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H I G H L I G H T S  

• The effect of COVID-19 mitigation measures on NO2 in Munich was unclear. 
• We applied two robust quasi-experimental approaches. 
• All hypotheses, as well as main and additional analyses were defined a priori. 
• As hypothesized, we observed largest reductiotns in NO2 at traffic sites.  
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A B S T R A C T   

Background: In response to the COVID-19 pandemic, the Bavarian State government announced several COVID- 
19 mitigation measures beginning on March 16, 2020, which likely led to a reduction in traffic and a subsequent 
improvement in air quality. In this study, we evaluated the short-term effect of COVID-19 mitigation measures on 
NO2 concentrations in Munich, Germany. 
Methods: We applied two quasi-experimental approaches, a controlled interrupted time-series (c-ITS) approach 
and a synthetic control (SC) approach. Each approach compared changes occurring in 2020 to changes occurring 
in 2014–2019, and accounted for weather-related and other potential confounders. We hypothesized that the 
largest reductions in NO2 concentrations would be observed at traffic sites, with smaller reductions at urban 
background sites, and even small reductions, if any, at background sites. All hypotheses, as well as the main and 
additional analyses were defined a priori. We also conducted post-hoc analyses to ensure that observed effects 
were not due to factors other than the intervention. 
Results: Main analyses largely supported our hypotheses. Specifically, at the two traffic sites, using the c-ITS 
approach we observed reductions of 9.34 μg/m3 (95% confidence interval: − 23.58; 4.90) and 10.02 μg/m3 

(− 19.25; − 0.79). Using the SC approach we observed reductions of 15.65 μg/m3 (− 27.58; − 4.09) and 15.1 μg/ 
m3 (− 24.82; − 9.83) at these same sites. We observed effects ranging from smaller in magnitude to no effect at 
urban background and background sites. Additional analyses showed that the effect was largest in the first two 
weeks following introduction of measures, and that a 3-day lagged intervention time also showed a larger effect. 
Post-hoc analyses suggested that at least some of the observed effects may have been attributable to changes in 
air quality occurring before the intervention, as well as unusually high concentrations in January 2020. 
Conclusion: We applied two quasi-experimental approaches in assessing the impact of the COVID-19 mitigation 
measures on NO2 concentrations in Munich. Taking the 2020 pre-intervention average concentrations as a 
reference, we observed reductions in NO2 concentrations of approximately 15–25% and 24–36% at traffic sites, 
suggesting that reducing traffic may be an effective measure to reduce NO2 concentrations in heavily trafficked 
areas by margins which could translate to public health benefits.  
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1. Background 

In December 2019 the first cases of the novel coronavirus, SARS- 
CoV-2, were observed in Wuhan, China. Over the next days and weeks 
the virus, and the associated respiratory disease referred to as COVID- 
19, spread further into China and by mid-January cases were docu
mented in Thailand, Japan and South Korea (WHO, 2020a). By March 
11, 2020, when the World Health Organization declared COVID-19 a 
global pandemic, cases had been observed in over 100 countries and 
territories across the globe (WHO, 2020b). 

To slow the spread of this viral respiratory infection, the effects of 
which range from limited or no symptoms to death, national and sub
national governments have implemented numerous mitigation measures 
(Health System Response MONITOR, 2020). These mitigation measures 
differ between countries, but include, for example, social distancing 
recommendations and requirements, school closures, border closures, 
non-essential business closures and required wearing of masks. 

Such external shocks can be conceptualized as natural experiments 
to explore the short-term effect that decreased automobile traffic or 
industrial activity has on ambient pollutant concentrations. A recent 
systematic review (BURNS et al., 2019, BURNS et al., 2020) identified a 
range of such studies, for example, evaluating the effect on air quality or 
health of the closure of a main highway for construction in California, 
US (HONG et al., 2015), the US Democratic National Convention in 
Boston (LEVY et al., 2006), the suspension of the public transportation 
system due to a strike in Ottawa, Canada (DING et al., 2014), the sus
pension of trucking operations due to a nationwide strike in India (Latha 
et al., 2004), political demonstrations in Nepal (Fransen et al., 2013) and 
Hong Kong (Brimblecombe and Ning, 2015), and the closure of a copper 
smelter due to a strike in the Southwest US (POPE et al., 2007). 

Limited evidence already suggests that COVID-19 mitigation mea
sures may have led to reductions in air pollution. For example satellite 
imagery has shown that concentrations of nitrogen dioxide (NO2), a 
pollutant largely stemming from automobile traffic, have decreased in 
China (ESA, 2020c), India (ESA, 2020a) and across several European 
cities (ESA, 2020b). Monitor-based measurements have also implied 
decreased NO2 concentrations in some European cities (EEA, 2020). 
Researchers on each of these projects, however, have been quick to 
emphasize the influential role that weather and other factors, such as 
celebration of the Chinese New Year, have on NO2 concentrations, and 
that fully adjusting for the effects of such measures using standard 
epidemiological approaches is challenging. 

Embedded in the national COVID-19 response, the Bavarian State 
government announced several COVID-19 mitigation measures begin
ning on March 16, 2020 (Bayerische STAATSREGIERUNG, 2020). As 
several of these measures could plausibly lead to reduced automobile 
traffic, it provided a unique opportunity to assess the effects of these 
measure on air quality, and to do so using rigorous quasi-experimental. 

2. Objective 

In this study, we applied two quasi-experimental approaches, a 
controlled interrupted time-series (c-ITS) approach and a synthetic 
control (SC) approach, to evaluate the short-term effect of COVID-19 
mitigation measures on NO2 concentrations in Munich, Germany. 

3. Methods 

3.1. Intervention and context 

On March 13, 2020 the Bavarian state government announced that, 
aiming to mitigate the spread of COVID-19, schools across Bavaria 
would be closed from 16 March until at least April 19, 2020. This initial 
announcement was followed by several further mitigation measures 
over the next week. The measures implemented in Bavaria included: 

March 2020 – closure of schools and daycare facilities 

March 17, 2020 – closure of public facilities, ban on gatherings and 
events, closure of retail stores, restrictions on the restaurant industry; 

March 18, 2020 – closure of institutes of higher education, ban on 
visits to hospitals and care facilities; 

March 21, 2020 – ban on dine-in services for restaurant industry, 
partial lockdown (Bayerische Staatsregierung, 2020). 

As a part of these various measures, individuals were encouraged, 
and then required, where possible, to remain home. Evidence suggests 
that Bavarian residents largely adhered to these measures. An analysis of 
the effective reproduction number of the virus, i.e. the expected number 
of cases generated by an infected individual, showed that the number 
fell from approximately 3.5 to 1.0 between 16 March and 3 April in 
Bavaria. In Munich, the effective reproduction number fell from 
approximately 3.0 to 0.5 over the same time period (Khailaie et al., 
2020). Given that these measures initially encouraged and later on 
required people to stay at home, it is likely that these measures led to a 
decrease in people’s movements. Indeed, mobility data released by 
Apple and Google show a clear reduction in traffic during this time 
(APPLE (2020); GOOGLE (2020)). Traffic critical to essential supply 
chains, as well as some local traffic related to grocery shopping or out
door recreational activity, likely did not decrease or decreased to a lesser 
extent, so any change was likely driven by a reduction in driving by 
those commuting to work and/or driving their children to school. We 
assume that this reduction in traffic likely also subsequently led to 
reduced concentrations of automobile-related pollutants like NO2. 

3.2. Study design overview 

The study uses an approach that compares the trend in NO2 con
centrations in 2020, i.e. the intervention year, with the trend in several 
years in which no mitigation measures for COVID-19 control were 
implemented, i.e. the control years. The use of historical controls is 
advantageous in this study, because, given that virtually all European 
cities implemented mitigation measures in March of 2020, no appro
priate geographical control was available. The study period for the 
intervention year includes Monday, January 6, 2020 (2nd calendar 
week) – Sunday, April 12, 2020 (15th calendar week). March 16, 2020, 
the date on which the first major COVID-19 measure was implemented 
divides this period into pre- and post-intervention periods. The study 
period for the control years includes this same time period (Monday of 
the 2nd calendar week – Sunday of the 15th calendar week) in 
2014–2019, with the Monday of the 12th calendar week splitting each 
year into pre- and post-intervention periods. 

Both the c-ITS and SC approaches allow for the comparison of serial 
changes to an intervention unit receiving the intervention with changes 
to one or multiple control units not receiving the intervention (CRAIG 
et al., 2017). Thus each approach utilizes serial data from intervention 
and control units to create a ‘counterfactual’, i.e. what would have 
happened had the intervention not been implemented. This allowed us 
to ensure that any effect observed in 2020 is neither due to the current 
trend in NO2 concentrations nor due to yearly seasonal fluctuations. 

The main difference between the two approaches, however, relates 
to how data from control units are utilized. The c-ITS study utilizes data 
from all control units in full. Specifically, we compared the change in 
NO2 concentrations between the pre- and post-intervention periods in 
2020, the intervention year, to changes in concentrations between the 
pre- and post-intervention periods in 2014–2019, the control years 
(LOPEZ BERNAL et al., 2018). The SC study can be utilized when there 
are multiple controls to draw from, but no clear rationale for choosing 
which is the most appropriate. Specifically, we compared the change in 
NO2 concentrations between the pre- and post-intervention periods in 
2020 to changes between the pre- and post-intervention periods in a 
weighted average of 2014–2019. This data-driven weighted average is 
calculated to provide the most similar comparison, with respect to the 
pre-intervention outcome trend and a pre-defined set of covariates 
(Bouttell et al., 2018). 
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3.3. Data 

3.3.1. Outcome 
The Bavarian Environmental Administration (Bayerisches Land

esamt für Umwelt) is charged with the monitoring of air quality in 
Bavaria, and data for the 50 monitoring stations are freely available (LfU 
BAYERN, 2020). We obtained NO2 data for the five stations located in 
Munich, which included two classified as urban traffic monitors – 
Landshuter Allee (LAN) and Stachus (STA), one as urban background – 
Lothstrasse (LOT), and two as background – Allach (ALL) and Johan
neskirchen (JOH). Hourly data were provided, which we converted to 
daily averages. 

3.3.2. Covariates 
We obtained data for other factors that are associated with NO2 

concentrations, including several weather-related variables – daily av
erages of temperature, rain fall, air pressure, humidity, and wind speed 
(Peel, 2010). These data were freely available from the German Weather 
Service (Deutscher Wetterdienst) (DWD, 2020). We also used publicly 
available information indicating when school holidays were in place – 
these included the Christmas, winter and Easter holidays. Within these 
time periods, relevant days were defined as either holiday high travel 
days (i.e. specific holidays or holiday weekends – Friday and Saturday, 
on which people tend to travel more) or holiday low travel days (i.e. 
during the week when people tend to travel less – Sunday through 
Thursday). 

3.4. Statistical analyses 

We registered a study protocol on May 3, 2020 through OSF 
(https://osf.io/7vkfc); all hypotheses and methods for main and addi
tional analyses were defined a priori in the protocol. We designed and 
piloted these analyses using data from 2014 to 2019. The data for the 
intervention year, 2020, were downloaded and analyzed only after 
registration of the protocol. 

3.4.1. Main analysis 
As part of the main analyses we applied a c-ITS and SC approach. For 

both of these approaches, it is important to define the impact model, i.e. 
how the intervention would impact the outcome if it were effective – this 
subsequently shapes decisions made in defining the analysis parameters 
(Lopez BERNAL et al., 2016). With regard to the timing of the effect, we 
assumed that the COVID-19 mitigation measures began influencing NO2 
concentrations immediately after implementation of the first of the 
measures on March 16, 2020, thus we defined this day as the first day of 
the post-intervention time period. Given that the mitigation measures 
could have led to an immediate drop in NO2 concentrations and that we 
are interested in the effect of the measures over the entire 
post-intervention period, we assumed and tested for a level change. This 
level change represents an immediate change, which is sustained across 
the post-intervention period. 

As described above in section 3.3, we obtained data from five air 
quality monitoring stations. Our a priori hypothesis was that the 
observed effect would be greatest at the two traffic monitors LAN and 
STA, a smaller effect at the urban background monitor LOT, and the 
smallest effect, if any, at the two background monitors ALL and JOH. 

For the c-ITS approach, we fitted a linear model using the general 
least squares method. The model took the following form: 

NO2 = β0 + β1Day + β2Year + β3Post + β4Int + β5Post*Int + β6− 13Covs  

where, NO2 represents the outcome, NO2 concentrations in μg/m3 at a 
given monitor; Day is a continuous variable from 1 to 98, from the first 
to the last day of the study period in each year, thus capturing the un
derlying trend in the outcome over the study period; Year is a categorical 
variable taking the value of the year between 2014 and 2020; Post is a 

dummy variable taking the value of 0 in the pre-intervention period and 
1 in the post-intervention period in each year (March 16, 2020, or 
Monday of the 12th calendar week in all years was treated as the first 
day of the post-intervention period), thus capturing the change in the 
outcome in the post-intervention period relative to the pre-intervention 
period; Int is a dummy variable taking the value for the control years 
2014–2019 and 1 in the intervention year 2020; Post*Int is an interac
tion term which captures the change in Post in 2020 compared to in 
2014–2019; Covs includes the potentially important covariates, 
including temperature, rain fall, air pressure, humidity, wind speed, 
holiday high and low travel days and day of the week. β5, the change in 
NO2 concentrations between the pre- and post-intervention periods in 
2020 relative to the change in 2014–2019, represents the level change 
described above in section 3.3, and is thus the effect estimate of interest. 
Given the serially correlated nature of the data, we used auto-correlation 
and partial auto-correlation plots to determine an appropriate correla
tion structure for each model. For the site ALL, substantial data were 
missing for the year 2014 (23%); because of this, 2014 was excluded 
from the c-ITS analysis for ALL only. 

The SC approach was structured similarly. However, instead of 
comparing changes in 2020 to changes in 2014–2019, the method al
lows for the construction of a synthetic control, ensuring that the 
intervention year and synthetic control year were similar with regard to 
the pre-intervention outcome trend and potentially important cova
riates. Specifically, this synthetic control was constructed using input 
data from the pre-intervention NO2 concentrations, as well as the 
covariates listed above, from 2014 to 2019. Based on a linear interactive 
fixed effects model, we calculated the effect of interest. This effect is the 
average difference between the observed time series, i.e. the post- 
intervention outcome trend observed in 2020, and the synthetic con
trol time series, i.e. the post-intervention counterfactual series. This 
approach allows for a treatment effect to be calculated for each post- 
intervention time point, allowing an investigation of how the interven
tion effect changes over time, as well as for the entire post-intervention 
time period, allowing an investigation of the average effect of the 
intervention, or the average treatment effect (ATT). 

3.4.2. Additional analyses specified a priori 
We conducted a series of sensitivity analyses to evaluate the extent to 

which our results were robust to changes to our assumptions, and to 
further explore how the intervention effect developed and changed over 
time. 

The mitigation measures were dependent on individuals changing 
their behavior, and this behavior may have been adapted over time. We 
suspected that the effect in the two weeks immediately following the 
intervention may have been larger than the effect in the subsequent two 
weeks. We investigated this using both the c-ITS and SC approaches. For 
the c-ITS approach, we modelled two intervention effects separately, 
one specifically for the first two-week period, and the other for the 
second two-week period. For the SC approach, we shortened the post- 
intervention time period to two weeks. 

It is also plausible that individuals did not immediately change their 
behavior on March 16, 2020, but instead slowly adapted as further 
mitigation measures were announced. To investigate this possibility, we 
mimicked the main analyses, treating March 19, 2020 as the first day of 
the post-intervention period, under the assumption that behaviors 
changed measurably after a lag of three days. 

3.4.3. Post hoc analyses 
After conducting the a priori specified main and additional analyses, 

we further conducted three sets of analyses to ensure that observed 
changes were not due to factors other than the mitigation measures. To 
ensure that concentration changes occurring prior to the intervention 
were not driving observed changes, we conducted all analyses with a 
series of backdated intervention start points 2, 4 and 6 weeks prior to 
March 16, 2020. Each of these ‘placebo analyses’ assessed whether 
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changes occurred within two weeks of the respective intervention point, 
although no intervention actually occurred. Next, to assess whether high 
concentrations in January 2020 may have biased the pre-intervention 
trend and thus the calculated effects, we conducted all analyses with a 
shortened pre-intervention period lasting 6 weeks. Finally, to ensure 
that the noisy nature of daily air quality data, characterized by serial 
correlation as well as random noise, was not driving observed concen
tration changes, we repeated all analyses with smoothed NO2 data. To 
do so, we analyzed only the trend component of the decomposed data. 

All data processing and analyses were conducted using R version 
3.6.3. The c-ITS approach was conducted using the Fit Linear Model 
Using Generalized Least Squares (nlme) (WEISBERG and FOX, 2015) 
and the SC approach was conducted using the Generalized Synthetic 
Control Method (gsynth) package (Xu, 2017). 

4. Results 

4.1. NO2 concentrations in munich 

Concentrations of NO2 improved in Munich over the period 
2014–2020, as illustrated by Fig. 1. For all five monitoring sites, con
centrations in 2020 were lower than during any of the previous years, 
with the greatest differences observed for the year 2014. Taking March 
as an example, concentrations in 2020 were lower than in 2014 by 47% 
at LAN, 55% at STA, 43% at Loth, 45% at ALL and 51% at JOH. It is also 
evident that concentrations at traffic sites (LAN and STA) were, as ex
pected, higher than at urban background (LOT) and background sites 
(ALL and JOH). 

4.2. Effect of COVID-19 mitigation measures on NO2 concentrations 

Regarding the effect of the COVID-19 mitigation measures on NO2 
concentrations across the post-intervention period, our main analyses 
are summarized in Fig. 2 (panel A) and Table 1. 

At traffic sites, where we hypothesized the largest reduction in NO2 
concentrations, reductions of 9.34 μg/m3 (95% confidence interval: 
− 23.58; 4.90) and 10.02 μg/m3 (− 19.25; − 0.79) were observed at LAN 
and STA, respectively, using the c-ITS approach, and 15.65 μg/m3 

(− 27.58; − 4.09) and 15.1 μg/m3 (− 24.82; − 9.83) using the SC 
approach. At LOT, the urban background site, where we hypothesized a 
smaller reduction, small decreases of 1.94 μg/m3 (− 11.90; 8.03) and 
8.84 μg/m3 (− 20.04; − 2.51) were observed using the c-ITS and SC 
approach, respectively. At background sites, where we hypothesized a 
small effect if any, a small reduction of 1.37 μg/m3 (− 12.77; 10.02) was 
observed at ALL, while a slight increase of 0.75 μg/m3 (− 8.79; 10.29) 
was observed at JOH using the c-ITS approach; using the SC approach 
slight decreases were observed at both sites, − 3.08 μg/m3 (− 12.59; 
5.39) at ALL and − 4.69 μg/m3 (− 11.65; 1.86) at JOH. Confidence in
tervals for all estimates should be noted; for the c-ITS approach, a sig
nificant effect was observed only at STA, while for the SC approach 
significant effects were observed at LAN, STA and LOT. For all other 
estimates, confidence intervals included 0, indicating some uncertainty 
regarding the direction of these effects. 

Fig. 3 illustrates, based on the SC approach, how the effect of the 
mitigation measures changed over time. Across all sites, a reduction in 
NO2 concentrations shortly after the implementation of the measures 
can be seen. It is also evident across sites that concentrations began 

Fig. 1. NO2 concentrations from January–April in 2014–2020 at LAN, STA, LOT, ALL and JOH.  
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creeping upward again after approximately 1.5–2 weeks. Additional 
analyses below explore how the intervention effect developed and 
changed over time. 

Fig. 3 shows that the SC approach was not able to calculate an 
optimal counterfactual – for an optimal counterfactual, the pre- 
intervention ATT would lie very close to 0 at all points along the time 
series. Additionally, one can see that the average NO2 concentration 
approximately 4 weeks prior to the intervention appears to lie below the 
0 ATT line, meaning that the observed effects may in part be attributable 
to changes occurring before the intervention. Post hoc analyses, 
described below, explore whether these aspects may have biased 
observed effects. 

Additional analyses specified a priori. 
Regarding the timing of the effect, we further investigated whether 

the effect in the first two-week post-intervention period was larger in 
magnitude than the effect over the entire four weeks. These results are 
summarized in Fig. 2 (panel B) and Table 1. As hypothesized, across sites 

effects were slightly larger when considering a two-week post-inter
vention period rather than a four-week period. Regarding the second 
two-week post-intervention period, which we assessed using the c-ITS 
approach, observed effects were smaller at all sites than in the first two- 
week period. Confidence intervals for all estimates should be noted; for 
the c-ITS approach, a significant effect was observed only at STA, while 
for the SC approach significant effects were observed at LAN, STA and 
LOT. For all other estimates, confidence intervals contained 0, indi
cating some uncertainty regarding the direction of these effects. 

Additionally, we investigated whether the effect differed if the 
intervention start was delayed for three days from 16 March to March 
19, 2020. These results are summarized in Fig. 2 (panel C) and Table 1. 
As hypothesized, a lagged intervention start resulted in a slightly larger 
effect at traffic sites. At urban background and background sites similar 
to slightly larger effects were observed. Confidence intervals for all es
timates should be noted; for the c-ITS approach, a significant effect was 
observed only at STA, while for the SC approach significant effects were 

Fig. 2. Effect of the COVID-19 mitigation measures on NO2 concentrations at the five sites from (A) main analyses, and additional analyses of (B) a two-week post- 
intervention period and (C) a 3-day lagged intervention point. 
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observed at LAN, STA and LOT. For all other estimates, confidence in
tervals contained 0. 

Analyses of a backdated intervention points at 3 February, 17 
February and March 2, 2020 are summarized in Fig. 4 panels A–C, 
respectively, and Appendix Table 1 in the supplementary material. 
Compared to the main analyses, effects at traffic sites are smaller when 
either 3 February or 2 March is taken as the intervention point. How
ever, for 17 February, observed effects are actually larger than those 
observed in the main analyses. At urban background and background 
sites, where we expected a small or no effect due to the COVID-19 
measures, larger effects were observed for almost all backdated ana
lyses compared to main analyses. Taken together, this suggests that the 
effect observed in main analyses may be at least partially attributable to 

changes in air quality across Munich (i.e. not only in heavily trafficked 
areas) already occurring prior to March 16, 2020. 

Analyses of a shortened pre-intervention period allowed us to assess 
whether the high concentrations observed in January 2020 influenced 
the observed effect; these results are summarized in Fig. 5 (panel A) and 
Appendix Table 2 in the Supplementary material. Smaller effects at 
traffic sites were observed for the shortened pre-intervention period 
than for main analyses, potentially suggesting that observed effects are 
at least partially attributable to high concentrations observed in January 
2020. Analyses of smoothed NO2 data are summarized in Fig. 5 (panel B) 
and Appendix Table 2 in the Supplementary material. The smoothed 
data allowed for the calculation of a better counterfactual than the raw 
data (Appendix Fig. 1). Compared to results from the main analyses, a 

Table 1 
Summary of results from main and additional analyses.   

4-week post-intervention (main 
analyses) 

2-week post-intervention period, period 
1 

2-week post-intervention period, period 
2 

3-day lagged intervention start 

Site Effecta (μg/m3) 95% CI Effect (μg/m3) 95% CI Effect (μg/m3) 95% CI Effect (μg/m3) 95% CI 
cITS approach 
LAN (T) − 9.34 − 23.58; 4.90 − 13.73 − 31.24; 3.78 − 4.72 − 22.95; 13.51 − 12.08 − 26.73; 2.57 
STA (T) ¡10.02 ¡19.25; -0.79 − 10.78 − 22.04; 0.48 − 9.17 − 21.07; 2.72 ¡12.61 ¡22.00; -3.21 
LOT (UB) − 1.94 − 11.90; 8.03 − 3.82 − 16.01; 8.37 0.27 − 12.59; 13.13 − 4.08 − 14.32; 6.17 
ALL (B) − 1.37 − 12.77; 10.02 − 2.57 − 16.09; 10.95 0.17 − 14.44; 14.78 − 0.06 − 11.84; 11.73 
JOH (B) 0.75 − 8.79; 10.29 − 0.73 − 12.21; 10.74 2.52 − 9.74; 14.78 0.15 − 9.69; 9.99 
SC approach 
LAN (T) ¡15.65 ¡27.58; -4.09 ¡21.46 ¡42.82; -8.19 -b – ¡18.49 ¡30.73; - 6.55 
STA (T) ¡15.1 ¡24.82; -9.83 ¡16.52 ¡29.30; -9.01 – – ¡17.82 ¡26.91; -11.92 
LOT (UB) ¡8.84 ¡20.04; -2.51 ¡10.04 ¡24.09; -4.32 – – ¡10.82 ¡21.06; -4.37 
ALL (B) − 3.08 − 12.59; 5.39 − 3.35 − 15.53; 5.71 – – − 5.47 − 14.40; 2.93 
JOH (B) − 4.69 − 11.65; 1.86 − 7.46 − 15.92; − 1.71  – − 6.02 − 12.98; 0.67 

Bold: denotes statistical significance at an alpha level of 5%. 
AbbreviationscITS: controlled ITS; SC: synthetic control; (T): traffic site; (UB): urban background site; (B): background site. 

a Effects are expressed as the effect over the post-intervention time period, e.g. − 9.34 corresponds to a reduction in NO2 concentration of 9.34 μg/m3 between the 
pre- and post-intervention periods in 2020 relative to the control year(s). 

b The SC approach did not allow for testing the second 2-week post-intervention period, thus no results are reported. 

Fig. 3. Difference between the observed NO2 concentrations in 2020 and those from the SC counterfactual (based on the years 2014–2019) at all investigated sites. 
The vertical dotted line represents the point at which the intervention was implemented. 
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slightly smaller effect across sites was observed. This suggests that some 
of the effect observed in main analysis may be attributable to random 
noise or serial correlation, although at the same time, it is possible that 
the smoothing of the data smoothed away part of an actual effect. 

5. Discussion 

In this study, we applied a c-ITS and SC approach to evaluate the 
short-term effect of COVID-19 mitigation measures on NO2 in Munich. 
Main and additional analyses suggest a consistent pattern – after intro
duction of the mitigation measures decreases in NO2 concentrations 
were observed at traffic sites, while little to no change was observed at 
urban background and background sites. As expected, reductions were 
largest in magnitude in the two weeks immediately following the 
introduction; a lagged intervention start suggests that the effect became 
more pronounced as additional measures were implemented. Post-hoc 

analyses, however, point to other aspects to which effects may have 
been partially attributable; these include reductions in NO2 concentra
tions occurring prior to 16 March, as well as high concentrations 
observed in January. 

Events such as the COVID-19 pandemic with the resulting mitigation 
measures are natural experiments that provide a unique opportunity to 
assess how specific policies may influence air quality. This study, for 
example, provides information on whether policies reducing traffic at 
heavily-trafficked sites could lead to improved air quality. Reductions in 
NO2 of 9.34 μg/m3 and 15.65 μg/m3 at LAN and 10.02 μg/m3 and 15.10 
μg/m3 at STA, corresponding to the c-ITS and SC approach from the 
main analyses, represent meaningful changes given the current air 
quality in Munich. Taking, for example, the 2020 pre-intervention 
average concentrations at LAN and STA of 60.94 μg/m3 and 41.61 μg/ 
m3, respectively, these equate to reductions of approximately 15–25% 
and 24–36%. In Munich and other German cities, where debates around 

Fig. 4. Effect of the COVID-19 mitigation measures on NO2 concentrations at the five sites from post hoc analyses assessing backdated intervention points, including 
(A) February 3, 2020 (B) February 17, 2020 and (C) March 2, 2020. 
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air quality in cities and, in particular, how to further reduce NO2 con
centrations are common both in the scientific and political communities, 
this is an important finding (Bayerische STAATSREGIERUNG, 2019; 
Leopoldina, 2019). 

Other studies have shown decreases in air pollution linked to COVID- 
19 measures. Data from satellites have suggested reductions in NO2 
concentrations, ranging from a similar to slightly larger magnitude, in 
China (30–40%) (ESA, 2020c, MUHAMMAD et al., 2020), India 
(40–53%) (ESA, 2020a, MAHATO et al., 2020) and in cities across 
Europe (20–55%) (ESA, 2020b, MUHAMMAD et al., 2020). Data from 
regulatory monitors across Europe have been somewhat less consistent, 
although they have also shown decreases ranging from 15% to 50% in 
cities in Western Europe (EEA 2020). Studies applying similar methods 
to ours, i.e. quasi-experimental approaches using regulatory monitors 
and historical controls, also identified reductions in Beijing and Wuhan, 
China as well as Milan, Italy (Malpede et al., 2020), Rio de Janeiro, 
Brazil (Dantas et al., 2020), and in Munich (FULLERTON, 2020) ranging 
between approximately 5 μg/m3 and 50 μg/m3. One study, comparing 
areas of China where lockdowns were implemented to areas where no 
lockdown was implemented, observed decrease in fine particulate 
matter of approximately 15% (He et al., 2020). Another study estimated 
what changes in air quality across Europe could mean for public health, 
calculating that 11,000 deaths, including approximately 2000 deaths in 
Germany, may have been avoided due to decreases in air pollution 
during this time (Myllyvirta and Thieriot, 2020). 

Our recent systematic review of ambient air pollution interventions, 
as well as multiple other reviews have emphasized important limitations 
of existing studies, including lack of control for underlying outcome 
trends and lack of control for confounding through appropriate selection 
of control conditions and assessment of confounding factors (Boogaard 
et al., 2017, BURNS et al., 2020; HENNEMAN et al., 2017; RICH, 2017). 

The use of two approaches, each of which represents an internally valid 
quasi-experimental approach, strengthens the rigour of our study. Both 
the c-ITS and the SC approaches are appropriate study designs for 
evaluating changes over time; they utilize the temporal nature of the 
data to establish a counterfactual (LOPEZ BERNAL et al., 2018; BOUT
TELL et al., 2018). Each approach also utilizes data from a control 
condition, in this study historical controls, to ensure that any observed 
change in the outcome trend is not due to seasonal patterns. The use of 
historical controls can add a level of control to studies where no 
appropriate geographical controls exist; in this study, for example, all 
urban (as well as rural) areas in Germany and Europe implemented 
COVID-19 mitigation measures roughly at the same time. Specifically, 
the c-ITS approach allows comparison of trends in 2020 to the average of 
trends over the time period of 2014–2019 so that the comparison will 
not be heavily skewed by any one year that does not fit the true 
long-term trend. The SC study complements this approach by creating a 
control condition from 2014 to 2019 that most closely matches the 
intervention time trend. We further accounted for potentially important 
confounders in both approaches: the c-ITS model was adjusted for 
temperature, rainfall, air pressure, humidity, wind speed, day of the 
week and holidays; the SC approach used these factors in creating an 
appropriately weighted synthetic control. We defined most hypotheses 
and analyses a priori and registered a study protocol, before down
loading the data for 2020. Only the analyses of a backdated intervention 
point, a shortened pre-intervention period and smoothed NO2 data were 
defined post hoc; these were added to ensure that observed effects were 
not attributable to other factors. 

Nevertheless, there are limitations to this study. We assume that the 
COVID-19 mitigation measures led to reductions in traffic, which sub
sequently led to reductions in NO2 concentrations. Lacking reliable data 
on traffic, however, we cannot assess to what extent this assumption of 

Fig. 5. Effect of the COVID-19 mitigation measures on NO2 concentrations at the five sites from post hoc analyses assessing (A) a shortened pre-intervention period 
(6 weeks), and (B) analyses of smoothed NO2 data. 
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effects along the causal chain are appropriate. Mobility data from 
smartphones made available by GOOGLE, 2020 and APPLE, 2020 sug
gest that mobility was starkly reduced during these weeks; however the 
current study would have benefited from the incorporation of long-term, 
representative routine traffic data. Post hoc analyses suggest that effects 
observed in main analyses may at least partly stem from factors other 
than the mitigation measures, including reductions in NO2 concentra
tions occurring prior to 16 March, high concentrations observed in 
January and the noisy nature of the data. However, the large decrease 
immediately after March 16, 2020 is observable across all main and 
additional analyses, meaning it is unlikely that observed effects are due 
only to factors other than the mitigation measures. This large decrease is 
consistent with the reduction in traffic reported in the mobility data 
described above. While the monitoring sites assessed represent all reg
ulatory sites available for Munich during the study period, it is possible 
that these are not fully representative of air quality across Munich. 
Additionally, for the ALL site, the year 2014 was excluded from the c-ITS 
approach because much of the data from that year were missing. 
However, we consider it unlikely that this substantially influenced our 
results. We assessed changes only in NO2 concentrations, as this allowed 
us to most closely assess whether changes to air quality were likely due 
to changes in traffic reductions. Nevertheless, a more comprehensive 
assessment of the impact of a specific intervention, measure or event 
would entail the assessment of multiple pollutants. To the best of our 
knowledge, this is the first use of historical controls within a SC study, 
and we feel that this is an appropriate use of the available data. 
Nevertheless, our study highlights challenges associated with calcu
lating an optimal counterfactual using a SC study in the context of air 
quality data. However, given that the c-ITS approach, which can better 
account for time-varying confounders, and the analyses of smoothed 
data yielded similar results, if slightly smaller in magnitude, we think it 
unlikely that our results are biased by this limitation. 

Given that traffic is only one source of NO2 and other air pollutants, 
continuing to improve air quality will likely require multiple control 
measures targeting multiple sources. However, this study suggests that 
reducing traffic may be an effective measure to reduce NO2 concentra
tions in heavily trafficked areas by margins which could translate to 
public health benefits. 
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