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1  | INTRODUC TION

Both genes and the environment shape human health and disease. 
Although IgE-mediated allergic diseases (atopic diseases) have a ge-
netic component and are more prevalent in individuals with a family 
history of allergic disease, the observed rapid increases in allergic 
diseases suggest that environmental factors are the predominant 
driving forces behind these increases rather than genetic alter-
ations.1,2 Common atopic diseases include atopic dermatitis, food al-
lergy, allergic rhinitis, and allergic asthma. Human diets and lifestyle 
have undergone major alterations. The exposome, which is the sum 

total of all the exposures of an individual in a lifetime, has under-
gone major shifts in the last few decades, affecting human health 
and disease.

A number of environmental factors have been implicated in the 
increased prevalence of allergic diseases. Predominant among them 
are increased exposure to pollutants and decreased exposure to mi-
crobes and parasitic infections. Air pollution has increased signifi-
cantly in the last few decades. The hygiene hypothesis suggests that 
increased hygiene and lack of exposure to microbes and parasitic in-
fections at an early age prevents the necessary stimulus to train the 
immune system to develop tolerogenic responses. Lifestyle factors, 
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Abstract
Although genetic factors play a role in the etiology of atopic disease, the rapid in-
creases in the prevalence of these diseases over the last few decades suggest that 
environmental, rather than genetic factors are the driving force behind the increas-
ing prevalence. In modern societies, there is increased time spent indoors, use of 
antibiotics, and consumption of processed foods and decreased contact with farm 
animals and pets, which limit exposure to environmental allergens, infectious para-
sitic worms, and microbes. The lack of exposure to these factors is thought to prevent 
proper education and training of the immune system. Increased industrialization and 
urbanization have brought about increases in organic and inorganic pollutants. In ad-
dition, Caesarian birth, birth order, increased use of soaps and detergents, tobacco 
smoke exposure and psychosomatic factors are other factors that have been associ-
ated with increased rate of allergic diseases. Here, we review current knowledge on 
the environmental factors that have been shown to affect the development of aller-
gic diseases and the recent developments in the field.
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such as increased time spent indoors, use of antibiotics, and con-
sumption of processed foods and decreased exposure to farm ani-
mals and pets, limit exposure to environmental allergens, infectious 
parasitic worms, and microbes. The lack of exposure to these factors 
is thought to prevent proper education and training of the immune 
system. Continuous training through adulthood also appears to 
play a role in maintaining immune function. A study of healthy men 
in long-term isolation (1 year) in Antarctica found an imbalance of 
immune function toward a sensitizing of inflammatory pathways.3 
Urbanization has led to reduced biodiversity of plants and animals, 
which has been associated with increased allergic disease. The bio-
diversity hypothesis states that contact with natural environments 
enriches the human microbiome, promotes immune balance and 
protects from allergy and inflammatory disorders.4 Other factors 
that are also associated with increased risk of allergic diseases are 
Caesarian birth, birth order, tobacco smoke exposure and psychoso-
matic factors (Figure 1).

Many of the factors that have been implicated in allergic diseases 
are affected by climate change.5 It is a risk multiplier that aggravates 
stressors. It is associated with greater variability in temperature, for-
est fires, heat waves, thunderstorms, droughts, and floods.6 Climate 
change has also been linked to increased concentrations and distri-
bution of air pollutants such as CO2, ozone, nitric oxide and other 
volatile organic chemicals. CO2 has been shown to accelerate plant 
growth and the onset of pollen season, and increase pollen produc-
tion, dispersion, allergen potency, and length and duration of the 
pollen season.7,8 Climate change has also brought about new pol-
len species not endemic to the area.9 Thunderstorms are increasing 

in frequency and intensity and have been linked during the pollen 
season with increased asthma exacerbations and emergency room 
visits.10,11 Similarly, dust storms and wildfires have been shown to 
increase inflammatory responses and asthma exacerbations.12-14 
Increases in the level and frequency of house dust mite exposure, 
sensitization, and asthma symptoms have been observed and is 
thought to be caused, in part, by global increases in temperature and 
humidity.15

Air pollutants appear to weaken the immune system and make 
one more susceptible to infections. COVID-19 appears to worsen 
in those people suffering from air pollution exposure, smoking, and 
vaping. In addition, global climate change makes access to health 
care worse (like in an extreme hurricane) and that will affect the 
marginalized and the elderly who have COVID-19. A nationwide, 
cross-sectional study in the United States found that a small in-
crease in long-term exposure to PM2.5 leads to a large increase in the 
COVID-19 death rate.16

A number of recent high-throughput “omic” technologies 
are accelerating our understanding of allergic diseases and 
have revolutionized research and offer the promise of person-
alized medicine (Figure 2). The use of the term “omics” suggests 
a comprehensive high-throughput and systematic investigation 
of biological parameters. Examples of omic technologies include 
genomics, epigenomics, transcriptomics, proteomics, metabolo-
mics, microbiomics, and exposomics.17 These technologies gen-
erate exponentially growing data sets requiring sophisticated 
bioinformatics and computational techniques that can integrate, 
analyze and interpret the data to generate hypothesis, which can 

F I G U R E  1   A number of environmental 
factors affect the development of allergy 
and tolerance in infants. The hygiene 
hypothesis suggests that increased 
hygiene and lack of exposure to microbes 
and parasitic infections at an early age 
prevents the necessary stimulus to 
train the developing immune system to 
develop tolerogenic responses. In modern 
societies, there is increased time spent 
indoors, use of antibiotics, and decreased 
contact with farm animals and pets, which 
limit exposure to environmental allergens, 
infectious parasitic worms, and microbes
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then be further tested. Of these, epigenomics has been key in 
giving us insight to gene-environment interactions. It has pro-
vided us a greater understanding of the mechanisms by which 
environmental factors modulate epigenetic modifications and 
expression of genes involved in inflammatory responses and al-
lergy. Technologies such as bisulfite sequencing, ATAC seq and 
cytometry by Time-Of-Flight (EpiTOF) have made it possible to 
study DNA methylation and histone modifications, and chromatin 
accessibility across the whole genome and at a single cell level.18-

21 Here, we review current knowledge on the environmental fac-
tors that have been shown to affect the development of allergic 
diseases and the recent developments in the field. Research on 
the exposome can improve our understanding of the connections 
between environmental exposures and health to help mitigate 
adverse health outcomes and can provide a risk profile instead 
of single predictors and thus is particularly applicable to allergic 
diseases and asthma.22

2  | FAC TORS MODUL ATING ALLERGIC 
DISE A SE

2.1 | Air pollution

2.1.1 | Direct effects

Air pollutants considered major risk factors for the development of 
allergic diseases are ground-level ozone, particulate matter (PM), 
carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide 
(NO2).23,24 CO, SO2, and NO2 are released from combustion of fossil 
fuels. Ground-level ozone is a secondary pollutant that is produced 
when nitrogen oxides and volatile organic compounds released from 
industrial sources react in the presence of sunlight.

Particulate matter with diameters ≤10 µm or smaller (eg, PM10 and 
PM2.5) can carry organic and inorganic components such as heavy 

F I G U R E  2   High-throughput omics technologies enable generation of large amounts of data that are analyzed and interpreted by 
sophisticated bioinformatics and computational tools to give us mechanistic information on immune pathways at the DNA, RNA, and protein 
level. This can allow for personalized medicine
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metals and penetrate deeply into the respiratory tract and skin bar-
rier. In a prospective birth cohort study of over 5000 children during 
the first 6 years of life, strong positive associations were found be-
tween the distance to the nearest main road and asthmatic bronchi-
tis, hay fever, eczema, and sensitization.25 An association between 
eczema and traffic-related pollutants was also found in children 
from small towns, where exposure to these traffic-related pollutants 
was much lower than in urban areas.26 Some studies speculate that 
ultrafine particles (UFPs) with diameter ≤100 nm may have greater 
effects due to their increased capacity to penetrate the lung alveoli 
and cardiovascular system.27 A recent meta-analysis estimated that 
increases in UPFs per 10 000 particles/cm3 were associated with 
7%, 11%, and 5% increase in exacerbations, emergency department 
visits, and hospital admissions for asthma, respectively.28

A recent study estimated that exposure to ambient NO2 may cause 
4 million new cases of pediatric asthma per year, with over 60% occur-
ring in urban areas.29 Norbäck et al observed robust relationships be-
tween lifetime exposure to NO2 and allergic diseases including asthma, 
eczema, wheeze and rhinitis for children ages 3-6 years in China.30 
Similar associations have been observed with SO2 and CO. A study by 
Penard–Morand et al found that SO2 exposure significantly increases 
the prevalence of asthma in children.31 Similarly, Samoli et al32 found 
an association between SO2 and PM10 exposure and the number of pe-
diatric asthma hospital admissions among children aged 0 to 14 years 
in Athens, Greece. Several time-series studies in China reported pos-
itive associations between exposure to CO within a few days and the 
risk of hospital admission/mortality from asthma.33 Another Korean 
study found that for children aged 6-7 years, the odds ratio (OR) for 
lifetime allergic rhinitis was 1.10 per 100 ppb increase in CO concen-
tration during the first year of life. In addition, the OR for current atopic 
dermatitis was 8.11 for every 1 ppb increase in the average CO con-
centration during the preceding 12 months.34 In the US, the risk for 
emergency department visits was estimated to increase by 0.8% for 
asthma or wheeze and 3.7% for bronchitis per interquartile range (IQR) 
increase in the preceding 3-day average concentration of CO.35

Ozone in the stratosphere is protective as it shields living things 
from ultraviolet radiation from the sun. However, ground-level 
ozone, which forms just above the earth's surface has been associ-
ated with adverse health effects. A birth cohort study in Canada re-
ported that ozone exposure at birth was associated with the onset of 
asthma and allergic rhinitis during a follow-up at age 17.36 In France, 
a higher annual outdoor concentration of ozone was associated with 
increased total IgE levels.37 A study estimated that 7-day exposure 
to ozone was associated with significant increase in physician visits 
for atopic dermatitis, contact dermatitis and urticaria.38

Volatile organic compounds (VOCs) have been associated with 
increased risk of allergic disease. A study found that indoor total 
VOC exposure at 6 months in children was correlated with atopic 
dermatitis at 3 years.39 Diisononyl phthalate (DINP) is used as a 
plasticizer and is contained in many consumer products. Children 
are more likely to have exposure to phthalates than adults through 
ingestion of dietary sources or inhalation of dust from phthalate con-
taining products. A study in first-grade elementary school children 

found correlations between urinary phthalate metabolite concentra-
tions and nasal patency and lower small airway dysfunction.40

The pathophysiological mechanisms by which air pollution me-
diates allergic disease are poorly understood; however, oxidative 
stress, enhanced sensitization to allergens, inflammatory and im-
munological responses, and epigenetic modifications have been 
suggested as possible mechanisms.41-43 Exposure of human nasal ep-
ithelium cells to PM2.5 was found to decrease loss of barrier function, 
as determined by measures of transepithelial resistance, permeabil-
ity, decreased expression of tight junction proteins, and production 
of proinflammatory cytokines, such as thymic stromal lymphopoi-
etin (TSLP).44 A genome-wide DNA methylation study found that 
long-term ambient air pollution exposure impacts DNA methylation 
of a number of genes, some of which play a role in inflammatory 
responses.45 Short-term and long-term exposures to high levels of 
CO, NO2, and PM2.5 were associated with alterations in differentially 
methylated regions of Foxp3.46

2.1.2 | Indirect effect on plants and ecosystems

The effects of air pollution reported above on the increase in aller-
gies directly affect the immune system or barrier function in hu-
mans. However, there is also an indirect effect: air pollution as well 
as other effects of climate change affect pollen, plants and biodiver-
sity per se. Air pollution (and climate change) affect not only plant 
growth, pollen and flower production, and duration of the whole 
pollen season but can also display more indirect health effects by 
increasing the amount of allergenic encoding transcripts and pro-
teins of the pollen.47,48 When ragweed plants were grown in climate 
chambers under controlled conditions and fumigated with enhanced 
levels of NO2, transcript levels of Amb a 1, a major ragweed allergen, 
were up-regulated, indicating potentially higher allergenicity due to 
NO2.47 On exposure of ragweed to varying NO2 levels during the 
growing season, a significantly higher allergenicity for Amb a 1 was 
observed.48 Elevated CO2 levels and drought stress were also found 
to increase Amb a 1.49

Therefore, under global change scenarios, the allergenic potential 
of pollen is also expected to change. A study found that grass pollen 
exposure in the first months of life was associated with lower lung 
function later in childhood and adolescence.50 Epidemiologic stud-
ies have demonstrated that urbanization, high levels of vehicle emis-
sions, and westernized lifestyle are correlated to an increase in the 
frequency of pollen-induced respiratory allergy prevalent in people 
who live in urban areas compared to those who live in rural areas – 
this can in part be due to the effects of pollution on the pollen and 
plants themselves and therefore indirectly impacting human health.51

2.2 | Tobacco smoke and e-cigarettes

Epidemiological studies and meta-analyses indicate that pre- or post-
natal maternal smoking increases the risk of wheezing and asthma 
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in children ≤2 years52 and that secondhand smoke during infancy 
without prior exposure in utero leads to an enhanced risk of food 
sensitization and eczema.53Tobacco smoke and e-cigarettes may 
mediate their effects via a number of inflammatory mechanisms. For 
instance, tobacco smoke provokes oxidative stress54 which leads to 
upregulation of TSLP55 and IL-3356 suggestive of a pro type-2 in-
flammation in the lungs. In addition, phagocytic activity of alveolar 
macrophages from smokers is reduced compared to non-smokers.57 
Repetitive exposure to cigarette smoke in normal human airway epi-
thelial cells was found to impact the adhesive intercellular junctions 
and disrupt monolayer integrity. Cortical tension of epithelial cells 
was observed due to increased actin polymer levels, which further 
destabilized cell adhesion.58 Tobacco smoke may also mediate its 
effect through microbiome dysbiosis. A study found that sensitiza-
tion to Staphylococcus aureus enterotoxins is increased in smokers 
with asthma, and it may be a marker of eosinophilic inflammation 
and severe asthma.57 E-cigarettes were also found to be associated 
with inflammation. A study found that e-cigarette vapors and ciga-
rette smoke altered virulence of key lung pathogens (Haemophilus 
influenzae, Streptococcus pneumoniae, S aureus and Pseudomonas aer-
uginosa), which may increase bacterial persistence and inflammatory 
potential.59

2.3 | Microbiome

The microbiome has been shown to play a key role in the develop-
ment of the immune system with microbiome dysbiosis mediating 
immune deviation.60 Characterizing the constituents of the human 
gastrointestinal, skin, and airway microbiota as well as microbial 
peptides and metabolites that influence host immunity and immune 
response to allergens in food allergy, atopic dermatitis, and asthma 
is the focus of ongoing research.60,61 Composition of the microbiome 
has been found to vary even within an organ system, such as the 
skin, with variations in the microbiome observed between the scalp, 
arm, and axilla.62 Advances in our understanding of host-microbe in-
teractions have been made possible by 16S rRNA sequencing, which 
permits precise identification and quantification of bacteria. 16S 
ribosomal RNA gene is a highly conserved locus in the bacteria ge-
nome, yet different in sequences among different bacterial species. 
Another approach is to sequence the total DNA present in one eco-
system using whole genome shotgun techniques, and subsequently 
map the genes related to microbes, including viruses and fungi.63 
These techniques have enabled us to make inroads in identifying the 
species found in a healthy microbiota and those that cause dysbiosis. 
In atopic dermatitis, S aureus has been shown to be clearly correlated 
with severity and to decrease during treatment and to rebound after 
the end of treatment indicating its use as a potential diagnostic and 
prognostic biomarker.64 It is now recognized that early infancy of-
fers a "critical window" of colonization during which microbial com-
munities shape immune maturation.65 In humans, this critical period 
appears to be within the first 100 days of life.66 A number of eco-
logical factors influence development of an infant microbiota and 

understanding these factors is critical for developing preventative 
strategies.67,68 A study found that supplementing infants with a pro-
biotic mixture together with at least partial breastfeeding corrected 
undesired changes in microbiota composition and function caused 
by antibiotic treatments or caesarean birth.69

Studies in mice and humans have shown associations between 
intestinal bacteria and allergic response to food. In a murine model, 
germ-free mice were colonized with feces from healthy or cow's milk 
allergic (CMA) infants. The healthy and CMA mice showed different 
transcriptome signatures in ileal epithelium, and the healthy mice 
were protected against anaphylactic responses to cow's milk aller-
gen. The study identified a clostridial species that protected against 
the allergic response.70 In another study, microbiota from infants 
with a low bifidobacteria/Lachnospiraceae ratio orients the murine 
immune system toward a Th2 atopic profile with clinical symptoms 
of allergy.71 Bifidobacterium breve is a species commonly isolated 
from the intestines of healthy breastfed infants and from human 
milk and is thought to have a significant impact on the development 
of immune tolerance.72 In a longitudinal study of a Canadian child 
cohort, it was found that infants at risk of asthma showed gut micro-
bial changes during the first 100 days of life. Four bacteria taxa were 
reduced in high-risk children and this was accompanied by reduced 
deregulation of enterohepatic metabolites. To understand causality, 
the same study also found that inoculating the four taxa of bacte-
ria (Lachnospira, Veillonella, Faecalibacterium, and Rothia) in germ-
free mice decreased airway inflammation.73 A prospective study 
from infants through school age found that the gut microbiota of 
the allergic children were enriched in Bifidobacterium and depleted 
of Lactobacillus, Enterococcus, and Lachnospira.74 Individuals with 
atopic dermatitis have reduced skin lipids and increases in S aureus.75 
A study found a correlation between Staphylococcus species–domi-
nated dysbiosis in the skin microbiome and dysregulation of the skin 
barrier transcriptome in patients with AD, but whether the micro-
biome dysbiosis is the cause for or result of the skin barrier defect 
is unclear.76 Staphylococcus aureus has also been directly correlated 
with increased expression of inflammatory cytokines, IL-4, IL-13, IL-
22, and TSLP and with decreased expression of cathelicidin.77 C dif-
ficile colonization during infancy was associated with a higher risk of 
developing allergic diseases during early childhood.78

A number of factors affect the composition of either the skin 
or gut microbiome. Vaginal delivery, breast feeding, presence of 
older siblings and exposure to a variety of microorganisms pro-
mote healthy microbiota in infants. In contrast, Caesarean section, 
formula milk, and exposure to antibiotics have a negative impact.79 
Dietary factors also play a role in microbiome health. Some of these 
factors are discussed below.

2.3.1 | Diet

In addition to prebiotics and probiotics, other dietary factors that 
have been shown to play a role are vitamin D and omega-3 and 
omega-6 polyunsaturated fatty acids (PUFAs). A study found that 
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higher second trimester n-6 PUFAs were associated with atopic der-
matitis in children of women with atopy.80 A meta-analysis found 
that intake of ω-3 PUFA started during pregnancy may reduce the 
risk of sensitization to egg and peanut.81 Levels of ω-3 and ω-6 were 
measured in the second trimester and found that higher ω-6 PUFAs 
were associated with a higher risk of all respiratory outcomes among 
children if the mother has asthma, but that male children born to 
women with asthma and a higher PUFA ratio had the highest risk for 
asthma.82 A meta-analysis of ω-3 consumption suggests that intro-
duction of fish at 6-9 months and routine consumption once a week 
reduces asthma and wheeze in children up to 4.5 years old.83 The as-
sociation between vitamin D insufficiency and increased risk of food 
allergies have been shown by multiple studies. While controlling for 
regional and population characteristics, places in northern latitudes 
were found to have more epinephrine autoinjector prescriptions 
than those in southern latitudes in both USA and Australia.84,85 In 
another study, food allergies were found to be more likely in in-
fants with low vitamin D.86 In children with asthma, vitamin D de-
ficiency was associated with asthma severity and increased serum 
IgE levels.87

2.3.2 | Farming environment and pet ownership

Childhood environments have been shown to play an important 
role in the protection against allergies. Individuals living at short 
distances from farms had a lower risk of atopy, as measured by 
IgE, compared with those living further away. This decrease in 
atopy risk was even greater for those who grew up on a farm.88 
Children in rural South African communities with higher exposure 
to pets and farm animals than children from urban communities 
were found to be at lower risk of allergic disease.89 Marrs et al90 
reported an association between dog ownership at three months 
of age and protection against food allergies. However, urban chil-
dren with pet exposure in the South African cohort had an in-
creased rate of any allergy compared to urban children without 
pets so conflicting data exist regarding pet ownership in relation 
to allergies.89

2.3.3 | Antibiotics

Antibiotic usage has been documented to perturb the gut flora of 
individuals, which places them at an increased risk for the develop-
ment of allergies and asthma. In mice models of atopic dermatitis, 
antibiotic use was associated with significantly aggravated phe-
notypes, including clinical score, transepidermal water loss, and 
histopathology, compared to those treated with healthy feces or 
probiotics.91 Timing, dose, and frequency of antibiotics in prenatal 
and infant populations have also been associated with the develop-
ment of childhood allergies and asthma.92,93 Short chain fatty acids 
(SCFAs) which are fermentation end products of insoluble fibers by 
intestinal microorganisms have been implicated in the maintenance 

of epithelial integrity and IgA production.94 Antibiotics-induced dys-
biosis of intestinal microbiota has been shown to increase severity of 
atopic dermatitis in mice through alterations in SCFA’s and decreases 
in the number of Foxp3⁺ T regulatory cells.91

2.3.4 | Vaginal vs caesarean section births

The composition of gut flora in children born by caesarean section 
(C-section) vs vaginal delivery is different and this difference in gut 
microbiota colonization may impact the development of the immune 
system.95 A vaginal mode of birth exposes the baby to maternal vagi-
nal and fecal flora.96 Studies indicate that babies born via C-section 
have a higher incidence of allergy, atopy, and asthma, increased sus-
ceptibility to infectious wheezing97 and decreased gut microbiome 
diversity.98 In addition, long-term studies show greater incidence of 
childhood asthma up to the age of 12 years.99

2.4 | Detergents

Soaps and detergents are now frequently used in households to 
maintain hygiene. As mentioned earlier, increased hygiene can pre-
vent proper development of immune tolerance. Another drawback 
is that on contact with skin, they can lead to scaling, dryness, and 
swelling and commonly trigger AD flares.100 Traditional alkaline soap 
increased transepidermal water loss and skin erythema, which are 
signs of prolonged damage to the skin barrier.101 Regular washing 
with soaps has been shown to decrease the thickness of the stra-
tum corneum in atopic individuals making it detrimental to the skin 
barrier.102

2.5 | Other factors

In addition to environmental and lifestyle factors, household com-
position has also been shown to affect the risk of allergic diseases. 
A study that followed 17 414 British children for 23 years found a 
strong association between the birth order of a child and the risk 
of hay fever.103 Specifically, contact with older siblings was hypoth-
esized to increase immunological protection due to an increase in 
infections in early childhood through unhygienic contacts with sib-
lings. A study on 10 834 children enrolled in the Chicago Family 
Cohort Food Allergy study found that younger siblings of kids with 
food allergies had significantly less prevalence of food sensitization 
and clinical food allergy.104

Current research shows that psychosocial stress and poor mental 
health in mothers increase the risk of allergic diseases in their chil-
dren. 105-111 Stressful life events in childhood, for example parental 
divorce, have also been shown to increase the risk for development 
of atopic eczema later in life.112 Psychosocial stress might trigger or 
worsen allergic symptoms, while the interaction with protective or 
health-promoting factors is still poorly understood. 113,114 Also, in 
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adults with allergies, psychoneuroimmunologic mechanisms might 
play an important role. 115 An association of anxiety and depression 
with allergies was reported in many studies.116,117

3  | SUMMARY AND FUTURE DIREC TIONS

There have been exciting new developments in understanding the 
role of the environment in mediating allergic diseases. Epigenetics, 
in particular, has provided us with better insight into how pollu-
tion and other environmental factors alter gene expression. Novel 
high-throughput technologies have enabled characterization of a 
healthy microbiota and the imbalance that is created with microbial 
dysbiosis.

Epidemiological studies have shown a natural history for the 
progression of atopic diseases, termed the atopic march, which 
starts with atopic dermatitis in early infancy subsequently pro-
gressing to food allergy, allergic rhinitis, and allergic asthma. It is 
now clear that these atopic diseases have a common underlying 
mechanism.

With allergic diseases increasing globally, there has been much 
interest in research to prevent, treat, or cure these diseases (Box 1). 
These are also increased interest in sensitive and specific biomarkers 
for diagnosis and for evaluation of disease severity and prognosis 
with therapy. With the understanding of the natural progression 
of the atopic diseases, studies are now in progress to determine 
whether by preventing skin sensitization and atopic dermatitis, we 
can prevent the subsequent manifestation of other atopic diseases, 
such as food allergy.118 Some of the basic cellular and humoral fac-
tors involved in Th2-mediated allergic diseases are well understood 
and have led to the development of biologics and other novel ther-
apeutics, which are in various stages of development. Further re-
search and a clearer understanding the role that genes, epigenetics, 
and the environment play in shaping our immune health at the DNA, 

RNA, and protein level can further assist with the development of 
targeted therapies for treating allergic diseases.
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