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A B S T R A C T   

Multispectral Optoacoustic Tomography (MSOT) resolves oxy- (HbO2) and deoxy-hemoglobin (Hb) to perform 
vascular imaging. MSOT suffers from gradual signal attenuation with depth due to light-tissue interactions: an 
effect that hinders the precise manual segmentation of vessels. Furthermore, vascular assessment requires 
functional tests, which last several minutes and result in recording thousands of images. Here, we introduce a 
deep learning approach with a sparse-UNET (S-UNET) for automatic vascular segmentation in MSOT images to 
avoid the rigorous and time-consuming manual segmentation. We evaluated the S-UNET on a test-set of 33 
images, achieving a median DICE score of 0.88. Apart from high segmentation performance, our method based its 
decision on two wavelengths with physical meaning for the task-at-hand: 850 nm (peak absorption of oxy- 
hemoglobin) and 810 nm (isosbestic point of oxy-and deoxy-hemoglobin). Thus, our approach achieves pre-
cise data-driven vascular segmentation for automated vascular assessment and may boost MSOT further towards 
its clinical translation.   

1. Introduction 

The abundant presence of hemoglobin in the blood renders multi-
spectral optoacoustic tomography (MSOT) an ideal technique for im-
aging vasculature [1–3]. By illuminating tissue at multiple different light 
wavelengths at the near infrared range (~680− 980 nm), MSOT is 
capable of resolving several tissue chromophores, in particular oxy- 
(HbO2) and deoxy-hemoglobin (Hb), with a wide range of clinical ap-
plications, such as Crohn’s disease, systemic sclerosis, breast cancer, 
brown adipose tissue imaging and thyroid disease [4–8]. MSOT can 
provide precise structural visualizations of arteries and veins by 
recording multispectral data and resolving the different oxygenation 
states of human hemoglobin molecule. Moreover, the dynamic nature of 
the vascular system requires the acquisition not only of structural but 

also of functional data over multiple seconds or minutes to observe, for 
example, the vascular wall kinetics during the cardiac cycle or the 
arterial responses to stimuli such as the transient arterial occlusion or 
hyperthermia, which are valid descriptors of cardiovascular risk [9,10]. 
The need to record multispectral data in order to extract molecular in-
formation and to perform longitudinal measurements over several mi-
nutes radically increases the number of recorded images and the data 
volume. 

Both structural and functional vascular imaging require the precise 
segmentation of the vascular lumen in several applications, such as the 
quantification of an atheromatous arterial stenosis, the detection of a 
venous thrombosis or the tracking of the arterial diameter over a 5-min-
ute arterial occlusion challenge to quantify the degree of endothelial 
dysfunction. The segmentation of the vascular lumen is usually 
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performed by expert physicians who manually draw the regions of in-
terest (ROIs) on the recorded MSOT images. However, manual seg-
mentation is a time-consuming process, in particular in the case of 
longitudinal recordings of several minutes and thus of hundreds or 
thousands of frames. Furthermore, because of the gradual light attenu-
ation due to scattering and absorption when propagating in living tissue, 
the vascular lumen shows an inhomogeneous and fainting intensity 
profile with increasing depth, making its manual delineation a chal-
lenging process. But even in routine imaging diagnostics, a reliable 
automated segmentation method can be beneficial by aiding the clini-
cian in performing the same task much faster. Deep learning has been 
recently shown to be very effective in computer vision tasks [11,12] and 
segmentation in particular [13–15]. As such, deep learning has been 
successfully applied to clinical diagnostics [16–18], with medical image 
segmentation applications including prostate [19], retinal disease [20], 
brain [21,22] and cervical cell segmentation [23]. Surveys of deep 
learning applications for medical imaging can be found in [24,25]. 

We present herein a pilot study to achieve automated vascular seg-
mentation in clinical raw MSOT images via a deep learning approach, 
based on an extension of the UNET architecture originally introduced in 
[15] that is specifically tailored for multispectral optoacoustic data. The 
proposed Sparse UNET (S-UNET) allows for automated segmentation of 
vascular ROIs in clinical MSOT images, while simultaneously identifying 
which of the employed illumination wavelengths are relevant to the 
specific task. This way we aim at radically reducing the time needed for 
vascular segmentation in longitudinal scans as well as the number of 
illumination wavelengths for future task-specific scans, facilitating this 
way the data analysis, increasing the time resolution and reducing the 
data volume. 

2. Methods 

2.1. Network architecture 

The proposed Sparse-UNET (S-UNET) is based on the fully con-
volutional architecture of the original UNET [15], with the added 
capability of sparse wavelength selection. The goal of S-UNET is to 
transform each input image with dimensions 400 × 400 × 28 (Height x 
Width x Wavelengths) into a 400 × 400 probability map p that corre-
sponds to a ground truth segmentation mask, while simultaneously 
assigning a weight wc (wavelength importance) to each of the 28 illu-
mination wavelengths (from 700 to 970 nm at steps of 10 nm), which 
correspond to the 28 channels of the input image. The ground truth 
segmentation mask y is a binary image (each pixel is either 0 or 1), 
extracted from the recorded MSOT image in consensus between two 
clinical MSOT experts. To arrive at a predicted segmentation mask, the 
resulting S-UNET probability map p is discretized by thresholding at 0.5: 
pixels with probabilities less than 0.5 are set to 0, while the rest are set to 
1. 

In order to perform wavelength selection, the first layer of the S- 
UNET corresponds to a 1 × 1 2D convolution of a single filter and no 
bias. Given each 400 × 400 × 28 input image stack, the first layer 
essentially performs a linear combination of the 28 wavelengths, 
resulting in a 400 × 400 × 1 image that is forward-propagated to the 
rest of the network. In this manner, each wavelength is assigned a 
unique scalar weight. Moreover, to ensure sparsity of wavelength se-
lection we add L1 regularization [26] on the wavelength weights. L1 
regularization refers to adding a term λ|β|, where λ is a scalar hyper-
parameter and β refers to the first convolutional layer’s trainable pa-
rameters, in this case, the parameters of the first 1 × 1 convolutional 
layer. Here, we employed a regularization parameter λ = 0.01. Regu-
larization does not necessarily result in an interpretable model. To 
ensure interpretability of wavelength selection we force the weights of 
the first layer to be non-negative. As such, there is no possibility to have 
irrelevant wavelengths of similar wavelengths cancelling each other out 
with weights of similar, potentially high, magnitude and opposite signs. 

Taken together, the two constraints of L1 regularization and 
non-negative weights ensure that only few relevant wavelengths will be 
assigned with positive weights, while all other non-relevant wave-
lengths will be set to zero and will effectively be excluded from the 
model. After wavelength selection, we add a batch normalization [27] 
layer between every convolution layer and its respective activation 
function. The S-UNET architecture employed is visualized in Fig. 1. 

2.2. Training and data augmentation 

The original dataset of 164 raw MSOT images was randomly split 
into training, validation and test sets of 98, 33 and 33 images, 
respectively. 

Each raw MSOT image corresponds to spatial dimensions of 
400 × 400 pixels (which corresponds to 4 × 4 cm) and 28 wavelengths. 
Each wavelength is normalized to values between 0 and 1 separately, as 
part of pre-processing. Normalization of the input image is a common 
practice in deep learning applications [28]. We train the model on a 
training subset of the data using Adam [29] while evaluating model 
performance on a validation set. The model is trained for a maximum 
number of 200 epochs, or until model performance on the validation set 
has not improved for 20 consecutive epochs (early stopping). The 
instance of the model that achieved the best performance on the vali-
dation set is saved as the final model. We keep a separate test set that is 
hidden from the model during training. 

The model is trained using a batch size of 4 images and data 
augmentation is performed on-the-fly on each image in every batch to 
increase model performance. Data augmentation includes flipping the x 
axis and rotating the image in a random angle from 5 to 15 degrees. Each 
of the two augmentation schemes has a 50 % probability of being per-
formed on any given image. According to our experiments more 
aggressive augmentation hinders model performance on the given task. 
The last layer of the model corresponds to a pixel-wise binary classifi-
cation problem of computing a probability map of the predicted seg-
mentation mask. The model’s loss corresponds to the loss of the 
400 × 400 binary classification tasks. Thus, the total binary cross en-
tropy loss function L, is used to train the model: 

L = −
∑H

h=1

∑W

w=1
(yhw⋅ln(phw) + (1 − yhw)⋅ln(1 − phw)) .

Here, H and W correspond to the image height and width in pixels (each 
being 400), yhw∊{0,1} corresponds to the ground truth segmentation 
class, phw∊ [0,1] corresponds to the predicted class probability for the 
corresponding pixel in position (h, w) and ln is the natural logarithm. 

3. Experiments 

3.1. Data acquisition 

In this pilot study we scanned six (n = 6) healthy volunteers (3 men, 
3 women, age 30 ± 5.44 years). All healthy volunteers consented to 
participate in this study in full accordance with the work safety regu-
lations of the Helmholtz Center Munich (Neuherberg, Germany). The 
radial artery, the brachial artery, the dorsal artery of the foot, as well as 
the cephalic vein, the radial veins and the dorsal vein of the foot were 
scanned by means of a clinical hand-held MSOT/Ultrasound system 
(iThera Medical GmbH, Munich, Germany). All subjects were asked to 
consume no food or caffeine for 8 h before the examination, which was 
conducted in a quiet dark room with normal temperature of 25 ◦C. Each 
scan lasted for 5–10 seconds. The system used was equipped with a near- 
infrared laser for achieving optimal penetration depth in tissue 
(3− 4 cm) even with low illumination energy (~15 mJ per pulse). For 
multispectral data recording we used 28 wavelengths (700:10:980 nm). 
Tissue was illuminated by short light pulses (~10 ns) at a frame rate of 
25fps. The ultrasound detection was performed by 256 ultrasound 
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sensors with a central frequency of 4 MHz which covered an angle of 
145◦ and was mounted on the hand-held scanning probe. Acquired ul-
trasound signals for each illumination pulse were reconstructed into a 
tomographic image using a model-based reconstruction algorithm [30]. 
For each MSOT image a co-registered ultrasound image was recorded. 
The segmentation of the scanned arteries and veins was manually per-
formed on the appropriate MSOT frame by simultaneous view of the 
co-registered ultrasound image. We decided to segment the blood ves-
sels directly on the MSOT frames because of better contrast, compared to 
ultrasound, provided by the high light absorption of hemoglobin at the 
near-infrared illumination range. The appropriate frame for vein seg-
mentation was the frame corresponding to the 750 nm illumination 
wavelength were the absorption of Hb is clearly higher than that of 
HbO2. The appropriate frame for artery segmentation was the frame 
corresponding to the 850 nm illumination wavelength were the ab-
sorption of HbO2 is clearly higher than that of Hb. Manual segmentation 
was conducted in consensus of two clinicians with experience in MSOT 
and clinical ultrasound imaging. 

3.2. Model comparison 

We compared the performance of four segmentation methods on the 
recorded MSOT dataset: the proposed S-UNET, UNET++ [31], and two 
differently-sized variants of a standard UNET on the segmentation task. 
The S-UNET architecture is described in section 2.1 above. The wave-
length selection layer is followed by a downsized UNET where every 
convolutional layer corresponds to 1/8 of filters compared to the ar-
chitecture in [15]. Two variants of the UNET were applied: one with the 
same number of filters as in [15] (‘original’) and a variant with 1/8 of 
filters (‘downsized’). Additionally, a batch normalization layer was 
inserted between every convolutional layer and its corresponding acti-
vation function in both UNET variants. Training was performed as 
described in the previous section. The results of all segmentation 
methods were compared to the binary ground truth segmentation mask, 
which was manually generated from expert clinicians on the recorded 
MSOT images under co-registered ultrasound guidance (see Methods). 
Model comparison is based on the Dice coefficient [22] defined as: 

Dice = 2TP/(2TP + FP + FN)

where TP, FP and FN correspond to true positive, false positive and false 
negative classified pixels: A TP pixel is a correctly classified foreground 
pixel, a FP pixel is a background pixel falsely classified as foreground, 
and a FN pixel corresponds to a foreground pixel that was incorrectly 
classified as background by the model. The Dice coefficient is well-suited 
to tackle the class imbalance inherent to the segmentation task [32], 
where more than 99 % of the pixels in our dataset are background pixels. 
As such, it is preferred for model assessment compared to the standard 

cross entropy used to train the model. The Dice coefficient lies between 
0 and 1, with higher values being better since they correspond to larger 
overlap between the ground truth and predicted segmentation masks. 

3.3. Wavelength selection 

Wavelength selection was performed by the first layer of the S-UNET 
(see Methods). However, since feature selection is an inherently noisy 
process [33,34] it is good practice to average a number of models [35] in 
order to obtain a smoothed version of wavelength importance. We thus 
train 100 different instances of the S-UNET and aggregate their results 
for the tasks of segmentation, as well as for wavelength selection. In the 
case of segmentation, we average the probability maps of all models 
before discretizing in order to obtain the binary segmentation mask. 

3.4. Results 

The performance of all four segmentation models (Dice coefficient) is 
reported in Table 1. The original UNET with over 30 million parameters 
is potentially slightly overfitting the training dataset while the down-
sized UNET, as well as the S-UNET achieve very similar segmentation 
results with roughly half a million parameters. The downsized UNET 
achieves slightly higher Dice scores on average (0.90 ± 0.08) than the S- 
UNET ensemble (0.86 ± 0.11), but the difference is not statistically 
significant given the test set size of 33 images (p-value = 0.37, two- 
sample Wilcoxon rank-sum test). This similarity in performance is to 
be expected since both methods correspond to a similar number of pa-
rameters. However, this also suggests that the added sparsity of wave-
length selection does not affect, at least not significantly, the quality of 
the generated segmentation masks in the case of S-UNET. Finally, 
UNET++ performs worse than all other deep learning methods, 
achieving a Dice coefficient of 0.61 ± 0.26. 

The advantage of the proposed S-UNET approach over the other 
UNET approaches is clearly its interpretability of results due to the 
embedded wavelength selection. As visualized in Fig. 2, out of the 28 
input wavelengths the model has identified two as being the most 
important in a purely data-driven manner. These wavelengths corre-
spond to the maximum of the absorption spectra of total blood volume 
(HbO2 and Hb) at 810 nm and HbO2 at 850 nm. Both of these identified 

Fig. 1. The S-UNET identifies important illumination wavelengths in MSOT images while learning to predict segmentation masks of human blood vessels. Each 
wavelength is weighted by a corresponding non-negative weight and all weighted wavelengths are combined before being inserted as input into a UNET architecture. 
Sparsity of wavelength selection is enforced by L1 regularization on the non-negative wavelength weights and the weights themselves are learned through standard 
back-propagation, along with the rest of the UNET parameters. 

Table 1 
Model Performance. Dice results correspond to mean ± std.  

Model Test Set Dice Parameters Wavelength Selection 

UNET (original) 0.75 ± 0.28 31,416,897 No 
UNET (downsized) 0.90 ± 0.08 495,881 No 
UNET++ 0.61 ± 0.26 9,049,377 No 
S-UNET 0.86 ± 0.11 493,965 Yes  
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wavelengths are thus meaningful since they mark the presence of blood 
in the detected image regions. To further highlight the importance of 
wavelength selection we re-evaluated the S-UNET performance using 
only the two most important wavelengths (810 and 850 nm). The 2- 
wavelength S-UNET achieved a mean Dice score of 0.73 on the test 
set. This corresponds to a 13 % decrease in performance compared to the 
28-wavelength S-UNET (0.73 Dice instead of 0.86), while it simulta-
neously reduces the required data volume by 93 % (2 wavelengths 
instead of 28). Additionally, when we train the same model using only 
two alternative wavelengths (750 and 870 nm), it achieves a lower 
mean Dice score of 0.70. This suggests that while segmentation is 
possible using other wavelengths, the two wavelengths identified by S- 
UNET have a higher predictive value. The segmentation results of S- 
UNET on an exemplary set of images are visualized in Fig. 3. Interest-
ingly, our approach is able to discriminate blood vessels from similar 
objects probably by exploiting the wavelength information. 

Blood vessel segmentation via deep learning is more accurate than 
classical thresholding methods, such as Sauvola’s adaptive [36] and 

Otsu’s global thresholding [37]. Both methods are available in 
scikit-image, a Python package for image processing [38] and require a 
single grayscale image as input. For this reason, a grayscale image was 
produced by calculating the average value of each pixel across the 28 
image channels. On the one hand, local thresholding (Sauvola’s method) 
achieved poor results (mean Dice of 0.02 + 0.01) since the region of 
interest (vascular lumen) corresponds to a single region of maximum 
intensity values. On the other hand, Otsu’s global thresholding performs 
better than local thresholding (mean Dice of 0.24 + 0.23), but consid-
erably worse than deep learning approaches. When using only the two 
most important wavelengths (instead of all 28) to compute the grayscale 
input image, the performance of Sauvola thresholding remains practi-
cally identical while Otsu’s method achieves better results on average 
(mean Dice of 0.41 + 0.33). 

4. Discussion 

In this work we applied a deep learning approach based on an 

Fig. 2. The S-UNET identifies wavelengths relevant to the 
segmentation task. Each boxplot (the box’s edges correspond to 
quartiles 1 and 3 while whiskers extend to ±1.5 times the 
interquartile range) corresponds to the weights assigned by the 
ensemble of 100 S-UNET instances to each wavelength. Aver-
aging results is necessary since feature selection is an inher-
ently noisy process. For every S-UNET instance, each of the 28 
wavelengths of the input image is multiplied by its corre-
sponding weight and all 28 weighted single-wavelength images 
are added in a pixel-wise manner. This step results in a single- 
channel image being passed on to the following layers of the 
network. According to the median weight of each wavelength, 
the two most important wavelengths are 850 nm and 810 nm, 
corresponding to the maximum absorption of HbO2 and total 
hemoglobin (THb), respectively.   

Fig. 3. The S-UNET successfully segments 
human vasculature from MSOT images. Each 
row corresponds to a different image of the test 
set. The first column (images a, e, i, m) shows 
the 850 nm channel of the MSOT image. The 
second (images b, f, j, n) and third columns (c, 
g, k, o) show the ground truth (true mask, blue) 
and predicted segmentation masks (red), 
respectively, visualized on top of the input 
image. The true segmentation mask is identified 
by expert physicians, while the S-UNET pre-
dicted segmentation mask corresponds to the 
output of the S-UNET ensemble. The fourth 
column (images d, h, l, p) corresponds to the 
absolute difference between the true and pre-
dicted binary segmentation masks and is 
equivalent to the logical operation of XOR 
(exclusive or). The predicted masks almost 
completely overlap with the ground truth seg-
mentation. The S-UNET is successful even in the 
last two cases (rows) where the mask is rela-
tively small and located in an area where 
similar bright spots are present. The white 
dashed line represents the skin surface. The 
white arrows point to the blood vessel of inter-
est. The scale bar is 5 mm. The gray color bar 
ranges from 0 to 1 and corresponds to the 
normalized intensity of each image (columns 1- 
3) or the difference of the true and predicted 
segmentation masks (column 4).   
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adapted S-UNET to perform automated vascular segmentation in clinical 
MSOT images. Our model successfully segments blood vessels (arteries 
and veins) and its performance is comparable to a standard UNET of 
similar model size. Furthermore, our model is capable of selecting the 
illumination wavelengths that are most important for the segmentation 
task at hand in a purely data driven manner. Our results show that 
among the 28 illumination wavelengths used for data acquisition, two 
wavelengths are associated with the light absorption of hemoglobin at 
the near-infrared range of illumination (700–970 nm). These correspond 
to 810 nm, which is the isosbestic point of HbO2 and Hb and reflects the 
absorption of total hemoglobin or else the total blood within the 
vasculature and 850 nm, which is the point where HbO2 absorbs 
significantly more than Hb and reflects the arterial blood. 

Our approach achieves accurate automated segmentation of both 
arteries and veins on raw clinical MSOT data. Apart from facilitating the 
segmentation process, which is time-costly for longitudinal scans of 
several minutes during functional vascular testing, it may help tackling a 
significant limitation of optical and optoacoustic imaging: the attenua-
tion of light due to scattering and absorption when propagating in living 
tissue. This effect causes a gradual attenuation of the signal intensity in 
the vascular lumen with increasing depth. Thus, the accurate visuali-
zation and segmentation of the lumen constitute real challenges even for 
clinicians with extensive MSOT experience. In the current study, we 
scanned blood vessels where this effect was apparent (e.g. Fig. 3a) but 
not to an extent that would jeopardize the accurate manual segmenta-
tion of the vascular lumen directly on the MSOT images under ultra-
sound guidance. Thus, future studies are required to further investigate 
the efficacy of deep learning approaches in automatically detecting and 
segmenting vessels with clinical interest (e.g. the carotid artery) deep in 
tissue in clinical MSOT data. 

In this study, we preferred to work on raw MSOT data. However, the 
discrete spectral difference of HbO2 and Hb at the near-infrared range as 
well as the strong presence of HbO2 in arteries and Hb in veins would 
allow for the direct spectral unmixing of HbO2 and Hb in the MSOT data 
and thus for direct vascular segmentation. Nevertheless, spectrally un-
mixed data suffer from errors related to imaging depth and motion, 
either exogenous (e.g. operator’s hand and random patient movement) 
or endogenous (e.g. arterial pulsation or breathing). 

Regarding motion-related errors, the dynamic character of the 
vascular system introduces significant inaccuracy when it comes to 
spectral unmixing results, especially when illuminating at multiple 
different wavelengths (e.g. 28) to achieve high spectral quality. For 
example, the recording of a multispectral stack of 28 wavelengths at a 
frame rate of 25 Hz takes more than one second. Considering that the 
cardiac cycle of a normal individual with a heart rate of 70− 75 Hz is 
approximately 0.8 s, the use of 28 wavelengths renders the spectrally 
unmixed data vulnerable to errors due to arterial wall motion, especially 
in the periphery of the vascular lumen, potentially degrading the pre-
cision of vascular segmentation when performed by means of direct 
spectral unmixing. 

Moreover, multispectral optoacoustic imaging at increased tissue 
depths (> 1 cm), where normally the blood vessels lie, renders the 
spectral unmixing output vulnerable to the spectral coloring effect: the 
random absorption and scattering of each illumination wavelength 
before reaching the HbO2 or the Hb of the vascular lumen according to 
the optical properties of the set of tissues covering them (e.g. skin, 
subcutaneous fat, muscle). Thus, usual linear spectral unmixing methods 
fail to unmix the absorbers of interest (e.g. HbO2 and Hb) at increasing 
depths since the measured spectra have been colored and thus deflected 
from the known absorption spectra, as measured in the lab. For the 
above mentioned reasons, we decided to work on the recorded raw 
MSOT data. 

Our model showed that the decision for segmenting the vasculature 
was mainly based on two near-infrared wavelengths: the 810 nm where 
HbO2 and Hb absorb light to the same extent and the 850 nm where the 
light absorption of HbO2 is significantly higher than that of Hb. Our 

results provide evidence for effective and task-specific wavelength se-
lection via the suggested deep learning model for accurate segmentation 
of blood vessels in clinical MSOT data. Apart from increasing the time 
resolution by skipping a number of unnecessary illumination wave-
lengths and decreasing the data volume, the effective wavelength se-
lection may be used for indirect spectral characterization of more 
complex tissues or even homogeneous tissues at high depths by identi-
fying the wavelengths critical for achieving their segmentation. This 
approach may help overcoming the limitations introduced by the 
spectral coloring effect and thus providing a blind or data-driven spec-
tral unmixing with great implications for clinical MSOT imaging. Our 
method may be used for segmenting and characterizing tissues with 
clinical relevance (e.g. the subcutaneous fat or the atherosclerotic pla-
ques which contain lipids, the skeletal muscle which contains water) or 
even the detection and distribution mapping of injected contrast agents 
targeting specific molecules involved in the pathophysiology of a 
disease. 

To the best of our knowledge, while deep learning has been used 
before in the context of optoacoustic imaging data [39,40], this is the 
first time where a deep learning method is applied to clinical MSOT data. 
Our approach has significant implications for future MSOT applications 
with clinical relevance, such as the automated segmentation of more 
complex soft tissues (e.g. muscle, fat, atherosclerotic plaques) and 
foreseeable for more accurate diagnosis of vascular disease. 
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