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Abstract

Leptin influences food intake by informing the brain about the status of body fat stores. 

Rare LEP mutations associated with congenital leptin deficiency cause severe early-

onset obesity that can be mitigated by administering leptin. However, the role of genetic 

regulation of leptin in polygenic obesity remains poorly understood. We performed an 

exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic 

variants that influence adiposity-adjusted leptin concentrations. We identify five novel 

variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and 

one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP 

was common in individuals of African ancestry only and its association with lower leptin 

concentrations was specific to this ancestry (P=2x10-16, n=3,901). Using in vitro analyses, 

we show that the Met94 allele decreases leptin secretion. We also show that the Met94 

allele is associated with higher BMI in young African-ancestry children but not in adults, 

suggesting leptin regulates early adiposity.
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Introduction

Leptin is an adipocyte-derived hormone that helps maintain homeostatic control of fat 

tissue mass by signaling the status of body energy stores to the appetite-regulating 

circuits of the brain [1]. Rare homozygous mutations in the leptin (LEP) gene can cause 

complete leptin deficiency that results in hyperphagia and severe early-onset obesity, 

which can be treated effectively by exogenous leptin administration [2, 3]. Mice and 

patients heterozygous for these mutations show partial leptin deficiency and increased 

body weight [4-6].

In the general population, leptin concentrations correlate closely with body fat mass. 

However, there is wide inter-individual variability; about 10-20% of obese individuals have 

leptin concentrations that are similar to those observed in non-obese individuals, which 

is in part due to genetic differences [7, 8]. Twin and family studies suggest that 30-50% 

of variation in leptin at any given level of adiposity and across different ethnic groups is 

explained by genetic differences [8]. The implications of this variability for body weight 

regulation remain poorly understood. 

Identification of genetic variants associated with circulating leptin may shed new light on 

the role of variability in leptin levels in the general population. In a recent genome-wide 

association study (GWAS) of leptin concentrations, we identified four loci associated with 

leptin concentrations independent of body mass index (BMI) [9]. The variant most strongly 

associated with leptin concentrations was rs10487505, located 21 kb upstream from LEP, 

in a region shown to harbor a long non-coding RNA (EST EL947753) that influences the 

transcriptional control of leptin expression [10]. The leptin-decreasing allele of 

Page 7 of 93 Diabetes



8

rs10487505 was nominally associated with ~0.03 kg/m2 higher BMI in adults and 1.05-

fold increased risk of early-onset obesity [9]. More recently, the association of the leptin-

decreasing allele of rs10487505 with higher adult BMI, body fat percentage, and risk of 

extreme obesity was replicated in the UK Biobank [10]. The most pronounced association, 

however, was observed for body size at 10 years of age; carriers of the leptin-decreasing 

allele reported being “plumper” at age 10 compared to peers” more frequently than 

carriers of the allele associated with higher leptin concentration. The association between 

rs10487505 and childhood body size was recently replicated in 14,521 Norwegian 

children, and the peak effect of rs10487505 on BMI was observed in 1.5-year-old children 

[11].

In the present study, we sought to elucidate the genetic basis of leptin concentrations 

through screening genetic variants with an exome-targeted array in up to 57,232 

individuals of European, African, East Asian or Hispanic ancestry. We confirm five 

previously established and identify five novel variants associated with leptin 

concentrations, including four missense variants in LEP, ZNF800, KLHL31, and ACTL9, 

and one intergenic variant near KLF14. The novel LEP variant, Val94Met (rs17151919), 

is associated with leptin concentrations in adults of African ancestry only. The leptin-

lowering Met94 allele of the rs17151919 variant is associated with higher BMI in young 

children, but shows a weak or no association with BMI in adulthood, suggesting leptin 

regulates early adiposity.

Research Design and Methods

Study design
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We performed an exome-based association study using data from 35 cohorts comprising 

up to 57,232 adults (≥18 years) of whom 50,321 were of European descent, 4,387 of 

African descent, 2,036 of East Asian descent, and 488 of Hispanic descent. We carried 

out additional analyses in men and women separately. All analyses were performed in 

models combining studies of all ancestries and in European ancestry cohorts only, for 

both additive and recessive genetic models. All participating institutions and coordinating 

centers approved the project. Informed consent was obtained from all study participants. 

We have reported the study-specific design, sample quality control, and descriptive 

statistics in Tables S1-S2.

Outcome traits

The participating studies acquired residuals for leptin concentrations (in ng/mL) using 

linear regression, adjusting for age, genome-wide principal components, and any study-

specific covariates (e.g. study center). The residuals were calculated with and without 

adjustment for BMI. Studies with unrelated individuals acquired the residuals in men and 

women separately, whereas family-based studies additionally acquired sex-combined 

residuals adjusting for sex as a covariate. Case-control studies acquired the residuals in 

cases and controls separately. Finally, we rank-transformed the residuals using inverse 

normal transformation to follow a distribution with a mean of 0 and a standard deviation 

of 1.

Genotyping
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All participating studies performed genotyping using the Illumina HumanExome 

BeadChip. The genotype calling was performed using the designated manufacturer’s 

software, followed by zCall. Study-specific quality control measures were implemented 

before the association analyses to remove poorly genotyped variants (Table S3).

Study-level association analyses

Associations of the exome-wide variants with the residuals of leptin concentrations were 

examined using linear mixed models implemented in either RAREMETALWORKER [12] 

or RVTEST [13] (Table S3). The model accounted for potential cryptic relatedness by 

incorporating a kinship matrix. We performed the single variant association analyses 

using both additive and recessive genotypic models. We also calculated covariance 

matrices capturing LD relationships between markers within 1 Mb for use in gene-level 

meta-analyses.

Quality control of study-level association results

We applied the EasyQC package in R to association summary statistics from each 

participating study to identify cohort-specific QC issues. This included (i) identifying issues 

with calculation of leptin residuals and transformation of the residuals, (ii) identifying 

strand issues by comparing allele frequencies against reference alleles from the 1000 

Genomes Project phase 1, and (iii) identifying issues arising from population stratification.

Single variant meta-analyses
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The meta-analyses of summary statistics from the participating studies were carried out 

using RAREMETAL [14] by two different analysts in parallel. We excluded all variants 

with a call rate <98%, Hardy Weinberg equilibrium P-value <1x10-6, or an allele frequency 

that strongly deviated from the 1000 Genomes reference frequency (>0.60 for all-ancestry 

analyses and >0.30 for ancestry-specific analyses). To identify the leptin-associated 

variants, we used the array-wide Bonferroni-corrected threshold of P<2x10-7 for ~250,000 

variants in the single variant analyses. 

Gene-based meta-analyses

We performed gene-based analyses using the sequence kernel association test [15] 

(SKAT) and variable threshold [16] (VT) methods in RAREMETAL. The analyses were 

performed with two different sets of criteria (broad and strict) to select predicted damaging 

rare and low-frequency variants with MAF<5% annotated using five prediction algorithms: 

PolyPhen-2, HumDiv, HumVar, LRT, MutationTaster, and SIFT. The broad gene-based 

tests included nonsense, stop-loss, splice-site, and missense variants that were 

annotated as damaging by at least one of the five algorithms whereas the strict tests only 

included variants predicted as damaging by all of the five algorithms. The statistical 

significance for the gene-based tests was set at a Bonferroni-corrected threshold of 

P<2.5x10-6 for 20,000 genes.

Age-stratified BMI analyses of variants in and near LEP

To study the influence of age on the association of the Val94Met variant in LEP and the 

rs10487505 variant near LEP with childhood BMI, we performed age-stratified analyses 
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in children with African and European ancestry from the Center for Applied Genomics at 

Children’s Hospital of Philadelphia (CHOP) cohort recruited from 2006 to present [17]. 

The participants had multiple BMI measurements at different ages and analyses were 

performed with measurements in 1-year age bins. The number of BMI measurements in 

each age bin is shown in Tables S9 and S10. Statistical significance was defined as 

P<0.05. The Val94Met and rs10487505 variants were genotyped using the Illumina 

Infinium II HumanHap550 and Human610 BeadChip and imputed to the HRC r1.1 

reference panel using the Sanger Imputation Server. All participants were biologically 

unrelated, aged between 2 and 18 years, and between -3 and +3 standard deviations of 

CDC-corrected BMI. The study was approved by the Institutional Review Board of the 

Children’s Hospital of Philadelphia. Parental informed consent was given for each study 

participant. 

Additionally, we used information on comparative body size at age 10 (data field 1687) 

for 452,264 individuals of European ancestry and 8,154 individuals of African ancestry 

from the UK Biobank. The participants were asked to choose one of the three categories 

of “about average”, “thinner”, or “plumper” to describe their body size compared to 

average when they were 10 years old.

Pathway enrichment analyses

We utilized the EC-DEPICT [18, 19] gene set enrichment analysis method to evaluate 

nonsynonymous index variants (strongest nonsynonymous variant within ±1 Mb 

boundary) with P<5x10-4 for association with either i) leptin unadjusted for BMI, or ii) leptin 

adjusted for BMI. EC-DEPICT’s primary innovation is the use of “reconstituted” gene sets, 
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which consist of gene sets downloaded from several databases that have been extended 

based on publicly available large-scale co-expression data [18]. Two analyses were 

performed: (i) all coding variants (N=93 loci for leptin unadjusted for BMI and N=91 loci 

for leptin adjusted for BMI) and (ii) coding variants with MAF<5% only (N=77 loci for leptin 

unadjusted for BMI and N=65 loci for leptin adjusted for BMI).

We also utilized PASCAL [20] to study the enrichment of exome-wide association results 

in gene sets and pathways using two estimation approaches: MAX and SUM. The MAX 

estimation is more powerful for single variant-driven associations whereas the SUM 

estimation is more powerful when multiple variants are driving the signal [20]. We used 

reconstituted gene sets from DEPICT and the reference data from UK10K [TwinsUK [21] 

and ALSPAC [22]] to estimate LD. The PASCAL analyses were performed for all exome-

chip variants (Nall=265,780 for leptin adjusted for BMI, Nall=265,780 for leptin unadjusted).  

and for coding variants only (Ncoding=176,035 for leptin adjusted for BMI, Ncoding=180,864 

for leptin unadjusted). No allele frequency or P-value thresholds were used to select 

variants for the PASCAL analyses. The pathway scoring method used by PASCAL 

combines individual gene scores without the need for a tuneable threshold parameter to 

determine inclusion of genes in the enrichment analysis [20].

Leptin adjusted for BMI is correlated with body fat free mass (correlation with fat-free 

mass index in the Fenland cohort = -0.39). The initial pathway analyses for leptin adjusted 

for BMI using EC-DEPICT and PASCAL suggested enrichment of skeletal-muscle related 

pathways. To make sure that the gene set enrichment results were not due to correlation 

between leptin adjusted for BMI and fat-free mass index, we corrected the effect sizes 

Page 13 of 93 Diabetes



14

using the following equation [23]: Betacorrected = betaleptin – (betaFFMI x rFFMIvs.LEPTIN), where 

rFFMIvs.LEPTIN = -0.39 (Pearson correlation coefficient in the Fenland Study). The betaFFMI-

coefficients were extracted from an ongoing exome-wide association study of fat-free 

mass index in ~500,000 individuals.

Collider bias

Given that we adjusted leptin concentrations for BMI in our exome-based analyses and 

leptin and BMI are strongly correlated (r~0.5-0.8) [9], we tested all exome-based 

significant loci for evidence of collider bias [23-25]. For each index we extracted the 

association results from our BMI-unadjusted leptin analyses and from the largest 

published exome-wide analysis for BMI [19]. We corrected BMI-adjusted associations for 

potential bias due to phenotypic correlation between leptin concentrations and BMI, and 

compared the strength and significance of association with leptin concentrations 

unadjusted for BMI, leptin adjusted for BMI, and association with BMI (Table S6).

eQTL colocalization analyses

The cis-expression quantitative trait locus (cis-eQTL) analyses were carried out by using 

abdominal subcutaneous adipose tissue from 770 participants of the METSIM (Metabolic 

Syndrome in Men) study who all were Finnish men from Kuopio, Finland [26]. The eQTL 

mapping in 770 METSIM individuals was performed by EPACTS implementing a linear 

mixed model to account for the population structure among the samples. The eQTLs were 

defined as cis (local) if the peak association was within 1 Mb on either side of the exon 

boundaries of the gene. We also identified variants most strongly associated with 
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genes/transcripts from the index variant (“eSNP”). We used METSIM LD (based on 

n=770, HRC imputation) to assess LD r2 between the index variant and the lead eSNP. If 

the pairwise LD was r2>0.80, we performed a reciprocal conditional analysis. We tested 

association between the lead SNP and transcript level when the lead eSNP was included 

in the model, and vice versa.

Expression of the potential causal genes in preadipocytes and mature adipocytes

We compared the expression of the candidate causal genes in the novel leptin-associated 

loci, including ZNF800, KLF14, KLHL31, ACTL9, CNTD1 and DNAJC18 in preadipocytes 

and mature adipocytes, two major constituent cell types of adipose tissue. Human 

preadipocytes isolated from adipose tissue were induced to undergo adipocyte 

differentiation in vitro [27]. RNA samples were obtained from preadipocytes and lipid-

laden mature adipocytes at post-differentiation day 12.

Impact of Val94Met variant in LEP on leptin protein stability 

We used UCSF Chimera 1.13.1 to model the 3D protein structure and valine-to-

methionine substitution in the leptin protein [28]. The Rotamers tool and the Dunbrack 

Rotamer Libary were used to view and evaluate amino acid sidechain rotamers. The 

displayed orientation of methionine was chosen based on the clashes and contacts 

observed in the protein and hydrogen bonds [29]. To predict protein stability, we used 

SDM [30], iStable [31], Cupsat [32] and iMutant 2.0 [33]. All analyses applied the 3D 

structure for leptin (ID 1AX8) from the RSCCP Protein Data Bank as the reference data 

set.
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Effect of the Val94Met variant in LEP on leptin protein stability and secretion rate

We tested the effect of the Val94Met variant on leptin protein stability and secretion rate 

in HEK293 cells in vitro. Human leptin cDNA clone was obtained from Open Biosystems 

Inc (Huntsville, AL) and subcloned into pcDNA3.1 vector. The original cDNA clone 

encodes the Val94 variant. The 94Met variant was created using Quikchange II site-

directed Mutagenesis kit (Agilent, Santa Clara, CA), with the Val94 plasmid as template 

and the following mutagenesis primers (forward: 5’-atgccttccagaaacatgatccaaa tatccaac-

3’, reverse: 5’-gttggatatttggatcatgtttctggaaggcat-3’). Plasmids carrying Val94 or 94Met 

cDNA (0.05 μg) were introduced into HEK293 cells (0.65 million cells/well in 12-well plate) 

using Lipofectamine 2000 as previously described [34]. To measure intracellular leptin 

protein turnover and secretion rates, cells were treated with protein synthesis inhibitor 

cycloheximide (CHX, 20 μg/ml) in fresh media for 0.5 and 1 hr at 72 hr post-transfection. 

Cells incubated with fresh media for 1 hr without CHX were used as untreated controls. 

Conditioned media were saved for leptin assay, and cell lysate were prepared using NP-

40 lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM DTT, 1 mM EDTA, 0.5% 

NP-40, 10% glycerol, and 1x Roche protein inhibitor mixture). Leptin concentrations in 

cell lysates and the amount of leptin in conditioned media were determined using a human 

leptin ELISA kit (R&D Systems, Minneapolis, MN). Little or no cell debris was observed 

in the conditioned media after centrifugation, suggesting little or no cell breakage during 

the incubation. The experiments were carried in duplicates or triplicates and repeated four 

times.  
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Results

Five novel genetic variants show association with leptin concentrations 

independent of adiposity

To identify genetic variants associated with leptin concentrations, we tested the 

associations of 246,328 single nucleotide variants (SNVs), genotyped on an exome-

targeted genotyping array, with leptin concentrations in up to 57,232 individuals of 

European (n=50,321), African (n=4,387), East Asian (n=2,036) or Hispanic ancestry 

(n=488) from 35 studies (Tables S1-S3). The exome-array provides a detailed coverage 

of gene-coding regions and includes tags for variants identified in previously published 

GWASs for human complex traits. Given the strong correlation between leptin and BMI 

(r~0.5-0.8) [9], we examined associations with leptin concentrations with and without 

adjustment for BMI. Additional analyses were performed in men (n=23,862) and women 

(n=32,940) separately. All the analyses were performed in all ancestries combined and 

in European-ancestry individuals only.

We confirmed five previously established [9] and identified five novel variants associated 

with leptin concentrations. The novel associations include four missense variants, in LEP, 

ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14 (Table 1, Table 

S4). The associations at already established loci include intergenic variants near LEP and 

CCNL1, a missense variant in GCKR, and intronic variants in COBLL1 and FTO (Table 

1, Table S4). To detect additional independent signals at the 10 leptin-associated loci, 

we performed conditional analyses, but no further signals were identified.
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The association between rs1121980 near FTO and leptin concentrations became non-

significant after adjustment for BMI (Punadj=8x10-17; PadjBMI=0.45). The effects of all other 

known and novel loci were independent of BMI (Table S5). We tested whether the 

adjustment for BMI, a strongly correlated covariate [23], may have introduced collider 

bias, but found no evidence of such bias (Table S6). 

The strongest variant associated with leptin concentrations was rs791600, an intergenic 

variant near the LEP gene. The rs791600 variant is in linkage disequilibrium (LD) (EUR 

r2=0.70) with the rs10487505 variant identified in our previously published GWAS [9], 

which is not included in the exome array and was therefore not available for analyses in 

the present study. In the prior GWAS study, the rs10487505 variant showed a more 

significant association with BMI-adjusted leptin concentrations (beta=0.034 per allele, 

P=2.7x10-11, n=29,252) than rs791600 (beta=0.029 per allele, P=3.0x10-9, n=31,800) and 

thus is still considered the lead variant at this locus (Figure S1).

Nine of the 10 identified loci showed an association with leptin concentrations in all 

ancestries combined and in European ancestry only analyses. However, the novel LEP 

variant Val94Met (rs17151919) only showed a significant association in all ancestries 

combined (P=2x10-16) and not in European-ancestry individuals alone (P=0.47, Table 

S7). In further ancestry-stratified analyses, we observed that the Met94-coding allele is 

common in populations of African ancestry (MAF=8%), less common in those with 

Hispanic ancestry (MAF=2%), very rare in those with European ancestry (MAF=0.02%) 

and monomorphic in people with East Asian ancestry [35]. In individuals of African 

descent, each Met94-coding allele was associated with 0.34 standard deviations (SD) 
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lower leptin concentrations (P=2x10-16, n=3,901) (Figure S2). The direction of effect was 

consistent in individuals with Hispanic (-0.21 SD effect per allele, P=0.29, n=488) and 

European ancestry (-0.19 SD effect per allele, P=0.47, n=44,401), but did not reach 

statistical significance, most likely because very few carriers were available (NHIS=24, 

NEUR=15) (Table S7).  

Gene-based analysis identifies two novel genes with sex-specific effect on leptin

In addition to single variant-based association tests, we performed gene-based tests 

using rare and low-frequency coding variants in aggregate [15, 16] (Methods). We 

identified two genes associated with leptin concentrations. CNTD1 showed association 

with leptin concentrations unadjusted for BMI in men (P=1×10−7) but not in women 

(P=0.27) (Table 2, Table S8). The association in men was driven by five coding variants 

and was strongly attenuated by adjusting for BMI (P=0.007), suggesting that the 

association of CNTD1 with leptin concentrations may be due to a link between CNTD1 

and adiposity, although no such connection has been previously reported. The CNTD1 

gene encodes cyclin N-terminal domain-containing 1, which is critical for meiotic 

crossover maturation and deselection of excess pre-crossover sites. 

Another gene, DNAJC18, showed association with BMI-adjusted leptin concentrations in 

women (P=6×10−8), but not men (P=0.02). The association in women was driven by two 

coding variants (Table 2, Table S8). DNAJC18 is part of the Dnaj heat shock protein 

family. However, no function has yet been described to C18 subfamily.

LEP Val94Met regulates leptin secretion and early adiposity
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The Val94Met (rs17151919) LEP variant was associated with BMI-adjusted leptin 

concentrations in individuals of African ancestry. A previous study in 2,129 African 

Americans in the CARDIA study (not included in the present meta-analyses) reported a 

significant association between the leptin-decreasing Met94 allele of the Var94Met 

(rs17151919) variant in LEP and up to 1.12 kg/m2 higher BMI in adulthood (P=0.018) [36]. 

However, results from two larger studies of BMI by the African Ancestry Anthropometry 

Genetics Consortium (n=42,752; P=0.88) [37] and the African ancestry population of the 

UK Biobank study (N=7,820, P=0.17), did not replicate the association. Nevertheless, 

among the African ancestry population in the UK Biobank, carriers of the leptin-

decreasing Met94 allele reported more often that, at age 10, they were “plumper” 

(compared to peers) (OR=1.11, P=0.04), suggesting that the effect of this variant may be 

age-dependent. To study the influence of age, we performed age-stratified analyses in 

up to 2,726 children with African-ancestry from the Center for Applied Genomics at 

Children’s Hospital of Philadelphia (CHOP) cohort [17]. Comparing the effect sizes across 

different age points revealed that each leptin-decreasing Met94 allele was associated 

with 0.12-0.20 units higher BMI z-score between the ages 3 and 7 (P<0.05). The most 

pronounced effect was reached at age 6 years (Figure 1, Table S9), and no association 

with BMI was observed after age 8 years (betas -0.04 to 0.05) (Figure 1, Table S9), 

suggesting that the BMI-increasing effect of the Met94 allele wanes shortly before 

puberty. The rs10487575 variant near LEP showed a similar trajectory of association with 

childhood BMI as the Val94Met variant but the effect sizes were much more modest 

(Figure 1, Table S10), consistent with the five-fold smaller effect of rs10487505 on leptin 

concentrations compared to Val94Met in adults (Table 1).
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The Val94Met variant is located at position 94 in the 167 amino acid leptin precursor 

protein and results in a valine to methionine change at position 73 of the mature protein 

(Figure 2A). Position 73 is situated at the leptin protein surface and is not believed to be 

involved in binding of leptin to its receptor. Nevertheless, structural prediction tools [30-

33] suggested that the substitution of valine with methionine at this position is likely to 

lead to reduced stability of the mature leptin protein (Figure 2A, Figures S3-4, Table 

S11). This is consistent with our observation that the methionine-coding allele is 

associated with lower leptin concentrations. 

To study the impact of the Val94Met variant on the intracellular turnover of the leptin 

protein and its secretion rate, we performed in vitro experiments in HEK293 cells. Leptin 

secretion rate – calculated as the amount of leptin secreted in 1 hour normalized to the 

respective cellular leptin content – was 20.4% lower in Met94 than in Val94 cells 

(P=0.0007 by repeated measures 1-way ANOVA) 72 hours post-transfection (Figure 2B). 

Leptin secretion rates between 48-72 hours post-transfection and during a 1-hour 

treatment with cycloheximide were 11.8% (P=0.0005) and 17.9% (P=0.0002) lower, 

respectively, in Met94 compared to Val94 (Figure S5). Notably, no difference was found 

in the intracellular turnover rate of leptin between Val94 and Met94 cells during a 0.5 or 

1-hour incubation with cycloheximide to impair protein synthesis (Figure 2C). The 

unchanged turnover rate incorporates protein secretion and degradation, suggesting that 

decreased leptin secretion rate was likely associated with increased intracellular leptin 

degradation in Met94 cells. Overall, these in vitro experiments suggest that methionine 

substitution in position 73 of the mature leptin protein decreases the rate of leptin 
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secretion from the cells, which may contribute to the association of the Met94 allele with 

lower leptin concentrations. 

ZNF800 locus regulates adipose gene expression and body composition

The Pro103Ser (rs62621812) variant in ZNF800 changes the amino acid sequence of 

CH2 zinc finger protein, a putative transcription factor [38]. We found that the Ser103 

allele (frequency=2.8%) is associated with lower BMI-adjusted leptin concentrations 

(P=2.0x10-12). As shown before [26], Pro103Ser is the lead variant associated with 

expression of ZNF800 in subcutaneous adipose tissue in the Finnish METSIM Study 

(P=2.4x10-16); the Ser103 allele is associated with higher ZNF800 expression levels 

(Table S12). ZNF800 is a master regulator in subcutaneous adipose tissue, as the 

Pro103Ser variant has also been associated with adipose tissue expression of nine other 

genes [26]. In the eQTL data, the leptin-decreasing Ser103 allele was not significantly 

associated with the expression of LEP (P=0.20), located 866 kb downstream, and the 

observed direction of the effect on LEP expression was opposite to that observed for 

leptin concentrations (beta=0.14 SD/allele vs. beta= -0.13 SD/allele, respectively), 

suggesting that the leptin-lowering effect of the Ser103 allele on leptin concentrations is 

unlikely to be mediated by direct transcriptional regulation of LEP. 

In the UK Biobank study, we found that each leptin-decreasing Ser103 allele is associated 

with 0.14 kg/m2 higher BMI (P=8.1x10-6). However, there was no association between 

Ser103 allele and body fat percentage (-0.045% per allele, P=0.25), indicating that the 

variant impacts BMI primarily by increasing fat free body mass. Indeed, the leptin-

decreasing Ser103 allele was associated with a 0.33 kg higher fat free mass (P=4.6x10-
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20) and only 0.13 kg higher fat mass (P=0.023). The Ser103 allele is associated with 

higher expression of the ZNF800 gene in the tibial nerve (GTEx v8, P=1.4x10-6, n=532) 

that innervates the muscles of the leg, and has been previously identified for association 

with increased appendicular lean mass [39]. There was no association between the 

Ser103 allele and self-reported body size at age 10 (P=0.75).

The KLF14 locus regulates adipogenesis and fat distribution

The rs972283 variant (MAFEUR=48%), associated with leptin concentrations, is located 

51 kb upstream from KLF14 and 2.5 Mb downstream from LEP, and is in near-perfect LD 

with previously reported GWAS variants for type 2 diabetes [40], insulin-resistance [41], 

HDL cholesterol [42], and body fat distribution [43]. As reported earlier [26], rs972283 is 

associated with KLF14 expression in subcutaneous adipose tissue (Table S12). As 

KLF14 is a master regulator in adipose tissue, rs972283 is also associated with the 

expression of multiple other genes in trans [44]. No significant association was observed 

between rs972283 and LEP expression in the METSIM eQTL study [44], suggesting that 

KLF14 may not regulate leptin production at the transcriptional level, at least not in men. 

Lower expression of KLF14 has been implicated in impaired adipogenesis due to 

defective adipocyte glucose uptake in women, characterized by the presence of fewer but 

larger adipocytes and a shift in fat distribution from gynoid stores to abdominal tissues 

[44]. However, while the effects of KLF14 on adipogenesis and adipose redistribution 

have been found to be specific to women, there was no difference in the association of 

rs972283 with leptin levels between men and women (Table S4).
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Interestingly, the carriers of the rs972283-G allele reported more frequently being plumper 

(P=2.8x10-5) and shorter (P=0.014) than average at age 10 in the UK Biobank than non-

carriers, whereas the same allele was associated with a lower BMI (P=6.8x10-9) and 

increased height (P=0.010) in adults, suggesting that the effect of the rs972283 variant 

on body size may change during life course. In previous GWAS of adults, the rs972283-

G allele has been identified to be associated with higher risk of type 2 diabetes [40] and 

insulin resistance [41], and lower hip circumference (adjusted for BMI) [43] and HDL 

cholesterol [42]. In the UK Biobank study, the rs972283-G allele was associated with 

lower body fat percentage in adults (P=5.9x10-22). 

The KLHL31 locus is implicated in adipogenesis in adult females

The Val156Ile (rs3799260) variant (MAFEUR=18%) in KLHL31, associated with leptin 

concentrations in female-only analyses, changes the amino acid sequence of the kelch-

like family member 31 protein. KLHL31 suppresses Wnt-β-catenin signaling that is 

involved in promoting adipocyte differentiation and suppressing oxidative metabolism in 

adipocytes. The Val156Ile variant is predicted to be benign/tolerated by SIFT/Polyphen 

[45, 46]. Previous genetic associations have identified a variant in low LD (rs7739232; 

EUR r2=0.27) to be associated with BMI-adjusted hip circumference, also specific to 

women [43]. The rs7739232 variant was not included in the exome-array and was thus 

not analyzed in the present study. Our in vitro experiments showed that KLHL31 is only 

expressed in mature adipocytes, but not in preadipocytes (Figure S6), suggesting that 

the gene is developmentally regulated. 
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In the UK Biobank, similar to the variants in and near LEP, the carriers of the leptin-

decreasing Ile156 allele reported more often being plumper than average at age 10 

(P=5.6x10-6), but there was a weaker association with higher BMI (P=0.045) in adulthood.

In men, the ACTL9 locus may regulate leptin concentrations in a cell non-

autonomous fashion

Homozygosity for the minor allele of the Ser37Phe (rs2340550) variant in ACTL9 was 

associated with leptin concentrations in men only in a recessive genetic model. While the 

Ser37Phe variant is predicted to be benign/tolerated by SIFT/Polyphen, another 

missense variant, Ala51Val (rs10410943), in high LD (EUR r2=0.99) is predicted to be 

deleterious/probably damaging and could be the causal variant at the locus. The 

Ser37Phe variant is also in high LD (r2>0.8) with several nearby non-coding variants 

(Figure S7). However, none of these overlaps with regulatory elements in adipocytes. 

The expression of ACTL9 is restricted to the testis and it is therefore likely to act in an 

adipocyte non-autonomous fashion to influence leptin concentrations. Actin proteins have 

cytoskeletal functions and have also been implicated in signaling and nuclear activities.

Gene-set analyses implicate adipocyte-related pathways

We performed gene-set enrichment analyses using EC-DEPICT [18, 19, 47] and PASCAL 

[20] to identify biological processes and candidate pathways enriched for loci associated 

with leptin unadjusted or adjusted for BMI. Among coding variants associated with BMI-

unadjusted leptin concentrations, PASCAL identified significant enrichment of the gene-

set for “positive regulation of reproductive success” (Pempirical=1.6x10-5) (Table S13), 
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consistent with the crucial permissive role of leptin in the integrity of the gonadal axis [48]. 

Among coding variants associated with leptin adjusted for BMI, we found enrichment of 

the immune-related TRIM39 protein-protein interaction subnetwork [49, 50] 

(Pempirical=8.4x10-6) (Table S14). No gene sets were found to be significantly enriched in 

PASCAL analyses where all exome-wide variants (coding and non-coding) for leptin 

adjusted for BMI were included, nor in the EC-DEPICT analyses. 
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Discussion

We identified 10 genetic variants associated with leptin concentrations and two gene-

based associations using an exome-based genotyping array in up to 57,232 individuals 

with varying ancestries. The two independent variants most strongly associated with 

leptin concentrations were located in and near the LEP gene. The African ancestry-driven 

variant within LEP, Val94Met (rs17151919), was found to decrease leptin secretion in 

HEK293 cells whereas rs10487505 located near LEP overlaps a lncRNA that regulates 

LEP expression [10]. Both variants showed significant association with increased 

adiposity in children, whereas only a nominal or no association was observed in adults.

Previous analyses have shown that the leptin-lowering allele of rs10487505 is only weakly 

associated with higher BMI in adulthood but shows a pronounced association with BMI in 

early childhood [10, 11]. Similarly, we showed that the LEP Met94 allele, associated with 

lower leptin concentration, is associated with early childhood BMI. Our results suggest 

that leptin has an impact specifically on early adiposity, encouraging further studies to 

uncover the molecular mechanisms that underlie this age-dependent relationship 

between leptin and BMI.

The Val94Met and rs10487505 variants in and near LEP are likely to influence leptin 

concentrations by different molecular mechanisms. The novel African ancestry-driven 

variant Val94Met may affect circulating levels of leptin by reducing leptin secretion. The 

rs10487505 variant is associated with leptin mRNA levels in adipose tissue. Located 

upstream of LEP within a lncRNA (EL947753), we hypothesize that this variant interacts 

with enhancer regions to regulate the expression of LEP. Defects in LEP regulation in 
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mice lead to a relative hypoleptinemic form of obesity that is responsive to leptin 

administration [10]. 

We identified four new loci associated with leptin concentrations, located in or near the 

ZNF800, KLF14, KLHL31 and ACTL9 genes. Two additional genes, CNTD1 and 

DNAJC18 were identified in gene-based analyses. The ZNF800 and KLF14 genes are 

master trans-regulators of adipose tissue gene expression [26] and located in the 

proximity of the LEP gene (866 kb and 2.5 Mb away, respectively). The variants in 

ZNF800 and near KLF14 were not associated with LEP mRNA levels, however, 

suggesting that they may be involved in translational or post-translational rather than 

transcriptional regulation of leptin production. KLHL31 has been shown to promote 

adipocyte differentiation and suppress oxidative metabolism in adipocytes, whereas 

ACTL9 is not expressed in adipocytes and could affect circulating levels by a non-cell 

autonomous mechanism. The KLHL31 and ACTL9 loci, and the CNTD1 and DNAJC18 

genes, were only identified in sex-specific models and narrowly passed the array-wide 

significance threshold. Further validation of the association of these loci with leptin 

concentrations is warranted.

In summary, we identified a new genetic association of an African ancestry-specific 

missense variant rs17151919 in LEP with leptin concentrations and replicated the 

association of the rs10487505 variant near LEP. The pronounced association of these 

variants with BMI in early childhood implicates genetic regulation of LEP in early growth 

and suggests that young children may be particularly sensitive to the metabolic/behavioral 

effects of leptin. We also identified novel loci at ZNF800, KLF14, KLHL31, ACTL9, CNTD1 
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and DNAJC18 associated with leptin concentrations, providing additional insights into 

leptin physiology.
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Tables

Table 1. Leptin-associated loci identified in exome-based association analyses

SNP Chr Position Nearest 
gene

Trait Most significant model Annotation EA OA EAF Beta SE P value N

Novel variants

rs3799260 6 53,519,605 KLHL31 LeptinAdjBMI Additive / All ancestries / Women missense C T 0.175 0.055 0.010 1.0E-07 32,886

rs62621812 7 127,015,083 ZNF800 LeptinAdjBMI Additive / All ancestries missense A G 0.028 -0.127 0.018 2.0E-12 56,708

rs17151919 7 127,894,592 LEP LeptinAdjBMI Additive / All ancestries missense A G 0.007 -0.333 0.040 1.5E-16 49,034

rs972283 7 130,466,854 KLF14 LeptinAdjBMI Additive / European intergenic A G 0.479 0.056 0.006 3.8E-18 49,830

rs2340550 19 8,808,942 ACTL9 LeptinAdjBMI Recessive / European / Men missense A G 0.316 0.071 0.014 2.0E-07 21,883

Previously identified variants

rs1260326 2 27,730,940 GCKR LeptinAdjBMI Additive / All ancestries missense T C 0.375 -0.050 0.006 2.7E-15 56,708

rs13389219 2 165,528,876 COBLL1 LeptinAdjBMI Additive / All ancestries intronic T C 0.410 0.053 0.007 3.0E-15 50,297

rs900399 3 156,798,732 CCNL1 LeptinAdjBMI Additive / All ancestries / Women intergenic G A 0.391 -0.054 0.008 1.2E-10 29,510

rs791600 7 127,865,816 LEP LeptinAdjBMI Additive / All ancestries intergenic A G 0.422 -0.066 0.007 1.1E-23 49,282

rs1121980 16 53,809,247 FTO Leptin Additive / European intronic A G 0.432 0.055 0.007 7.7E-17 49,909

The chromosomal positions are based on hg19.  

Chr, chromosome; EA, Effect allele; OA, Other allele; EAF, Effect allele frequency; LeptinAdjBMI, leptin adjusted for body mass index
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Table 2. Leptin-associated genes identified by gene-based exome-wide association analyses

Gene Chr Position Trait Most significant model Method N P value Beta SE N variants

CNTD1 17 40,950,810-40,963,605 Leptin Additive / European / Men SKAT broad 18,882 1.3E-07 0.898 0.165 5

DNAJC18 5 138,743,559-198,780,898 LeptinAdjBMI Additive / All ancestries / Women SKAT strict 29,510 5.5E-08 0.757 0.169 2

The chromosomal positions are based on hg19.  

Chr, chromosome; LeptinAdjBMI, leptin adjusted for body mass index
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Figure 1. Association of the leptin-decreasing alleles of the LEP Val94Met 

(rs17151919) variant (on the left) and the rs10487505 variant near LEP (on the right) 

with BMI standard deviation score (SDS) in the CHOP cohort. The analyses for the 

Val94Met variant were performed in up to 2,726 African ancestry participants and the 

analyses for the rs10487505 variant in up to 3,681 African and European ancestry 

participants of the CHOP cohort. The y-axis reports the effect of each leptin-decreasing 

allele on BMI at each age year. The error bars indicate 1 standard error of the mean 

(SEM).

Figure 2. Impact of Val94Met transversion at LEP rs17151919 on leptin secretion 

rate in HEK293 cells.  The rs17151919 variant changes valine to methionine in position 

73 of the mature leptin protein. A) The 3D illustration of leptin structure derived from 

RSCCB Protein Data Bank and modified with UCSF Chimera1.13.1. The prediction of 

protein stability is derived from the SDM2 server [30]. B) Leptin secretion rates for Val94 

and Met94 expressed as the amount of leptin secreted in ng during a 1 hr incubation 

(72-73 hr post-transfection) (LEPs/hr) normalized by the respective cellular leptin 

content (LEPc) in untreated control cells at the end of incubation. Individual data points 

from four separate experiments (each with 2-3 technical replicates) are plotted. The 

normality of data distribution was examined using D'Agostino & Pearson normality test 

(p=0.65 and 0.54 for LEPV94 and LEPM94, respectively) and repeated measures one-

way ANOVA was performed to assess the difference in secretion rate between the 

genotypes. Mean ± SD and AVOVA results (F and p values) are reported in the table 

below the graph. C) Intracellular leptin turnover rates for Val94 and Met94 alleles, 

obtained by measuring the relative cellular leptin contents in the untreated control cells 
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(defined as 1 for the respective LEP variant) and in samples treated with the protein 

synthesis inhibitor cycloheximide (CHX, 20 μg/ml) for 0.5 and 1.0 hour. Mean ± SD at 

each time point from four separate experiments (each with 2-3 technical replicates) are 

plotted. Paired t-test was used to assess the genotype effect on the fractions of cellular 

LEP remained after 0.5 hr and 1 hr of CHX treatment (p values are reported in the table 

below the graph). The average hourly turnover rates for Val94 and Met94 were 61±2%, 

and 60±3%, respectively, calculated by subtracting the percent cellular LEP remained 

after one hour of CHX treatment from those of the respective untreated controls 

(defined as 100%).
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Table S1.  Study design, number of individuals and sample quality control for ExomeChip study cohorts

Study Sample QC 

Short name Full name

Study design Ethnicity Total 
sample 
size (N) Call 

rate*
Other exclusions

Samples 
in 
analyses 
(N)

BMI 
assessment 
method

References

ARIC Atherosclerosis Risk in 
Communities Study

Population-
based

European 
American 
(EA) 
African 
American 
(AA)

462 ≥ 95% 1) call rate <95%, 2) PCA outliers, 3)sex mismatch , 4) inbreeding 
coefficient +/-6SD from mean of ancestry distribution, 5) first 
degree relatedness; 
6) comparison with GWAS data, exclude if >40% mismatch, 7) 
(p10GC) genotype quality score, representing the 10th percentile of 
the distribution of GenCall scores across all SNPs, 8) missing leptin, 
adiponectin, or BMI measures (only exclude from analyses missing 
respective phentoype trait)

340 Measured PMID: 2646917
PMID: 2387450 
PMCID: 
PMC3709915
PMID: 12829649 

CHS EA and 
AA

Cardiovascular Health 
Study

Population-
based

European 
American 
(EA)
African-
American 
(AA)

5088 ≥ 95% Following the central QC and joint variant calling, additional QC 
steps were applied to the CHS data using PLINK. SNPs with a 
missingness rate of >95% were removed and individuals meeting the 
following criteria were excluded from analysis. We further excluded 
individuals with low P10GC call, a missing genotype rate of > 97%, 
gender mis-matches identified by X chromosome homozygosity 
rates. The sample was limited to those of self-described European-
ancestry (EA) and African-American (AA) participants. Principal 
components analysis was performed using a subset of common LD-
pruned variants from the Exome Chip both for the full sample as 
well as in EA and AA strata. Individuals whose full-sample first 
principal component suggested a different ancestry from their self-
reported ancestry were excluded as were individuals who were 
outliers for the first 10 ancestry-specific principal components. Pair-
wise IBD measures were calculated and outliers with high levels of 
IBD were removed.

5044 Measured PMID: 23874508
PMID: 1669507

CLHNS Cebu Longitudinal 
Health and Nutrition 
Survey

Population 
Based 
Longitudinal

Filipino 1799 ≥98% 1) Missing study specific covariates (household assets or household 
income)

1,792 Measured PMID: 20507864

Ely Ely study Longitudinal 
cohort study

European 
ancestry

1592 > 98% 1) Heterozygosity check, 2) Ethnic outliers, 3) Duplicate individuals, 
4) Sex discrepancy, 5) Unusually high number of singleton 
genotypes, 6) impossible IBD values, 7) phenotype missing

1,432 Measured PMID:17257284

ERF study Erasmus Rucphen 
Family study

Family-based White 
European

2963 ≥ 95%  -- 1146 Measured http://www.eras
musmc.nl/klinisch
e_genetica/resear
ch/intro/genepi/

FAMHS Family Heart Study Family-based White 
European

 -- ≥ 98% 1) Variants with missing rate > 5% (based on aggregate data) 
2) pHWE<1e-6
3) Mendelian errors 
4) minor allele count (MAC)<5 for variant-wise tests

1505 Measured PMID:8651220

Fenland-CE Fenland Study Population-
based

European 
ancestry

1077 > 98% Heterozygosity check; Ethnic outliers; sex discrepancy; unusually 
high number of singleton genotypes; impossible IBD values; 
phenotype missing; excluding overlap exomechip samples

368 Measured PMID: 20519560
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Fenland-
Exomechip

Fenland Study Population-
based

White 
European

1650 > 98% 1) heterozygosity outliers (>3.5 SDs), 2) ethnic outliers, 3) sex 
discrepancy, 4) unusually high number of singleton genotypes, 5) 
related (IBD > 0.1875)

1342 Measured PMID: 20519560

FHS Framingham Heart 
Study

Family-based White 
European

8153 ≥ 97% 1) Missing GWAS PCs, 2) Ethnic outlier, 3) Missing trait or covariate 7458 Measured PMID: 23874508

FINRISK 
1997

Finland National 
FINRISK Health Survey 
1997

Population-
based

White 
European

8325
(4006)

≥ 95% 1) Missing leptin or adiponectine levels, 2) Missing BMI, 3)Pregnancy 3917 Measured PMID: 29165699 

FINRISK 
2007

Finland National 
FINRISK Health Survey 
2007

Population-
based

White 
European

6086
(3465)

≥ 95% 1) Missing leptin or adiponectin levels, 2) Missing BMI, height or 
weight, 3) Missing fat free mass or fat mass, 4) Pregnancy

2945 Measured PMID: 29158543

HABC AA Health, aging and 
body composition 
study

Population-
based

African 
American 
ancestry

1139 > 95% 1) missing data, 2) relatedness, 3) acestry outliers, 4) heterozygosity 
outliers

1060 Measured  --

HABC EA Health, aging and 
body composition 
study

Population-
based

European 
ancestry

1663 > 95% 1) missing data, 2) relatedness , 3) acestry outliers, 4) heterozygosity 
outliers

1572 Measured  --

Inter99 Inter99 Population-
based

European 6141 ≥ 98% 1) Missing body weight and height. 2) Heterozygosity were 
calculated separately for maf < 1% and maf > 1% and samples were 
dropped judged by plots, 3) Cryptic relatedness (related to 20 or 
more individuals), 3) Technical duplicates , 4) Non-European 
population outliers from PCA plot (based on AIM SNPs), 5) Sex 
discrepancy

5594 Measured PMID: 14663300

JHS Jackson Heart Study Population-
based cohort 
with subset 
of families

African 
American

2803 ≥ 95% 1) Missing outcome or covariate, 2) Heterozygosity, 3) PC outlier
4) Half of overlap with ARIC African Americans (coordinated with 
ARIC)

2312 Measured PMID: 16320381

KORA Kooperative 
Gesundheitsforschung 
in der Region 
Augsburg 
(Cooperative Health 
Research in the 
Region of Augsburg)

Population-
based

White 
European

2921 ≥98% 1) excess heterozygosity [i.e. |het_rate| > |mean+/-5sd|], 2) sex-
check based on y-chromosome (remove men with <50% and women 
with >50% calls on y-chromosome), 3) remove of HAPMAP-samples
4) remove duplicates (keep sample with higher callrate), 5) remove 
samples with genetic inconsistencies with other genotyping / 
indication for contamination / population outliers

2916
Measured  --

Leipzig-
adults

Leipzig Adults Study Population-
based

White 
European

902 ≥ 99% 1) Missing phenotype, 2) Heterozygosity, 3) Non-European 
population outliers, 4) Technical duplicates with lower call rate
5) Sex discrepancy

902 Measured PMID: 20935630

MESA CAU, 
CHN,  AFA 
and HIS

Multi-Ethnic Study of 
Atherosclerosis 
(MESA) Cohort

Population-
based

Caucasia
n;Chines
e;Hispani
c;African-
American 
were 
recruited 
from six 
field 
centers

6375 ≥ 95% 1) Ethnic outliers, 2) duplicates, 3) gender mismatch, 4) Phenoty 
outliers

CAU 
2497
AFA 1655
CHN 769
HIS 1435

Measured  --

NEO Study The Netherlands 
Epidemiology of 
Obesity Study

Population-
based

European 
ancestry

6.604 ≥ 98% 1) remove duplicate/swap samples, 2) remove samples with gender 
mismatch, 3) remove outliers in PCA

6.127 Measured PMID: 23576214]
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OMICS-
Fenland

Fenland Study Population-
based

White 
European

8994 > 97% 1) Heterozygosity check, 2) Ethnic outliers, 3) sex discrepancy, 4) 
unusually high number of singleton genotypes, 5) impossible IBD 
values, 6) phenotype missing, 7) excluding overlap exomechip 
samples

7845 Measured PMID: 20519560

PIVUS Prospective 
Investigation of the 
Vasculature in Uppsala 
Seniors

Population-
based

White 
European

961 ≥ 99% 1) Missing phenotype, 2) Heterozygosity, 3) Non-European 
population outliers, 4) technical duplicates with lower call rate
5) Sex discrepancy

961 Measured PMID: 16141402

RAINE 
Study

Western Australian 
Pregnancy Cohort 
(RAINE) Study

Population-
based

White 
European

1527 >=95% 1) Samepl disconcordance with GWAS data, 2) Heterozygosity 
3) Missing body weight and height, 4) Did not participant in DEXA 
scan

1006 Measured  --

RISC Relationship between 
Insulin Sensitivity and 
Cardiovascular disease 

Population-
based

White 
European

313 0.99 1) heterozygosity, 2) duplicates, 3) relatedness 313 Measured PMID:14968294

RSI Rotterdam Study Population-
based

White 
European

3163 ≥ 98% 1) Heterozygosity, 2) gender-check 554 Measured PMID: 29064009

SHIP-
TREND

Study of Health in 
Pomerania - TREND

Population-
based

White 
European

4270 ≥ 98% 1) missing data, 2) duplicate samples (by estimated IBD), 3) reported 
and genotyped sex mismatch, 4) Heterozygosity

4149 Measured PMID: 20167617

TwinsUK TwinsUK twin study White 
European

4081 ≥ 95% 1) missing phenotype, 2) sample call rate 1864 Measured

WGHS Women's Genome 
Health Study

population 
based trial

 
European

22618 >98% 1) Heterozygosity, 2) Batch effects, 3) see also Grove et al. (PLoS 
One (2013) doi: 10.1371/journal.pone.0068095)

789 Self-
reported

 PMID: 18070814

WHI Women's Health 
Initiative

Cohort European 21,857 ≥ 95% 1) Unexpected Duplicates, 2) PC ancestry outliers, 3) Missing body 
weight and height

5886 Measured PMID: 9492970 

WHI Women's Health 
Initiative

Cohort African 
American

3,516 ≥ 95% 1) Unexpected Duplicates, 2) PC ancestry outliers, 3) Missing body 
weight and height

884 Measured PMID: 9492970 

YFS The Cardiovascular 
Risk in Young Finns 
Study

Population-
based

White 
European

1998 ≥ 95% 1) Pregnancy, 2) Heterozygosity, 3) Gender discrepancy, 4) MDS 
outliers

1681 Measured PMID: 18263651

* Call rate to exclude individuals for whom genotyping success rate is less than a certain percentage (to exclude 'bad' samples/DNA)

**Exome-chip samples from this study
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Table S2. Study-specific descriptive statistics of ExomeChip cohorts.

Men Women

Studya Trait

n mean SD median min max n mean SD median min max

Age (yrs) 249 53.8 5.7 53 45 65 342 53.2 5.6 53 44 65

BMI (kg/m²) 249 28.7 4.04 28.2 20.4 44.9 342 28.1 5.6 26.8 18.1 49.5ARIC
Leptin levels 
(ng/ml) 249 8.4 9.6 5.9 0.5 105.3 342 25.6 22.1 18.7 0.7 147.3

Age (yrs) 484 72.9 5.4 72 65 91 533 72.6 4.9 72 65 92

BMI (kg/m²) 482 26.4 3.6 26 16.9 39.4 531 26.3 4.9 25.5 15.6 47.7CHS-EA
Leptin levels 
(ng/ml) 484 9.5 10.4 7.2 1.3 100 533 27.2 22.6 19.2 1.4 100

Age (yrs) 88 73.6 5.7 73 65 89 121 73.7 5.4 73 66 90

BMI (kg/m²) 88 26.4 3.8 26.1 18.2 37.7 121 29.6 5.3 29.3 18.3 44.5CHS-AA
Leptin levels 
(ng/ml) 88 9.6 8.8 7.1 1.3 46.8 121 41.7 26.6 36.1 1.4 100

Age (yrs) - - - - - - 1792 48.5 6.1 47.7 35.7 69.3

BMI (kg/m²) - - - - - - 1780 21.3 4.4 24.1 12.3 42.1CLHNS
Leptin levels 
(ng/ml) - - - - - - 1792 25.5 19.4 21.3 0 154.2

Age (yrs) 742 61.5 9.1 61.6 35.7 77.4 849 60.8 9.3 60.2 36.3 78.9

BMI (kg/m²) 742 27.4 3.9 26.8 16 45.8 849 27.3 5.4 26.3 16.9 59.3Ely
Leptin levels 
(ng/ml) 658 9.2 8.1 7.1 0.1 63.1 769 33 26.7 25.7 0.7 198

Age (yrs) 262 49.4 14.2 49.6 17.6 81.8 316 50.0 15.4 51.0 18.6 81.4

BMI (kg/m²) 262 27.5 5.0 26.9 17.4 50.8 316 27.1 5.2 26.5 17.7 61.8ERF study
Leptin levels 
(ng/ml) 262 27.7 43.8 16.8 0.6 535.9 316 91.3 89.1 60.0 0.0 599.3

Age (yrs) 737 52.5 13.9 53.9 25.2 91.0 768 52.8 13.1 53.9 25.2 88.7

BMI (kg/m²) 737 27.8 5.0 27.0 16.0 49.6 768 28.1 6.9 26.4 16.1 55.1FAMHS EA
Leptin levels 
(ng/ml) 737 8.5 7.0 6.6 1.1 77.1 768 23.4 17.9 18.4 2.2 123.6

Age (yrs) 164 49.6 7.0 50.4 36.1 61.6 204 49.3 7.6 50.1 30.7 62.3

BMI (kg/m²) 164 27.4 4.1 26.9 18.2 42.3 204 26.6 4.8 25.4 19.1 45.5Fenland-CE
Leptin levels 
(ng/ml) 164 7.46 7.26 5.70 0.50 57.90 204 23.69 19.80 16.75 2.20 112.00

Age (yrs) 621 48.5 7.2 48.5 31.3 61.5 713 48.6 7.2 49.0 33.7 61.1Fenland-
Exomechip BMI (kg/m²) 621 27.5 4.0 27.1 18.0 46.6 713 26.6 5.5 25.2 16.6 59.9
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Leptin levels 
(ng/ml) 621 7.7 7.5 5.9 0.1 74.5 713 24.2 21.3 17.7 0.5 169.0

Age (yrs) 3035 48.3 7.4 48.6 30.9 62.3 3376 48.4 7.2 48.7 30.5 62.8

BMI (kg/m²) 3035 27.3 4.2 26.8 15.3 50.6 3376 26.4 5.2 25.4 14.5 58.7Fenland-
OMICS Leptin levels 

(ng/ml) 3035 7.7 7.3 5.6 0.1 72.1 3376 23.3 20.3 17.3 0.1 199.0

Age (yrs) 1800 40.3 8.9 40.0 19.0 72.0 2034 40.0 8.8 40.0 19.0 70.0

BMI (kg/m²) 1800 27.9 4.7 27.3 16.4 56.5 2030 26.0 6.1 24.4 15.6 60.6FHS
Leptin levels 
(ng/ml) 1800 6.1 6.2 4.3 0.2 64.2 2034 18.2 17.1 12.3 0.7 110.3

Age (yrs) 1786 46.1 13.1 45.3 24.2 74.1 2134.0 44.8 12.4 44.2 24.2 73.8

BMI (kg/m²) 1783 26.6 3.9 26.1 14.7 47.1 2133.0 26.0 4.9 25.1 16.6 51.6FINRISK97
Leptin levels 
(ng/ml) 1761 6.2 6.2 4.3 1.6 76.2 2111.0 18.0 14.0 14.0 1.6 100.0

Age (yrs) 1298 52.2 13.6 53.0 25.0 74.0 1647.0 51.0 15.5 51.0 25.0 74.0

BMI (kg/m²) 1284 26.9 4.1 26.3 15.7 62.8 1635.0 26.6 5.4 25.4 15.9 52.7FINRISK07
Leptin levels 
(ng/ml) 1284 7.8 8.2 5.3 0.1 89.1 1602.0 19.1 15.8 14.9 0.5 100.0

Age (yrs) 457 73.5 2.8 73.0 69.0 79.0 603 73.3 2.9 73.0 68.0 80.0

BMI (kg/m²) 457 27.1 4.2 26.8 14.9 43.2 603 29.4 5.6 29.0 14.6 47.5HABC AA
Leptin levels 
(ng/ml) 457 8.1 7.2 6.4 0.0 60.3 603 24.8 15.0 22.3 0.3 99.3

Age (yrs) 825 73.9 2.9 74 69 80 747 73.6 2.8 73 69 80

BMI (kg/m²) 825 27 3.7 26.6 17.6 44.2 747 26.1 4.5 25.6 15.6 44.7HABC EA
Leptin levels 
(ng/ml) 825 7.7 6.8 6 0.2 59.1 747 18.9 14 14.8 0.3 86.9

Age (yrs) 2675 46.6 7.8 45.2 29.9 61.1 2828 45.8 8.0 45.1 29.7 61.3

BMI (kg/m²) 2674 26.8 4.0 26.3 17.1 56.9 2825 25.8 5.0 24.7 15.2 55.7Inter99
Leptin levels 
(ng/ml) 2675 4.6 5.1 3.2 0.2 70.7 2828 15.1 16.1 10.3 0.4 260.6

Age (yrs) 861 51.9 12.8 51.0 21.0 81.0 1434 53.8 12.6 53.0 21.0 91.0

BMI (kg/m²) 861 30.4 30.4 29.2 16.4 66.1 1434 31.9 6.2 31.5 16.0 91.8JHS
Leptin levels 
(ng/ml) 861 12.0 11.5 8.8 0.8 106.9 1434 36.1 21.5 32.7 1.4 291.0

Age (yrs) 1415 49.6 13.4 50.0 25.0 74.0 1506 48.4 13.2 48.0 25.0 74.0

BMI (kg/m²) 1411 27.4 3.8 26.9 16.3 55.1 1491 26.8 5.1 25.9 15.8 51.2KORA
Leptin levels 
(ng/ml) 1410 9.4 10.3 6.3 0.0 140.0 1506 27.9 23.6 20.5 0.3 212.0

Age (yrs) 223 42.3 17.1 40.5 18.0 99.0 276 41.5 16.6 38.0 18.0 89.0

BMI (kg/m²) 223 35.4 12.6 32.6 18.8 120.4 276 36.1 12.6 33.6 14.7 70.0Leipzig-adults
Leptin levels 
(ng/ml) 223 14.3 13.8 10.1 0.2 62.1 276 35.1 23.5 34.1 0.2 142.9
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Age (yrs) 395 62.6 10.2 63.0 45.0 84.0 360 62.9 9.2 62.5 45.0 84.0

BMI (kg/m²) 395 28.2 4.0 27.6 19.9 41.1 360 27.5 5.7 26.5 16.9 45.7MESA CAU
Leptin levels 
(ng/ml) 395 10.4 10.6 7.1 0.2 79.9 360 27.2 23.0 20.7 1.1 156.5

Age (yrs) 129 62.6 10.7 63.0 45.0 82.0 115 62.3 9.7 61.0 44.0 84.0

BMI (kg/m²) 129 24.3 2.8 23.9 16.8 32.3 115 24.4 3.2 24.6 17.8 33.0MESA CHN
Leptin levels 
(ng/ml) 129 5.8 5.8 3.7 0.4 36.5 115 18.7 16.4 13.2 1.2 113.9

Age (yrs) 158 61.7 9.7 62 45 83 180 63.6 9.6 64 46 84

BMI (kg/m²) 158 28.6 4.5 28.3 19 46.9 180 30.3 5.7 29.4 19.7 47.3MESA AFA
Leptin levels 
(ng/ml) 158 15.3 17.3 9.3 0.2 150 180 41.6 29.4 37.3 2.8 190.9

Age (yrs) 246 60.0 9.9 59.0 44.0 82.0 242 62.3 9.2 63.0 45.0 82.0

BMI (kg/m²) 246 29.0 4.5 28.7 19.4 45.8 242 30.1 5.5 29.6 18.3 52.5MESA HIS
Leptin levels 
(ng/ml) 246 11.0 11.0 7.1 0.0 66.8 242 33.8 25.9 27.8 0.9 224.9

Age (yrs) 2941 56.2 6.0 57.0 44.0 66.0 3186 55.8 5.9 56.0 44.0 66.0

BMI (kg/m²) 2941 29.8 3.9 29.3 19.3 54.4 3186 30.3 5.5 29.8 17.2 61.2NEO study
Leptin levels 
(ng/ml) 2929 12.9 9.2 10.5 0.5 98.6 3172 36.0 23.1 31.9 0.5 262.0

Age (yrs) 479 70.1 0.2 70.1 69.8 72.3 466 70.3 0.1 70.3 69.9 70.8

BMI (kg/m²) 479 27.0 3.7 26.8 17.7 43.4 466 27.1 4.9 26.5 16.6 49.8PIVUS
Leptin levels 
(ng/ml) 479 8.0 5.6 6.5 1.1 41.8 466 19.4 11.9 17.0 1.7 90.0

Age (yrs) 467 20.1 0.4 20.0 19.4 22.1 412 20.0 0.4 19.9 18.3 21.9

BMI (kg/m²) 467 24.5 4.3 23.8 16.9 48.9 412 24.2 5.0 23.0 15.4 46.5RAINE Study
Leptin levels 
(ng/ml) 467 6.1 9.9 3.4 0.1 162.1 412 26.2 18.7 21.5 2.2 98.2

Age (yrs) 156 44.7 8.3 - - - 157 45.8 7.9 - - -

BMI (kg/m²) 156 26.0 3.5 26.0 17.9 39.3 157 25.2 4.5 24.3 16.9 42.9RISC
Leptin levels 
(ng/ml) 156 5.5 5.6 4.1 0.0 35.7 157 20.9 16.6 16.1 0.9 110.0

Age (yrs) 273 66.7 7.1 66.1 55.2 88.7 279 69.2 7.6 69.4 55.1 90.8

BMI (kg/m²) 268 25.7 2.8 25.8 18.4 35.3 272 26.8 4.6 26.0 18.2 59.5RSI
Leptin levels 
(ng/ml) 273 5.6 4.5 4.0 0.4 25.2 281 17.9 13.1 15.0 0.7 61.4

Age (yrs) 410 50.5 14.1 51.0 22.0 80.0 545 50.0 13.3 50.0 20.0 81.0

BMI (kg/m²) 410 28.1 3.7 28.0 19.2 43.9 545 27.0 5.1 26.3 18.5 53.7SHIP-TREND
Leptin levels 
(ng/ml) 410 7.4 5.6 6.2 1.0 43.1 545 21.8 15.7 18.0 1.9 165.0

TwinsUK Age (yrs) - - - - - - 1015 48.8 11.2 49.1 18.4 73.5
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BMI (kg/m²) - - - - - - 1015 25.2 4.5 24.3 15.1 46.0
Leptin levels 
(ng/ml) - - - - - - 1015 16.9 12.0 13.6 1.1 79.4

Age (yrs) - - - - - - 789 58.8 8.5 58.0 45.0 87.0

BMI (kg/m²) - - - - - - 789 25.9 4.7 25.0 14.6 49.9WGHS
Leptin levels 
(ng/ml) - - - - - - 789 22.8 16.9 19.1 1.4 145.0

Age (yrs) - - - - - - 1901 68.3 6.4 69.0 50.0 79.0

BMI (kg/m²) - - - - - - 1901 27.7 6.6 26.5 15.7 159.8WHI EA
Leptin levels 
(ng/ml) - - - - - - 1901 20.9 18.6 16.2 0.2 148.8

Age (yrs) - - - - - - 468 65.5 6.8 66.0 50.0 79.0

BMI (kg/m²) - - - - - - 468 30.2 7.7 29.1 17.2 141.0WHI AA
Leptin levels 
(ng/ml) - - - - - - 468 33.0 20.4 29.1 2.1 117.2

Age (yrs) 759 32 5 33 24 39 922 32.1 5 33 24 39

BMI (kg/m²) 755 25.7 4 25.1 15.7 47.8 919 24.4 4.6 23.5 15.7 47.2YFS
Leptin levels 
(ng/ml) 759 5.4 4.2 4.3 0.8 32.1 922 15.2 9.7 13 1.5 63.3

* only report descrptives for the individuals included in each of the analyses

CHS NOTE: For age and BMI, I included all individuals who are included in one or more of the analyses

CHS NOTE: For leptin and adiponectin, I included all individuals in the biggest analysis (not adjusted for fat percentage or BMI)
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Table S3.  Information on genotyping methods, quality control of SNPs, imputation, and statistical analysis for ExomeChip study cohorts

Principal components Inclusion criteria Association analyses

Cohort Genotyping Array Genotype calling algorithm
Software

SNPs used from 
GWAS/ExomeCHIP/AI
MS/Other

MAF Call rate* P-value 
for HWE

SNPs 
that met 
QC 
criteria

Polymorphic 
SNPs in meta-
analysis

Analyses software

ARIC Illumina 
ExomeChip V1.0

GenTrain 2.0 clustering 
algorithm

Eigensoft 
v3.0 Exomchip (MAF>5%) ≥ 0% ≥ 95% > 10-6  237898 

** 163,162 (EA)    rvtests

CHS EA 
and AA

Illumina 
ExomeChip V1.0  -- R ExomeChip > 0% ≥ 97% No filter 227061  -- raremetalworker

CLHNS Affymetrix 500K Birdseed v2 MACH GWAS/ExomeCHIP ≥ 0% ≥95% > 10-6 2304702 28,560,246 mach2QTL

Ely
Illumina 
HumanCoreExom
e

GenCall PLINK GWAS >0% >95% > 5x10-6 231349 231349 RAREMETALWORKER

ERF study
 Illumina 
HumanExome 
chip v1.1

GenomeStudio v1.9. and 
zCall  --  -- >5% >95% > 10-5  -- 240017 rvtests

FAMHS
Illumina Human 
Exome 12v1.0 
BeadChip

Genome Studio via central 
CHARGE-S genotyping

EIGENSTR
AT GWAS ≥0% ≥ 98% > 10-6 237373 

**  -- raremetalworker

Fenland-
CE

Illumina 
HumanCoreExom
e

GenCall PLINK 
v1.9beta GWAS >0% >95% > 10-6 1508325

9 234201 RAREMETALWORKER

Fenland-
Exomechi
p

Illumina 
ExomeChip v1.0 Gencall + zcall PLINK 

v1.07 ExomeChip ≥ 0% >=97% > 10-6 241979 240859 RAREMETALWORKER

FHS
Illumina Infinium 
HumanExome 
BeadChip v1.0 

Illumina issued cluster file 
HumanExome-12v1.egt + 
zCall + CHARGE best 
practices and joint calling

EIGENSOF
T GWAS ≥ 0% ≥ 97% No filter 237767  -- raremetalworker
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FINRISK 
1997

Illumina 
HumanHap 610k PLINK ExomeCHIP > 0% ≥ 90% > 10-6 509376 495420 rvtests

FINRISK 
2007

Illumina 
HumanHap 610k PLINK ExomeCHIP > 0% ≥ 90% > 10-6 509376 495420 rvtests

HABC AA Illumina 
ExomeChip V1.0 CHARGE protocol eignestrat AIMs ≥ 0% >95% > 10-6 228554 228554 rvtests

HABC EA Illumina 
ExomeChip V1.0 CHARGE protocol eignestrat AIMs ≥ 0% >95% > 10-6 228565 228565 rvtests

Inter99
Illumina 
HumanExome-
12v1

GenCall + Zcall PLINK
AIM SNPs for outlier 
detection, ExomeCHIP 
fo adjustment

> 0% ≥ 98% > 10-4 137187 137187 RMW

JHS Illumina 
ExomeChip V1.0

CHARGE joint calling 
(Illumina GenomeStudio 
v2011.1 software was 
utilized with the GenTrain 
2.0 clustering algorithm)

Eigenstrat 
smartpca

Bi-allelic ExomeChip 
SNPs with MAF > 0.05, 
HWE p > 0.000001, 
callrate > 99%, pruned 
to be pairwise 
independent with r = 
0.3 in plink.

> 0% ≥ 95% No filter 137716  -- rvtests

KORA Illumina 
ExomeChip V1.0

GeneCall + Zcall (CHARGE 
Protocol)

genomest
udio ExomeCHIP > 0% ≥98% ≥10-8 1409 247868 rvtests

Leipzig-
adults

Illumina 
HumanExome-
12v1_A

GeneCall + Zcall (Oxford 
Protocol) PLINK ExomeCHIP MAF>1% > 0% ≥ 99% > 10-4 231460  -- RareMetalWorker

MESA 
CAU, 
CHN, 
AFA, and 
HIS

Illumina Exome 
Chip v1.0

Illumina 
GenomeStudio2011.1

EIGENSTR
AT ExomeCHIP > 0% ≥ 90% > 10-6 238876 238876 rvtests

NEO 
Study

Illumina 
HumanCoreExom
eChip-24V1.0

GeneCall (SOP v5) PLINK Based on LD prune > 0% ≥ 98% > 10-6 209874 209874 rvtests

OMICS-
Fenland

Affymetrix Axiom 
UKBiobank Axiom GT1 PLINK 

v1.9beta GWAS > 0% ≥ 95% > 10-6 719871 58240 RAREMETALWORKE
R
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PIVUS
Illumina 
HumanExome-
12v1_A

GeneCall + Zcall (Oxford 
Protocol) plink/MDS AIMS > 0% ≥ 99% > 10-4 233149  -- raremetalworker

RAINE 
Study

Illuminia 
HumanExome-
12v1_A

Illumina GenomeStudio 
GenTrain Clustering 
algorithm + zCall

EIGENSOF
T - 
smartpca

AIMS >0% >=95% > 10-4 240806 240062 rvtests

RISC
Illumina Human 
Exome Beadchip 
v1

GenCall followed by zCall PLINK ExomeCHIP ≥ 0% 0.99 > 10-4 236875 236871 RMW

RSI Illumina 
ExomeChip V1.1

GeneCall + Zcall (CHARGE 
Protocol) PLINK GWAS >0% ≥ 90% > 10-6 237766 109402 rvtests

SHIP-
TREND

Illumina 
ExomeChip V1.0

GeneCall (CHARGE 
JointCalling Clusterfile)

Illumina 
GenomeSt
udio 
v2011.1

AIMs > 0%

≥ 98% 
(together 
with 
SHIP)

> 10-6 238205  -- raremetalworker

TwinsUK Illumina12v1-1_A GeneCall Plink GWAS > 0% ≥ 90% > 10-6 222804 raremetalworker 
4.13.6

WGHS
Illumina 
HumanExome 
Beadchip v.1.1A 

genomeStudio + zCall EIGENSTR
AT GWAS ≥ 0% >95% > 10-6 235667 234710 raremetal

WHI
Illumina Human 
Exome BeadChip 
v1.0

GenomeStudio v2010.3 SNPRelate ExomeCHIP > 0% ≥ 90% > 10-6 246470 246,303 rvtests

YFS Illumina 
CoreExome v1.0b GenCall PLINK ExomeCHIP > 0% ≥ 95% > 10-6 238194 237,852 rvtest

* Call rate to exclude SNPs for which less than a certain percentage of individuals were successfully genotyped (i.e. to exclude 'bad' SNPs)

** Includes monomorphic SNPs
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Table S4. Single-variant results in all statistical models for the leptin-associated loci
 

SNP Nearest Gene EA OA EAF Beta SE P value N

Leptin / Additive / All ancestries        

rs1121980 FTO A G 0.424 0.050 0.006 9.4E-16 56,802

rs2340550 ACTL9 G A 0.696 -0.005 0.007 4.6E-01 54,433

rs13389219 COBLL1 T C 0.410 0.048 0.007 1.0E-12 50,386

rs1260326 GCKR C T 0.624 0.035 0.006 4.9E-08 56,802

rs900399 CCNL1 G A 0.389 -0.036 0.007 2.5E-08 50,386

rs3799260 KLHL31 T C 0.822 -0.023 0.008 3.7E-03 56,802

rs62621812 ZNF800 A G 0.028 -0.097 0.018 8.0E-08 56,802

rs791600 LEP A G 0.422 -0.048 0.007 2.7E-13 49,371

rs17151919 LEP A G 0.007 -0.259 0.040 1.3E-10 49,111

rs972283 KLF14 G A 0.551 -0.038 0.006 6.0E-10 56,802

Leptin / Additive / European

rs1121980 FTO A G 0.432 0.055 0.007 7.7E-17 49,909

rs2340550 ACTL9 G A 0.685 -0.008 0.007 2.8E-01 48,008

rs13389219 COBLL1 T C 0.394 0.046 0.007 7.3E-11 43,493

rs1260326 GCKR C T 0.607 0.032 0.007 1.7E-06 49,909

rs900399 CCNL1 G A 0.396 -0.033 0.007 2.4E-06 43,493

rs3799260 KLHL31 T C 0.818 -0.024 0.008 3.8E-03 49,909

rs62621812 ZNF800 A G 0.031 -0.098 0.018 8.2E-08 49,909

rs791600 LEP A G 0.411 -0.043 0.007 1.4E-09 42,478

rs17151919 LEP A G 0.000 0.134 0.261 6.1E-01 44,474

rs972283 KLF14 G A 0.521 -0.041 0.006 1.1E-10 49,909

Leptin / Additive / All ancestries / Men

rs1121980 FTO A G 0.433 0.075 0.009 9.7E-16 23,861

rs2340550 ACTL9 G A 0.693 -0.027 0.010 7.5E-03 23,861

rs13389219 COBLL1 T C 0.417 0.059 0.010 9.6E-09 20,822

rs1260326 GCKR C T 0.625 0.028 0.010 4.1E-03 23,861

rs900399 CCNL1 G A 0.387 -0.030 0.010 2.8E-03 20,822

rs3799260 KLHL31 T C 0.819 -0.007 0.012 5.7E-01 23,861

rs62621812 ZNF800 A G 0.029 -0.100 0.027 2.6E-04 23,861

rs791600 LEP A G 0.406 -0.035 0.010 4.4E-04 20,822
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rs17151919 LEP A G 0.006 -0.310 0.066 3.1E-06 22,153

rs972283 KLF14 G A 0.544 -0.036 0.009 1.3E-04 23,861

Leptin / Additive / European / Men

rs1121980 FTO A G 0.433 0.077 0.010 1.8E-15 21,921

rs2340550 ACTL9 G A 0.684 -0.029 0.010 5.9E-03 21,921

rs13389219 COBLL1 T C 0.395 0.057 0.011 7.0E-08 18,882

rs1260326 GCKR C T 0.608 0.026 0.010 8.4E-03 21,921

rs900399 CCNL1 G A 0.395 -0.026 0.011 1.5E-02 18,882

rs3799260 KLHL31 T C 0.819 -0.007 0.012 5.6E-01 21,921

rs62621812 ZNF800 A G 0.031 -0.100 0.027 2.7E-04 21,921

rs791600 LEP A G 0.410 -0.032 0.010 2.0E-03 18,882

rs17151919 LEP A G 0.000 0.155 0.349 6.6E-01 20,213

rs972283 KLF14 G A 0.522 -0.037 0.010 1.1E-04 21,921

Leptin / Additive / All ancestries / Women

rs1121980 FTO A G 0.417 0.035 0.008 1.5E-05 32,940

rs2340550 ACTL9 G A 0.697 0.010 0.009 2.5E-01 30,571

rs13389219 COBLL1 T C 0.405 0.040 0.009 5.6E-06 29,563

rs1260326 GCKR C T 0.624 0.043 0.008 2.1E-07 32,940

rs900399 CCNL1 G A 0.391 -0.049 0.008 6.2E-09 29,563

rs3799260 KLHL31 T C 0.825 -0.041 0.010 5.6E-05 32,940

rs62621812 ZNF800 A G 0.027 -0.102 0.024 2.2E-05 32,940

rs791600 LEP A G 0.434 -0.060 0.009 2.9E-12 28,548

rs17151919 LEP A G 0.007 -0.233 0.049 1.8E-06 26,957

rs972283 KLF14 G A 0.555 -0.043 0.008 6.5E-08 32,940

Leptin / Additive / European / Women

rs1121980 FTO A G 0.431 0.044 0.009 6.2E-07 27,987

rs2340550 ACTL9 G A 0.685 0.007 0.010 4.6E-01 26,086

rs13389219 COBLL1 T C 0.392 0.038 0.009 6.1E-05 24,610

rs1260326 GCKR C T 0.606 0.040 0.009 6.0E-06 27,987

rs900399 CCNL1 G A 0.397 -0.048 0.009 2.5E-07 24,610

rs3799260 KLHL31 T C 0.818 -0.043 0.011 8.9E-05 27,987

rs62621812 ZNF800 A G 0.032 -0.103 0.024 2.1E-05 27,987

rs791600 LEP A G 0.413 -0.054 0.009 8.3E-09 23,595

rs17151919 LEP A G 0.000 -0.039 0.380 9.2E-01 24,260
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rs972283 KLF14 G A 0.521 -0.048 0.009 1.6E-08 27,987

Leptin / Recessive / All ancestries

rs1121980 FTO A G 0.424 0.071 0.011 1.1E-10 56,802

rs2340550 ACTL9 G A 0.696 -0.006 0.009 4.6E-01 54,433

rs13389219 COBLL1 T C 0.410 0.062 0.012 3.2E-07 50,386

rs1260326 GCKR C T 0.624 0.046 0.009 2.3E-07 56,802

rs900399 CCNL1 G A 0.389 -0.042 0.012 6.4E-04 50,386

rs3799260 KLHL31 T C 0.822 -0.029 0.009 1.5E-03 56,802

rs62621812 ZNF800 A G 0.021 -0.037 0.124 7.7E-01 56,802

rs791600 LEP A G 0.422 -0.074 0.012 6.9E-10 49,371

rs17151919 LEP A G 0.007 -0.527 0.190 5.6E-03 49,111

rs972283 KLF14 G A 0.551 -0.049 0.009 2.5E-07 56,802

Leptin / Recessive / European

rs1121980 FTO A G 0.432 0.078 0.012 3.2E-11 49,909

rs2340550 ACTL9 G A 0.685 -0.011 0.009 2.5E-01 48,008

rs13389219 COBLL1 T C 0.394 0.061 0.013 4.5E-06 43,493

rs1260326 GCKR C T 0.607 0.041 0.009 1.2E-05 49,909

rs900399 CCNL1 G A 0.396 -0.036 0.013 6.6E-03 43,493

rs3799260 KLHL31 T C 0.818 -0.031 0.010 1.3E-03 49,909

rs62621812 ZNF800 A G 0.023 -0.037 0.124 7.7E-01 49,909

rs791600 LEP A G 0.411 -0.070 0.013 5.8E-08 42,478

rs17151919 LEP A G 0.000 NA NA NA 44,474

rs972283 KLF14 G A 0.521 -0.054 0.010 9.5E-08 49,909

Leptin / Recessive / All ancestries / Men

rs1121980 FTO A G 0.433 0.096 0.017 8.5E-09 23,861

rs2340550 ACTL9 G A 0.693 -0.031 0.013 1.7E-02 23,861

rs13389219 COBLL1 T C 0.417 0.085 0.019 7.0E-06 20,822

rs1260326 GCKR C T 0.625 0.031 0.014 2.4E-02 23,861

rs900399 CCNL1 G A 0.387 -0.029 0.019 1.3E-01 20,822

rs3799260 KLHL31 T C 0.819 -0.014 0.014 3.3E-01 23,861

rs62621812 ZNF800 A G 0.021 -0.067 0.192 7.3E-01 23,861

rs791600 LEP A G 0.406 -0.065 0.019 4.6E-04 20,822

rs17151919 LEP A G 0.005 -0.725 0.260 5.3E-03 22,153

rs972283 KLF14 G A 0.544 -0.050 0.015 6.0E-04 23,861
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Leptin / Recessive / European / Men

rs1121980 FTO A G 0.433 0.100 0.017 7.6E-09 21,921

rs2340550 ACTL9 G A 0.684 -0.035 0.014 1.1E-02 21,921

rs13389219 COBLL1 T C 0.395 0.080 0.020 7.1E-05 18,882

rs1260326 GCKR C T 0.608 0.027 0.014 6.0E-02 21,921

rs900399 CCNL1 G A 0.395 -0.023 0.020 2.6E-01 18,882

rs3799260 KLHL31 T C 0.819 -0.015 0.014 2.9E-01 21,921

rs62621812 ZNF800 A G 0.023 -0.067 0.192 7.3E-01 21,921

rs791600 LEP A G 0.410 -0.065 0.019 8.7E-04 18,882

rs17151919 LEP A G 0.000 NA Inf NA 20,213

rs972283 KLF14 G A 0.522 -0.052 0.015 5.6E-04 21,921

Leptin / Recessive / All ancestries / Women

rs1121980 FTO A G 0.417 0.058 0.015 6.8E-05 32,940

rs2340550 ACTL9 G A 0.697 0.011 0.012 3.6E-01 30,571

rs13389219 COBLL1 T C 0.405 0.052 0.016 9.4E-04 29,563

rs1260326 GCKR C T 0.624 0.059 0.012 3.9E-07 32,940

rs900399 CCNL1 G A 0.391 -0.061 0.016 1.5E-04 29,563

rs3799260 KLHL31 T C 0.825 -0.047 0.012 8.4E-05 32,940

rs62621812 ZNF800 A G 0.019 -0.149 0.162 3.6E-01 32,940

rs791600 LEP A G 0.434 -0.088 0.016 1.9E-08 28,548

rs17151919 LEP A G 0.007 -0.195 0.280 4.9E-01 26,957

rs972283 KLF14 G A 0.555 -0.055 0.012 8.5E-06 32,940

Leptin / Recessive / European / Women

rs1121980 FTO A G 0.431 0.068 0.016 1.4E-05 27,987

rs2340550 ACTL9 G A 0.685 0.006 0.013 6.5E-01 26,086

rs13389219 COBLL1 T C 0.392 0.055 0.018 2.1E-03 24,610

rs1260326 GCKR C T 0.606 0.055 0.013 1.3E-05 27,987

rs900399 CCNL1 G A 0.397 -0.057 0.017 9.9E-04 24,610

rs3799260 KLHL31 T C 0.818 -0.049 0.013 1.5E-04 27,987

rs62621812 ZNF800 A G 0.022 -0.149 0.162 3.6E-01 27,987

rs791600 LEP A G 0.413 -0.083 0.017 1.8E-06 23,595

rs17151919 LEP A G 0.000 NA NA NA 24,260

rs972283 KLF14 G A 0.521 -0.062 0.014 5.6E-06 27,987

LeptinAdjBMI / Additive / All ancestries
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rs1121980 FTO A G 0.424 0.003 0.006 5.7E-01 56,708

rs2340550 ACTL9 G A 0.695 -0.014 0.007 3.2E-02 54,339

rs13389219 COBLL1 T C 0.410 0.053 0.007 3.0E-15 50,297

rs1260326 GCKR C T 0.624 0.050 0.006 2.7E-15 56,708

rs900399 CCNL1 G A 0.389 -0.041 0.007 5.2E-10 50,297

rs3799260 KLHL31 T C 0.822 -0.036 0.008 4.0E-06 56,708

rs62621812 ZNF800 A G 0.028 -0.127 0.018 2.0E-12 56,708

rs791600 LEP A G 0.422 -0.066 0.007 1.1E-23 49,282

rs17151919 LEP A G 0.007 -0.333 0.040 1.5E-16 49,034

rs972283 KLF14 G A 0.550 -0.053 0.006 6.3E-18 56,708

LeptinAdjBMI / Additive / European

rs1121980 FTO A G 0.432 0.005 0.007 4.5E-01 49,830

rs2340550 ACTL9 G A 0.685 -0.016 0.007 2.6E-02 47,929

rs13389219 COBLL1 T C 0.394 0.053 0.007 1.1E-13 43,419

rs1260326 GCKR C T 0.607 0.048 0.007 4.3E-13 49,830

rs900399 CCNL1 G A 0.396 -0.040 0.007 9.2E-09 43,419

rs3799260 KLHL31 T C 0.818 -0.038 0.008 3.8E-06 49,830

rs62621812 ZNF800 A G 0.031 -0.127 0.018 2.8E-12 49,830

rs791600 LEP A G 0.411 -0.063 0.007 5.4E-19 42,404

rs17151919 LEP A G 0.000 -0.187 0.261 4.7E-01 44,401

rs972283 KLF14 G A 0.521 -0.056 0.006 3.8E-18 49,830

LeptinAdjBMI / Additive / All ancestries / Men

rs1121980 FTO A G 0.433 0.028 0.009 2.6E-03 23,822

rs2340550 ACTL9 G A 0.693 -0.050 0.010 8.5E-07 23,822

rs13389219 COBLL1 T C 0.417 0.052 0.010 3.8E-07 20,787

rs1260326 GCKR C T 0.624 0.043 0.010 8.4E-06 23,822

rs900399 CCNL1 G A 0.387 -0.036 0.010 4.3E-04 20,787

rs3799260 KLHL31 T C 0.819 -0.023 0.012 6.0E-02 23,822

rs62621812 ZNF800 A G 0.029 -0.148 0.027 7.0E-08 23,822

rs791600 LEP A G 0.406 -0.054 0.010 6.8E-08 20,787

rs17151919 LEP A G 0.006 -0.399 0.066 1.2E-09 22,119

rs972283 KLF14 G A 0.544 -0.045 0.009 1.8E-06 23,822

LeptinAdjBMI / Additive / European / Men

rs1121980 FTO A G 0.433 0.026 0.010 6.4E-03 21,883
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rs2340550 ACTL9 G A 0.684 -0.053 0.010 4.1E-07 21,883

rs13389219 COBLL1 T C 0.395 0.048 0.011 5.2E-06 18,848

rs1260326 GCKR C T 0.608 0.042 0.010 2.1E-05 21,883

rs900399 CCNL1 G A 0.395 -0.033 0.011 2.1E-03 18,848

rs3799260 KLHL31 T C 0.819 -0.025 0.012 4.3E-02 21,883

rs62621812 ZNF800 A G 0.031 -0.146 0.028 1.1E-07 21,883

rs791600 LEP A G 0.410 -0.049 0.010 2.5E-06 18,848

rs17151919 LEP A G 0.000 -0.225 0.352 5.2E-01 20,180

rs972283 KLF14 G A 0.522 -0.048 0.010 4.8E-07 21,883

LeptinAdjBMI / Additive / All ancestries / Women

rs1121980 FTO A G 0.417 -0.013 0.008 1.2E-01 32,886

rs2340550 ACTL9 G A 0.697 0.007 0.009 4.2E-01 30,517

rs13389219 COBLL1 T C 0.405 0.052 0.009 2.0E-09 29,510

rs1260326 GCKR C T 0.624 0.059 0.008 6.2E-13 32,886

rs900399 CCNL1 G A 0.391 -0.054 0.008 1.2E-10 29,510

rs3799260 KLHL31 T C 0.825 -0.055 0.010 1.0E-07 32,886

rs62621812 ZNF800 A G 0.027 -0.125 0.024 2.2E-07 32,886

rs791600 LEP A G 0.434 -0.079 0.009 4.1E-20 28,495

rs17151919 LEP A G 0.007 -0.291 0.050 5.7E-09 26,915

rs972283 KLF14 G A 0.555 -0.063 0.008 3.7E-15 32,886

LeptinAdjBMI / Additive / European / Women

rs1121980 FTO A G 0.431 -0.009 0.009 3.2E-01 27,947

rs2340550 ACTL9 G A 0.685 0.008 0.009 4.1E-01 26,046

rs13389219 COBLL1 T C 0.392 0.055 0.009 3.8E-09 24,571

rs1260326 GCKR C T 0.606 0.057 0.009 9.4E-11 27,947

rs900399 CCNL1 G A 0.398 -0.058 0.009 3.4E-10 24,571

rs3799260 KLHL31 T C 0.818 -0.057 0.011 2.2E-07 27,947

rs62621812 ZNF800 A G 0.032 -0.126 0.024 1.9E-07 27,947

rs791600 LEP A G 0.413 -0.080 0.009 2.9E-17 23,556

rs17151919 LEP A G 0.000 -0.310 0.375 4.1E-01 24,221

rs972283 KLF14 G A 0.521 -0.066 0.009 1.3E-14 27,947

LeptinAdjBMI / Recessive / All ancestries

rs1121980 FTO A G 0.424 0.000 0.011 9.8E-01 56,708

rs2340550 ACTL9 G A 0.695 -0.014 0.009 9.8E-02 54,339

Page 57 of 93 Diabetes



rs13389219 COBLL1 T C 0.410 0.080 0.012 7.0E-11 50,297

rs1260326 GCKR C T 0.624 0.057 0.009 1.8E-10 56,708

rs900399 CCNL1 G A 0.389 -0.057 0.012 4.3E-06 50,297

rs3799260 KLHL31 T C 0.822 -0.044 0.009 1.7E-06 56,708

rs62621812 ZNF800 A G 0.021 -0.145 0.124 2.4E-01 56,708

rs791600 LEP A G 0.422 -0.099 0.012 2.4E-16 49,282

rs17151919 LEP A G 0.007 -0.795 0.190 2.9E-05 49,034

rs972283 KLF14 G A 0.550 -0.071 0.009 6.1E-14 56,708

LeptinAdjBMI / Recessive / European

rs1121980 FTO A G 0.432 -0.005 0.012 6.8E-01 49,830

rs2340550 ACTL9 G A 0.685 -0.018 0.009 5.7E-02 47,929

rs13389219 COBLL1 T C 0.394 0.081 0.013 1.4E-09 43,419

rs1260326 GCKR C T 0.607 0.053 0.009 1.9E-08 49,830

rs900399 CCNL1 G A 0.396 -0.054 0.013 3.8E-05 43,419

rs3799260 KLHL31 T C 0.818 -0.047 0.010 1.3E-06 49,830

rs62621812 ZNF800 A G 0.023 -0.145 0.124 2.4E-01 49,830

rs791600 LEP A G 0.411 -0.099 0.013 2.7E-14 42,404

rs17151919 LEP A G 0.000 NA Inf NA 44,401

rs972283 KLF14 G A 0.521 -0.079 0.010 8.0E-15 49,830

LeptinAdjBMI / Recessive / All ancestries / Men

rs1121980 FTO A G 0.433 0.024 0.017 1.6E-01 23,822

rs2340550 ACTL9 G A 0.693 -0.065 0.013 6.5E-07 23,822

rs13389219 COBLL1 T C 0.417 0.082 0.019 1.4E-05 20,787

rs1260326 GCKR C T 0.624 0.046 0.014 7.9E-04 23,822

rs900399 CCNL1 G A 0.387 -0.036 0.019 6.2E-02 20,787

rs3799260 KLHL31 T C 0.819 -0.030 0.014 2.9E-02 23,822

rs62621812 ZNF800 A G 0.021 -0.293 0.192 1.3E-01 23,822

rs791600 LEP A G 0.406 -0.095 0.019 4.2E-07 20,787

rs17151919 LEP A G 0.005 -0.942 0.258 2.5E-04 22,119

rs972283 KLF14 G A 0.544 -0.058 0.015 6.2E-05 23,822

LeptinAdjBMI / Recessive / European / Men

rs1121980 FTO A G 0.433 0.021 0.017 2.2E-01 21,883

rs2340550 ACTL9 G A 0.684 -0.071 0.014 2.0E-07 21,883

rs13389219 COBLL1 T C 0.395 0.072 0.020 3.3E-04 18,848
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rs1260326 GCKR C T 0.608 0.045 0.014 1.6E-03 21,883

rs900399 CCNL1 G A 0.395 -0.032 0.020 1.1E-01 18,848

rs3799260 KLHL31 T C 0.819 -0.034 0.015 2.0E-02 21,883

rs62621812 ZNF800 A G 0.023 -0.293 0.192 1.3E-01 21,883

rs791600 LEP A G 0.410 -0.092 0.019 2.1E-06 18,848

rs17151919 LEP A G 0.000 NA NA NA 20,180

rs972283 KLF14 G A 0.522 -0.065 0.015 2.0E-05 21,883

LeptinAdjBMI / Recessive / All ancestries / Women

rs1121980 FTO A G 0.417 -0.016 0.015 2.6E-01 32,886

rs2340550 ACTL9 G A 0.697 0.016 0.012 1.8E-01 30,517

rs13389219 COBLL1 T C 0.405 0.080 0.016 4.3E-07 29,510

rs1260326 GCKR C T 0.624 0.068 0.012 4.4E-09 32,886

rs900399 CCNL1 G A 0.391 -0.083 0.016 2.3E-07 29,510

rs3799260 KLHL31 T C 0.825 -0.063 0.012 1.3E-07 32,886

rs62621812 ZNF800 A G 0.019 -0.241 0.162 1.4E-01 32,886

rs791600 LEP A G 0.434 -0.112 0.016 5.7E-13 28,495

rs17151919 LEP A G 0.007 -0.570 0.284 4.5E-02 26,915

rs972283 KLF14 G A 0.555 -0.086 0.012 2.5E-12 32,886

LeptinAdjBMI / Recessive / All ancestries / Women

rs1121980 FTO A G 0.431 -0.022 0.015 1.5E-01 27,947

rs2340550 ACTL9 G A 0.685 0.015 0.012 2.3E-01 26,046

rs13389219 COBLL1 T C 0.392 0.093 0.018 1.7E-07 24,571

rs1260326 GCKR C T 0.606 0.062 0.013 7.0E-07 27,947

rs900399 CCNL1 G A 0.398 -0.085 0.017 9.2E-07 24,571

rs3799260 KLHL31 T C 0.818 -0.066 0.013 2.2E-07 27,947

rs62621812 ZNF800 A G 0.022 -0.241 0.162 1.4E-01 27,947

rs791600 LEP A G 0.413 -0.118 0.017 1.4E-11 23,556

rs17151919 LEP A G 0.000 NA NA NA 24,221

rs972283 KLF14 G A 0.521 -0.096 0.014 1.4E-12 27,947
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Table S5. Comparison of BMI-adjusted and BMI-unadjusted results for leptin associated loci

SNP Chr Position Gene Meta-analysis Annotation EA OA Beta 
AdjBMI

Beta SE 
AdjBMI

SE P 
AdjBMI

P N 
AdjBMI

N

Novel loci  

rs3799260 6 53519605 KLHL31 Additive / All ancestries 
/Women

missense C T 0.055 0.041 0.010 0.010 1.0E-07 5.6E-05 32,886 32,940

rs62621812 7 127015083 ZNF800 Additive / All ancestries missense G A 0.127 0.097 0.018 0.018 2.0E-12 8.0E-08 56,708 56,802

rs17151919 7 127894592 LEP Additive / All ancestries missense G A 0.333 0.259 0.040 0.040 1.5E-16 1.1E-10 49,034 49,111

rs972283 7 130466854 KLF14 Additive / European intergenic A G 0.056 0.041 0.006 0.006 3.8E-18 1.1E-10 49,830 49,909

rs2340550 19 8808942 ACTL9 Recessive / European / 
Men

missense A G 0.071 0.035 0.014 0.014 2.0E-07 1.1E-02 21,883 21,921

Previously identified loci  

rs1260326 2 27730940 GCKR Additive / All ancestries missense C T 0.050 0.035 0.006 0.006 2.7E-15 4.9E-08 56,708 56,802

rs13389219 2 165528876 COBLL1 Additive / All ancestries intronic T C 0.053 0.048 0.007 0.007 3.0E-15 1.0E-12 50,297 50,386

rs900399 3 156798732 CCNL1 Additive / All ancestries 
/Women

intergenic A G 0.054 0.049 0.008 0.008 1.2E-10 6.2E-09 29,510 29,563

rs791600 7 127865816 LEP Additive / All ancestries intergenic G A 0.066 0.048 0.007 0.007 1.1E-23 2.7E-13 49,282 49,371

rs1121980 16 53809247 FTO Additive / European intronic A G 0.005 0.055 0.007 0.007 4.5E-01 7.7E-17 49,830 49,909

The chromosomal positions are based on hg19.  

Chr, chromosome; EA, Effect allele; OA, Other allele; EAF, Effect allele frequency; LeptinAdjBMI, leptin adjusted for body mass index
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Table S6. Examination of collider bias with BMI among the exome-array significant loci associated with leptin adjusted for BMI

Locus MarkerName EA EAF xL pL xLadjB pLadjB xLadjBa xB pB

FTO rs1121980 A 0.4316428 0.05486291 7.71E-17 0.004952214 4.47E-01 0.04153 0.07481 6.70E-225

ACTL9* rs2340550 G 0.6846579 -0.007649348 2.79E-01 -0.01562951 2.62E-02 -0.01394 0.00345 1.51E-01

COBLL1 rs13389219 T 0.3938886 0.04618875 7.30E-11 0.05254237 1.13E-13 0.05871 0.01261 8.16E-08

GCKR rs1260326 C 0.6070448 0.03182518 1.71E-06 0.04773787 4.32E-13 0.04993 0.00449 5.24E-02

CCNL1 rs900399 G 0.3961604 -0.03304733 2.43E-06 -0.04024503 9.25E-09 -0.04198 -0.00355 1.24E-01

KLHL31* rs3799260 T 0.8183081 -0.02397769 3.79E-03 -0.03820487 3.83E-06 -0.03499 0.00657 1.71E-02

ZNF800 rs62621812 A 0.03142557 -0.09769461 8.18E-08 -0.1273454 2.80E-12 -0.11685 0.02147 1.24E-03

LEP rs791600 A 0.4110841 -0.04264698 1.36E-09 -0.06262022 5.35E-19 -0.06034 0.00466 4.54E-02

LEP* rs17151919 A 0.000166917 0.1342779 6.07E-01 -0.1868478 4.73E-01 -0.18299 0.00789 9.20E-01

KLF14 rs972283 G 0.5211696 -0.04137304 1.12E-10 -0.05554037 3.84E-18 -0.05942 -0.00793 2.68E-04

xL, Effect size for leptin

pL, P value for leptin

xLadjB, Effect size for leptin adjusted for BMI

pLadjB, P value for leptin adjusted for BMI

xLadjBa, Corrected effect size for leptin adjusted for BMI

xB, Effect size for BMI

pB, P value for BMI

* The ACTL9, KLHL31, and LEP rs17151919 loci reached array-wide significance (P<2x10-7) in meta-analyses of European-ancestry men (recessive model), all-ancestry women, and African-
ancestry men and women combined, respectively. The results shown are from meta-analyses of European ancestry individuals only. 
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Table S7. Ancestry-specific results for the Val94Met (rs17151919) missense variant in LEP

Ancestry Trait Chr:Position EA OA N EAF NGG NGA+AG NAA beta se Pvalue I2

All LeptinAdjBMI 7:127894592 A (Met94) G (Val94) 49034 0.0067 40075 609 28 -0.333 0.040 1.53E-16 76%

European LeptinAdjBMI 7:127894592 A (Met94) G (Val94) 44401 0.0002 36065 15 0 -0.187 0.261 4.73E-01 0%

African LeptinAdjBMI 7:127894592 A (Met94) G (Val94) 3901 0.0800 3302 571 27 -0.343 0.042 2.40E-16 94%

Hispanic LeptinAdjBMI 7:127894592 A (Met94) G (Val94) 488 0.0221 464 23 1 -0.209 NA 2.85E-01 NA

East Asian LeptinAdjBMI 7:127894592 A (Met94) G (Val94) 244 NA NA NA NA NA NA NA NA

EA, effect allele; OA, other allele; EAF, effect allele frequency
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Table S8. Gene-based results in all statistical models for leptin-associated genes

Gene Method N P value beta se N variants

Leptin / Additive / All ancestries

CNTD1 SKAT broad 49,597 9.1E-04 0.350 0.094 6

CNTD1 SKAT strict 48,582 7.0E-02 1.043 0.330 1

CNTD1 VT broad 49,597 3.9E-06 0.746 0.149 4

CNTD1 VT strict 48,582 7.0E-02 1.043 0.330 1

DNAJC18 SKAT broad 56,013 2.2E-02 0.062 0.057 7

DNAJC18 SKAT strict 49,597 5.1E-05 0.466 0.135 2

DNAJC18 VT broad 56,013 4.3E-03 0.323 0.096 5

DNAJC18 VT strict 49,597 1.1E-03 0.466 0.135 2

Leptin / Additive / European

CNTD1 SKAT broad 42,704 1.4E-05 0.580 0.126 5

CNTD1 SKAT strict NA NA NA NA NA

CNTD1 VT broad 42,704 1.1E-05 0.720 0.153 4

CNTD1 VT strict NA NA NA NA NA

DNAJC18 SKAT broad 49,120 3.1E-02 0.045 0.060 7

DNAJC18 SKAT strict 42,704 5.3E-05 0.478 0.140 2

DNAJC18 VT broad 49,120 8.4E-03 0.360 0.112 5

DNAJC18 VT strict 42,704 1.3E-03 0.478 0.140 2

Leptin / Additive / All ancestries / Men

CNTD1 SKAT broad 20,822 2.0E-05 0.580 0.137 5

CNTD1 SKAT strict NA NA NA NA NA

CNTD1 VT broad 20,822 6.4E-06 1.026 0.209 3

CNTD1 VT strict NA NA NA NA NA

DNAJC18 SKAT broad 23,861 5.3E-01 -0.061 0.086 6

DNAJC18 SKAT strict 20,822 2.0E-01 0.034 0.223 2

DNAJC18 VT broad 23,861 3.4E-01 -0.569 0.360 2

DNAJC18 VT strict 20,822 1.3E-01 -0.896 0.499 1

Leptin / Additive / European / Men

CNTD1 SKAT broad 18,882 1.3E-07 0.898 0.165 5

CNTD1 SKAT strict NA NA NA NA NA

CNTD1 VT broad 18,882 1.4E-07 0.898 0.165 5

CNTD1 VT strict NA NA NA NA NA
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DNAJC18 SKAT broad 21,921 5.3E-01 -0.059 0.087 6

DNAJC18 SKAT strict 18,882 2.0E-01 0.034 0.223 2

DNAJC18 VT broad 21,921 6.4E-01 -0.566 0.446 2

DNAJC18 VT strict 18,882 1.3E-01 -0.896 0.499 1

Leptin / Additive / All ancestries / Women

CNTD1 SKAT broad 29,563 5.5E-01 0.178 0.123 6

CNTD1 SKAT strict 28,548 7.3E-02 0.981 0.297 1

CNTD1 VT broad 29,563 3.2E-02 0.553 0.211 4

CNTD1 VT strict 28,548 7.3E-02 0.981 0.297 1

DNAJC18 SKAT broad 32,940 1.3E-02 0.151 0.075 7

DNAJC18 SKAT strict 29,563 1.9E-05 0.717 0.166 2

DNAJC18 VT broad 32,940 5.8E-04 0.452 0.117 5

DNAJC18 VT strict 29,563 3.3E-05 0.717 0.166 2

Leptin / Additive / European / Women

CNTD1 SKAT broad 24,610 2.7E-01 0.233 0.188 5

CNTD1 SKAT strict NA NA NA NA NA

CNTD1 VT broad 24,610 1.3E-01 0.478 0.240 4

CNTD1 VT strict NA NA NA NA NA

DNAJC18 SKAT broad 27,987 1.9E-02 0.132 0.081 6

DNAJC18 SKAT strict 24,610 1.3E-05 0.767 0.177 2

DNAJC18 VT broad 27,987 8.1E-04 0.557 0.146 4

DNAJC18 VT strict 24,610 2.8E-05 0.767 0.177 2

LeptinAdjBMI / Additive / All ancestries

CNTD1 SKAT broad 49,508 4.6E-02 0.242 0.093 6

CNTD1 SKAT strict 48,493 9.1E-02 0.969 0.330 1

CNTD1 VT broad 49,508 9.0E-04 0.560 0.149 4

CNTD1 VT strict 48,493 9.1E-02 0.969 0.330 1

DNAJC18 SKAT broad 55,919 4.3E-03 0.083 0.057 7

DNAJC18 SKAT strict 49,508 1.2E-07 0.485 0.136 2

DNAJC18 VT broad 55,919 1.8E-02 0.279 0.096 5

DNAJC18 VT strict 49,508 7.1E-04 0.485 0.136 2

LeptinAdjBMI / Additive / European

CNTD1 SKAT broad 42,630 3.8E-03 0.430 0.126 5

CNTD1 SKAT strict NA NA NA NA NA

CNTD1 VT broad 42,630 2.0E-03 0.525 0.153 4
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CNTD1 VT strict NA NA NA NA NA

DNAJC18 SKAT broad 49,041 8.4E-03 0.063 0.060 7

DNAJC18 SKAT strict 42,630 2.3E-07 0.474 0.141 2

DNAJC18 VT broad 49,041 6.4E-02 0.286 0.113 5

DNAJC18 VT strict 42,630 1.6E-03 0.474 0.141 2

LeptinAdjBMI / Additive / All ancestries / Men

CNTD1 SKAT broad 20,787 7.1E-02 0.313 0.138 5

CNTD1 SKAT strict NA NA NA NA NA

CNTD1 VT broad 20,787 1.5E-02 0.606 0.210 3

CNTD1 VT strict NA NA NA NA NA

DNAJC18 SKAT broad 23,822 2.6E-01 -0.124 0.086 6

DNAJC18 VT broad 23,822 1.6E-01 -0.713 0.359 2

DNAJC18 SKAT strict 20,787 9.6E-02 0.036 0.223 2

DNAJC18 VT strict 20,787 4.2E-02 -1.138 0.498 1

LeptinAdjBMI / Additive / European / Men

CNTD1 SKAT broad 18,848 7.4E-03 0.565 0.165 5

CNTD1 SKAT strict NA NA NA NA NA

CNTD1 VT broad 18,848 2.6E-03 0.565 0.165 5

CNTD1 VT strict NA NA NA NA NA

DNAJC18 SKAT broad 21,883 2.6E-01 -0.109 0.087 6

DNAJC18 SKAT strict 18,848 9.6E-02 0.036 0.223 2

DNAJC18 VT broad 21,883 2.5E-01 -0.838 0.446 2

DNAJC18 VT strict 18,848 4.2E-02 -1.138 0.498 1

LeptinAdjBMI / Additive / All ancestries / Women

CNTD1 SKAT broad 29,510 3.0E-01 0.238 0.124 6

CNTD1 SKAT strict 28,495 7.7E-02 0.972 0.305 1

CNTD1 VT broad 29,510 1.3E-02 0.620 0.212 4

CNTD1 VT strict 28,495 7.7E-02 0.972 0.305 1

DNAJC18 SKAT broad 32,886 7.6E-04 0.234 0.075 7

DNAJC18 SKAT strict 29,510 5.5E-08 0.757 0.169 2

DNAJC18 VT broad 32,886 4.4E-04 0.460 0.118 5

DNAJC18 VT strict 29,510 1.5E-05 0.757 0.169 2

LeptinAdjBMI / Additive / European / Women

CNTD1 SKAT broad 24,571 1.7E-01 0.373 0.186 5

CNTD1 SKAT strict NA NA NA NA NA
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CNTD1 VT broad 24,571 6.3E-02 0.554 0.239 4

CNTD1 VT strict NA NA NA NA NA

DNAJC18 SKAT broad 27,947 2.4E-03 0.207 0.081 6

DNAJC18 SKAT strict 24,571 7.9E-08 0.774 0.179 2

DNAJC18 VT broad 27,947 4.1E-03 0.496 0.147 4

DNAJC18 VT strict 24,571 3.2E-05 0.774 0.179 2
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Table S9. Association of the leptin-decreasing Met94 allele of LEP Val94Met (rs1715919) with BMI z-score in 
African-ancestry children from the CHOP cohort. 

Age Bin N Allele freq. Beta SE P

2 2726 0.089 0.079 0.055 0.153

3 2570 0.089 0.123 0.056 0.029

4 2572 0.093 0.160 0.054 0.003

5 2381 0.089 0.154 0.060 0.010

6 2030 0.091 0.204 0.066 0.002

7 1769 0.092 0.143 0.070 0.041

8 1583 0.092 0.029 0.074 0.694

9 1476 0.099 0.017 0.078 0.824

10 1446 0.095 0.017 0.080 0.832

11 1500 0.095 -0.004 0.079 0.964

12 1455 0.096 -0.036 0.075 0.631

13 1460 0.101 -0.007 0.075 0.928

14 1417 0.104 0.004 0.074 0.959

15 1355 0.099 0.048 0.077 0.537

16 1287 0.093 -0.006 0.081 0.937

17 1098 0.102 0.055 0.087 0.527

18 451 0.085 -0.009 0.135 0.946
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Table S10. Association of the leptin-decreasing C allele of rs10487505 near LEP with BMI z-score in a meta-
analysis of African-ancestry and European ancestry children from the CHOP cohort. 

Age Bin N Allele freq. Beta SE P

2 3681 0.462 0.033 0.026 0.203

3 3618 0.467 0.026 0.026 0.334

4 3681 0.469 0.058 0.026 0.027

5 3557 0.471 -0.002 0.027 0.929

6 3166 0.473 -0.044 0.029 0.132

7 2869 0.469 -0.006 0.031 0.835

8 2711 0.465 -0.021 0.032 0.504

9 2571 0.465 -0.035 0.033 0.290

10 2608 0.468 -0.033 0.033 0.317

11 2705 0.462 -0.028 0.032 0.380

12 2685 0.454 -0.021 0.032 0.502

13 2697 0.459 0.004 0.031 0.898

14 2679 0.454 -0.027 0.032 0.389

15 2604 0.451 -0.009 0.031 0.777

16 2463 0.458 0.012 0.033 0.719

17 2130 0.465 -0.004 0.036 0.917

18 663 0.456 -0.003 0.062 0.959

Page 68 of 93Diabetes



Table S11. Predicted change in leptin protein stability upon the Val94Met change (Val73Met in the mature leptin protein) in the amino acid sequence

Tool Protein (PDB-ID) WT/MT Chain Overall stability Predicted ΔΔG

CUPSAT LEP (1AX8) VAL/MET A Decreased -0.22

I-Mutant 
v2.0 LEP (1AX8) VAL/MET A Decreased  --

SDM LEP (1AX8) VAL/MET A Decreased -0.72
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Table S12. Colocalization of METSIM subcutaneous adipose tissue eQTLs at GWAS loci for leptin

GWAS variant association with expression 
level Lead eSNP association with expression level

SNP Chr  Position  
MAF  Probeset Allele 1 

/ EA
Allele 
2

eQTL 
gene Beta 

initial
P initial

Beta 
conditional

P conditional Lead eSNP

Allele 
1/     
Allele 
2

Beta 
initial

P initial
Beta 
conditional

P 
conditional

LD r2 

rs62621812 7  127,015,083  
0.06 11736419_a_at G A ZNF800 -0.871 2.40E-16 0.000 3.18E-01 rs62621812 A/G 0.871 2.40E-16 0.000 3.2E-01 1.00

rs972283 7  130,466,854  
0.45 11737563_at A G KLF14 0.233 4.14E-06 -0.322 4.46E-01 rs6467315 G/C -0.238 2.26E-06 -0.552 1.9E-01 0.98

rs1260326 2  27,730,940  
0.36 11729870_x_at C T EMILIN1 -0.230 9.22E-06 0.166 5.23E-01 rs780094 C/T -0.240 3.33E-06 -0.407 1.1E-01 0.96

rs900399 3  156,798,732  
0.32 11717399_a_at A G TIPARP -0.905 2.99E-72 -0.213 1.57E-01 rs13322435 G/A 0.922 9.57E-77 0.715 2.0E-06 0.91

LD r2 calculated using 770 METSIM samples (Finnish males) included in eQTL data
A1 (column E) is the leptin raising allele from the Exome Chip analysis. A1 is also the effect allele for the effect sizes listed in columns H and J. Allele 1 in column O is the effect allele for the effect in columns O/Q.
FDR<1% ( P < 2.37 x 10-4)
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Table S13. PASCAL gene set enrichment analysis results for leptin unadjusted for BMI using coding variants only.

(A) Leptin not adjusted for BMI, European, additive model, sex-combined analysis. Coding variants included. SUM method used (Bonferroni correction for 1000 gene sets and 2 traits: P<2.5E-05 
for both chi2Pvalue and empPvalue)

Name chi2Pvalue empPvalue Annotation

GO:2000243 1.30E-04 8.80E-05 positive regulation of reproductive process

MP:0005501 3.40E-04 0.000284 abnormal skin physiology

ENSG00000204713 4.31E-04 0.000389 TRIM27 PPI subnetwork

ENSG00000112448 4.31E-04 0.000397 ENSG00000112448 PPI subnetwork

ENSG00000215641 4.31E-04 0.000404 TRIM27 PPI subnetwork

GO:0032769 4.85E-04 0.000335 negative regulation of monooxygenase activity

MP:0002769 5.05E-04 0.000492 abnormal vas deferens morphology

ENSG00000008853 8.38E-04 0.000432 RHOBTB2 PPI subnetwork

ENSG00000081019 9.58E-04 0.00058 RSBN1 PPI subnetwork

GO:0072527 1.37E-03 9.70E-04 pyrimidine-containing compound metabolic process

ENSG00000143344 1.56E-03 0.00076 RGL1 PPI subnetwork

(B) Leptin not adjusted for BMI, European, additive model, sex-combined analysis. Coding variants included. MAX method used (Bonferroni correction for 1000 gene sets and 2 traits: P<2.5E-05 
for both chi2Pvalue and empPvalue)

Name chi2Pvalue empPvalue Annotation

GO:2000243 1.53E-05 1.59E-05 positive regulation of reproductive process

ENSG00000143344 4.85E-04 1.56E-04 RGL1 PPI subnetwork

ENSG00000215641 1.95E-04 1.69E-04 TRIM27 PPI subnetwork

ENSG00000204713 1.95E-04 1.94E-04 TRIM27 PPI subnetwork

ENSG00000112448 1.95E-04 1.96E-04 ENSG00000112448 PPI subnetwork

MP:0002769 2.23E-04 2.33E-04 abnormal vas deferens morphology

GO:0032769 2.57E-04 2.93E-04 negative regulation of monooxygenase activity

ENSG00000074211 3.57E-04 4.03E-04 PPP2R2C PPI subnetwork

ENSG00000008853 1.30E-03 4.40E-04 RHOBTB2 PPI subnetwork

ENSG00000169682 6.59E-04 5.50E-04 SPNS1 PPI subnetwork

ENSG00000081019 8.20E-04 5.60E-04 RSBN1 PPI subnetwork

GO:0004715 7.77E-04 5.70E-04 non-membrane spanning protein tyrosine kinase activity

GO:0010458 7.32E-04 6.00E-04 exit from mitosis

ENSG00000090054 2.10E-03 9.00E-04 SPTLC1 PPI subnetwork

ENSG00000113578 6.06E-04 9.50E-04 FGF1 PPI subnetwork

MP:0008347 1.09E-03 9.70E-04 decreased gamma-delta T cell number
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Table S14. PASCAL gene set enrichment analysis for leptin adjusted for BMI using coding variants only.

(A) Leptin adjusted for BMI, European, additive model, sex-combined analysis. Coding variants included. SUM method used (Bonferroni correction for 1000 gene sets and 2 traits: P<2.5E-
05 for both chi2Pvalue and empPvalue)

Name chi2Pvalue empPvalue Pathway/Gene-set

ENSG00000175575 3.69E-05 7.90E-06 TRIM39PPI subnetwork

ENSG00000204599 3.69E-05 7.90E-06 PAAF1 PPI subnetwork

ENSG00000206495 3.69E-05 8.80E-06 ENSG00000206419 PPI subnetwork

ENSG00000206419 3.69E-05 1.03E-05 ENSG00000105972 PPI subnetwork

ENSG00000105972 7.14E-05 1.13E-05 mitochondrial large ribosomal subunit

GO:0005762 1.62E-04 2.66E-05 organellar large ribosomal subunit

GO:0000315 1.62E-04 2.76E-05 KLF1 PPI subnetwork

ENSG00000105610 1.96E-04 2.78E-05 negative regulation of monooxygenase activity

GO:0032769 1.58E-04 5.20E-05 BCL10 PPI subnetwork

ENSG00000142867 6.84E-05 6.10E-05 CHD2 PPI subnetwork

ENSG00000173575 1.20E-04 6.20E-05 UBE3B PPI subnetwork

ENSG00000151148 6.91E-05 6.70E-05 abnormal skin physiology

MP:0005501 8.97E-05 6.70E-05 CCDC33 PPI subnetwork

ENSG00000140481 3.61E-04 9.70E-05 abnormal cell migration

ENSG00000198925 1.53E-04 2.13E-04 HSPA12A PPI subnetwork

MP:0003091 2.13E-04 1.59E-04 SV2A PPI subnetwork

ENSG00000159164 5.38E-04 1.61E-04 MTHFD1L PPI subnetwork

ENSG00000120254 4.09E-04 1.75E-04 REACTOME_REGULATION_OF_ACTIVATED_PAK:2P34_BY_PROTEASOME_
MEDIATED_DEGRADATION

REACTOME_REGULATION_OF_ACTIVATED_PAK:2P34_BY_PROTEASOME_
MEDIATED_DEGRADATION 3.32E-04 1.79E-04 ATG9A PPI subnetwork

ENSG00000165868 7.61E-04 2.16E-04 ENO2 PPI subnetwork

ENSG00000178363 2.21E-04 4.50E-04 EEF1A2 PPI subnetwork

ENSG00000111674 8.97E-04 2.31E-04 RHOBTB2 PPI subnetwork

ENSG00000008853 6.23E-04 2.49E-04 exit from mitosis

GO:0010458 5.32E-04 2.67E-04 ZNF462 PPI subnetwork

ENSG00000148143 8.18E-04 2.78E-04 TOP2B PPI subnetwork

ENSG00000077097 5.67E-04 2.82E-04 RSBN1 PPI subnetwork

ENSG00000081019 6.96E-04 3.13E-04 HLA-G PPI subnetwork

ENSG00000204632 1.21E-03 3.16E-04 ENSG00000206443 PPI subnetwork

ENSG00000206443 1.21E-03 3.21E-04 HLA-G PPI subnetwork

ENSG00000206506 1.21E-03 3.22E-04 acanthosis
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MP:0001874 3.68E-04 3.41E-04 REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1APCC

REACTOME_AUTODEGRADATION_OF_CDH1_BY_CDH1APCC 5.20E-04 3.43E-04 SBF1 PPI subnetwork

ENSG00000100241 9.96E-04 3.67E-04 ENSG00000206413 PPI subnetwork

ENSG00000206413 1.46E-03 3.75E-04 NIPSNAP1 PPI subnetwork

ENSG00000184117 1.14E-03 3.78E-04 abnormal CD4-positive T cell differentiation

MP:0008076 7.62E-04 3.81E-04 HLA-E PPI subnetwork

ENSG00000206493 1.46E-03 3.85E-04 REACTOME_P53:INDEPENDENT_G1S_DNA_DAMAGE_CHECKPOINT

REACTOME_P53:INDEPENDENT_G1S_DNA_DAMAGE_CHECKPOINT 8.27E-04 4.13E-04 ZNF317 PPI subnetwork

ENSG00000130803 5.25E-04 4.35E-04 REACTOME_P53:INDEPENDENT_DNA_DAMAGE_RESPONSE

REACTOME_P53:INDEPENDENT_DNA_DAMAGE_RESPONSE 8.27E-04 4.40E-04 PDE1A PPI subnetwork

ENSG00000198838 4.45E-04 5.70E-04 TOMM34 PPI subnetwork

ENSG00000115252 1.34E-03 4.46E-04 FNBP1 PPI subnetwork

ENSG00000187239 1.01E-03 4.47E-04 CALML3 PPI subnetwork

ENSG00000101210 5.88E-04 4.50E-04 REACTOME_MYD88_DEPENDENT_CASCADE_INITIATED_ON_ENDOSOME

REACTOME_MYD88_DEPENDENT_CASCADE_INITIATED_ON_ENDOSOME 8.42E-04 4.55E-04 REACTOME_UBIQUITIN_MEDIATED_DEGRADATION_OF_PHOSPHORYLATE
D_CDC25A

REACTOME_UBIQUITIN_MEDIATED_DEGRADATION_OF_PHOSPHORYLATE
D_CDC25A 8.27E-04 4.62E-04 cellular defense response

GO:0006968 9.97E-04 4.76E-04 macrolide binding

GO:0005527 6.63E-04 4.91E-04 REACTOME_TOLL_LIKE_RECEPTOR_78_TLR78_CASCADE

REACTOME_TOLL_LIKE_RECEPTOR_78_TLR78_CASCADE 8.42E-04 5.10E-04 RPN1 PPI subnetwork

ENSG00000163902 1.62E-03 5.10E-04 FK506 binding

GO:0005528 6.63E-04 5.20E-04 ARID5B PPI subnetwork

ENSG00000150347 7.60E-04 5.20E-04 SEC31A PPI subnetwork

ENSG00000138674 1.23E-03 5.20E-04 SEPT3 PPI subnetwork

ENSG00000100167 1.37E-03 5.20E-04 ROGDI PPI subnetwork

ENSG00000067836 1.31E-03 5.30E-04 NAPB PPI subnetwork

MP:0004957 5.34E-04 8.00E-04 DCLK1 PPI subnetwork

ENSG00000125814 1.34E-03 5.50E-04 ADARB2 PPI subnetwork

ENSG00000185736 8.02E-04 5.60E-04 abnormal cardinal vein morphology

MP:0004783 1.81E-03 5.60E-04 RYR3 PPI subnetwork

ENSG00000025772 1.35E-03 5.80E-04 columnar/cuboidal epithelial cell differentiation

GO:0002065 1.43E-03 5.90E-04 RTN3 PPI subnetwork

ENSG00000133318 1.50E-03 6.00E-04 LIN7B PPI subnetwork

ENSG00000104863 1.80E-03 6.00E-04 AMOTL1 PPI subnetwork

ENSG00000166025 1.02E-03 6.10E-04 REACTOME_UBIQUITIN:DEPENDENT_DEGRADATION_OF_CYCLIN_D1

REACTOME_UBIQUITIN:DEPENDENT_DEGRADATION_OF_CYCLIN_D1 1.62E-03 6.10E-04 USP11 PPI subnetwork
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ENSG00000102226 1.28E-03 6.20E-04 ATP2B1 PPI subnetwork

ENSG00000070961 9.08E-04 6.50E-04 ENSG00000186979 PPI subnetwork

ENSG00000186979 9.97E-04 6.70E-04 ZNF174 PPI subnetwork

ENSG00000103343 1.81E-03 6.90E-04 REACTOME_ANTIGEN_PRESENTATION_FOLDING_ASSEMBLY_AND_PEPTI
DE_LOADING_OF_CLASS_I_MHC

REACTOME_ANTIGEN_PRESENTATION_FOLDING_ASSEMBLY_AND_PEPTI
DE_LOADING_OF_CLASS_I_MHC 1.25E-03 7.10E-04 abnormal vascular development

MP:0000259 1.29E-03 7.10E-04 KIF21A PPI subnetwork

ENSG00000139116 1.80E-03 7.70E-04 REACTOME_CDK:MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_C
DC6

REACTOME_CDK:MEDIATED_PHOSPHORYLATION_AND_REMOVAL_OF_C
DC6 1.59E-03 7.90E-04 testis tumor

MP:0006262 1.72E-03 7.90E-04 abnormal blastocyst morphology

ENSG00000133083 2.15E-03 8.40E-04 APPBP2 PPI subnetwork

ENSG00000062725 1.08E-03 8.60E-04 PDE1B PPI subnetwork

ENSG00000123360 1.95E-03 8.60E-04 abnormal body weight

MP:0001259 1.22E-03 8.70E-04 REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BI
ND_AU:RICH_ELEMENTS

REACTOME_REGULATION_OF_MRNA_STABILITY_BY_PROTEINS_THAT_BI
ND_AU:RICH_ELEMENTS 1.13E-03 8.90E-04 REACTOME_APCCCDC20_MEDIATED_DEGRADATION_OF_SECURIN

REACTOME_APCCCDC20_MEDIATED_DEGRADATION_OF_SECURIN 1.33E-03 8.90E-04 STXBP5 PPI subnetwork

ENSG00000164506 1.05E-03 9.10E-04 embryonic digestive tract morphogenesis

GO:0048557 1.86E-03 9.10E-04 REACTOME_DESTABILIZATION_OF_MRNA_BY_AUF1_HNRNP_D0

REACTOME_DESTABILIZATION_OF_MRNA_BY_AUF1_HNRNP_D0 1.94E-03 9.10E-04 HLA-F PPI subnetwork

ENSG00000204642 2.31E-03 9.50E-04 REACTOME_ACTIVATED_TLR4_SIGNALLING

REACTOME_ACTIVATED_TLR4_SIGNALLING 1.92E-03 9.60E-04 REACTOME_UBIQUITIN:DEPENDENT_DEGRADATION_OF_CYCLIN_D

REACTOME_UBIQUITIN:DEPENDENT_DEGRADATION_OF_CYCLIN_D 1.62E-03 9.90E-04 REACTOME_ACTIVATION_OF_CHAPERONES_BY_IRE1ALPHA

REACTOME_ACTIVATION_OF_CHAPERONES_BY_IRE1ALPHA 2.20E-03 9.90E-04 CAMK1 PPI subnetwork

ENSG00000134072 3.14E-03 9.90E-04 COPE PPI subnetwork
(B) Leptin adjusted for BMI, European, additive model, sex-combined analysis. Coding variants included. MAX method used (Bonferroni correction for 1000 gene sets and 2 traits: P<2.5E-
05 for both chi2Pvalue and empPvalue)
Name chi2Pvalue empPvalue Pathway/Gene-set

GO:0032769 6.37E-05 1.93E-05 negative regulation of monooxygenase activity

MP:0005501 3.04E-05 4.62E-05 abnormal skin physiology
ENSG00000206495 1.68E-04 4.71E-05 TRIM39 PPI subnetwork
ENSG00000204599 1.68E-04 5.40E-05 TRIM39 PPI subnetwork
ENSG00000206419 1.68E-04 6.00E-05 ENSG00000206419 PPI subnetwork
ENSG00000198925 7.30E-05 9.60E-05 ATG9A PPI subnetwork
ENSG00000105972 3.12E-04 1.70E-04 ENSG00000105972 PPI subnetwork
MP:0003091 3.86E-04 1.87E-04 abnormal cell migration
ENSG00000142867 8.77E-04 3.36E-04 BCL10 PPI subnetwork
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GO:0033273 3.51E-04 5.01E-04 response to vitamin
ENSG00000163902 1.19E-03 4.91E-04 RPN1 PPI subnetwork
ENSG00000138674 1.06E-03 5.09E-04 SEC31A PPI subnetwork
GO:0002065 1.32E-03 6.10E-04 columnar/cuboidal epithelial cell differentiation
ENSG00000120254 9.48E-04 6.40E-04 MTHFD1L PPI subnetwork
REACTOME_TOLL_LIKE_RECEPTOR_78_TLR78_CASCADE 1.39E-03 6.40E-04 REACTOME_TOLL_LIKE_RECEPTOR_78_TLR78_CASCADE
REACTOME_MYD88_DEPENDENT_CASCADE_INITIATED_ON_ENDOSOME 1.39E-03 6.40E-04 REACTOME_MYD88_DEPENDENT_CASCADE_INITIATED_ON_ENDOSOME
ENSG00000165699 2.08E-03 7.60E-04 TSC1 PPI subnetwork
ENSG00000164506 1.09E-03 7.80E-04 STXBP5 PPI subnetwork
ENSG00000185825 1.38E-03 9.00E-04 BCAP31 PPI subnetwork
GO:0071299 2.22E-03 9.80E-04 cellular response to vitamin A
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SUPPLEMENTARY INFORMATION

Yaghootkar H, Zhang Y, Spracklen CN, Karaderi T, Huang LO, Bradfield J, et al.
Genetic studies of leptin concentrations implicate leptin in the regulation of early adiposity
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Figure S1. Association of rs10487505 and rs791600 variants near LEP with leptin 
concentrations adjusted for BMI in a genome-wide association study of up to 32,161 individuals 
of European ancestry (Kilpeläinen et al., 2016).
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Figure S2. Meta-analysis of the association of the Met94 allele of rs17151919 with leptin 
concentrations adjusted for BMI in cohorts of African ancestry.
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Figure S3: Surface region of the leptin protein with the Val94Met position (Val73Met in the mature protein) 
highlighted.
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Figure S4: Leptin structure and the predicted impact of mutagenesis in position 73 from valine to methionine. The 
Rotamer list on the left shows sidechain torsions (Chi 1 and 2), with the probability and number of interatomic clashes, 
i.e. unfavourable interactions where atoms are too close together. On the right, the lower picture shows all possibilities 
for sidechain torsions when methionine is substituted with valine, whereas the upper picture displays the substitution 
with the highest probability (marked with red square in the Rotamer list).  
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Fig S5
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Fig S5. Impact of Val94Met transversion at LEP rs17151919 on leptin secretion rate in HEK293 cells in different 
conditions. A) Leptin secretion rates for Val94 and Met94 during a 24-hr incubation period (48-72 hr post-transfaction), 
expressed as the amount of leptin secreted in ng per hour over 24 hrs (LEPs/hr) normalized by the respective cellular 
leptin content (LEPc, ng) at the end of incubation.  B) Leptin secretion rates for Val94 and Met94 during a 1-hour 
incubation (72-73 hr post-transfection) in the presence of cycloheximide (CHX, 20 μg/ml) expressed as the amount of 
leptin secreted in ng during the 1-hour incubation (LEPs/hr), normalized by the respective cellular leptin content (LEPc, 
ng).  Individual data points from four separate experiments (each with 2-3 technical replicates) are plotted. All data 
passed D'Agostino & Pearson normality test and repeated measures one-way ANOVA was performed to assess the 
difference in secretion rate between the genotypes. Mean ± SD and AVOVA results (F and p values) are reported in 
the table below each graph.  C-D. The amounts of leptin secreted (LEPs) during a 1 hr incubation (72-73 hr post-
transfection) in untreated control cells (C), and the corresponding cellular leptin content (LEPc) at the end of the 
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incubation (D). Leptin secretion rates shown in Fig 2B were ratios of the amounts of leptin secreted (LEPs) over the 
corresponding cellular leptin contents (LEPc) shown here.
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Figure S6. Expression of leptin modifiers in human preadipocytes and mature adipocytes. De-identified human 
subcutaneous adipose stromal cells were generously provided by the Boston NORC and were cultured and 
differentiated as previously described (Lee and Fried, 2014). Preadipocytes and in vitro-differentiated adipocytes from 
two females and two males were studied. Lipid-laden cells were assayed between 10-14 days after initial treatment 
with differentiation factors. Transcript levels were determined by RT-qPCR, normalized to the geometric mean of 
RPLP0 and PPIA, and expressed relative to levels in preadipocytes. Two-way repeated measures ANOVA with post-
hoc Sidak’s multiple comparison tests were performed *: p<0.05, **: p<0.01, ****: p<0.0001, ns (no statistical difference) 
are indicated, comparing the transcript levels between preadipocytes and mature adipocytes. There was an interaction 
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between sex and differentiation stage for ZNF800 (p<0.01). No ACTL9 transcript was detected (nd: none detected). 
Genotypes of the individuals were marked as R-reference allele and A-alternative allele.
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Figure S7. Linkage disequilibrium between the Ser37Phe (rs2340550) variant in ACTL9 and 
variants within ±500 kb in the 1000 Genomes European ancestry reference panel. The 
numbering refers to Regulome DB score of the variants (www.regulomedb.org). Non-coding 
variants are marked in orange color and coding variants in red. The plot was produced using 
LDlink (https://ldlink.nci.nih.gov).
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