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State-of-the-art augmented NLP transformer
models for direct and single-step retrosynthesis
Igor V. Tetko 1,2✉, Pavel Karpov1,2, Ruud Van Deursen 3 & Guillaume Godin 3✉

We investigated the effect of different training scenarios on predicting the (retro)synthesis of

chemical compounds using text-like representation of chemical reactions (SMILES) and

Natural Language Processing (NLP) neural network Transformer architecture. We showed

that data augmentation, which is a powerful method used in image processing, eliminated the

effect of data memorization by neural networks and improved their performance for pre-

diction of new sequences. This effect was observed when augmentation was used simulta-

neously for input and the target data simultaneously. The top-5 accuracy was 84.8% for the

prediction of the largest fragment (thus identifying principal transformation for classical

retro-synthesis) for the USPTO-50k test dataset, and was achieved by a combination of

SMILES augmentation and a beam search algorithm. The same approach provided sig-

nificantly better results for the prediction of direct reactions from the single-step USPTO-MIT

test set. Our model achieved 90.6% top-1 and 96.1% top-5 accuracy for its challenging mixed

set and 97% top-5 accuracy for the USPTO-MIT separated set. It also significantly improved

results for USPTO-full set single-step retrosynthesis for both top-1 and top-10 accuracies.

The appearance frequency of the most abundantly generated SMILES was well correlated

with the prediction outcome and can be used as a measure of the quality of reaction

prediction.
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To synthesize an organic compound is to solve a puzzle with
many pieces and potentially several pieces missing. Here,
the pieces are single reactions, and finding their sequential

combination to create a final product is the retrosynthesis task.
The success of the logic of organic synthesis developed by

Corey et al.1,2 triggered the development of computer programs
aiming to find appropriate ways to synthesize a molecule. The
first retrosynthesis program LHASA2 utilizes a template-based3,4

approach. Every template (rule, synthon) in a curated database of
known transformations is sequentially applied to a target mole-
cule, and then sets of reagents are selected according to a specified
strategy. Reagents, in turn, undergo the same decompositions
until a set of commercially available compounds is found. Ret-
rosynthesis always has multiple routes—a retrosynthetic tree—
ending with different starting materials. Thus, a practical algo-
rithm for retrosynthesis has to solve not only the rule acquisition
and selection problem but also has capabilities to effectively
navigate this tree5, taking into account different strategies. These
tasks relate directly to artificial intelligence strategies6–8.

Due to the difficulty of maintaining template databases, most
projects dependent on them, including LHASA, did not become
widely used tools. The only major exception is, perhaps, the
program Synthia™ (previously CHEMATICA9) which is a suc-
cessful commercial product. In the Synthia™ program, rules are
automatically extracted from atom-mapped reaction examples10.
However, there is an ambiguity in the mapping definition and,
more importantly, the automatic rule does not take into account
other undefined possible reactive centers in a molecule. Applying
such transformations may result in molecules that fail to react as
predicted, e.g., “out-of-scopes” and special care to filter out these
cases has to be taken5. An alternative approach for the extraction
of these rules is to apply a data-driven deep learning technique
that corresponds to a machine learning approach where an
algorithm (usually in the form of a neural network) is trained on
the raw data. After the training finishes, the network contains all
the implicitly encoded features (rules) of the corresponding input
via its parameters. Works on reaction prediction outcomes11 and
retrosynthesis12,13 showed the feasibility of a symbolic approach,
where reactions are written as SMILES14 strings as in a machine
translation. The product is written in the “source language”,
whereas the set of reactants is written in the “target language”. For
the “reaction translation” task both languages, however, are
SMILES strings, having the same alphabet and grammar. The first
works on symbolic (retro)synthesis12,15 were carried out with
Seq2Seq16 models following robust and more easy to train natural
language processing (NLP) transformer approaches17,18 that
bring state-of-the-art results11,19. Meanwhile other approaches
based on similarity20, convolutional21–23, and graphs24,25 show
promising results.

The SMILES representation of molecules is ambiguous. Though
the canonicalization procedure exists26, it has been shown that
models benefit from using a batch of random SMILES (augmen-
tation) during training and inference27–30. Recently, such aug-
mentation was also applied to reaction modeling11,18,31,32. The
augmented (also sometimes called “random”) SMILES are all valid
structures with the exception that the starting atom and the
direction of the graph enumerations are selected randomly.

In this article, we scrutinize the various augmentation regimes
and show that augmentation leads to better performance compared
to the standard beam search inference or evaluation of the model
under different temperatures. We clearly mention that our study is
to predict single-step and not multi-step retrosynthesis, which has
been also targeted using transformer33,34. We show that by using
more complicated data augmentation strategies we decrease over-
fitting35 of neural networks and increase their accuracy to achieve
top performances for both direct and retro-synthesis. We observe

that the harder are the data to train the model, the better it will
predict new ones. Moreover, we introduce a new measure MaxFrag
accuracy for the prediction of the largest fragment (thus identifying
principal transformation for classical retro-synthesis).

Results
The baseline dataset contained only canonical SMILES. The other
datasets also contained SMILES, augmented as described in
the section Supplementary methods. Four different scenarios
were used to augment training set sequences. Namely, we used
augmentation of products only (xN), augmentation of products
and reactants/reagents (xNF), augmentation of products and
reactants/reagents followed by shuffling of the order of reactant/
reagents (xNS), and finally mixed forward/reverse reactions,
where each retrosynthesis reaction from xNS was followed by the
inverse (forward synthesis) reaction (xNM). Only the simplest
augmentation xN was used for test sets because no information
about reactant/reagents could be used for the retrosynthesis
prediction. At least one copy of canonical SMILES for each
reaction was present in all augmentation scenarios.

Reaction synthesis data. We used a training set filtered from
USPTO database36 containing 50 k reactions classified into 10
reaction types. We used splitting proposed by Liu et al.12 and
divided it into 40, 5, and 5 k reactions for the training, validation,
and test sets, respectively. As in the previous study13, after obser-
ving that early stopping using the validation set did not improve
model test accuracy (the model performance for each of the sets
was monotonically increasing with number of iterations, see Sup-
plementary Fig. 1), we combined the training and the validation
sets into a combined training set. The 5 k test reactions were
predicted only once the model training was finished and were not
used at any stage of the model development. In a similar way we
joined training and validation sets of USPTO-MIT22 dataset for
direct reaction prediction. In order to provide a more straightfor-
ward comparison with results of the previous studies we also
reported performances when developing models using only the
respective training sets. Moreover a model with the largest pub-
lished USPTO-full set24 was also developed.

Analysis of canonical datasets. The development of a model with
canonical SMILES (x1) as the training set provided 40.9% accu-
racy for prediction of the canonical test set. An attempt to use this
model to predict the augmented test set (x5, x10), resulted in
much lower top-1 predictions of 23.3% and 18.4%, respectively.
This result was to be expected, because the model trained with
only canonical sequences was not able to generalize and predict
augmented SMILES, which use different styles of molecular
representation.

Augmentation of products only (xN). The augmentation of the
products (input data), with just one additional augmented
SMILES x2, increased top-1 accuracy to 43.7% for the test data
composed of canonical sequences. Increasing the number of
augmentations in the training set did not increase the top-1
prediction accuracy. Thus, the augmentation of the training set
with just one random SMILES contributed the best performance.
This result is in concordance with another study where only one
random SMILES was used to augment data18.

Analysis of character and exact sequence-based prediction
accuracy. To better understand the model training, we also
developed several models where approximately 10% of the
dataset did not participate in training but was used to monitor its
prediction performance. Different from the test set, which tested
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the performance of models when predicting a new reaction, the
monitoring set tested the ability of the Transformer to predict
different SMILES generated for the same reaction. The Trans-
former was able to recognize different representations of the
same reaction. For example, when training x1, the character and
exact sequence-based accuracies when predicting the monitoring
sequences were 96.5% and 34.5%, respectively. The final per-
formance for the test set, 40.9%, was higher because some
reaction products from the transformer provided noncanonical
SMILES, which were correctly matched after transformation to
canonical ones. When using augmented training sequences
(x10), the accuracies increased to 99.97% and 98.9%, for char-
acter and exact sequence-based accuracy, respectively (see Fig. 1).
The transformer recognized different representations of SMILES
for reactants and reagents of the same training set reaction, and
was able to exactly restore the target products which were
memorized. Demonstrably, it was also able to memorize any
random sequences. To show this, we used a random SMILES
sequence (xNR set in Supplementary Tables 1 and 2, and Sup-
plementary Fig. 2) instead of the canonical sequences as the
target for prediction. While this task was more difficult and took
more epochs to train, the transformer was able to perfectly
memorize random sequences. Since the SMILES prediction tar-
get was random, the transformer was not able to learn canoni-
calization rules on how to write the target. Despite this fact, it
still calculated a top-1 prediction accuracy of 26.8% for the test
set which was, however, significantly lower compared to the
42.2% achieved using the x10 dataset with canonical sequences as
the target.

Augmentation of reactants and reagents. A boost of the
Transformer performance was observed when, in addition to
products, i.e., the inputs SMILES, we also augmented the target
SMILES, i.e., reactants and reagents. This task was more difficult
for the transformer, which resulted in a drop in both character
and sequence based scores for monitoring sequences during the
training stage. For example, when using the training dataset with
one augmented SMILES, x2F, the character based accuracy
dropped to 91.3%, which was lower than 98.6% calculated with
the x2 dataset composed of canonical product SMILES (Fig. 1).
For a larger number of augmentations, the character-based
accuracy converged to a plateau, e.g., 89.96% and 89.67% for the

x5F and x20F training sets, respectively. The character-based
accuracy was calculated as the percentage of exact matches
between target and predicted sequences, e.g., “CCCCN” and
“NCCCC” have an accuracy of 80%, despite being the same
SMILES but written from different starting atoms. Thus despite
the fact that the Transformer faced a prediction of random
SMILES, it was still able to provide a reasonable prediction of
their character composition.

However, of course, the transformer was not able to predict the
exact random product SMILES. This resulted in a decrease in
sequence-based accuracy based on the number of augmentations
for xNF training datasets (Fig. 1, cyan circle). Still the transformer
was able to predict some of the sequences, which corresponded to
the subset of canonical sequences in the monitoring set.
Interestingly, the sequence accuracy normalized to the percentage
of canonical SMILES in the monitoring sets increased with the
number of augmentations since some randomly generated
sequences were canonical SMILES.

Top-1 performance analysis. For augmentations with 1 or 2
random SMILES, the top-1 prediction performance of the models
trained with augmentation of reactants and reagents only, xN,
and full reaction augmentation, xNF, were similar. For a larger
number of augmentations the models trained with xNF sets had
systematically better performances than those developed with xN
sets (Fig. 2). The training with the x80F set provided the highest
top-1 performance of 52.3% when this model was applied to the
test set generated with x20 number of augmented sequences.
While it was possible that further increase in the augmentations
could still increase the top-1 performance, we did not perform
such calculations due to limitations on available computational
resources.

Shuffling order of reactants. In addition to augmenting the full
reaction, we also randomly shuffled the orders of reactants (see
xNS set description in Supplementary Tables 1 and 2). The effect
of this additional data perturbation improved top-1 performance
to 53.1% for the x20S training dataset applied to the test set with
the same number of augmentations (Supplementary Fig. 3).
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Further increasing the number of augmentations resulted in the
loss of top-1 prediction accuracy.

Shuffling and mixing of retrosynthesis and direct reactions.
The training of retrosynthesis and direct reactions simultaneously
could create a mixed representation of latent space and further
increase the ability of the transformer to make generalizations.
We tested this hypothesis by combining direct and reverse
reactions in one training set by reversing the order of product/
reactant+ reagents and adding a dot to distinguish direct reac-
tions (see e.g., Supplementary Table 2, x2M augmentation).
Contrary to previous analysis, which required 20 augmentations
of training set sequences to achieve the highest performance, the
mixed dataset achieved it with only 10 augmentations (Supple-
mentary Fig. 3). Since the mixed dataset also included direct
reactions, it had the same number of 19 augmented SMILES per
canonical SMILES as in the previous analyses. Thus, this number
of augmentations was optimal for the training of the transformer.
A smaller number of augmentations did not allow it to fully
explore the data diversity while a larger number created too much
noise and made it difficult to learn canonization rules, which were
injected by the single canonical sequence. For the x10M training
set, the transformer calculated 52.8%, which was similar to 53.1%
calculated using the x20S training dataset.

Top-5 performance analysis. This measure provided a relaxed
estimation of the performance of the model by measuring if the
correct reaction is listed in the top-5 predicted reactions. Actually,
it is questionable whether for retrosynthetic models having the
highest top-1 accuracy is desirable. The goal of a retrosynthetic
model is to obtain several precursor suggestions and not exclu-
sively the ones stated in the literature. Moreover, multiple reac-
tions for the same product exist. An example includes the
aromatic substitution of an aryl halide (R-X) to an aryl amine (R-
NH2) or aryl hydroxide (R-OH). Models with higher top-n scores
do suggest other probable reactions (indeed, all reactions amid
top-n have similar probability) which may correspond to those
not reported in the literature for the analyzed example. Thus
models with higher top-N scores but with similar top-1 scores
could be interesting for a chemist since they do propose the
correct prediction along with similar quality top-1 reactions.

For each number of augmentations, the top-5 performance
generally increased with the number of augmented sequences. The
highest top-5 value was consistently calculated across different
scenarios for training sets with 4–5 augmentations only (Fig. 3).
The highest accuracy, 78.9%, was calculated for the mixture
dataset using the x5M training set augmentation. This number
had approximately 1% higher accuracy than that calculated using
the x5S training set (Fig. 3).

Reference USPTO-50 k model. For all studies we used a fixed
number of epochs N= 100. However, we needed to confirm that
this was a sufficient number of epochs and to determine if we
could calculate better results by training for longer. We selected
the model developed with the x5M training set, which provided
the highest performance for top-5 accuracy, and trained it for an
additional 400 iterations (in total 500). This additional training
improved top-1 accuracy to 53.3% while top-5 performance
increased to 79.4% (Table 1) when using beam= 5, e.g., the same
as in previous analyses.

Further improvement was achieved by using a large number of
augmentations, and x100 as the test set. With this setting the
model achieved an accuracy of 53.6% and 80.8% for top-1 and
top-5 predictions, respectively.

Influence of temperature. In our previous study13, we observed
that using higher temperatures during beam search increased
model accuracy for the top-1 prediction. It should be mentioned
that no augmentation was used in that study. Under the same
experimental setup with no augmentation, i.e., when predicting
test set composed of only canonical sequences, x1, the top-1
accuracy of the model increased from 48.3% to 49.1% and 49.2%
when using temperatures 1.3 or 1.5, respectively. However, the
top-1 and top-5 performances for the augmented data (x20)
decreased from 53.3% to 52.7% and 52.4%, respectively. For the
same test set the top-5 accuracies also decreased from 79.4% to
77.7% and 77.4% for both temperatures, respectively. Thus, while
higher temperatures increased the variability of predictions and
thus performance for prediction of canonical sequences, its effect
was negative for the augmented data. In particular, it resulted in
the lower accuracy of top-5 predictions.

Influence of beam search. In the above studies we consistently
used a beam size of 5 for all analyses. The goal of the beam search
was to generate multiple predictions for the same data and thus to
better explore the variability of predictions. For example, when
using the x20 test set and a beam size of 5, we obtained up to 100
individual predictions, which were used to select the most fre-
quently appearing top-1 and top-5 sequences. Increasing the
beam size to 10 further improved top-1 by 0.2 to 53.5% and top-5
by 0.6% to 80% for the test set. The decrease of the beam size to 3
provided a slightly higher top-1 score of 53.4% but decreased the
top-5 to 78.5% for the same test set. The use of beam size 1
resulted in a top-1 accuracy of 53.3% and a reduced top-5
accuracy of 75.3% (Table 1). These results were expected: the
variation of the beam size slightly influenced the identification of
the highest ranked sequence but its smaller number reduced
exploration of the space of other top-reactions for larger n.

Both beam search and augmentation increased the number of
predicted SMILES which in turn led to better accuracy of model
predictions. Thus both of these methods could contribute to the
generation of multiple predictions to be used to identify top-
ranked sequences. The maximum size of the beam was restricted
by the size of the target vocabulary (number of characters in the
target SMILES), which was 44 characters for our dataset. Because
of the design of the beam search and because we explicitly
excluded duplicated predictions (see section “Analysis of predicted
SMILES” as well as Supplementary Table 3), the dataset used for
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different training set augmentation protocols for prediction of the x20
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protocols.
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analysis did not generate duplicated sequences for the same beam
search. However, such sequences were indeed generated at
different positions of the beam as different representations of
the same SMILES. The number of non-unique sequences
generated within the same beam search increased with the length
of the beam. Interestingly, the use of canonical SMILES as input
data contributed to the largest number of unique SMILES, which
were 86%, 82% and 78% for beam searches of size 5, 10, and 44,
respectively. The use of augmented random SMILES as input
contributed smaller numbers of unique sequences, e.g., 42%, 28%
and 13% for beam searches of size 5, 10, and 44, respectively. For
both types of SMILES some generated SMILES were erroneous
and could not be correctly converted by RDKit. Such sequences
were excluded from analysis. For large beam sizes, canonical
SMILES produced a much bigger percentage of incorrect SMILES,
as compared to the use of random SMILES (see Supplementary
Fig. 4). The large difference in the results generated when starting
from canonical and random SMILES was also observed for
analysis of the percentage of correct predictions for each beam
position. In general, the number of erroneous SMILES was low,
e.g., on average it was less than 1% and 3% for beam search 10,
when using augmented and canonical SMILES as input,
respectively (Supplementary Fig. 4). While graph-based methods
predict exact chemical structures and thus have 0% syntactically
invalid SMILES, a few percentage points of incorrectly predicted
structures by the transformer model does not make a large
difference to these methods.

The use of canonical SMILES provided (Supplementary Fig. 4)
a higher accuracy for the first beam position, but its accuracy
was much lower for other beams. This was because the
Transformer generated canonical SMILES for the canonical
input sequences (e.g., 91% of valid SMILES produced at the
position 1 of the beam search for input canonical SMILES were
canonical ones) and since only one valid canonical SMILES
could be produced, it failed to generate new correct SMILES.
Indeed, during the training phase, the transformer always had a
pair of canonical SMILES as input and target sequences.
Contrary to that, using augmented SMILES allowed more
freedom and allowed it to contribute valid but not necessarily
canonical SMILES (e.g., only 33% of generated SMILES at the
position one of the beam search were canonical ones if
augmented SMILES were used as input).

The decrease in performance of SMILES generated when using
canonical SMILES was one of the main reasons to implement
deduplication of data and retain only the first SMILES for the
prediction of reactions (see section “Analysis of predicted
SMILES”). When deduplication was not performed and all
SMILES generated during the beam search were used to rank
predictions (compare Supplementary Tables 3 and 4), the top-1
performances of models were most significantly affected when
using only few augmentations, e.g., for the reference model its
accuracy dropped from 48.3% (reference prediction, Table 1) to
47% but did not change for, e.g., top-5 performance. In principle,
the analysis retaining multiple predicted sequences was based on
more data and thus was more stable. Therefore, it could be used
when several augmentations and/or large values of top-n are used
for analysis.

As it was mentioned above, both data augmentation and beam
search could be used to generate multiple predictions. For the
same number of generated sequences, 1000 per SMILES, using a
beam= 10 search for the x100 set produced lower accuracy,
53.5% compared to 53.7% using augmented data with the x1000
test set without any beam search. The performance of both
methods were the same and equal to 53.7% when the
deduplication procedure was not used. However, the beam search
contributed to better accuracy, i.e., 81% vs. 80% and 85.7% vs.
84.3% compared to the use of augmententation alone for top-5
and top-10, respectively. Thus, using beam search allowed a better
exploration of data when suggesting several alternative reactions.
In any case the augmentation was a very important part of the
beam search and for the best performance, both of these
approaches should be used simultaneously. We also do not
exclude that optimization of the augmentation may improve its
results in the future. Moreover, data augmentation used alone
without a beam search contributed superior models to the beam
search used without any data augmentation.

Table 1 Analysis of the reference model performance depending on the parameters of the application protocol.

Test set x1 Test set x20 Test set x100

Apply model setting Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-10

Reference accuracya 48.5 72.5 53.3 79.4 53.6 80.8 85
Temperature, t= 1.3 49.1 67.7 52.7 77.7 53.3 78.4 83.2
No beam search, i.e., beam= 1 47.7 47.7 53.3 75.3 53.8* 78.8 81.7
Beam size, beam= 10 48.3 73.4 53.5 80 53.5 81* 85.7
Beam size, beam= 44 48.3 72.5 53.5 80 53.5 80.5 85.8*

aThe final reference model was built using 500 iterations for the x5M training set. Its reference performance was evaluated using beam size= 5, temperature= 1. The altered parameters are shown for
several other application scenarios. For beam= 1 and x1000 augmentations the model calculated 53.7, 80 and 84.3 for top-1, top-5, and top-10 predictions, respectively. This augmentation as well as the
one with beam size= 10 applied to x100 analyzed the same number of predicted sequences.
* Indicate the best results. Larger beam sizes contributed better results for larger top-n predictions.
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Accuracy of prediction. For some reaction predictions without
the use of augmented sequences or position at the beam search
the majority of predicted sequences were identical, while for other
reactions the Transformer generated as many different SMILES as
possible reactants (see Supplementary Table 5). While the beam
generation procedure guaranteed that each prediction had exactly
the same sequence of characters, in many cases the Transformer
produced multiple noncanonical instances of the same SMILES.
The frequency of the appearance of the most frequent (after
conversion to the canonical representation) SMILES could,
therefore, indicate the confidence of the transformer in the pre-
diction. Figure 4 indicates such frequency (which was calculated
on 100x augmented dataset) correlated well with the accuracy of
prediction and could be used as a confidence score for the che-
mist. Indeed, the reactions in which the most frequent SMILES
dominated amid all predictions for Top-1 were likely to be pre-
dicted correctly. If the most frequent SMILES had low fre-
quencies, such predictions were likely to be incorrect ones. For
about 20% of the most frequent predictions, the accuracy of the
retrosynthesis prediction was above 80% and for 4% more than
90%. It should be mentioned, that for a practical implementation
which critically depends on the speed, e.g., multistep synthesis,
there is no reason to always run all 100 predictions to get the
confidence estimations. One can always estimate the probability
of the most frequent SMILES and its confidence interval based on
a much smaller number of predictions thus decreasing the
number of calculations.

As shown in Fig. 4, the same correlations were observed for
two other datasets USPTO-MIT and USPTO-Full, which are
analyzed in the following section. The same approach can be used
for top-n predictions by suggesting one or more plausible
pathways for retrosynthesis. An example of such correlations
for Top-5 MaxFrag accuracy were shown in Supplementary
Fig. 5. Moreover, the same approach also predicted the accuracy
for the direct synthesis as it was demonstrated at Supplementary
Fig. 6. It should be mentioned that use of data augmentation is
not the only approach to estimate the accuracy of predictions, and
other methods based on the likelihood of the direct reaction
prediction were also proposed18,34 and were shown to correlate
with the accuracy of the predictions. A comparison of such
methods is beyond the scope of this study.

Analysis of prediction accuracy for different scenarios. The
accuracy of the reference model was about 5% to 7% (top-1) and
10% (top-5) higher for reactions without stereochemistry than for
those with it (Table 2). 20% of the reactions in the test set con-
tained molecules with stereochemistry. An increase in the num-
ber of augmentations of the test set increased the accuracy of
both stereo and non-stereochemical reactions. Stereochemical

reactions in the dataset may also suffer from a larger number of
annotation errors or/and can have lower prediction scores since
such data were underrepresented in the training set. In addition,
for some reactions despite the relative stereochemistry being
conserved it may still define confusing information for the model
due to the reactant satellite effect. The R/S could be also affected
by the way the SMILES was written, e.g., from A to Z or Z to A.

Classical retro-synthesis accuracy: recognition accuracy for the
largest fragment. The prediction of SMILES for retro-synthesis
includes exact prediction of the reactants. However, the same
reaction performed using different reactants can result in a
similar yield. In general the database does not contain all possible
reaction conditions to make a given product. Therefore, a pre-
diction of only the main (the largest) reactant can be considered
more relevant for retro-synthesis predictions, since we need to
first identify the reaction type. Indeed, a chemist generally writes
a retrosynthesis by decomposing a target molecule into pieces.
This classical procedure, focusing only on main compound
transformations, is the minimal information required to get an
efficient retrosynthesis route and at the same time all reactions
needed (see Fig. 5). The selection of reaction conditions of the
reactions can be considered as a subsequent task.

That is why we decided to consider the recognition of the
largest reactant as a new measure of the model performance:
classical retro-synthesis accuracy, i.e., the accuracy of prediction
of the “Maximal Fragment” (MaxFrag). The MaxFrag was 85.4%
for the top-5 reaction prediction (Table 2). The MaxFrag is
important to estimate an ability of a system to automatically
deduce the correct reaction class. This strategy is orthogonal to
explicitly providing reaction class information as input to a
model24. Adding the reaction class as prior information is
equivalent to getting a hint on an exam: this is impractical and
also reduces the chance of proposing alternate feasible reactions.
Using MaxFrag is more accurate and logical than providing a
reaction class as prior information. Besides MaxFrag and Top-n,
other scores were proposed to evaluate the success of retro
suggestions/reactions, e.g., the matching score by Satoh and
Funatsu37, the “in-scope” filter by Segler et al.5, and the forward
transformer score by Schwaller et al.34. However, MaxFrag is the
easiest and the interpretable one.

Retrosynthesis data quality and MaxFrag accuracy. The use of
the classical retro-synthesis accuracy (MaxFrag top-n) calculated a
systematic higher accuracy in comparison to the traditional top-n
scores. To explain this fact, we analyzed our datasets and found four
types of reactions: non-reagent reactions, one reagent reactions,
multiple reagent reactions, and unclear reagent reactions. Non-
reagent reactions were reactions that did not work (i.e., A+B− >A).

Table 2 Prediction accuracy of the reference model for different subsets of the test set of USPTO-50k using a beam search of
size 10.

Top-1 Top-5 Top-10

Test set
augmentation

All Stereo (20%) No stereo (80%) All Stereo (20%) No stereo (80%) All Stereo (20%) No stereo (80%)

x1 48.3 44.7 49.2 73.4 67.3 74.9 77.4 71 79
x20 53.4 47.3 55 80 73.3 81.9 84.2 79.2 85.4
x100 53.5* 47.1 55.1 81* 74.6 82.6 85.7* 81.2 86.8
MaxFrag,a x1 53.5 48.7 54.7 79.2 72.7 80.9 81.6 75.1 83.3
MaxFrag, x20 58.5 52 60.1 84.7 79 86.1 88.6 83.6 89.8
MaxFrag, x100 58.5* 51.2 60.3 85.4* 79.4 86.9 90* 85.1 91.2

aThe classical retro-synthesis accuracy was estimated as the percentage of correctly predicted largest fragments, i.e., “maximum fragment” (MaxFrag) accuracy.
* Indicate the best results.
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One reagent reactions had only one starting material for the product
(A− > P), multiple reagents had multiple starting materials for the
same end product (A+B− > P), and finally unclear reagents where
the reaction conditions, solvent, salts, and so on, were included as
reagents (A+ B+N− > P, where N were chemicals that did not
participate to form the product). Depending on the dataset the
proportions of these reaction categories slightly varied. In the MIT
dataset around 0.5% of reactions were non-reagent reactions, and
around 10% of the reactions were unclear reagent reactions while
there were less than 1% of such reactions in the USPTO-50 k dataset.
Thus, for the MIT set it would be impossible to fully predict about
10% of reactions for the retrosynthesis, since they contained che-
micals “N” that did not form the reaction, but only conditions, sol-
vent, etc. This more challenging problem of predicting not only the
reactants but also the reagents, while still keeping diverse precursor
suggestions was addressed elsewhere34. For the direct synthesis that
was not a severe problem since the transformer could correctly
identify and pick-up the interacting components (“A” and “B”) and
predict the product. However, the use of Top-n for retrosynthesis is
questionable due to the aforementioned problem. The use of Max-
Frag accuracy decreased those effects by focusing on the main
reagent. That is why, in our opinion, the MaxFrag score better
reflected the chemistry than Top-1 accuracy.

Still there is an unsolved challenge with this score due to the
possibilities to synthesize the same products starting from multiple
reagents. Both Top-n and MaxFrag Top-n scores were calculated by
using the exact match of the predicted and target molecules. But, for
example, in the reaction R-R1+NH3− > R-NH2 multiples choices
of R1, i.e., -OH, -Cl, -Br, -I, or -F, would be all correct predictions.
The only difference would be the reaction rates and yields, which
are not part of the prediction algorithms. Unfortunately the
currently used scores, including MaxFrag, cannot yet correctly
account for this problem. The problem to some extent could be
alleviated by using Top/MaxFrag-n instead of Top/MaxFrag-
1 scores: by considering multiple reagents generated by the model,
we could also get the one provided in the initial reaction. Thus, the
retrosynthesis task is not about getting high Top-1 accuracy. Any
classical organic synthesis book, such as the famous Larock’s
“Comprehensive Organic Transformations”38 indicates multiple
ways to synthesize chemical compounds and this has to be reflected
in the score. The classical retro-synthesis accuracy measured by
MaxFrag is a first attempt to better handle those data ambiguities
during the validation process and we highly encourage other users
to use it. However, in order to enable a comparison with the
previous studies we also reported traditional Top-n scores.

Analysis of prediction accuracy for different classes. The ori-
ginal dataset USPTO-50 k set12 provides a reaction type label for

every reaction. In total, ten reaction classes ranging from pro-
tection/deprotection, to carbon–carbon bond and heterocycle
formation present the most common reactions in organic
synthesis. The comparison of accuracy for each class of reactions
was presented in Fig. 6. Our best model showed excellent results,
outperforming the state-of-the-art Self-Corrected Transformer19.
Functional group interconversion and addition, as well as
carbon–carbon bond formation were the most difficult for the
models to predict. It was not surprising, due to the diverse pos-
sibilities for choosing reactions and corresponding reactants for
C–C bond creation compared to more straightforward oxidation
or protection where the set of groups and reactants is more
narrow.

Prediction of direct reactions. The same strategy described in
this work was applied to predicting direct reactions from the
USPTO-MIT dataset22. We used 439 k reactions (training and
validation set were joined together) as the training set and pre-
dicted 40 k reactions from the test set by training the transformer
with the same architecture and parameters. The separated and
mixed sets were used. In the separated set reactants and reagents
were separated with the “>” sign while in mixed set all “>” are
substituted with “.” and the order of reactants and reagents was
additionally shuffled. The mixed set was more difficult for
training since the transformer had to identify the reaction center
from a larger number of molecules. However, such a set better
reflected a practical application since separation of data on
reactants and reagents in some cases would not be possible
without a knowledge of the target product, and thus it did provide
a hint to the transformer about the reaction center. We have
removed 316 reactions from the training set where the largest
products had length smaller than five characters (no reactions
were removed from the test set). The Transformer was training
using the x5N augmentation protocol for the separated set as well
as the x5S and x5M protocols for the mixed set. Since it would be
impractical to predict all reagents and reactants for the retro-
synthesis task, which was used to additionally augment data in
the x5M protocol, only the largest reactant was retained as a
target for the reverse reactions. Augmented test sets were pre-
dicted using beam size 10 (Table 3). For the mixed test set the
order of reactants and reagents was shuffled.

As in previous studies, separation of reagent and reactants with
“>” symbols contributed to a model (x5N) with higher prediction
scores than for models with mixed sets (x5S and x5M). The
additional augmentation of data using retrosynthesis reactions
(x5M) did not improve the model. This could be due to the fact
that the data for direct reactions were much larger and already
contained sufficient information to develop accurate models.
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Fig. 5 Classical representation of the retrosynthesis of cimetidine focusing on the principal transformations, as is typically written by synthetic
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While using the x100 test set still contributed better prediction
accuracy than using x20, the improvements were in the order of
0.1% or no improvement at all. Thus the effect of using larger
augmentations on model performance reached saturation for the
x100 test set.

Comparison with published models for direct synthesis using
USPTO-MIT set. The USPTO-MIT was used as benchmarking
for direct synthesis predictions in multiple articles. The AT
provided the highest gain in performance for prediction of the
more challenging mixed dataset (Table 4). Since the model was
trained with randomly shuffled augmented data, it was able to
generalize very well and provide excellent predictions for the new
mixed data. In order to provide a more adequate comparison with
previous studies we also developed a model based on exactly the
same training data of 400 k. Interestingly, the use of a smaller
dataset slightly increased Top-1 performance to 90.6% but
decreased Top-5 performance to 96.1. It should be noted that
improvements for direct synthesis look small, i.e., just few per-
centages. Indeed, the model performance for the direct synthesis
increased from 88.6 to 90.6 (Top-1) and 96.1 from 94.2 (Top-5)
as compared to the single model reported in ref. 18. Actually, this
is a significant increase in performance since AT decreased the
relative errors by 15% and 30% for both sets, respectively, if we

consider that we can predict direct synthesis with 100%. In reality
we approach the experimental accuracy and further decrease of
the errors will be challenging.

Comparison with published models for retrosynthesis tasks
USPTO-50 k. The proposed augmentation protocol achieved the
best published results on the USPTO-50 k dataset (Table 5). In
the previous studies with this set the authors separated data on
training, validation and test sets. In all our analyses, since the
validation set was not used for model selection and we did not
observe the model overfitting35, we joined training and validation
sets to use all data in order to develop better models. While we
think this is a fair comparison (it is up to the developers of the
model to decide on how to best use the available data), we also
added results when the model was developed with only the 40 k
compounds for USPTO-50 k set (Table 5). The accuracies of the
models developed with 40 and 45 k sets were very similar for the
test set. Thus, the data augmentation allowed to compensate for
the smaller size of the training set.

USPTO-MIT. We also analyzed the performance of the model at
retrosynthesis of the USPTO-MIT set. Compared to USPTO-50 k
this database also contained multiple reagents and possible cata-
lysts. In our previous analysis (Table 3) we used the retrosynthesis
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Fig. 6 Top-10 accuracy of prediction of different classes of reactions.

Table 3 Prediction accuracy for direct reaction from USPTO-MIT test set using beam size= 10.

Test set x1 Test set x20 Test set x100

Training set Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

x5N (separated) 91.1 96.3 96.7 91.8 96.9 97.3 91.9 97 97.4
x5S (mixed) 90 95.8 96.2 90.4 96.4 96.9 90.4 96.5 97
x5M (mixed) 90 95.5 95.7 90.2 96.1 96.5 90.2 96.2 96.8
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of the largest fragment as part of the “mix” protocol (x5M), i.e.,
the products were used as input data contained with “.” to predict
the largest reactant (as explained in the Supplementary materials,
in order to distinguish both direct and retrosynthesis reactions,
one of them started with a dot). The dot in front of the SMILES
allowed the Transformer to distinguish retrosynthesis from the
primary studied direct synthesis reaction. But, of course, the
model trained with such data could be also used for retrosynthesis,
provided that input data also started with “.”. We also developed a
new retrosynthesis model for this set by making it more compa-
tible to USPTO-50 k. For this we kept only the 1–2 largest frag-
ments as the targets for retrosynthesis prediction and trained a
new model using the x5S protocol. Both models were used to
predict the 40 k test set which was augmented 100 times. The
MaxFrag performances of x5S model, 61.9% (Top-1), 84.4% (Top-
5), and 86.9% (Top-10) were very similar to those calculated for
the USPTO-50 k set (58.5, 85.4, and 90—see Table 5). The x5M
model, which as aforementioned was a “by-product” of our direct
reaction predictions, calculated MaxFrag of 61.1%, 84.4% and
88.2% for the MaxFrag Top1-,Top-5, and Top-10, respectively.
Considering that the USPTO-MIT set contained more diverse
reactions than USPTO-50 k, this result clearly demonstrated the
excellent performance of the developed approach and its scal-
ability. The augmented transformer (AT) was able to improve its
performance for the Top-1 by extracting knowledge from a much
larger dataset of reactions.

USPTO-full. The final testing was done using a USPTO-full set by
Dai et al.24. The authors created a large dataset from the entire
set of reactions from USPTO 1976-2016. For reactions with
multiple products they duplicated them into multiple ones with
one product each. The authors also removed duplications in
reactions as well as those with wrong mapping to obtain train/
valid/test datasets with 800/100/100 k sizes. Our analysis
identified that some reactions in these sets were still invalid,
e.g., contained no products or just single ions as reactants (e.g.,
US08163899B2,>>[OH2:11]; US06048982,CC(=O)OCCCCC
[I:22]>>[I-:22]; US07425593B2,>>[K:12]; US08114877B2,CC
[I:13]>>[I-:13]). We eliminated such reactions as well as those
where reactants had less than five atoms in total, since these were
unlikely to be correct reactions. This procedure decreased sizes of
the train/valid/test sets on average by 4% to 769/96/96 k. The AT
trained using x5M protocol using the 769 k training set calcu-
lated the higher performance compared to results from the
previous study (Table 6). Considering that after the removal of
the 4% erroneous reactions the test dataset was decreased, we
also included recalculated performance for it by assuming the
worst case scenario: that AT and other tested methods failed for
all excluded sequences. Even for this very conservative estima-
tion the AT provided significant improvements compared to
previously reported results. The MaxFrag accuracies for USPTO-
full were lower compared to that of other analyzed sets due to the
much higher diversity of this set.

Table 4 Comparison of recently published methods for direct synthesis prediction on the USPTO-MIT set.

Model Top-1 Top-2 Top-5

Separated Mixed Separated Mixed Separated Mixed Ref. #

Transformer (single model) 90.4 88.6 93.7 92.4 95.3 94.2 18

Transformer (ensemble of models) 91 94.3 95.8 18

Seq2Seq 80.3 87.5 11

WLDN 79.6 89.2 32

GTPN 83.2 86.5 40

WLDN5 85.6 93.4 23

AT, this worka 91.9 90.4 95.4 94.6 97 96.5
AT trained with same training set as in
ref. 22.

92 90.6 95.4 94.4 97 96.1

aThe results of the models applied to x100 augmented dataset using beam size= 10. Model was trained on a set of 439 k reactions, which combines both the training set of 400 k and the validation set of
39 k from ref. 22. The model was trained on the 400 k training set to better match performance of previous models.

Table 5 Comparison of retrosynthesis recently published methods for retrosynthesis prediction on USPTO-50 k.

Model Top-1 Top-2 Top-5 Top-10 Ref. # Comments

Seq2Seq 37.4 57.0 61.7 12 40/5/5 split; splitting any reactions with multiple products into multiple
single product and removal of trivial products

Transformer (3*6) 42.7 52.5 69.8 – 13 45/5 split: no validation set was used
Transformer (6*8),
(self corrected)

43.7 65.2 68.7 19 40/5/5 split, reagents from reactants are removed

Transformer, augmentation 44.8 57.1 57.7 79.4 32 Same as in ref. 12.
Similarity-based 37.3 63.3 74.1 20 Same as in ref. 12.
Graph Logic Network 52.5 75.6 83.7 24 Same as in refs. 12,19.
G2Gs 48.9 72.5 75.5 25 Same as in ref. 12.
ATa 53.5 69.4 81 85.7 Same as in ref. 13.
AT 53.2 68.1 80.5 85.2 Only 40 k samples were used as training set to match the other results
AT MaxFragb 58.5 73 85.4 90 Same as in ref. 13.
AT MaxFrag 58 73.4 84.8 89.1 Only 40 k samples were used as training set to match the other results

aThe results of the reference model applied to x100 augmented dataset using beam size= 10.
bThe classical retro-synthesis accuracy was estimated as accuracy for prediction of the largest fragment (MaxFrag).
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Thus for all analyzed data sets the AT provided an outstanding
performance by consistently and significantly overperforming all
previously published models for all statistical performances.

Discussion
This study showed that careful design of the training set was of
paramount importance for the performance of the Transformer.
Training the model to learn different representations of the same
reaction by distorting the initial canonical data eliminated the
effect of memorization and increased the generalization perfor-
mance of models. These ideas are intensively used, e.g., for image
recognition39, and have been already successfully used in the
context of several chemical problems27–30, including reaction
predictions18,31, but were limited to the input data. For the first
time we showed that application of augmentation to the target
data significantly boosts the quality of the reaction prediction. We
also showed for the first time that the frequency of predicted
SMILES could be used as a confidence metric for (retro)synthesis
prediction and can provide quantitative estimation of the most
probable reactions amid top-n predicted outcomes. It is very
critical to estimate the quality of the reaction prediction since it
could help to better prioritize multi-step retrosynthesis. The
developed methodology is unique to the use of augmentation
techniques, currently unavailable to GCNs24, which directly
operates with graphs. The estimated accuracy of prediction can
help to distinguish reactions, which are difficult to predict, from
typo and erroneous reaction data, which will be important to
clean up the reaction data and further improve model quality. We
also introduced a new MaxFrag measure, classical retro-synthesis
accuracy, which in our opinion better reflects the requirements
for retrosynthesis analysis.

It should be mentioned that use augmentation was first studied
by authors of ref. 18, who introduced transformer to chemistry
and applied it to chemical reactions by using SMILES instead of
the text sequences. The augmentation of input data, which was
done in that article, provided only a minor improvement of their
models. Because of its small impact it was not followed in several
other Transformer-based works, including our own study13,19. In
this article we brought an original idea on how to augment
chemical data, which provided a significant improvement of the
results for all analyzed datasets.

SMILES random augmentation had the ability to stabilize the
model’s learning by adding more data and adding more ran-
domness and freedom into the network. Remarkably, this aug-
mentation functioned similarly to ensemble learning, allowing for

better statistics and improving the performance of the model.
Beam search and augmentation were complementary and our
reference model in essence got better results than models devel-
oped using graph representation of molecules24, for which the use
of similar data augmentation technique is currently not possible.

Data availability
Data and predictions that support the results of this study are available at https://github.
com/bigchem/synthesis.

Code availability
Source code to perform the data augmentation is available at https://github.com/
bigchem/synthesis.
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