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1 | INTRODUCTION

Infections with the novel coronavirus SARS-CoV-2 resulting in

COVID-19 development represent the major medical and scientific

Abstract

With the worldwide spread of the novel severe acute respiratory syndrome coro-
navirus-2 (SARS-CoV-2) resulting in declaration of a pandemic by the World Health
Organization (WHO) on March 11, 2020, the SARS-CoV-2-induced coronavirus dis-
ease-19 (COVID-19) has become one of the main challenges of our times. The high
infection rate and the severe disease course led to major safety and social restriction
measures worldwide. There is an urgent need of unbiased expert knowledge guiding the
development of efficient treatment and prevention strategies. This report summarizes
current immunological data on mechanisms associated with the SARS-CoV-2 infection
and COVID-19 development and progression to the most severe forms. We characterize
the differences between adequate innate and adaptive immune response in mild disease
and the deep immune dysfunction in the severe multiorgan disease. The similarities of
the human immune response to SARS-CoV-2 and the SARS-CoV and MERS-CoV are
underlined. We also summarize known and potential SARS-CoV-2 receptors on epithe-
lial barriers, immune cells, endothelium and clinically involved organs such as lung, gut,
kidney, cardiovascular, and neuronal system. Finally, we discuss the known and potential
mechanisms underlying the involvement of comorbidities, gender, and age in develop-
ment of COVID-19. Consequently, we highlight the knowledge gaps and urgent research
requirements to provide a quick roadmap for ongoing and needed COVID-19 studies.

KEYWORDS
COVID-19 comorbidity, COVID-19 immunity, COVID-19 multimorbidity, COVID-19
prevention, COVID-19 treatment, SARS, SARS-CoV-2 receptors

challenges of our time. Knowledge on SARS-CoV-2 infection path-
ways and mechanisms associated with immune defense or immuno-
pathology is growing exponentially, as it is indispensable to design

the proper diagnostic and therapeutic strategies. However, there
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TABLE 1 Summary of knowledge gaps and research needs pertaining to SARS-CoV-2 and COVID-19 (as of May 20, 2020)

Knowledge Gaps
Origin and evolution SARS-CoV-2

COVID-19 diagnosis

Zoonotic transmission and exhaustive
characterization of human SARS-CoV-2
transmission

Route of SARS-CoV-2 transmission

Natural history of asymptomatic and mild
SARS-CoV-2 infection in humans

Pathogenicity of SARS-CoV-2

Spectrum of COVID-19 severity

Risk factors and biomarkers associated with
severe illness or mortality in COVID-19

COVID-19 treatment

Vaccine development for SARS-CoV-2

Pre-clinical models for SARS-CoV-2 and
COVID-19 research

Para-/postinfectious syndromes in SARS-
CoV-2 infection

Long-term sequelae of COVID-19

Individual protection after SARS-CoV-2
infections

Research Needs

To shed light on the origin of SARS-CoV-2 via studies of genomic epidemiology and evolutionary
dynamics

To develop rapid and specific point-of-care diagnostic test for COVID-19 and to validate existing
serological tests

To elucidate mechanisms of SARS-CoV-2 transmission from animals to humans and vice versa.
To determine how demographic factors and severity of COVID-19 patients affect SARS-CoV-2
transmission as well as how infectious are asymptomatic or pre-symptomatic infected people

To ascertain the role of fecal-oral transmission in COVID-19 and better define the presence and
duration of SARS-CoV-2 in oral and respiratory secretions, in fecal samples and in serum.

To identify SARS-CoV-2 a-/oligosymptomatic carriers to track their viral loads, clinical
presentations and immune response (antibody titers, immune phenotyping, etc) over time

To investigate mechanisms of and changes in SARS-CoV-2 pathogenicity (as compared to SARS-
CoV) to provide the basis for the identification of novel therapeutic targets

To characterize the heterogeneity of COVID-19 severity to aid in directing management and
treatment of COVID-19 patients

To identify COVID-19 sensitive groups and determine the causes underlying disease severity to
reinforce prevention strategies and treatment of high-risk groups

To screen new pharmaceuticals, small molecule compounds, biologics, and other agents that have
potent anti-SARS-CoV-2 to empower current COVID-19 treatments

To develop SARS-CoV-2 vaccines for prevention and ultimate eradication of SARS-CoV-2.
Particular attention should be placed to investigate potential antibody-dependent enhancement
of viral infection in vaccine candidates

To develop animal models for SARS-CoV-2 research (mechanisms of infection, pathogenesis,
treatments, etc)

To understand COVID-19-associated Kawasaki-like syndrome/TSS in children and rare para-/
postinfectious symptoms in adults.

Follow-up of COVID-19 patients to detect potential long-term consequences of COVID-19
pneumonia (eg, pulmonary fibrosis, early COPD) and other manifestations (eg, renal impairment,
cardiac/ vascular dysfunction, increased risk of thrombosis/ sepsis (due to endothelial
dysfunction))

To understand why development of protective antibodies is not seen in all infected patients and
whether this might be related to severity of SARS-CoV-2 infection

are several knowledge gaps and urgent unmet research needs in our
understating of the current pandemics (Table 1). A group of experts
in basic and clinical immunology has joined forces under the um-
brella of the European Academy of Allergy and Clinical Immunology
(EAACI) to provide a consensus report on the basic molecular and
immune mechanisms associated with susceptibility, clinical presen-
tations and severity of COVID-19.

2 | SARS-COV-2 RECEPTORS: PROVEN
AND POTENTIAL INTERACTION PARTNERS

On the basis of sequence homology, all human coronaviruses have
animal origins: SARS-CoV, SARS-CoV-2, MERS-CoV, HCov-NL63,
and HCoV-229E are considered to have originated from bats,*
whereas HCoV- OC43 and HKU1 likely originated from rodents
(Figure 1).2 SARS-CoV-2 has a significant structural similar-
ity to SARS-CoV and MERS-CoV and other human and animal

coronaviruses.>* It has been quickly determined that SARS-CoV-2,
similarly to SARS-CoV, utilizes the membrane bound form of angi-
otensin-converting enzyme 2 (ACE2) to enter human cells via its
spike protein (S).> After SARS-CoV-2 has bound ACE2, ACE2 will
be internalized and its membrane expression decreased. Whereas
ACE2 is an important regulator of bradykinin, its reduced expres-
sion in the lung environment results in local vascular leakage lead-
ing to angioedema in the affected lung tissue.® The host serine
protease TMPRSS2 cleaves spike protein into S1 and S2 fragments,
which enables fusion with the cellular membrane, entrance to the
cell, and start of the replication process.7 In addition to TMPRSS2,
other proteins such as furin or human endosomal cysteine pro-
teases are potentially capable of cleaving S, such as cathepsin L
(CTSL) and cathepsin B (CTSB).2? ACE2 is highly expressed in the
lungs, small intestine, kidney, and heart, but it is not expressed on
innate and adaptive immune cells.’°*3 As recently shown, SARS-
CoV-2 can also use CD147 (also called basigin (BSG) or extracellu-

lar matrix metalloproteinase inducer (EMMPRIN)), to enter cells of
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epithelial origin, but it is not yet clear if then virus can efficiently
replicate or it leads to the cell death!* CD147 is utilized as a recep-
tor by other viruses including SARS-CoV and HIV-1, as well as by
malaria to enter erythrocytes.'>™” It is, however, not yet clear if
SARS-CoV-2 can replicate inside immune cells or just infects them
and causes cell death. CD147 is a transmembrane immunoglobu-
lin-like receptor, which also exists in a secreted form.*>® At the
cellular membrane, it is activated by several extracellular ligands
such as cyclophilins A and B (PPIA and PPIB), S100A9 or platelet
glycoprotein VI (GP6).722 Its extracellular glycosylation sites bind
to complex proteoglycans such as syndecan-1.2° CD147 often cre-
ates membrane complexes with CD44, one of the receptors for

t.2* Coronaviruses

hyaluronan, an extracellular matrix componen
incorporate host cyclophilins during their cellular replication cycle,
which further enables them to bind to CD147.252% CD147 is ex-
pressed in human airway and kidney epithelium, as well as in in-
nate cells (granulocytes, macrophages, dendritic cells (DC), innate
lymphoid cells (ILCs), and lymphocytes).’® Other receptors poten-
tially utilized by SARS-CoV-2 are CD26 (encoded by DPP4; a re-
ceptor for MERS-CoV), an important T cell and also epithelial cell
receptor, amino peptidase N (ANPEP; a receptor for human and
porcine coronaviruses),*>?” ENPEP and a glutamyl aminopepti-
dase,?® as well as DC-SIGN %? (Figure 2).

3 | ENTRANCE OF THE VIRUS THROUGH
EPITHELIAL BARRIERS: COVID-19
PATHOPHYSIOLOGY

3.1 | Airway epithelium: hotspot for disease
development

In the upper and lower airways ACE2 and TMPRSS2 are highly co-
expressed,’° but there is no expression of SLC6A19, which po-
tentially blocks the access of TMPRSS2 to ACE2 and subsequently
reduces active infection. 3%3! In the nasal and the pharyngeal epi-
thelium, in goblet and ciliated cell, ACE2 is expressed at high levels
and co-expressed with TMPRSS2 representing the sites of initial
viral replication and a main source of infectious particles.’?*33° The
lower airways, bronchial epithelium and type Il pneumocytes (AT2
cells) highly express ACE2 and TMPRSS2, which may provide virus
entrance to the lung and lead to COVID-19 pneumonia. Moreover,
CD147, CD26, ANPEP, and ENPEP are also expressed in the airway
epithelium, as well as in many innate and adaptive immune cells,
1013 hoth in bronchoalveolar lavage (BAL) and peripheral blood
(Figure 3A).

Once the virus enters the host cell, it releases its RNA into the

cytoplasm and uses the host translation machinery to translate its

? M

Malayan pangolin

Ferrets and cats express ACE2 with
SARS-CoV-2 binding residues
and develop symptoms of COVID-19
(inc. gastrointestinal symptoms)
representing a model of disease
infection and transmission

Dogs are less susceptible
to infection and rarely develop

Rhesus macaque animal
model reflects the course
of COVID-19 in humans
including lymphocytopenia

o

Wild-type laboratory mice
and livestock are not
susceptible to infection
with SARS-CoV-2

FIGURE 1 SARS-CoV-2 on the animal-human interphase. Animal models that resemble clinical and pathological features of COVID-19
are essential to investigate pathogenesis, transmission, and therapeutic strategies. SARS-CoV-2 shares 96.2% of its genome sequence with
the bat CoV RaTG13 posing the bat as the most probable natural host of virus origin. SARS-CoV-2-related coronaviruses have been identified
in Malayan pangolins, which is considered as an intermediate host between bats and humans. ACE2, a critical SARS-CoV-2 receptor, in
wild-type mice differs from the human one; therefore, transgenic mice models with recombinant hACE2 are necessary. To this date, Rhesus
macaques, with ACE2 identical to human's, have been used to study the natural course of the disease and the effectiveness of therapeutic
intervention with intravenous immunoglobulins. Ferrets and cats have been shown susceptible to SARS-CoV-2 infection and to develop
COVID-19 symptoms including respiratory and gastrointestinal manifestations. Limited facilities and expertise in handling nonmurine
species may hamper usage of the aforementioned models. Transmission between humans and animals has not been unequivocally confirmed

disease symptoms
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SARS-CoV-2

o
o

Furin TMPRSS2 ACE2
SYND1

Cathepsin L

Cytoplasm

i

2NN

CD44 CD26 ANPEP ENPEP DC-SIGN

Figure legend:
Y Viral
protein S

)(0 Proteases .%. Golgi
N apparatus

Endosome

FIGURE 2 Cellular distribution of confirmed and potential SARS-CoV-2 receptors and interaction partners. Entry of SARS-CoV-2 into the
host cells depends on expression of i) adequate receptors and ii) cellular proteases. The two-step infection process is mediated by the viral
Spike (S) protein. Its binding to the receptor and cleavage by proteases assures virus internalization. ACE2 and TMPRSS2 are critical complex
for SARS-CoV-2 infection. CD147 and its extracellular (Cyclophilin A, Cyclophilin B, Platelet glycoprotein VI, SI00A9, Hyaluronic acid) and
transmembrane (CD44, Syndecan-1) interaction partners can be also used for SARS-CoV-2 entry and/or modulation of immune responses to
the virus. It has been suggested for SARS-CoV-2 and shown in case of other Coronavidae family members that they can also exploit other cell
surface receptors (CD26, ANPEP, ENPEP, DC-SIGN) and proteases (Furin, Cathepsin L, Cathepsin) to enter human cells. CypA, Cyclophilin

A; CypB, Cyclophilin B; GPVI, Platelet glycoprotein VI; HA, Hyaluronic acid; SYND1, Syndecan-1. This figure is modified from the original
publication by Radzikowska, Ding, et al, presenting the distribution of these receptors in various human tissues and immune cells in healthy
children and adults, and in patients with COVID-19 comorbidities and risk factors (ref). Created with Biorender.com

polyproteins ppla and pplb, also known as replicases and viral es-
sential proteases 3CLpro and PLpro. These proteases cleave poly-
protein complex into several nonstructural proteins (Nsp), which
together with the viral RNA-dependent RNA polymerase form the
replication complex, where the negative strand and mRNA for struc-
tural proteins (S, nucleocapsid (N), envelope (E), and membrane (M))
and accessory proteins for the virus are created.?%%33 After protein
translation, they traffic through the ER to the Golgi apparatus, where
the mature virions are assembled in budding vesicles and are exo-
cytosed from the cell. Inside infected cells, there are several innate
immune mechanisms responsible for recognizing the virus at differ-
ent stages of its replication and leading to the production interfer-
ons type | (IFNa and B), type Ill, and pro-inflammatory cytokines.®*
Genes encoding these interferons form the type-1 (E1) epithelial re-
sponse profile. Also, ACE2 is a typical E1 gene.35 This response also
includes mechanisms such as the expression of helicases or cytidine
deaminases targeting viral RNAs (Figure 3A).

Viruses use various strategies to evade those mechanisms.
Yet, little is known about SARS-CoV-2 antiviral responses and eva-
sion strategies of this virus, but likely much can be extrapolated
from the SARS-CoV and MERS-CoV-based knowledge.***” Viral
single-stranded RNA (ssRNA), double-stranded RNA (dsRNA), and
proteins are recognized by cytosolic pattern recognition receptors
(PRR), mainly RIG-I/MDAS5 and toll-like receptors (mainly TLR7/8).
This recognition leads to recruitment of MAVS, MyD88, and/or
TRIF, respectively. Eventually, IRF3 and IRF7 transcription factors

are activated leading to the production of type | interferons (IFN-a
and IFN-B), whereas NF-KB and AP-1 transcription factors lead to
the production of pro-inflammatory cytokines such as IL-6, IL-8, IL-1
B, CXCL10, and CCL2.%7

Epithelial cells produce type | and type lll IFNs upon viral infec-
tion. Type | IFN act through receptors expressed in a vast number of
cells. In contrast, type Il IFNs seem to exert their effect mostly on
epithelial cells, are less inflammatory, and are activated faster than
type | IFN.%8%7 |FNs are one of the most potent antiviral compo-
nents of the innate immune response. They work on various levels,
that is, blocking viral attachment, entry, trafficking, protein produc-
tion, and genome amplification and also viral assembly and egress.3®
Moreover, IFNs also activate other innate and adaptive immune re-
sponses. However, in case of COVID-19 these responses seem to be
diminished*® or dysregulated.41

SARS-CoV and MERS-CoV inhibit IFN signaling on various
levels.*? The nsp 16 mediated 2’0 methylation of viral mRNA
cap structure prevents coronaviruses recognition by MDAS5.43
The sequestration of viral dsRNA within double membrane vesi-
cles (DMVs) also protects coronaviruses from detection through
cytosolic PRRs.** Moreover, coronaviruses produce many non-
structural proteins which inhibit induction of IFNs (inhibition of
IRF3 and IRF 7), and/or interferon signaling (inhibition of STAT 1
signaling).*? A reduced antiviral response via IFN pathway inhibi-
tion, together with an ongoing pro-inflammatory response, pre-

sumably heightened by increased viral load, may lead to excessive
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ACE2

CD147 CD26

IL-6
P TNF-a

> IFN-a
IFN-B
CXCL10

Respiratory epithelial cell

®)

TMPRSS4
CD147

ACE2

Intestinal epithelial cell

#*

disintegration of the
intestinal epithelial barrier

gastrointestinal symptoms

IL-16  CXCR10
TNF-a  CXCL10

-

2

FIGURE 3 Epithelial barriers are susceptible for the SARS-CoV-2 infection. (A) Epithelial cells of the respiratory system are the primary
site of SARS-CoV-2 infection. The respiratory epithelium is equipped with the receptors and other host proteins allowing viral entry: ACE2,
TMPRSS2, CD147, and CD26. The highest expression of ACE2 is found in the nasopharynx. The virus was found to propagate in the lower
respiratory tract as well, especially in type Il alveolar cells. The effects of the virus on the respiratory epithelial barrier include cell membrane
fusion and syncytium formation (which represents a mechanism of viral spread), apoptosis and virus-mediated cell lysis leading to the loss
of barrier function. Upon infection, epithelial cells release interferons, chemokines, and cytokines promoting tissue infiltration by innate
immune cells, such as monocytes, NK cells, neutrophils, and, with time, inflammatory macrophages and virus-specific lymphocytes. Immune
cells express putative SARS-CoV-2 receptors, CD147, and CD26. (B) Gastrointestinal symptoms are seen in a substantial percentage of
COVID-19 patients. The intestinal tissue has a high expression of ACE2 receptor, TMPRSS2, and TMPRSS4 proteases. Their expression
increases with intestinal epithelial cell differentiation. ACE2 expression in intestinal epithelium decreases with inflammation and shows a
negative correlation with IL-1p levels. SARS-CoV-2 infection results in disintegration of the intestinal epithelial barrier. Virus-specific IgA
have been found in the gastrointestinal tract. Noninfectious SARS-CoV-2 RNA is found in stool after negative nasal swab tests. CXCL10,
C-X-C motif chemokine 10; CXCR1, C-X-C motif chemokine receptor 1; CXCR10, C-X-C motif chemokine receptor 10; GB, goblet cell;

ILC, innate lymphoid cell; IL, interleukin; IFN, interferon; M6, macrophage; MO, monocyte; NEU, neutrophil; NK, natural killer cell; pDC,

plasmacytoid dendritic cell; TNF, tumor necrosis factor

inflammation*! and worsening of the disease. In an animal model
of SARS-CoV, a delayed type | interferon response resulted in ac-
cumulation of inflammatory monocytes/macrophages, leading to
elevated lung cytokine/chemokine levels, vascular leakage, and im-
paired virus-specific T-cell responses.** A recent study in humans
showed that SARS-CoV-2 infection induces weak IFN responses

from infected pneumocytes, even weaker than in SARS-CoV

infection.*® Interestingly, ACE2 has been recently shown to be an
interferon-stimulated gene.12 ACE2 is also known to protect mice
against acute lung injury. Therefore, it needs to be determined
whether upregulation of ACE2 after the initial antiviral response
is used by SARS-CoV-2 to enhance infection, but also if the delay
of IFN responses potentially leads to impairment of ACE2-related

protection against lung injury.
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3.2 | From oral to rectal mucosa: What we know
about the involvement of the gastrointestinal tract in
COVID-19

Based on the current knowledge of SARS-CoV-2 receptors’ expres-
sion on the epithelial barrier sites, the gastrointestinal tract requires
special attention. Human ACE2 is homogeneously distributed on the
brush border of enterocytes across the small intestine and in the
lung epithelium.***¢ In the oral mucosa, the basal layer of nonkerati-
nized, squamous epithelial cells were reported to be ACE2-positive,
while stomach epithelial cells and colon enterocytes remained nega-
tive.*> TMPRSS2 and TMPRSS4 mediate infection of small intestinal
epithelial cells.*” These enzymes might additionally be an interesting
target for therapeutic intervention, since a clinically approved pro-
tease inhibitor is available.” Less is known regarding the gastrointes-
tinal distribution of CD147.%* Enteric CD147 seems to play a role in
carcinogenesis and inflammation,*® which might shed a new light on
patients’ group at risk for severe SARS-CoV-2 infections and needs
further attention. Of note, CD26 expression was reported to be high
in ileum and jejunum, low in duodenal samples and not detectable in
colon epithelial cells (Figure 3B).%

Gastrointestinal symptoms like vomiting and diarrhea in COVID-
19 are gaining attention.® In the previous SARS outbreak and in MERS
patients, gastrointestinal complaints were found in approximately
30% of patients. In SARS-CoV-2 infections, diarrhea, and abdominal
pain occur in 20%-50% of COVID-19 patients and might even precede
onset of respiratory symptoms.>>*? SARS-CoV active replication was
detected in small intestinal enterocytes®® and enteroids derived from
human ileum and colon in case of SARS-CoV-2.%” This is highly rele-
vant as viral excretion was detected in fecal samples and anal swabs of
COVID-19 patients.>* While first evidence is available that human co-
lonic fluids might rapidly inactivate SARS-CoV-2 in vitro,*® MERS-CoV
was found to resist gastrointestinal fluids simulating conditions with
elevated pH levels after food ingestion, while the virus rapidly lost
infectivity when exposed to an acidic gastric fluid simulating fasted
state.’® These reports might explain, at least partially, the fact that
even though SARS-CoV-2 RNA was detected in stool samples from
patients, the isolates were not infective.’® Thus, it remains unclear
whether the fecal-oral-route might propagate disease transmission
especially in reduced hygienic conditions.””

Further understanding of the relationship between disease and
the digestive tract is essential to prevent transmission and disease
progression as well as to design efficient treatment of COVID-19.

3.3 | Skin barrier: more than just matter of wearing
protective equipment

Recent reports indicate that in COVID-19 the skin might also be af-
fected. An Italian and a French study reported that 20.4% to 50%
of COVID-19 cases, respectively developed nonpruritic, erythe-
matous rashes, urticaria or varicella-like lesions affecting the trunk

and sometimes the limbs.>®>’ In general, the rashes occurred 3 days

after development of COVID-19 symptoms and the median duration
was 8 days.®C In addition, acrolated ischemic, self-healing lesions at
toes, and fingers have been observed mainly in children and young
adults shortly before COVID-19 symptom appearance.®! To put oth-
erwise, healthy kids in quarantine upon detection of these lesions
might help to prevent infection from spreading. Apparently, cutane-
ous manifestations of COVID-19 are similar to skin rashes observed
in other common viral infections. There is no evidence that they are
related to the severity of the disease or an indication that the virus
can replicate in the skin.

Unfortunately, the few studies available so far did not detect
SARS-CoV-2 presence in skin lesions, which questions if the skin
manifestations are indeed infectious or para-infectious driven.
Given that ACE2 and TMPRSS2, the receptors for SARS-CoV-2 entry
into human cells, are absent or weakly expressed in the skin,* pa-
ra-infectious events seem to be more likely. Furthermore, the possi-
bility of adverse drug reactions as causative for skin manifestations
in COVID-19 is being strongly considered in certain cases.

Some of the protective measures taken during the SARS-CoV-2
pandemic (use of gloves, masks or goggles) can affect the skin.
Masks and goggles often induce pressure injury due to not properly
fitted material, and a study in Chinese health care workers indicated
that 71% suffer from skin barrier damage such as dryness, scales,
papules or erythema.62 Causative is the inevitable hand hygiene pro-
cedure—66.1% stated to wash their hands more than 10 times per
day and only 22.1% used appropriate skin care products afterward.
Moreover, long-term usage of gloves over 6 hours per day is com-
mon in health care workers leading to overhydration and dysbiosis
with damage to the stratum corneum and subsequent skin infection
or sensitization.®® Thus, proper education regarding the use of skin
care products after the hand hygiene procedure is essential to pro-
tect the skin barrier and prevent further skin complications.

4 | DEVELOPMENT AND FAILURE OF AN
ADEQUATE IMMUNE RESPONSE

4.1 | Innate Immunity
4.1.1 | DCs and macrophages

Monocytes/macrophages and DCs play a crucial role in anti-viral re-
sponses by linking innate and adaptive immunity. Peripheral activa-
tion and accumulation of activated pro-inflammatory monocytes/
macrophages within lungs has become one hallmark of symptomatic
SARS-CoV-2 infection.*164-%¢ |n contrast, the exact role of interactions
between DCs and SARS-CoV-2 has not been determined yet. Previous
in vitro experiments showed that different human coronaviruses display
either high (229E) or poor (OC43) capacities to infect macrophages.®’
The efficiency of macrophage infection by coronaviruses was negatively
correlated with IFN-o production.®’ In COVID-19 patients, ACE2 ex-
pression was detected on both lymph node-associated CD68 + mac-

rophages and tissue-resident CD169 + macrophages.®® It needs to be
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Immunology of adequate and nonadequate response to SARS-CoV-2 infection. The clinical course of the SARS-CoV-2

infection varies from an asymptomatic to a severe, life-threatening syndrome. The number of asymptomatic carriers is unknown, and

virus detection is often accidental. Data on the immune characteristics in this group are lacking. Patients who experience mild symptoms
are characterized by a transient, slight decrease in lymphocyte counts and an increase in neutrophil counts in the peripheral blood.

Viral clearance in this group is convergent in time with the specific antibody production. Delayed and limited IFN type | response in
combination with the overactivation of pro-inflammatory cytokine response has been suggested as a possible mechanistic explanation of
hyperinflammatory syndrome in COVID-19 patients presenting with severe clinical manifestations: respiratory insufficiency, kidney failure,
thromboembolic, and other complications. Severe COVID-19 is characterized by a systemic cytokine release syndrome (CRS), increased
levels of LDH and CRP, hypoalbuminemia, deepening decrease in lymphocyte counts and immune exhaustion of T cells

addressed, however, whether other proven and potential SARS-CoV-2
receptors, such as CD147 or CD209 (DC-SIGN), both being expressed
by monocytes/macrophages and DCs can facilitate viral entry to these
cells 1429:69.70 Recently, SARS-CoV-2 particles were found in mac-
rophages, but it remains elusive whether these findings were an effect
of active cellular infection or just the consequences of physiological
phagocytosis. It is tempting to speculate that SARS-CoV-2, similarly
to HIV, can use macrophages as a Trojan horse contributing to viral
spread.®®”! Regardless of the exact mechanism of viral entry, both pre-
viously described coronaviruses and the new SARS-CoV-2 can trigger
NLRP3 inflammasome activation in monocytes/macrophages, produc-
tion of high levels of pro-inflammatory mediators such as IL-6, GM- CSF,
IL-1B, TNF, CXCL-8, CCL-3, and enhanced cell death. Subsequently, it
may lead to the cytokine storm also known as cytokine release syn-

drome (CRS) (Figure 4).”% Some of these cytokines (ie, IL-6) are mainly

66,73-76

secreted by macrophages, and the evidence of macrophage

activation syndrome has been reported.”’
anti-IL-6R treatment on COVID-19 outcomes indicate that therapies

targeting macrophage-related activities can become promising means
78

Thus, beneficial effects of

to inhibit the inflammatory storm in the course of coronavirus disease.
Overloaded, activated and subsequently dying macrophages might
contribute to an increase in the levels of plasma ferritin and profound
dysregulation of iron metabolism.””° High ferritin levels are common

clinical findings in patients with severe COVID-19.8!

4.1.2 | Neutrophils and eosinophils

Neutrophils are one of the predominant lung infiltrating leukocytes in

severe SARS-CoV-2 infection, and neutrophilia predicts poor clinical
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outcome.®? Postmortem analysis of lung samples from COVID-19
patients showed neutrophil infiltration in pulmonary capillaries and
neutrophil extravasation into the alveolar space.®3¥* Under neutro-
phil-activating conditions, such as those occurring during systemic
inflammation (CRS), neutrophil extracellular traps (NETs) can be re-
leased. Although this is a way to ensnare pathogens, NET formation
is linked to pulmonary diseases, particularly acute respiratory distress
syndrome (ARDS). Severe COVID-19 conditions with uncontrollable
progressive inflammation presumably induce an intense crosstalk
between neutrophils releasing NETs and IL-1f secretion from mac-
rophages, which is the driving force in further complications.®
Although eosinophils have protective effects in different viral in-
fections, the eosinophil response toward SARS-CoV-2 is incompletely
understood.®> A significant amount of COVID-19 patients present eo-

8687 although it is not reported in all cohorts.28 The pathophys-

sinopenia,
iological mechanism of eosinopenia in COVID-19 patients is not clear
but may be related to increased apoptosis, less eosinophilopoiesis, and
decreased eosinophil egression from the bone marrow.®? Increased tis-
sue migration is unlikely because eosinophils infiltration was not found in

pulmonary tissue of COVID-19 patients,”® but further research is needed.

4.1.3 | ILC and NK cells

ILC are effector cells that respond to environmental cytokines and reg-
ulate immune responses.”>?2 Type 1 ILC include IFN-y producing sub-
types and natural killer (NK) cells. Limited data are available on the role
of ILC in relation to COVID-19, but it has been shown that ILC1-ILC3
express CD26, CD147, cyclophilins and theirs interaction partners.'°
Data on the numbers of NK cells in patients with COVID-19 are varied.
Some studies reported no differences in NK cell counts compared with

9394 while one study found increased numbers of NK

healthy controls,
cells and suggested a role for NK cells in the CRS.7® In contrast, other
studies showed low”® or considerably decreased numbers of NK cells
in patients with SARS-CoV-2 infection, which was more prominent in
severe cases.”’ %% After successful treatment, the numbers of NK cells
restored to the normal levels with reduced expression of NKG2A.”?

Functional exhaustion of NK cells and CD8" T cells was described
in relation to severe SARS-CoV-2 infection (Figure 4). Exhausted NK
and CD8" T cells expressed CD94/NK group 2 member A (NKG2A),
which functions as an inhibitory receptor, and showed diminished
production of CD107a, IFN-y, IL-2, granzyme B, and TNF-o.”” During
infection, IFN-y induce expression of the nonclassical human leu-
kocyte antigen E (HLA-E).1°° HLA-E is the ligand of NKG2A, which
is expressed on epithelial cells. NKG2A blockade with monoclonal
antibodies (Monalizumab) prevents the binding of HLA-E, which may
be a target for COVID-19 therapy.

4.1.4 | Complement and SARS-CoV-2

The complement system is engaged in both coagulation and inflamma-

tory pathways. Histologic and immunohistochemical analysis of lung

and skin have been conducted in patients with COVID-19-induced
ARDS. The typical pulmonary findings for ARDS were accompanied
with significant deposits of terminal complement components C5b-9
(membrane attack complex), C4d, and mannose binding lectin (MBL)-
associated serine protease (MASP)2, in the microvasculature.’®* The
biopsies of both damaged and normally appearing skin revealed a
pauci-inflammatory thrombogenic vasculopathy, with deposition of
complement products C5b-9 and C4d.}°* The authors conclude that
a subset of sustained, severe COVID-19 patients may be defined by a
type of catastrophic microvascular injury syndrome mediated by acti-
vation of complement pathways and an associated procoagulant state.
Further, C3-deficient mice developed significantly less respiratory dys-
function despite viral loads deposited in the lung. These data indicate
that SARS-CoV-mediated disease is largely immune driven and com-
plement activation regulates a systemic pro-inflammatory response to
SARS-CoV infection.'®? Most recently, the placentas from 5 healthy
newborns (all negative for viral RNA and spike protein) of COVID-
19 positive mothers revealed vascular thrombosis without comple-
ment deposition, supporting COVID-19's systemic procoagulant
effects unrelated to systemic complement activation.'%®

4.1.5 | Trained immunity

Stimulation of innate immune cells with specific microbial antigens
induces long-lasting epigenetic and metabolic re-programming lead-
ing to enhanced responses upon a second challenge by the same or
unrelated microbial insults, a process coined as “trained innate im-
munity.”*0%105 As 3 consequence, trained immunity-based vaccines
(TIbV) able to induce potent responses against both specific and
nonspecific antigens contained in the formulation has emerged as
a novel concept in vaccinology.'®® TIbV might be especially relevant
when conventional vaccines are not available, as it is the case for
SARS-CoV-2. One of the best examples about trained immunity is
the influence of BCG vaccination on unrelated pathogens.'°* BCG
seems to induce nonspecific responsiveness to infections both at
the level of trained immunity and prolonged heterologous Th1/Th17
responses.'% BCG-vaccinated infants have significantly increased
production of pro-inflammatory cytokines, increased protection
against infections and reduced mortality.%” Increased expression
of PRRs in monocytes isolated from peripheral blood mononuclear
cells (PBMCs) of healthy individuals 1 year after BCG vaccination
has marked the importance of trained immunity.°® Although further
studies are required, lower number of cases and deaths per popula-
tion during COVID-19 pandemic seem to be reported in countries
with BCG vaccination programs than those that did not have or
ceased it, which could be attributed to potential BCG vaccination-
induced trained immunity effects.’°81%7 Trials assessing the efficacy
of BCG vaccination in populations at high risk of infection or with a
high risk of mortality, such as hospital staff working in close contact
with COVID-19 patients or older individuals, are currently being per-
formed in the Netherlands, Australia and Greece.''° Future research

and clinical trials are needed to demonstrate whether novel TIbV
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might represent a suitable strategy for the prevention and treatment
of SARS-CoV-2 infection.

4.2 | Adaptive immunity

4.2.1 | T cell-related mechanisms: lymphopenia,
T-cell over-activation and T-cell exhaustion

Cytotoxic CD8" T cells directly neutralize infected cells, and CD4"*
T cells aid B cells to initiate humoral responses (Figure 4).1** T cells
are instrumental in developing immunological memory in the form
of virus-specific CD8"* and CD4" T cells as shown in case of SARS-
CoV.1121% |y fact, SARS-CoV-specific CD8'T cells have been de-
tected in humans up to 11 years postinfection, which is longer than
the specific antibodies.’** SARS-CoV-2-specific CD8" and CD4* T
cells were also recently identified in ~70% and 100% of COVID-19
convalescent patients, respectively. CD4" T cells responded to spike
(S) protein, which correlated with the magnitude of the anti-SARS-
CoV-2 IgG and IgA titers. Importantly, SARS-CoV-2 reactive CD4* T
cells were also detected in ~ 40%-60% of unexposed individuals, sug-
gesting cross-reactive T-cell recognition between circulating “com-
mon cold” coronaviruses and SARS-CoV-2,'*% which was confirmed
by others.}*® Profound lymphopenia, with the subsequent shifts in
the T-cell subsets composition, is often reported in SARS-CoV-2
infection, similarly to SARS-CoV and some other viruses.?*?8117
Total numbers of CD4" T cells and CD8" T cells are below normal
levels in most COVID-19 patients, with the lowest numbers in the
severe cases. Moreover, the number of Treg cells is also decreased,”®
whereas a recent case report of nonsevere COVID-19 showed a
progressive increase in the proportion of CD4*CXCR5*ICOS'PD-1*
circulating follicular helper T (T,) cells.”® Delayed development of
adaptive responses, together with prolonged virus clearance, has
been reported in cases of severe SARS-CoV-2 infection (Figure 4)118
Unfortunately, the mechanisms involved in the lymphocytopenia
are still not known in SARS-CoV and SARS-CoV-2 patients. T cells
can be infected through highly expressed CD147'*%° or potentially
through CD26, as ACE2 expression on lymphocytes is very low,°

except in certain tissue-derived T cells.**?

It is yet unclear whether
such infection is the reason of the death of infected T cells. Secondly,
as in the case of SARS-CoV, an alteration in the antigen-presenting
cells (APCs) function and subsequent impairment of T-cell priming
might lead to an inefficient/delayed formation of virus-specific T
cells. 129122 Finally, also a high cytokine response from the infected
cells might induce apoptosis of T cells.1?® The causes of lymphopenia
need to be extensively studied, as it correlates with the higher risk of
severe disease and increased length of hospitalization.'?*'? |n ad-
dition to decrease in numbers, there are also other defects reported
in the function of T-cell subsets in SARS-CoV-2 infection. In severe
pneumonia in COVID-19 patients, it has also been shown that highly
cytotoxic, activated CD8" T cells and Th17 cells, can also partici-
pate in the CRS, together with macrophages and epithelial cells.**”

Highly activated T cells participating in viral infection often acquire

an exhausted phenotype. Surviving T cells appear functionally ex-
hausted with elevated levels of PD-1.12% The increased expression
of PD-1 and Tim-3 on CD8" T cells was found to progress with the
infection. T-cell exhaustion is a reversible process where a decrease
in antigen availability, achieved either through the gradual resolution
of the infection or intervention strategy, has led to exhausted T cells

regaining their functions.*?”

4.2.2 | B cell-related mechanisms and antibody-
responses

Human SARS-CoV-2 infection activates mechanisms of B- and T-cell
immunity that result in the generation of neutralizing antibodies.”
Initially, B cells appear to recognize SARS-CoV-2 through the nu-
cleocapsid protein, which induces their activation and subsequent
interaction with cognate CD4" T cells. The antibody response is
mounted 4-8 days after the onset COVID-19 symptoms and domi-
nated by IgM.128 This initial IgM-response is followed by IgA and
then IgG production (10-18 days).

The development of mucosal IgA likely prevents SARS-CoV-2
re-infection while circulatory IgA may contribute to systemic SARS-
CoV-2 neutralization and to dampen inflammation during active
infection (Figure 4).'%? The extent and quality of the 1gG response
to neutralize SARS-CoV-2 is critical. Based on previous SARS-CoV
infection reports, SARS-CoV-2-neutralizing IgG antibodies should be
specific for the S protein and detected in serum at 2-3 weeks post-
infection.’®%1%! For that reason, human convalescent serum transfer
has been proposed for the prevention and treatment of COVID-19
patients.132 In fact, and a number of clinical trials have recently re-
ported its therapeutic value in COVID-19.°%4133134 However, low
affinity or suboptimal IgG levels may enhance viral entry into Fcy
receptor-expressing cells through IgG binding. This mechanism may
induce the release of inflammatory cytokines and contribute to the
CRS reported in some severe COVID-19 patients.135

In a recent pre-print study, single-cell RNA sequencing (scRNA-
seq) of PBMCs of 7 patients hospitalized with confirmed COVID-19
and 6 healthy controls was performed.’*¢ Heterogeneous interfer-
on-stimulated gene (ISG) signature, HLA class Il downregulation,
and a novel B cell-derived granulocyte population were reported in
patients with acute respiratory failure requiring mechanical ventila-
tion. The putative contribution of this intriguing B-cell population to
COVID-19 pathology remains to be elucidated.

A central issue of B-cell immunity to SARS-CoV-2 is the duration
of the antibody (IgG) response once the infection is cleared, as well
as the ability for SARS-CoV-2 specific memory B cells to expand, or
replenish, the plasma cell compartment upon re-infection. Given that
long-lived plasma cells and high-affinity memory B cells are thought

to be germinal center-dependent,*’

it is important to character-
ize the antibody and B-cell memory repertoire (affinity, number of
mutations, clonal origin, etc) of asymptomatic patients and patients
that have recovered from COVID-19. The rapid peak of viral load de-

tected in COVID-19 patients, 817 as compared to SARS-CoV, may
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accelerate plasma cell differentiation,”" thus limiting the germinal

center phase and the degree of long-term immunity protection.

4.3 | Multiorgan involvement in severe COVID-19
4.3.1 | Lung pathologies in COVID-19

It has yet to be determined whether SARS-CoV-2 shows signifi-
cantly more pronounced lung tropism than other respiratory vi-
ruses. COVID-19-associated viral pneumonia is relatively frequently
complicated by ARDS. Lung CT images of COVID-19 pneumonia pa-
tients revealed mostly diffuse patchy ground-glass opacities under
the pleura with partial consolidation which, in clinically improving
individuals, can be further absorbed and followed by formation of fi-
brotic tissue.'** Postmortem analysis of COVID-19 patients revealed
extensive alveolar damage complicated by the formation of hyaline
membranes, diffuse remodeling of alveolar wall and accumulation
of immune cells (mostly macrophages) infiltrating air spaces.!*'4?
Macrophages accumulating in lungs secrete type | and type Ill IFNs
that enhance local antiviral defenses in surrounding epithelial cells.
Lung-associated macrophages contribute to development of CRS by
producing IL-6 and IL-1f, cytokines promoting further recruitment of
cytotoxic T cells and neutrophils. In consequence, activated neutro-
phils produce reactive oxygen species and leukotrienes that directly
contribute to acute lung injury.X*® Even successful eradication of the
virus does not prevent from continuous lung damage, development
of frequently progressive and irreversible fibrotic consequences.!**
At this relatively early phase of the pandemic, the exact fraction of
COVID-19 patients burdened with persistent fibrotic interstitial lung
disease cannot be precisely determined. Nevertheless, available and
novel anti-fibrotic therapies should also be considered as candidate

strategies to manage post-COVID-19 long-term lung fibrosis.**®

4.3.2 | Myocardial and endothelial damage: an
immunological perspective on cardiac presentation of
COVID-19

Cardiac injury is a prominent feature in COVID-19 developed by
a considerable proportion of patients and is associated with an
increased mortality‘146 The pathogenesis of COVID-19 in the car-
diovascular system likely results from a combination of several
mechanisms such as direct viral toxicity, systemic CRS-mediated and
stress-related injury. These mechanisms promote cardiomyocyte and
endothelial apoptosis, endothelial shedding, plaque destabilization,
and increase wall shear stress, leading to myocarditis, endothelii-
tis, ischemia, cardiac arrhythmias, and hypercoagulability. ACE2 is
highly expressed on cardiomyocytes and endothelial cells, possibly
facilitating direct viral damage. However, it is unknown whether vas-
cular derangements in COVID-19 patients are due to endothelial cell
involvement by the virus. A recent study found that endothelial cells

can be infected by SARS-Cov-2, as postmortem analysis of kidney

by electron microscopy revealed viral inclusion structures within en-
dothelial cells.*¥” The postmortem histology from patients with mul-
tiorgan failure in COVID-19 showed endothelitis in the lung, heart,
kidney, liver, and small intestine, with an accumulation of inflamma-
tory cells associated with endothelium.’*” These findings suggest
that the endotheliitis may be a combination of direct consequence
of the viral involvement (ie, presence of intracellular viral bodies) and
the host inflammatory response (Figure 5).

In cardiomyocytes, SARS-CoV-2 appears to downregulate ACE2
and diminish its cardioprotective role, promoting left ventricular
failure and hypertrophy, as well as pro-thrombotic and pro-oxi-
dant pathways.148 Few cases documented myocarditis with diffuse
T-lymphocytic inflammatory infiltrates with interstitial edema and
without fibrosis, suggesting an acute inflammatory process. A recent
study presenting data from autopsy series also demonstrated SARS-
CoV-2 viral load in heart tissue.’*”"**! Since SARS-CoV-2 may predis-
pose patients to coagulopathies with clinical manifestations ranging
from arterial and venous embolisms to disseminated intravascular
coagulation, with very poor prognosis, early prophylactic anticoag-
ulation in hospitalized patients is recommended.*®? Taken together,
direct viral involvement, imbalanced host immune response, and
systemic inflammation are proposed as important mechanisms of

myocardial/endothelial injury.

4.3.3 | Coagulation parameters in
COVID-19 patients

Abnormal coagulation parameters such as mild thrombocytope-
nia, prolonged prothrombin time, disseminated intravascular co-
agulation,**"*>° and elevated D-dimers are seen in 36% to 43% of
COVID-19 patients.*>*#*>¢ |n a meta-analysis of 4 published studies,
higher D-dimers were found in patients with more severe COVID-
19.15¢ Also, thrombocytopenia was reported to be associated with
more severe COVID-19 and increased risk of death (Figure 5) 155157
In a trial of severe COVID patients (n = 99), anticoagulant therapy
(eg, low molecular weight heparin) was associated with better
prognosis.t>8

Activation of endothelium, platelets, and leukocytes leads to
enhanced local and systemic production of thrombin, which in turn
leads to deposition of fibrin, microangiopathy, and eventual organ
damage. Both pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs) initiate these
processes.’® In 16 patients with severe COVID-19, a correlation
between IL-6 and fibrinogen levels was found, supporting a link be-
tween hyperinflammation and increased venous thromboembolism
(VTE) risk.1¢°

Although thrombocytopenia has been implicated in patients
infected with SARS-CoV-2, the association between platelets
and the disease mortality is not clear. In COVID-19 patients from
Wuhan, China, platelet count increase was an independent risk
factor reversely associated with in-hospital mortality, as an in-

crease of 50x109/L platelets was associated with a 40% decrease
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in mortality.'>> Another study of 548 patients from China found

that while platelet levels were decreased when hospitalization for
COVID-19, platelet levels increased in survivors over time, but main-
tained lower levels or dropped significantly over time in nonsurvi-
vors. X! Thus, baseline platelet levels and changes over time appear
to be associated with subsequent mortality and monitoring platelet
levels is important in predicting prognosis of patients with SARS-
CoV-2 infection.

4.3.4 | Neurological disease presentation

Together with the choroid plexus, the blood-brain barrier protects
the brain from invading microorganisms.®?> Nevertheless, several

pathogens, including viruses, are still able to traverse the barriers,'®

especially in cases of systemic inflammation®¢*

causing potential al-
terations of the central nervous system (CNS). In particular, corona-
viruses might exhibit neurotropic properties,165 and SARS-CoV was
detected in human brain.?6%%” Of interest, ACE2 is expressed in the
human brain.*® Based on the knowledge from animals studies, SARS-
CoV can enter the brain via the olfactory nerve leading to a rapid,
transneuronal spread to connected areas of the brain.’%® As SARS-
CoV infects immune cells, the virus might penetrate the CNS also via
the hematogenous route.*¢”

In the current COVID-19 outbreak, a few case reports described
meningitis/encephalitis or COVID-19-associated acute necrotizing
hemorrhagic encephalopathy with or without SARS-CoV-2 RNA de-
tected in the cerebrospinal fluid.*”’° Moreover, autopsies of pa-

tients with COVID-19 showed cerebral hyperemia and edema with

degeneration of some neurons.!”? In a study on COVID-19 patients
from Wuhan hospitals, 78 out of 214 patients had neurological man-
ifestations especially in severe infections. Some patients had only
neurological manifestation without typical COVID-19 symptoms.'’?
In addition, olfactory and gustatory dysfunctions are often reported
in patients with COVID-19,"3"Y> which might be due to direct ef-

fects on the nervous system.

4.3.5 | COVID-19-related kidney failure

Recent evidence indicates that kidney injury occurring during SARS-
CoV-2 infection can result not only from CRS and ongoing sepsis
but also from direct virus-induced impairment.r’¢*”7 In fact, ACE2
is highly expressed on renal tubular cells.*’® Clinical observations of
COVID-19-related kidney damage have been confirmed by an ele-
gant experiment demonstrating that SARS-CoV-2 can directly infect
human kidney organoids.?”? Moreover, this infection led to further
efficient shedding of progeny viruses capable of infecting Vero E6
cells. This finding suggests that kidneys are an active player in the
process of viral spread rather than only a site of virus-induced tis-
sue damage. The process of kidney infection by SARS-CoV-2 was
significantly, but not completely inhibited by human recombinant
soluble ACE2, which indicates that there might be other than ACE2
receptors accounting for the entry of SARS-CoV-2 to kidney cells.}”?
The putative candidate can be CD147 being highly expressed on
proximal tubular epithelium. CD147 together with one of its ligands,
cyclophilin, plays a crucial role in renal inflammation and renal fi-

brosis.*®® Moreover, cyclophilins efficiently control the process of
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Involvement of endothelium in COVID-19 progression. SARS-CoV-2 viremia is seen approximately 1 wk after the onset

of illness, accompanied by an abundance of circulating pro-inflammatory cytokines. Endothelial cells express ACE2 receptor and can

be infected by the SARS-CoV-2. Direct viral influence on the endothelial cells, as well as systemic inflammation (depicted by activated
neutrophils and extensive NET-osis) and cytokine storm, can lead to endotheliitis, disseminated intravascular coagulation, and coagulopathy,
described in severely affected COVID-19 patients. Activated endothelial cells upregulate the expression of adhesion molecules (P-selectin)
and coagulation factors (VWF), secrete immune mediators (CCL2, IL-6). Monocytes respond to these by releasing tissue factor and
upregulate the expression of PSGL. Simultaneously, platelet activation and aggregation occurs. Increased numbers of neutrophils and
monocytes in the peripheral blood correlate with severe disease course and fatalities. CCL2, CC-chemokine ligand; IL-6, interleukin 6; MO,
monocyte; NEU, neutrophil; NET, neutrophil extracellular traps; PLT, platelets; PSGL, P-selectin glycoprotein ligand 1; vVWF von Willebrand

factor.
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coronavirus replication.181 Thus, therapeutic strategies could aim at
breaking the CD147-cyclophillins.

4.4 | Multi-morbidities as a risk factor for severe
COVID-19

Multi-morbidities are associated with the severe course of COVID-
19. A meta-analysis including 1,558 patients with COVID-19 showed
as independent risk factors chronic obstructive pulmonary disease
(COPD) (OR: 5.97), cerebrovascular disease (OR:3.89), type 2 diabe-
tes mellitus (T2DM) (OR: 2.47), and hypertension (OR: 2.29).162183
In the nation-wide report from China including 1590 patients with
COVID-19, one comorbidity was present in 25.1% and two or more
comorbidities in 130 8.2% patients (Figure 6).184

Several mechanisms directly linked to the underlying patholog-
ical condition can contribute to the unfavorable clinical outcome. A
recent study suggested that hypertension and diabetes resulted in
delayed clearance of SARS-CoV-2.8° The relationship between the
immune dysfunction in patients with multi-morbidities and infec-
tion with SARS-CoV-2 was not specifically evaluated. A transgenic

diabetic mouse model expressing human CD26 had more severe

FIGURE 6 Age, gender, and
comorbidities modify the onset and
progression of COVID-19. Epidemiological
observations show clear differences

in the course of SARS-CoV-2 infection
between children and adults. It seems
that children are less susceptible to

the infection and develop less typical
symptoms of the disease. Consequences
of the infection on physiological

i

disease together with a dysregulated immune response following
infection. A delayed and decreased recruitment of CD4" T cells and
inflammatory monocytes and macrophages into the lung tissue and
amore prominent Th17 response was oberved.'8 Interestingly, obe-
sity is changing the expression profile of SARS-CoV-2 receptors.'°

Metabolic induced low-grade systemic inflammation, as in obese pa-
tients, '’ facilitates an enhanced release of cytokines upon an acute trig-
ger such as viral infection. As the human endocrine pancreas expresses
ACE2, the coronavirus might enter islets and cause acute p-cell dysfunc-
tion, leading to acute hyperglycemia and transient T2DM. '8 A mathe-
matical model showed that the insulin resistance, advanced glycan end
product (AGE)-Receptor of AGE (RAGE) signaling pathway in diabetic
complications and the adipocytokine signaling pathway were found in all
fatal comorbidities of COVID-19.18 In addition, AGEs can induce mono-
cyte CD147 expression, an effect mediated by inflammatory pathways
and RAGE.'?° CD147 is highly expressed in patients with diabetic com-
plications such as nephropathy, retinal neuropathy, and vasculopathy
and was associated with chronic renal failure of other causes.

COPD and ongoing smoking contribute to COVID-19 severity.!”?
COPD and active smokers had significantly increased expression of
ACE2 and its gene expression inversely related to the lung function,

suggesting a dose-dependent response.'??

lifespan

development of children are unknown. '
Clinical data and age-related rhesus
macaque model of COVID-19 reveal that
obesity, diabetes, hypertension, smoking,
chronic respiratory diseases, male gender,
and older age are the most common

risk factors for development of severe
COVID-19. Older age is associated with
higher incidence of multimorbidity and
state of low-grade systemic inflammation.
Immunosenescence could influence the
adequacy of the host's response to the
infection

storm

silent carriers

syndrome)

e

¢ Th-2 skewed immunity
¢ Higher susceptibility to infections
with lower tendency to cytokine

e More often asymptomatic and
e Less comorbidities

¢ Rare severe complications
(acute pediatric hyperinflammatory

e Immunosenescence: reduced
ability to respond to new antigens
and poor post-vaccination immune
response

e Compromised response to cellular
and metabolic stress

¢ Frequent multimorbidity

e Chronic low-grade systemic
inflammation facilitating cytokine

release upon viral infection
\ y
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Multimorbidity is also associated with elevated levels of plas-
minogen. Plasmin, and other proteases, may cleave a newly inserted
furin site in the S protein of SARS-CoV-2, extracellularly, which in-
creases its infectivity and virulence. Hyperfibrinolysis associated
with plasmin leads to elevated D-dimer in severe patients. Thus, the
plasminogen system may prove a promising therapeutic target in
COVID-19.1%

4.5 | Sex and aging as a risk factor for
COVID-19 course

The increased vulnerability of males compared with females to severe
COVID-19 has been reported during the pandemic. A direct endocrine
link is involved as androgen receptor activity is required for the tran-
scription of TMPRSS2 gene.'?*1?> Male vulnerability may be further
enhanced by X-linked inheritance of genetic polymorphisms as both
the androgen receptor, and the ACE2 genes loci are on chromosome X.

Old age was also associated with an increased risk of infection
and worse outcome (Figure 6). Frailty is characterized by multisystem
dysregulation leading to reduced physiologic reserve. Although not
formally assessed in the COVID-19 trials, frailty may be linked to infec-
tious disease through common pathways that reduce immunity. 7%’
Frailty has also been shown to be associated with poor postvaccina-
tion immune response.'?® The aged immune system is characterized
by a low-grade chronic systemic inflammatory state marked by ele-
vated inflammatory markers such as IL- 6 and C-reactive protein and
an increased susceptibility to infection.'?® The expression of ACE2 and
TMPRSS2 genes in the type Il alveolar cells of elderly and young pa-
tients is comparable. Therefore, it does not seem to be responsible for
the worse outcomes observed in COVID-19 affected elderly, but the
expression of other receptors is age-dependent.10

4.6 | Allergy-related risk for COVID-19

Drug hypersensitivity (11.4%) and urticaria (1.4%) were self-reported
by patients with COVID-19.8¢ In contrast, respiratory allergies and
asthma were not reported as risk factors for SARS-CoV-2 infec-
tion.8286199-202 However, a report from the CDC of US hospitaliza-
tions described contradicting findings in adults with asthma. Among
hospitalized patients with COVID-19, 27.3% of 18-49 year old adults
had asthma, 13.2% of 50-64 years, and 12.9% of those of 65 years or
older.?% Currently, patients with allergic rhinitis and patients treated
with allergen-specific immunotherapy are advised to continue their
therapies.204-206

Another study elucidated the impact of comorbid respiratory al-
lergy or asthma on COVID-19 susceptibility and disease severity.207
Children with asthma and moderate to severe allergic sensitization
showed reduced ACE2 gene expression compared with children
with nonatopic asthma. An additional trial including 23 patients with
asthma confirmed reduced ACE2 expression in lower airway epithe-

lial cells postallergen challenge. Finally, in vitro experiments using

nasal and bronchial airway epithelium showed that IL-13 reduced the
ACE2 expression.??” However, adult patients with asthma seem to
have higher expression of TMPRSS2 and CD44, which forms a func-

tional complex with CD147 in bronchial epithelium.°

5 | IMMUNOLOGICAL BIOMARKER
PROFILING OF COVID-19 FOR PREDICTION
OF DISEASE SEVERITY

The development of serious complications and even fatal outcome
in SARS-CoV-2 infection is strongly linked to the patients’ immune
response resulting in CRS.2%% There is an urgent need for biomarkers
that predict patients developing severe complications.?%” To date,
there is limited information on the biomarkers associated with, or
even predicting severe complications in COVID-19. However, there
is much similarity on the biomarkers that have been described be-
fore for MERS-CoV and SARS-CoV, also p-coronaviruses, but also
with sepsis. Many markers have been demonstrated to be increased
in SARS-CoV-2-infected individuals. These markers are related to in-
nate as well as adaptive immunity, endothelial cell activation, throm-
bocyte activation, and leukocyte infiltration.?%! The list of markers
related to severe disease, ICU, and even lethality is more limited. In
ICU-admitted COVID-19 patients, significant increases of D-dimer,
ferritin, LDH, IL-6, high sensitivity cardiac troponin, IL-2, IL-7, G-CSF,
MCP-1, MIP-1a, and TNF-a were reported.’°* An even more re-
stricted group of markers (IL-10, MCP-3, IL-1ra) were increased in
severe and lethal cases.?!° Differences in the biomarkers described
are most probably due to the different sampling time during disease
and the large heterogeneity between the patients.201

Most likely, single biomarkers will not be predictive. On the other
hand, a combination of markers (a biosignature) will help in patient

stratification and may even guide patients-tailored therapy.

6 | URGENT RESEARCH NEEDS FOR
MECHANISTIC, DIAGNOSTIC APPROACHES,
THERAPEUTIC, AND PREVENTIVE INSIGHT

6.1 | Kids versus adults: Mechanisms explaining the
clinical differences

Children experience milder COVID-19 as compared to adults, and a
larger proportion of children remains asymptomatic (Figure 6).2°° Data
from the USA show a strikingly low number of pediatric hospitaliza-
tions (5.7%) and very limited ICU admissions in young age. 2°® Of note,
children show similar chest CT results as compared to adults, with sub-
pleural ground-glass opacities even when having few symptoms.?*!
While children may be asymptomatic, they are shedding viral particles
and can therefore still be contagious with comparable virus loads.?'?
ACE2 receptors are upregulated by type 1 IFNs,*? but downregulated
by IL-13, indicating that Th1/Th2 balance may significantly influence
course of SARS-CoV-2 infection.?®” Therefore, type 1 IFNs driving
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anti-viral immunity may paradoxically promote SARS-CoV-2 expan-
sion by upregulating ACE2 expression. Inflammatory responses dif-
fer throughout life, for example, pre-existing chronic inflammation is
common in elderly while absent in children. In addition, children have
less potent PAMP activation, suboptimal, and Th2-skewed cytokine
production, all resulting a hypo-inflammatory immune response.213
This confers decreased protection against infections, but seem benefi-
cial in preventing a CRS in SARS-CoV-2 infection. Hence, preferential
Th2-skewed cytokine production observed in children is presumably
protective (Figure 6). Additionally, children have less often comorbidi-
ties such hypertension, diabetes, and COPD. However, in rare cases,
a severe hyperinflammatory shock syndrome with features of atypical
Kawasaki disease or toxic shock syndrome was reported in pediatric
COVID-19 patients,?** which is currently intensively investigated.?*
Data are lacking on evidence surrounding transmission rates of the
virus by children. The China/World Health Organization joint com-
mission found that infected children were largely identified through
contact tracing in households of adults.?'® However, no significantly
different virus levels in the respiratory tract were recently reported
across age groups, thus having the potential for similar transmission
rates.”® Understanding the mechanisms underlying different prognosis

in children is essential for designing targeted therapies for COVID-19.

6.2 | Immunological diagnosis of SARS-CoV-2
infection: challenges of current approaches

PCR tests are useful for detecting SARS-CoV-2 RNA in an upper
respiratory (preferably a nasopharyngeal) specimens. In addition, a
number of diagnostic procedures to assess immunity built against
SARS-CoV-2 are still being developed, validated, and optimized.
Antibody testing is evolving, and the market is flooded with test
kits (both ELISA and rapid tests in the form of lateral flow immunoas-
says). However, only a small number of these kits are certified, and the
results need to be interpreted with caution. Preliminary data indicate
that COVID-19 presents with a classical antibody response consisting of
early induction of IgM, followed by IgA and I1gG antibodies (Figure 7).1%
1gG seems to appear early in the course of clinical presentation proba-
bly due to the relatively long incubation period. However, there is not
yet enough evidence with regard to the development of long-term pro-
tective immunity. Antibody testing is so far more valuable in mapping
the situation in individual populations, as planned by the WHO in the
Solidarity I project.217 Test kits for the assessment of SARS-CoV-2-
specific T-cell responses for diagnostic use are currently not available.

6.3 | Immunological treatment approaches:
biologicals, small molecules and beyond

Current evidence on the role of biologicals, small molecules, and
passive immunizations in the treatment of COVID-19 was assessed
conducting a systematic literature search (see online Supporting

information).

By May 15, 2020, case series and nonrandomized, small, open-la-
bel studies report on the treatment of SARS-CoV 2 infections were
assessed. Results from controlled, randomized or placebo-con-
trolled, randomized trials are still lacking. Approaches include either
targeting the CRS and hyperinflammatory status of lung destruction
via anti-IL-6R antibodies,?*®?*” |L-1R antagonists, >3840 JAK-STAT
inhibitors,?** or inhibition of entrance by anti CD147 antibodies®®’
and destruction of the virus via protective antibody delivered with

51,54,66,133,134,242 (Taple 2). Eculizumab targets

convalescent plasma
complement protein C5 preventing activation of complement termi-
nal complex, which was used off label in patients with SARS-CoV-2
infection and severe pneumonia or ARDS and is now evaluated in
an ongoing trail (SOLID-Cl‘?),243 Additionally, clinical trials with type
I and Il interferons in COVID-19 are currently conducted.?*+24
Targeting T-cell exhaustion to reverse the dysfunctional state and
restore immune responses can be achieved by anti-PD-1 and LAG-3

therapies,z‘“"247

revealing novel therapeutic opportunities for per-
sisting infections. In conclusion, prospective, randomized, and place-
bo-controlled trials are needed to elucidate the clinical potential of

immunomodulatory or passive immunization therapies.

6.4 | Virome interactions with commensal
communities: future prevention and treatment
strategies for SARS-CoV-2 infections?

Mucosal anti-viral immunity can be regulated by the microbiota via mul-
tiple mechanisms. The immune response to microbes is a form of host
defense and entails a variety of intimate interactions with important sym-
biotic physiological effects on the host.?*® Specific bacterial components
and specific metabolites can promote immune maturation and polariza-
tion, which ensures appropriate defense against occasional pathogens,
while strongly promoting immune tolerance networks that dampen aber-
rant inflammatory responses.?*”?*° The composition of the gut and lung
microbiome is strongly associated with the induction of polarized im-
mune responses within the human Iung.187'250 Bacterial-derived metabo-
lites such as short chain fatty acids (SCFAs) promote anti-viral responses
in the lungs, while also reducing inflammation.?°*?%? Composition and
metabolic activity of the gut microbiome has been associated with blood
proteomic biomarkers predictive of severe COVID-19.2° The integra-
tion of microbial diagnostics with traditional immunological biomark-
ers will improve patient’s stratification and prognosis. In addition, the
combination of microbial-derived therapeutics with immune modifying
drugs, such as biologicals, will enhance response to treatment and better

protect from damaging inflammatory processes.

6.5 | Future pandemic prevention strategies based
on immunological knowledge

Apart from the well-known measures of social distancing, wash-
ing hands, and disinfection, which have proven to limit the SARS-

CoV-2 spread, several prevention strategies can be considered
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Asymptomatic Symptomatic
stage stage

Infectivity
period

Specific antibodies

5y 7 14
RT-PCR- based tests and SARS-CoV-2 Antigen ELISA tests

ELISA tests detecting
specific IgM in serum

Biosignatures and microbiome
diagnostics for disease risk assessment

IgM, IgA, 18G
SARS-CoV-2 RNA
and antigen
T Days from infection
21
ELISA tests detecting

specific IgG in serum

Potential future
diagnostic strategies

Immune tests for
neutralizing antibodies

FIGURE 7 Clinical stages of COVID-19 and their virology and immunological assessment. The success of restraining SARS-CoV-2
transmission depends on accurate and timely diagnostics. Asymptomatic patients transmit SARS-CoV-2. RT-PCR-based test detecting the
SARS-CoV-2 RNA in posterior conchae nasal swabs are currently the golden standard in the initial phase of the infection. Viral antigens can
be detected in patients’ blood by means of ELISA tests. ELISA tests allow for detection of virus-specific antibodies in patients’ serum. The
production of specific IgM starts after about a week from infection and IgM levels decrease with the production of specific IgG (after about
2 wks from infection). Novel diagnostic and risk-stratification strategies could include microbiome profiling and tests detecting neutralizing

antibodies

from an immunological point of view. The WHO Strategic and
Technical Advisory Group for Infectious Hazards (STAG-IH) regu-
larly reviews and updates its risk assessment of COVID-19 to make
recommendations.?>*

For the future, it is essential to define the actual prevalence
of COVID-19 in the population. Confirmation of infection at pres-
ent consists of PCR for acute infection and serological tests to
identify antibodies.?>> However, this may not be sufficient. The
implementation of immune tests detecting neutralizing antibod-
ies is key to define protection against SARS-CoV-2 (Figure 7). This
can only be achieved by implementing massive testing. Moreover,
multiple vaccines are under development with the aim of pre-
venting infection, reducing disease severity, and viral shedding.
A complete and continually updated list is available from the
WHO,256:257

Zoonotic infectious diseases have been an important concern to
humankind for more than 10 000 years. Today, approximately 75%
of newly emerging infectious diseases (EIDs) are zoonoses that re-
sult from various anthropogenic, genetic, ecologic, socioeconomic,
and climatic factors. The COVID-19 pandemic is an extreme re-
minder of the role which animal reservoirs play in public health. Also,
it reinforces the urgent need for globally operationalizing a One
Health approach focusing on a broad surveillance for SARS-CoV-2
among different animals, and the possibility of reverse zoonosis.?>8
Moreover, the current pandemic highlights the essential need for
a broad understanding of immunological mechanisms underlying
infectious diseases to design suitable therapeutic and preventive

strategies.
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