10-6, and 3.5×10-6 for individuals of multi-ethnic, 
European, and African ancestries, respectively). 
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Figure Legends:  

 

Figure 1. P-wave duration loci and atrial fibrillation risk. The x-axis represents the association 

between the top P-wave duration (PWD) loci and PWD in -log10 scale. The y-axis represents the 

association P-value between the top PWD loci and atrial fibrillation (AF) risk (-log10 scale). 

Variants above y=0 refer to loci associated with longer PWD and higher AF risk (colored in 

yellow). Variants below y=0 refer to loci associated with longer PWD but lower AF risk (colored 

in blue). Displayed results are from the multi-ethnic meta-analysis of PWD residuals. 

Associations with AF were derived from a recent AF GWAS.18 Dashed lines show the 

significance threshold for the current exome-wide analysis (vertical; P-value<1.9×10-6) and for 

prior genome-wide analyses of AF (horizontal; P-value<5×10-8). The dotted line represents the 

significance cutoff after Bonferroni correction (horizontal; P-value<2.4×10-3=0.05/21 PWD 

loci). 

 

Figure 2: Identified P-wave duration associated genes highlight multiple biological pathways for 

atrial fibrillation risk. Gene with increasing risk of AF coupled with prolonged PWD are listed at 

the right. Gene with decreasing risk of AF coupled with prolonged PWD are listed at the left. 

Each gene is accompanied by a diagram representing the biological function of the gene, 

indicating how the gene may affect PWD.  
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