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Abstract

Motivation: Estimating microbial association networks from high-throughput sequencing data is a common exploratory
data analysis approach aiming at understanding the complex interplay of microbial communities in their natural habitat.
Statistical network estimation workflows comprise several analysis steps, including methods for zero handling, data
normalization and computing microbial associations. Since microbial interactions are likely to change between conditions,
e.g. between healthy individuals and patients, identifying network differences between groups is often an integral
secondary analysis step. Thus far, however, no unifying computational tool is available that facilitates the whole analysis
workflow of constructing, analysing and comparing microbial association networks from high-throughput sequencing data.
Results: Here, we introduce NetCoMi (Network Construction and comparison for Microbiome data), an R package that
integrates existing methods for each analysis step in a single reproducible computational workflow. The package offers
functionality for constructing and analysing single microbial association networks as well as quantifying network
differences. This enables insights into whether single taxa, groups of taxa or the overall network structure change between
groups. NetCoMi also contains functionality for constructing differential networks, thus allowing to assess whether single
pairs of taxa are differentially associated between two groups. Furthermore, NetCoMi facilitates the construction and
analysis of dissimilarity networks of microbiome samples, enabling a high-level graphical summary of the heterogeneity of
an entire microbiome sample collection. We illustrate NetCoMi’s wide applicability using data sets from the GABRIELA study
to compare microbial associations in settled dust from children’s rooms between samples from two study centers (Ulm and
Munich). Availability: R scripts used for producing the examples shown in this manuscript are provided as supplementary
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data. The NetCoMi package, together with a tutorial, is available at https://github.com/stefpeschel/NetCoMi.
Contact: Tel:+49 89 3187 43258; stefanie.peschel@mail.de Supplementary information: Supplementary data are available at
Briefings in Bioinformatics online.

Key words: compositional data; microbial association estimation; sample similarity network; differential association;
network analysis; network comparison.

Introduction
The rapid development of high-throughput sequencing tech-
niques [1–4] offers new possibilities for investigating the micro-
biome across different habitats and provides the opportunity
to discover relationships between the composition of micro-
bial communities and their environment. Sequencing technolo-
gies include shotgun metagenomic sequencing, where whole
genomes of microbes in the sample are sequenced, and targeted
amplicon sequencing, where microbial abundances are derived
from sequencing a specific marker gene (e.g. 16S rRNA, 18S rRNA
or ITS) [5]. Following McLaren et al. [6], we refer to marker-gene
and metagenomic sequencing techniques as MGS techniques.

MGS techniques allow the quantification of taxon abun-
dances in the sample in form of operational taxonomic units
(OTUs) [7, 8], amplicon sequencing variants (ASVs) [9], or
metagenomic OTUs (mOTUs) [10]. However, due to limitations in
the sequencing process, MGS measurements often provide only
relative or compositional information with each component
expressing the relative frequencies of a taxon in the sample
[11]. Furthermore, the observed MGS measurements represent
only a sample of the true microbial composition present in the
biological material [12]. Accordingly, it is likely that not all taxa
occurring in a sample are measured due to technical limitations
in library preparation and the sequencing process [12]. The
observed number of reads is thus only a noisy measurement
reflecting the probability of the corresponding organisms to
be present [11]. Moreover, MGS data collections comprise a
high amount of zero counts, contain samples with varying
sequencing depths (sum of counts per sample), and are usually
high-dimensional, i.e. the number of taxa p is much larger than
the sample size n.

A common exploratory analysis approach for microbiome
survey data [13–17] is the estimation of microbe–microbe
association networks [18–21], allowing for high-level insights
into the global structure of microbial communities. Although a
wide range of general-purpose tools is available for visualizing
and analysing networks [22, 23], including the R packages
igraph [24], statnet [25] and network [26], the special nature
of current MGS data requires careful statistical treatment. For
instance, statistical network analysis methods ignoring the
compositional structure of the data may lead to spurious results
(also known as compositional effects) [11]. Existing compositionally
aware approaches for measuring and estimating microbial
associations include correlation estimators, such as SparCC [27],
partial correlation estimators [28, 29] and proportionality [30].

Although the analysis of a single microbial association
network can provide insights into the general organizational
structure of a microbial community, researchers are often more
interested in how microbial associations change across different
conditions. For instance, it is often desired to find relationships
between microbial compositions, their inherent connectivity
and an underlying phenotype, e.g. the health status of patients.
This task thus requires the quantitative comparison of networks
across conditions.

Current approaches for comparing networks between two
conditions can be divided into two types: (i) differential association
analysis focusing on differences in the strength of single associ-
ations, and (ii) differential network analysis, analysing differences
between network metrics and network structure between two
conditions [31]. Differential associations can be used as the
basis for constructing differential networks, comprising only
differentially associated node sets. Existing tools for network
comparison either require pre-computed networks [32] or are
tailored for specific biological purposes, including protein–
protein interactions [33, 34] or gene functions [35].

In this paper, we introduce NetCoMi (Network Construction
and comparison for Microbiome data), a comprehensive
R package, that specifically focuses on microbiome data
analysis. NetCoMi integrates previously disjoint microbial
network inference and analysis tasks into a single coherent
computational workflow and allows the user to construct,
analyse and compare microbial association networks in a fast
and reproducible manner. The complete NetCoMi framework is
shown in Figure 1. NetCoMi provides a wide range of existing
methods for data normalization, zero handling, edge filtering,
and a selection of association measures, which can be combined
in a modular fashion to generate the microbial networks. For
network analysis, several local and global network properties
are provided, which can be visualized in network plots to
enable a descriptive comparison. Quantitative comparison
between two different networks is available via the integration of
appropriate statistical tests. Furthermore, our package enables
(i) the generation of differential microbial networks and (ii) the
construction of sample similarity networks (using, e.g. the Bray-
Curtis measure), which can serve as a high-level visual summary
of the heterogeneity of the microbiome sample collection.

Network construction and characterization
Data filtering, normalization, and zero handling

The process of constructing microbial association networks
starts with a matrix containing non-negative read counts
originating from a sequencing process. Although NetCoMi can
handle any kind of count abundance data as input, our main
focus here is on compositional read count data coming from
MGS experiments. The total read counts ω(k) = [ω(k)

1 , ..., ω(k)
p ] of

a sample k with p taxa are a composition summing up to a
constant m(k) = ∑p

i=1 ω
(k)
i , the sequencing depth. The sequencing

depth differs from sample to sample and is predefined by
technical factors leading to sparse data with many zeros. Thus,
preprocessing steps (step 1 in Figure 1) are recommended,
or even mandatory depending on the association measure
(Supplementary Table S1).

To simplify the graphical interpretation of an association
network and the computational processes, it is reasonable to
filter out a certain set of taxa as first data preparation step (step
1a in Figure 1). See Table S2 for the options available in NetCoMi.
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NetCoMi 3

Figure 1. The proposed workflow for constructing, analysing and comparing microbial association networks, implemented in the R package NetCoMi. The main

framework (displayed as continuous lines) requires a n × p read count matrix as input. The data preparation step includes sample and taxa filtering, zero replacement

and normalization (step 1). Associations are calculated and stored in an adjacency matrix (step 2). Alternatively, an association matrix is accepted as input, from which

the adjacency matrix is determined. A more detailed chart describing step 2 is given in Figure 2. In step 3, network metrics are calculated, which can be visualized in the

network plot (step 4). If two networks are constructed (by passing a binary group vector, two count matrices or two user-defined association matrices to the function),

their properties can be compared (step 5). Besides the main workflow, a differential network can be constructed from the association matrix.

The excess number of zeros in the data is a major challenge
for analysing microbiome data because parametric as well as
non-parametric models may become invalid for data with a large
amount of zeros [39]. Moreover, many compositionally aware
measures are based on so-called log-ratios. Log-ratios have been
proposed by Aitchison [45] as the basis for statistical analyses
of compositional data as they are independent of the total sum
of counts m. More precisely, for two variables i and j the log-
ratio of relative abundances log( xi

xj
) = log( ωi/m

ωj/m ) is equal to the log-

ratio of the absolute abundances log( ωi
ωj

) [28]. However, log-ratios

cannot be computed if the count matrix contains any zeros,
making zero handling necessary (step 1b in Figure 1). Several
zero replacement strategies have been proposed [40–42, 44, 46].
Table 1 gives an overview of the different types of zeros that
have been suggested as well as existing approaches for their
treatment.

Normalization techniques are required to make read counts
comparable across different samples [47, 48] (step 1c in Figure 1).
The normalization approaches included in NetCoMi are summa-
rized in Table 2. A description of these methods is available in
[47, 48]. Note that forcing the read counts of each sample to a
unique sum (as done with total sum scaling) does not change the
compositional structure. Rather, proportions are always com-
positional, even if the original data are not [11]. Aitchison [45]
suggested using the centered log-ratio (clr) transformation to
move compositional data from the simplex to real space. Badri
et al. [47] have shown that variance-stabilizing transformations

(VSTs) [49] as well as the clr-transformation produce very similar
Pearson correlation estimates, which are more consistent across
different sample sizes than TSS, CSS and COM methods.

Measuring associations between taxa

Association estimation is the next step in our workflow (step 2a
in Figure 1) to obtain statistical relations between the taxa. Com-
mon association measures include correlation, proportionality
and conditional dependence. For all three types of association,
compositionally aware approaches have been proposed, which
are summarized in Table 3. Further information on these mea-
sures is available in Supplementary material 1. To ensure wide
applicability of NetCoMi, the package comprises also traditional
association measures, which are not suitable for application on
read count data in their original form.

Correlations

Compositionality implies that if the absolute abundance of a
single taxon in the sample increases, the perceived relative
abundance of all other taxa decreases. Applying traditional cor-
relation measures such as Pearson’s correlation coefficient to
compositions can lead to spurious negative correlations, which
do not reflect underlying biological relationships. It has been
shown that the resulting bias is stronger, the lower the diversity
of the data [27].
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Table 1. Different zero types defined for sequencing data with appropriate approaches for their treatment (suggested by Martín-Fernández et
al. [36]), which are available in NetCoMi. The three approaches are implemented in R via the zCompositions package [37]. Shown are for each
treatment method a few key facts as well as the argument for applying it in NetCoMi.

Type Essential/structural zeros Rounded zeros Count zeros

Description “... component which is truly
zero, not something recorded as
zero simply because the
experimental design or the
measuring instrument has not
been sufficiently sensitive to
detect a trace of the part.” [38]

Assumed to be present in the sample but
their proportion is too low to be detected [36].

Sequencing data are seen as
categorical. For a zero count it is
assumed that, in this category, no
event occurred in this experimental
run but could occur in another run
(e.g. with a different sequencing
depth) [36].

Treatment
methods

• No general approach available
so far [39]
• The “structural zero issue is by
far the most complicated
problem”[39] ⇒ no approach
included in NetCoMi

Multiplicative imputation [40]:
• Non-parametric
• Small value δ imputed for all zeros
• Non-zero values adjusted regarding
unit-sum constraint to preserve their
covariance structure
• NetCoMi arg.: zeroMethod = “multRepl”

Modified EM alr-algorithm [41–43]:
• Parametric
• Covariance structure is taken into account
• Zeros imputed via EM-algorithm for alr
transformed data
• NetCoMi arg.: zeroMethod = “alrEM”

Bayesian-multiplicative treatment
[44]:
• Parametric
• Observed counts c = (c1, ..., cp)
assumed to be categorial
• Random vector C multinomial
distributed with parameters
(n, π1, ..., πp)
• π corresponds to observed
microbial proportions → estimated
via posterior distribution
• NetCoMi arg.: zeroMethod =

“bayesMult”

Table 2. Data normalization techniques implemented in NetCoMi. More detailed descriptions of these methods can be found in Badri et al. [47]
and McMurdie and Holmes [48]. The corresponding NetCoMi argument is normMethod with the available options: “none”, “TSS”, “CSS”, “COM”,
“rarefy”, “clr” and “VST”.

Method Approach Comments

Total sum scaling (TSS) Traditional approach for building fractions. Counts are
divided by the total sum of counts in the corresponding
sample.

Strongly influenced by highly abundant taxa [47].

Cumulative sum scaling
(CSS) [50]

Within each sample, the counts are summed up to a
predefined quantile. The counts are then divided by this
sum.

Aims at avoiding the influence of highly
abundant taxa [47].

Common sum scaling
(COM) [48]

Counts are scaled according to the minimum sum of
counts over all samples so that all samples have equal
library size (that of the sample with minimum overall
sum).

Originally suggested as alternative to rarefying as
common normalization method [48].

Rarefying [51] Subsampling from the data to obtain samples with equal
library size (also called rarefaction level) [48].

Centered log-ratio (clr)
transformation [45]

For a composition x = (x1, ..., xp) the clr transformation is

defined as clr(x) = log( x1
g(x) , ..., xp

g(x) ), where g(x) =
(∏p

k=1 xk

) 1
p

is the geometric mean.

Aims to avoid compositional effects.

Variance stabilizing
transformation (VST)
[49]

The dispersion-mean relation is fitted based on the count
matrix. The data are then transformed to receive a matrix
that is approximately homoscedastic [49].

Aims at eliminating the dependence of the
variance on the mean. VST and the clr
transformation produce very similar Pearson
correlations [47].

A possible approach to reduce compositional effects is to
normalize or transform the data in a compositionally aware
manner and apply standard correlation coefficients to the
transformed data. A common method is the clr transformation
(Table 2), which is a variation of the aforementioned log-ratio
approach. Traditional correlation measures provided in NetCoMi

are the Pearson correlation, Spearman’s rank correlation and the
biweight midcorrelation (bicor). Bicor as part of the R package
WGCNA [52] is more robust to outliers than Pearson’s correlation
because it is based on the median instead of the mean of
observations.

Popular compositionally aware correlation estimators
include SparCC (Sparse Correlations for Compositional data)
[27], CCLasso (Correlation inference for Compositional data
through Lasso) [53] and CCREPE (Compositionality Corrected
by REnormalization and PErmutation), also called ReBoot
method [18]. SparCC is one of the first approaches developed
for inferring correlations for compositional data and has
become a widely used method [53]. However, SparCC has
some limitations, namely that the estimated correlation matrix
is not necessarily positive definite and may have values
outside [-1,1] [53]. Furthermore, the basic algorithm is repeated

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa290/6017455 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 16 D
ecem

ber 2020



NetCoMi 5

Table 3. Overview of compositionally aware association measures that are available for network construction in NetCoMi. The corresponding
argument is named measure. The measures are grouped by the three types of association: correlation, proportionality and conditional
dependence. For each measure, the assumptions stated in the corresponding publication are listed, together with a short summary of the
approach.

Measure
Data transformation
R implementation Assumptions Approach

Correlation

SparCC [27]
• Log-ratios
• R code based on package r-sparcc [60]

• Large number of taxa
• Sparse underlying network
(taxa sparsely correlated)

• Idea: estimating Pearson correlations from log-ratio
variances via an approximation based on the assumption
that taxa are uncorrelated on average
• Zero handling: Bayesian approach (observations
replaced by random samples)
• Nested iterations to reinforce sparsity assumption and
account for uncertainty due to random sampling

CCLasso [53]
• Log-ratios
• R code on GitHub [61]

• Large number of taxa
• Sparse underlying network

• Idea: inferring correlations from observed counts via
latent variable model
• Approach: minimizing a loss function (considers errors
resulting from estimating the covariance matrix from
observed data instead of true abundances) plus a penalty
to incorporate the sparsity assumption

CCREPE [18]
• Relative abundances
• R package ccrepe [62]

– • Idea: testing for statistical significance of the estimated
correlations, whereby spurious correlations caused by
compositional effects are considered
• Approach: permuting and re-normalizing the data to
assess correlations due to compositionality alone

Proportionality

ρ [54]
• clr transformation
• R package propr [30]

– ρ(log(x), log(y)) = 1 − var(log(x/y))
var(log(x)) + var(log(y))

Conditional dependence

SPIEC-EASI [63]
• Log-ratios
• R package SpiecEasi [63]

• Large number of taxa
• Sparse underlying network

• Idea: covariance matrix for clr-transformed data is
approximately equal to the “true” covariance matrix � for
p � 0
• Zero entries in the inverse covariance matrix �−1

correspond to conditional independent taxa
• Approach: a graphical model is used to infer the
conditional dependence structure between each two taxa
• Two methods for graphical model inference: sparse
inverse covariance selection and neighborhood selection

gCoda [56]
• Relative abundances
• R code on GitHub [64]

• True absolute abundances
y follow a multivariate
normal distribution
• Sparse underlying network

• log(y) ∼ N(μ, �) with � = �−1 representing conditional
dependence relationships between taxa
• � is determined by minimizing the negative
log-Likelihood for (μ, �) plus l1 penalty (to satisfy sparsity
assumption)
• Optimization problem solved via Majorization-
Minimization algorithm

SPRING [55]
• mclr transformation1

• R package SPRING [65]

• Sparse underlying network • � is estimated using a semi-parametric rank based
approach relying on a truncated Gaussian copula model
[66], which can deal with zeros in the data
• Conditional independence relationships are inferred
from � using neighborhood selection [58]
• Graphical model selection via stability-based approach

1 clr transformation where only non-zero elements are included in the geometric mean [55].

iteratively to reinforce the sparsity assumption and to account
for uncertainties due to random sampling, leading to high
computational complexity. CCLasso is also based on log-ratios
but aims to avoid the disadvantages of SparCC by using a latent

variable model to infer a positive definite correlation matrix
directly [53]. The CCREPE approach operates directly on relative
read counts, which are permuted and renormalized in order to
detect correlations induced by compositionality alone.
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Proportionality
Lovell et al. [54] argue that correlations cannot be inferred from
the relative abundances in a compositionally aware manner
without any assumptions and propose proportionality as an
alternative association measure for compositional data. If two
relative abundances are proportional, then their correspond-
ing absolute abundances are proportional as well: ωi

m ∝ ωj

m ⇒
ωi ∝ ωj. Thus, proportionality is identical for the observed
(relative) read counts and the true unobserved counts. Lovell et
al. [54] suggest proportionality measures based on the log-ratio
variance var(log xi

xj
), which is zero when ωi and ωj are perfectly

proportional. This variance, however, lacks a scale that would
make the strength of association comparable. For this reason,
the proposed proportionality measures φ and ρ [30, 54] are
modifications of the log-ratio variance based on clr transformed
data that come with a scale. Due to its analogy to correlations, we
included ρ in the NetCoMi package (Table 3 for the formula). ρ is
a symmetric measure with values in [-1,1], where 1 corresponds
to perfect proportionality.

Conditional dependence

Conditional dependence expresses the relation between two
variables conditioned on all other variables in the data set
[28]. Hence, this is a measure of direct relations between each
two taxa, whereas (marginal) correlations cannot differentiate
between direct and indirect dependencies. Three estimators of
conditional dependence are included in NetCoMi: SPRING (Semi-
Parametric Rank-based approach for INference in Graphical
model) [55], SPIEC-EASI (Sparse Inverse Covariance Estimation
for Ecological Association Inference) [28] and gCoda [56].

All three approaches use graphical models to infer the con-
ditional independence structure from the data. For multivariate
Gaussian data, the graph structure can be inferred from the non-
zero elements of the inverse covariance matrix � = �−1 [57],
where each entry is related to scaled negative partial correlation.
Loh and Wainwright [57] relaxed the Gaussianity assumption
and established relationships between the inverse covariance
matrix and the edges of a graph for discrete data. All three
approaches for estimating a conditional dependence graph pre-
sume that the assumptions of the data generation process are
fulfilled so that the graph structure can be reliably inferred from
the count matrix. We also consider the assumptions on the data
generation process as satisfied and use conditional dependence and
partial correlation equivalently in the following.
gCoda uses a Majorization-Minimization algorithm to infer �

from the data based on maximizing a penalized likelihood. In
SPIEC-EASI, two approaches are provided to obtain � from the
observed count data: neighborhood selection [58] and sparse
inverse covariance selection (also known as “graphical lasso”)
[59]. SPRING uses a semi-parametric rank-based correlation esti-
mator which can account for excess zeros in the data and
applies neighborhood selection to infer conditional dependen-
cies. All three measures assume a sparsely connected underlying
network.

Constructing the adjacency matrix

Using one of the aforementioned association measures, an asso-
ciation matrix with entries rij expressing the relation between
pairs of taxa i and j is computed. The next step is sparsification
and transformation into distances and similarities (step 2b in
Figure 1) resulting in an adjacency matrix Ap×p with entries aij as
numerical representation of the microbial network, where nodes

(or vertices) represent the taxa. The different options available in
NetCoMi are illustrated in Figure 2 (Supplementary Figure S1 for
a more detailed version of this chart).

Since the estimated associations are generally different from
zero, using them directly as adjacency matrix results in a dense
network, where all nodes are connected to each other and con-
sequently only weighted network measures are meaningful.
Instead, the association matrix is usually sparsified to select
edges of interest.

One possible sparsification strategy consists of defining a
cut-off value (or threshold) so that only taxa with an absolute
association value above this threshold are connected [27, 67].
This filtering method is available for all types of association.
The conditional independence measures SPRING, SPIEC-EASI
and gCoda already include a model selection approach, making
the filter step unnecessary.

For correlations, statistical tests are available as alterna-
tive sparsification method, allowing only significant associa-
tions to be included in the network. Student’s t-test [68] and
a bootstrap approach [27, 67] are implemented for identify-
ing correlations significantly different from zero. The resulting
P-values need to be adjusted to account for multiple testing.
NetCoMi includes all adjustment methods available in the R

function p.adjust() (stats [69]) and, in addition, two methods
for multiple testing under dependence having higher power than
the common Benjamini-Yekutieli method [70]: (i) fdrtool() for
controlling the local false discovery rate [71, 72], and (ii) the
adaptive Benjamini-Hochberg method [73] where the proportion
of true null hypotheses is estimated using convex decreasing
density estimation as proposed by Langaas et al. [74].

P-values arising from bootstrapping might be problematic
because they can be exactly zero if none of the bootstrap-
correlations is more extreme than the observed one. Since P-
values of exactly zero cannot be corrected for multiple testing,
NetCoMi’s bootstrap p-values are corrected by adding pseudo
counts:

p = b + 1
m + 1

,

where b is the number of generated samples with a test statistic
at least as extreme as the observed one, and m is the number of
repetitions [75].

As illustrated in Figure S1, the sparsified associations r∗
ij are

then transformed into dissimilarities/distances dij, which are
needed for computing network measures based on shortest
paths (Section 2.4). Following van Dongen and Enright [76], we
included different distance metrics depending on how negative
associations should be handled (Figure S1). Available are the

options: (i) “unsigned”: dij =
√

1 − r∗
ij

2, leading to a low distance

between strongly associated taxa (positively as well as nega-
tively), (ii) “signed”: dij =

√
0.5 (1 − r∗

ij), where the distance is high-

est for strongly negative associated taxa, and (iii) “signedPos”:
“signed” distance with setting negative associations to zero. A
dissimilarity measure based on the topological overlap matrix
(TOM) [77] is also available in NetCoMi.

The adjacency matrix contains similarities of the form sij =
1 − dij. These similarity values are used for network plot and
network metrics based on connection strength (Section 2.4).
NetCoMi also offers two options for constructing an unweighted
network via generating a binary adjacency matrix from the
sparse association matrix where the user can decide whether or
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Figure 2. Approaches for network construction that are available in NetCoMi, depending on the association measure. For correlations, in addition to a threshold and

statistical testing, the soft-thresholding approach from WGCNA package [52] is implemented (marked by blue arrows). Dissimilarity based on topological overlap (also

adopted from WGCNA package) is available as a further dissimilarity transformation approach in addition to metric distances and thus used for all network properties

based on shortest paths. Whether a network measure is based on similarity or dissimilarity is stated in Table 4. Network construction without a sparsification step

leads to dense networks where all nodes are connected.

not negative associations should be included in the unweighted
network (Figure S1).

Furthermore, we included adjacency matrix constructions
via the soft-thresholding approach from the WGCNA package
[46, 52], which is only available for correlations (see blue
path in Figure 2). Rather than using hard thresholding (e.g.
via cutoff value or statistical tests), Zhang and Horvath [46]
suggested raising the estimated correlations to the power of
a predefined value greater than 1 to determine the adjacencies
(Supplementary material 2.2 for more details). Small correlation
values are thus pushed toward zero becoming less important
in the network. The resulting similarities are used as edge
weights for network plotting and network metrics based
on connection strength. Note that this approach leads to
a fully connected network. Following Zhang and Horvath
[46], only TOM dissimilarities are available in NetCoMi for
computing shortest paths and clusters when soft-thresholding
is used.

Network analysis

We analyse a constructed network by calculating network
summary metrics (step 3 in Figure 1), which are amenable to
group comparisons. Alternatively, NetCoMi offers the possibility
to analyse and visualize single networks.

Several network statistics require shortest path calculations.
A path between two vertices v0 and vk is a sequence of edges
connecting these vertices such that v0 and vk are each at one end
of the sequence and no vertices are repeated [78]. The length of a
path is the sum of edge weights, where the weight of an edge
is a real non-negative number associated with this edge [78].
The shortest path between two nodes is the path with minimum
length. In NetCoMi, edge weights are defined in two ways: (i)
for properties based on shortest paths, dissimilarity values are
used implying that the path length between two taxa is shorter
the higher the association between the taxa is. (ii) For properties
based on connection strength, the corresponding similarities are
used as edge weights (Section 2.3 and Figure S1 for details on
distance and similarity calculation).

Network centrality measures offer insights into the role of
individual taxa within the microbial community. We consider

degree, betweenness, closeness and eigenvector centrality
(Table 4). Using these measures, so-called hubs (or keystone
taxa) can be determined. This analysis step is of high interest
to researchers since hub nodes may correspond to taxa with a
particularly important role in the microbial community. What
is deemed “important”, depends on the scientific context. A
selection of definitions for hub nodes is given in Table 4.

Clustering methods are appropriate to identify functional
groups within a microbial community. A cluster (or module)
is a group of nodes that are highly connected to one another
but have a small number of connections to nodes outside their
module [67]. The user of NetCoMi can choose between one of
the clustering methods provided by the igraph package [24]
and hierarchical clustering (R package hclust() from stats

package). Both similarities and dissimilarities can be used for
clustering (Table 4).

Global network properties are defined for the whole
network and offer an insight into the overall network structure.
Typical measures are the average path length, edge and
vertex connectivity, modularity, and the clustering coefficient
(Table 4).

Sample similarity networks

Using dissimilarity between samples rather than association
measures among taxa leads to networks where nodes rep-
resent subjects or samples rather than taxa. Analogous to
microbiome ordination plots, these sample networks express how
similar microbial compositions between subjects are and thus
provide insights into the global heterogeneity of the microbiome
sample collection.

The following dissimilarity measures are available in
NetCoMi: Euclidean distance, Bray-Curtis dissimilarity [90],
Kullback-Leibler divergence (KLD) [91], Jeffrey’s divergence [92],
Jensen-Shannon divergence [93], compositional KLD [94, 95], and
Aitchison distance [96]. Details are available in Table S3. Only
Aitchison’s distance and the compositional KLD are suitable
for application on MGS data whereas the others may induce
compositional effects when applied to raw count data without
appropriate transformation (Table 2).
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Table 4. Local and global network properties implemented in NetCoMi. The table shows for each measure a short explanation and whether
it is based on connection strength (similarity) or dissimilarity/distance (e.g. two taxa with a high correlation have a high connection strength,
but their distance is low).

Measure Definition Based on

Shortest path Sequence of edges connecting two nodes with minimum sum of edge weights [78]. Dissimilarity

Local measures (refer to single nodes)

Degree centrality Number of adjacent nodes [79]. Options: weighted/unweighted. Similarity

Betweenness centrality Fraction of times a node lies on the shortest path between all other nodes [79]. ⇒ A central node has the

ability to connect sub-networks [67].

Dissimilarity

Closeness centrality Reciprocal of the sum of shortest paths between this node and all other nodes [79]. ⇒ The node with

highest closeness centrality has the minimum shortest path to all other nodes.

Dissimilarity

Eigenvector centrality Calculated via eigenvalue decomposition: Ac = λc, where λ denotes the eigenvalues and c the eigenvectors

of the adjacency matrix A. Eigenvector centrality is then defined as the i-th entry of the eigenvector

belonging to the largest eigenvalue [80, 81]. ⇒ A node is central if it is connected to other nodes having

themselves a central position in the network.

Similarity

Normalized centralities1 For each centrality measure, a normalized version leading to values in [0,1] is implemented in NetCoMi.

We use the following definitions of normalized centrality for a vertex vi : Degree: C∗
Deg(vi) = 1

n−1 CDeg(vi)

[79], Betweenness centrality: C∗
Betw(vi) = 2

n2−3n+2
CBetw(vi) [79], Closeness centrality:

C∗
Close(vi) = 1

n−1 CClose(vi) [79], Eigenvector centrality: C∗
Eigen(vi) = CEigen(vi )

max(CEigen(v)) [82], where n is the number

of nodes in the network, respectively.

Hubs Particularly important nodes, which are most central regarding: 1) highest degree centrality [83], 2) highest

degree, betweenness and closeness centrality at the same time [84], 3) or highest eigenvector centrality

[24]. For each centrality measure, the most central nodes are those with a centrality value either above a

certain quantile of the fitted log-normal distribution [84] or above a certain empirical quantile.

Depends on the

centrality measure.

Global network metrics (refer to the whole network)

Average path length Arithmetic mean of all shortest paths between vertices in a network [83]. Dissimilarity

Global clustering

coefficient

Proportion of triangles with respect to the total number of connected triples2 [83]. ⇒ Expresses how likely

the nodes are to form clusters [83]. For weighted networks, the definition according to Barrat et al. [85] is

used in NetCoMi.

Similarity

Modularity Expresses how well the network is divided into communities (many edges within the identified clusters

and only a few between them) [86].

Depends on the

clustering algorithm.

Edge / vertex connectivity Minimum number of edges, or vertices (nodes) that need to be removed to disconnect the network,

respectively [87]. Not meaningful for a fully connected network.

Presence/ absence of

an edge

Density Ratio of the actual number of edges in the network and the possible number of edges [87]. Not meaningful

for a fully connected network.

Presence/ absence of

an edge

Clustering

Hierarchical clustering Hierarchical clustering using the R function hclust() from stats package [69]. Different methods are

provided (e.g. single, complete, and average linkage, Ward’s method). The cutree() function (stats) is

used for cutting the resulting tree.

Dissimilarity

Modularity clustering [88] The modularity measure is maximized over all possible clusterings. Similarity

Fast greedy modularity

optimization [86]

Modularity clustering via a fast greedy algorithm, which is suitable for very large networks. Similarity

Clustering based on edge

betweenness [89]

Idea: Edges with high edge betweenness (number of shortest paths leading through an edge) tend to divide

the network into clusters. Approach: Hierarchical clustering, where edges with high edge betweenness are

removed gradually from the network.

Dissimilarity

1 Not to be confused with “centralization” [79], which is a global network measure expressing the degree to which the centrality of the most central node exceeds the
centrality of all other nodes in the network. 2 A connected triple is a group of three nodes with two or three edges. A triangle is a triple where all three nodes are
connected.

The workflow for constructing, analysing and comparing
sample similarity networks is described in Supplementary mate-
rial 2.5. For these networks, the same network properties as for
microbial networks are available in NetCoMi (Table 4). While the
estimated dissimilarity values dkl between two samples k and
l are used for network properties based on shortest paths, the
corresponding similarities, calculated by

skl = 1 − dkl,

are used for properties based on connection strength and edge
weights in the network plot. Accordingly, highly connected
nodes are subjects with a microbial composition similar to
many other subjects. Furthermore, as in usual cluster analysis,
clusters represent subjects with similar bacterial composition
but with the advantage, that the solution is visualized in the
network plot.

Network comparison
NetCoMi’s network comparison module (step 5 in Figure 1)
focuses on investigating the following questions in a quan-
titative fashion: (i) Is the overall network structure different
between two groups? (ii) Are hub taxa different between
the two microbial communities? (iii) Do the microorganisms
build different “functional” groups? (iv) Are single pairs of
taxa differentially associated among the groups? To meet
these objectives, NetCoMi offers several network property
comparison modes as well as the estimated associations itself
between two groups. These approaches are commonly used
in other fields of application and have been adapted to the
microbiome context. Each method includes statistical tests for
significance.

To perform network comparison, the count matrix is split
into two groups according to the user-defined group indicator
vector. All steps of network construction and analysis described
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in (Section 2) are performed for both subsets separately. The
estimated associations, as well as network characteristics, are
then compared using the methods described below.

Differential network analysis

We next detail NetCoMi’s differential network analysis capa-
bilities. All approaches are applicable for microbial association
networks and sample similarity networks, respectively.

Permutation tests

NetCoMi uses permutation tests to assess for each centrality
measure and taxon whether the calculated centrality value is
significantly different between the two groups. The null hypoth-
esis of these tests is defined as H0 : c(i)

1 − c(i)
2 = 0, where c(i)

1

and c(i)
2 denote the centrality value of taxon i in group 1 and 2,

respectively. A standard non-parametric permutation procedure
[97] is used to generate a sampling distribution of the differences
under the null hypothesis (Supplementary material 3.1). The
same approach is used to test for significant group differences
in the global network characteristics listed in Table 4.

Similarity of most central nodes

A set of most central nodes can be defined in two ways: In the
first approach, under the assumption that the centrality values
are log-normal distributed [84], the set of most central nodes
contains nodes with a centrality value greater than a certain
quantile of the fitted log-normal distribution. In the second
approach, the empirical quantile can be used directly without
any distributional assumption. Both approaches are included in
NetCoMi, where the quantile can be freely chosen in each case.

The Jaccard index [98] (Supplementary material 3.2) can then
be used for assessing how different the two sets of most central
nodes (regarding a certain centrality measure) are between the
groups. This index ranges from zero to one, where a value of
one corresponds to two equal sets and zero means that the sets
have no members in common. Following Real and Vargas [99],
we included an approach to test whether the observed value of
Jaccard’s index is significantly different from that expected at
random (Supplementary material 3.2). Note that this approach
cannot make a statement on whether the two sets of most
central nodes are significantly different.

Similarity of clustering solutions

NetCoMi offers several network partitioning and clustering algo-
rithms (Table 4). One way to assess the agreement of two parti-
tions is via the Rand index [100] (Supplementary material 3.3).
Like Jaccard’s index, the Rand index ranges from 0 to 1, where
1 indicates that the clusters are exactly equal in both groups.
The original Rand index is dependent on the number of clus-
ters making it difficult to interpret. Instead, NetCoMi uses the
adjusted Rand index [101]. The adjusted values lie in the range
[−1, 1], where 1 corresponds to identical clusterings and 0 to the
expected value for two random clusterings. Consequently, posi-
tive index values imply that two clusterings are more similar and
negative values less similar than expected at random. Following
[102], NetCoMi uses a permutation procedure to test whether a
calculated value is significantly different from zero. However,
this test does not signify whether the clusterings are signifi-
cantly different between the groups. Details about this approach
and its implementation in R are given in Supplementary material
3.3.

Table 5. Test procedures for identifying differential associations
available in NetCoMi. Fisher’s z-test and the Discordant method
are based on correlations that are Fisher-transformed into z-values.
These two methods are thus not suitable for the other association
measures included in NetCoMi.

Test method Originally designed for... In NetCoMi used for...

Fisher’s z-test Correlation Correlation
Non-parametric
test [105]

“connectivity
scores”[105]:
• Correlation
• Partial correlation
• Partial least squares
based scores

• Correlation
• Proportionality (due to
its similarity to
correlations)
• Conditional
dependence / partial
correlations

Discordant
method [106]

Correlation Correlation

Differential association analysis

NetCoMi also allows to test differences between the estimated
associations themselves rather than network properties. This
analysis is referred to as differential association analysis. Table 5
shows the three approaches available in NetCoMi (Supplemen-
tary material 4 for details).

Fisher’s z-test [103] is a common method for comparing
two correlation coefficients, assuming normally distributed
z values (the transformed estimated correlations) and thus
a correct specification of their variance. Novel approaches
without normality assumption have been proposed [104], but
are restricted to Pearson correlations. Therefore, we imple-
mented a resampling-based procedure [105] as non-parametric
alternative, which is applicable to association measures other
than correlation. The Discordant method [106] as the third
available method is also based on Fisher’s z values, but groups
correlations with a similar magnitude and direction based on
mixture models.

These approaches enable the construction of a differen-
tial network, where only differentially associated taxa are
connected. More precisely, two taxa are connected if their
association is either significantly different between the two
groups (to a user-defined significance level) or identified as
being different by the Discordant method.

Application of NetCoMi on a real data set
We use data from the GABRIEL Advanced Surveys (GABRIELA)
[107] to illustrate the application of NetCoMi version 1.0.1 [108].
GABRIELA is a multi-center study, carried out in rural areas
of southern Germany, Switzerland, Austria and Poland, which
provides new insights into the causes of the protective effect
of exposure to farming environments for the development of
asthma, hay fever and atopy [107]. The study comprises the
collection of biomaterial and environmental samples including
mattress dust from children’s rooms and nasal swabs, for which
16S rRNA amplicon sequencing data are available. After some
preprocessing steps (Table S4), a total of p = 707 bacterial genera
remain for mattress dust for a subset of N = 1022 subjects. The
nasal data set consists of p = 467 genera for N = 1033 subjects.

The NetCoMi functions corresponding to the main steps
of our proposed workflow (Figure 1) are netConstruct() for
network construction (Section 2.3), netAnalyze() for network
characterization (Section 2.4), and netCompare() for network
comparison (Section 3). An overview of the exported (and thus
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Figure 3. Main NetCoMi functions. For each function, its purpose together with its main arguments is shown. The objects returned from the respective functions are

colored in orange. The steps (colored in red) correspond to the steps of the overall workflow shown in Figure 1.

usable) NetCoMi functions together with their main arguments
is given in Figure 3. In the following, we use the SPRING
method as a measure of partial correlation for constructing
exemplary microbial association networks and Aitchison’s
distance as a dissimilarity measure for constructing sample
similarity networks. The construction of a differential network is
described in Supplementary material 5.5. We also demonstrate
the integration of external networks into NetCoMi’s workflow
using BAnOCC-derived microbial association networks [109]
(Supplementary material 6). In Supplementary material 7,
we investigate the variability of microbial networks among
different network construction methods. The results reveal
strong differences between the networks based on different
association measures as well as different normalization meth-
ods whereas the zero replacement methods available in NetCoMi

lead to quite similar networks, if the remaining arguments
are fixed.

Constructing a single microbial network

In principle, the netConstruct() function allows the specifica-
tion of any combination of methods for association estimation,
zero treatment and normalization. However, since NetCoMi is
mainly designed to handle compositional data, a warning is
returned if a chosen combination is not compositionally aware.

To generate the network shown in Figure 4A, we pass
the combined count matrix containing dust samples from
Ulm and Munich to netConstruct(). Filter parameters are
set in such a way that only the 100 most frequent taxa are
included in the analyses leading to a 1022 × 100 read count
matrix for our data. Depending on the association measure,

a method for zero handling, normalization and sparsification
could be chosen (Figure S1 and Table S1). Since these steps are
already included in SPRING, they are skipped in our example.
If associations have already been estimated in advance, the
external association matrix can be passed to netConstruct()

instead of a count matrix. In this mode, the user only
needs to define a sparsification method and a dissimilarity
function.

Besides the available options for transforming the associa-
tions into dissimilarities (Supplementary Figure S1), the function
also accepts a user-defined dissimilarity function. The choice of
dissimilarity function also influences the handling of negative
associations. In Figure 4, we use the “signed” distance metric,
where strong negative correlations lead to a high dissimilar-
ity (and thus to a low edge weight in the adjacency matrix).
Figure S4 shows a network plot where the “unsigned” metric
is used.

netConstruct() returns an object of class microNet, which
can be directly passed to netAnalyze() to compute network
properties (Table S5). Applying the plot function to the output
of netAnalyze() leads to a network visualization, as shown in
Figure 4A. In this plot, network characteristics are emphasized
in different ways: hubs are highlighted, clusters are marked by
different node colors, and node sizes are scaled according to
eigenvector centrality. Alternatively, node colors and shapes can
represent features such as taxonomic rank. Node sizes can be
scaled according to other centrality measures or absolute/rel-
ative abundances of the corresponding taxa. Node positions
are defined using the Fruchterman-Reingold algorithm [110].
This algorithm provides a force-directed layout aimed at high
readability of the network by placing pairs of nodes with a high
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Figure 4. Bacterial associations for the combined data set with samples from Ulm and Munich. The SPRING method [55] is used as association measure. The estimated

partial correlations are transformed into dissimilarities via the “signed” distance metric and the corresponding (non-negative) similarities are used as edge weights.

Green edges correspond to positive estimated associations and red edges to negative ones. Eigenvector centrality is used for defining hubs (nodes with a centrality

value above the empirical 95% quantile) and scaling node sizes. Hubs are highlighted by bold text and borders. Node colors represent clusters, which are determined

using greedy modularity optimization. A: complete network for the data set with 100 taxa and 1022 samples. Unconnected nodes are removed. B: reduced network,

where only the 50 nodes with the highest degree are shown. Centrality measures and clusters are adopted from the complete network.

absolute edge weight close together and those with low edge
weight further apart.

The plot() method implemented in NetCoMi includes sev-
eral options for selecting nodes or edges of interest to facil-
itate the readability of the network plot without influencing
the calculated network measures. In Figure 4B, for instance, we
display the 50 bacteria with highest degree, facilitating network
interpretability.

NetCoMi identified four clusters and the following five hub
nodes: Aerococcus, Atopostipes, Brachybacterium, Rikenellaceae RC9
gut group and [Eubacterium] coprostanoligenes group. The strongest
positive association is between Ezakiella and Peptoniphilus with a
partial correlation of 0.55 (in the green cluster in Figure 4A). The
strongest negative correlation is -0.09 between Alistipes (in the
blue cluster) and Lactobacillus (in the red cluster).

Comparing networks between two study centers

For network comparison, the combined count matrix is again
passed to netConstruct(), but this time with an additional
binary vector assigning the samples to one of the two centers.
This leads to the network plots shown in Figure 5 (Table S7 for
the summary of network properties). The layout computed for
the Munich network is used for both networks to facilitate the
graphical comparison and making differences clearly visible. We
observe only slight differences in the estimated associations.
Furthermore, both networks show similar clustering and agree
on three (out of five) hub nodes: Atopostipes, Brachybacterium and
[Eubacterium] coprostanoligenes group.

The quantitative comparison is done by passing the R object
returned from netAnalyze() to netCompare(). Comparisons of
all global measures included in NetCoMi and the five genera with
the highest absolute group difference for degree and eigenvector
centrality, respectively, are given in Table 6. Supplementary Table
S8 extends the output to the 10 genera with the highest absolute

group difference, and also includes betweenness and closeness
centrality. For none of the four centrality measures, any sig-
nificant differences are observed, confirming the descriptive
analyses. Pseudomonas, Pedobacter and Rikenellaceae RC9 gut group
as hub taxa in only one of the networks show high differences in
eigenvector centrality. However, the differences are not deemed
significant (Table 6). Global network properties (upper part of
Table 6) are also not significantly different for α = 0.05.

Table 7 summarizes Jaccard indices expressing the similarity
of sets of most central nodes and the hub nodes among the
two centers. They do not imply any group differences, which
would be indicated by a small probability P(J ≤ j). Similarly,
the adjusted Rand index (0.752, P-value = 0) indicates a high
similarity of the two clusterings, which is also highlighted
in Figure 5.

Sample similarity networks

We next consider sample similarity networks from mattress dust
and nasal swabs of the same subjects (N = 980). The process
of constructing and comparing sample similarity networks is
analogous to the one for association networks. Figure 6 shows
the two networks using Aitchison’s distance.

NetCoMi’s quantitative network analysis (Tables S10–S13)
reveals strong differences between these networks. The sets
of most central nodes are significantly different for all four
centrality measures (shown by Jaccard’s index). Hub nodes
are also completely different (Jaccard index of zero). We also
observe several significantly different global network properties
(Table S12). Furthermore, the node’s degree, betweenness and
closeness centrality values differ significantly between the
groups for several subjects (Table S13), implying that a single
subject plays a different role dependent on the investigated
microbial habitat.
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Figure 5. Comparison of bacterial associations in the mattress dust between the study centers Munich and Ulm. The SPRING method [55] is used as association measure.

The estimated partial correlations are transformed into dissimilarities via the “signed” distance metric and the corresponding similarities are used as edge weights.

Eigenvector centrality is used for defining hubs and scaling node sizes. Node colors represent clusters, which are determined using greedy modularity optimization.

Clusters have the same color in both networks if they share at least two taxa. Green edges correspond to positive estimated associations and red edges to negative

ones. The layout computed for the Munich network is used in both networks. Nodes that are unconnected in both groups are removed. Taxa names are abbreviated

(Table S9 for the original names).

Table 6. Results from testing global network metrics and centrality measures of the networks in Figure 5 for group differences (via permutation
tests using 1000 permutations). Shown are respectively the computed measure for Munich and Ulm, the absolute difference, and the P-value for
testing the null hypothesis H0 : |diff| = 0. For the centrality measures, P-values are adjusted for multiple testing using the adaptive Benjamini-
Hochberg method [73], where the proportion of true H0 is determined according to Langaas et al. [74]. For degree and eigenvector centrality,
the five genera with the highest absolute group difference are shown. The centralities are normalized to [0,1] as described in Table 4. Highly
different eigenvector centralities (even if not significant) describe bacteria with highly different node sizes in the network plots in Figure 5
such as Pseudomonas, which is a hub in Munich and much less important in Ulm.

Munich Ulm abs. diff. P-value

Global network measures:

Average path length 1.576 1.555 0.022 0.60440
Clustering coefficient 0.279 0.249 0.029 0.11189
Modularity 0.458 0.407 0.051 0.08192.
Vertex connectivity 3 4 1 0.68232
Edge connectivity 3 4 1 0.68132
Density 0.103 0.100 0.003 0.55045

Degree (weighted):

Corynebacterium 1 0.162 0.071 0.091 0.19905
Rikenellaceae RC9 gut group 0.101 0.192 0.091 0.82936
Lactobacillus 0.121 0.051 0.071 0.82936
Pedobacter 0.101 0.172 0.071 0.82936
Pseudomonas 0.202 0.131 0.071 0.99622

Eigenvector centrality:

Pseudomonas 0.852 0.417 0.435 0.57458
Rikenellaceae RC9 gut group 0.595 1.000 0.405 0.57458
Ruminococcaceae UCG-002 0.767 0.379 0.389 0.57458
Corynebacterium 1 0.670 0.290 0.379 0.57458
Pedobacter 0.526 0.873 0.346 0.83396

Significance codes: ∗∗∗ : 0.001, ∗∗ : 0.01, ∗ : 0.05, .: 0.1
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Table 7. Jaccard index values corresponding to the networks shown in Figure 5. Index values j express the similarity of the sets of most
central nodes and also of the sets of hub taxa between the two networks. “Most central” nodes are those with a centrality value above the
empirical 75% quantile. Jaccard’s index is 0 if the sets are completely different and 1 for exactly equal sets. P(J ≤ j) is the probability that
Jaccard’s index takes a value less than or equal to the calculated index j for the present total number of taxa in both sets (P(J ≥ j) is defined
analogously).

j P(J ≤ j) P(J ≥ j)

Degree 0.323 0.53375 0.61683
Betweenness centr. 0.389 0.81277 0.29332
Closeness centr. 0.471 0.96735 0.06729.
Eigenvec. centr. 0.429 0.91326 0.15482
Hub taxa 0.429 0.82670 0.42936

Significance codes: ∗∗∗ : 0.001, ∗∗ : 0.01, ∗ : 0.05, .: 0.1

Figure 6. Comparing dissimilarity networks based on Aitchison’s distance [96] (Supplementary Table S3) between mattress dust and nasal swabs for the same set

of subjects (nodes). Only samples and taxa with at least 1000 reads, respectively, are included leading to p1=707 genera in the Mattress group, p2=184 genera in the

Nose group, and n=980 samples in both groups. Counts are normalized to fractions and – since zeros must be replaced for the clr transformation – “multiplicative

imputation” ( Table 3 in the main text) is used for zero handling. The dissimilarity matrix is scaled to [0,1] and sparsified using the k-nearest neighbor method (k=3 for

both networks). Node colors represent clusters, identified using hierarchical clustering with average linkage. A cluster has the same color in both networks if they have

at least 100 nodes in common (the minimum cluster size among both groups is 560). Hubs (highlighted by bold borders) are nodes with an eigenvector centrality larger

than the 99% quantile of the empirical quantile of eigenvector centralities. Edge thickness corresponds to similarity values (calculated by 1−distance). Nodes are placed

further together, the more similar their bacterial composition is. Whether a sample has been collected in Munich or Ulm is marked by node shapes. Unconnected nodes

are removed.

Clustering analysis broadly identifies three sample groups for
mattress dust and nasal swab samples, respectively. In Figure 6,
we highlight the partial overlap between the two clustering
solutions via color coding. Clusters that have at least 100 nodes
in common are plotted by matching colors. This reveals that the
red cluster, seen in both networks, shares similar samples across
the two habitats.

NetCoMi’s plotting functionality also allows to draw nodes in
different shapes, corresponding to additional categorical covari-
ate information about the samples. For instance, in Figure 6, the
two node shapes correspond to the two different study centers
(Ulm and Munich). This feature could potentially highlights con-
founding of groups of samples and available covariates. For our
example here, however, we observe no noticeable pattern in the
clusters with respect to study center.

Discussion

Why use NetCoMi?

With NetCoMiwe offer an easy-to-use and versatile, integrative R
package for the construction, analysis and comparison of micro-
bial networks derived from MGS data. Our package provides
a wide variety of compositionally aware association measures,
including SparCC [27], proportionality [54], SPIEC-EASI [63] and
SPRING [29, 55]. The latter method also enables the analysis of
recent quantitative microbiome data sets when both amplicon
and quantitative cell count or spike-in control data are avail-
able. NetCoMi also incorporates standard association measures,
thus widening the scope of the package beyond applications
to compositional data, and it connects to the popular WGCNA

package [52], enabling principled soft-thresholding of correlations
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and dissimilarity transformations based on topological overlap.
The package includes a dedicated list of methods for handling
excess zeros in the count matrix and for data normalization in
order to account for the special characteristics of the underlying
MGS data prior to association estimation.

A unique feature of the NetCoMi framework is its ability to
perform differential network and differential association anal-
ysis in a statistically principled fashion. Differential network
analysis allows not only to uncover the global role of a taxon
in the overall network structure but also its changing influence
under varying conditions. Differential association analysis [31],
on the other hand, can directly assess which associations signif-
icantly change across conditions, providing concrete hypotheses
for follow-up biological perturbation experiments.

Similar to phyloseq’s [111] plot_net function, NetCoMi also
enables network representation and comparison of the MGS
data samples themselves, using popular sample dissimilarity or
distance measures, such as the Bray-Curtis dissimilarity and the
Aitchison distance. Network analysis of the resulting sample-
to-sample or subject-to-subject networks can give insights into
the heterogeneity of the collected data. For instance, identified
hub subjects are subjects with “representative” bacterial com-
positions that may comprise archetypical microbial patterns in
the studied population. Sample similarity network analysis thus
extends standard sample ordination or cluster analysis, making
fine-grain structures of the available microbial sample collection
visible.

Whereas methods and tools for the individual analysis steps,
such as biological network estimation (e.g. [112, 113] for recent
contributions) and (differential) biological network analysis [32–
34, 52, 111, 114] are available, NetCoMi offers a unique and mod-
ular R software framework that integrates the complete process
of estimating, analysing and comparing microbial networks. From
an end user’s perspective with a specific microbiome dataset
and scientific question in mind,NetCoMiwill thus facilitate both
faster development and reproducibility of the microbial network
analysis workflow.

Which method to choose?

Even though the modular design of NetCoMi allows the user
to perform a wide variety of computational workflows, going
from the primary data all the way to potentially significant
network features, every step of the analysis still warrants careful
scientific consideration. For instance, the choice of an associa-
tion or dissimilarity measure will likely affect all further steps
of network analysis and comparison, as we have shown for
microbial association networks. However, there is no general
consensus in the community about the “right” way to estimate
and analyse microbial networks. This is reflected in the het-
erogeneity of recent simulation studies to assess and compare
the performance of compositionally aware as well as traditional
association measures. To put some of these studies into con-
text, we give a selection of simulation studies examining the
association methods used in NetCoMi in Supplementary Table
S17.

Common shortcomings in current simulation studies include
the lack of a universal standard (i) to generate realistic synthetic
microbial data with a prescribed ground truth, (ii) to perform
comparable model selection and (iii) to report generalizable per-
formance metrics. Comparative studies often concentrate on the
performance in edge recovery, for instance, via precision-recall
curves [28, 55, 115, 116] or distances between true and estimated
associations [27, 28, 53, 55]. However, networks derived from

penalized marginal correlations (such as SparCC) and partial
correlations (such as SPRING) are statistically difficult to com-
pare, thus requiring special modifications which, in turn, limits
cross-study comparisons (e.g. Yoon et al. [55] where SparCC
correlations are transformed into SparCC partial correlations).
Moreover, the sole focus on edge recovery may obfuscate other
aspects of correct model recovery, including the shape of degree
distributions [28] or detecting hub nodes. For instance, methods
with a similar edge recovery precision may greatly vary regarding
their ability to determine hub nodes [117]. Thus, if the correct
detection of hub nodes is of major interest to the user, present
comparative microbial network studies will give little guidance.

Finally, we posit that simulation studies accompanying arti-
cles that introduce new methods might also be inherently biased
[118, 119]. Neutral comparison studies, i.e. studies that are inde-
pendent of any new method development [118, 119] are rare in
our context or do often not include recently published meth-
ods [115]. The main impediment regarding neutral compari-
son studies is, however, the fact that, to date, no large-scale
ground truth network of real biological microbial interactions is
available. Such biological gold-standard networks, as available
in other contexts (e.g. gene-gene or transcription-factor-gene
interactions), would greatly facilitate future comparative studies.

In the absence of a “best method” for microbial network
inference and analysis, NetCoMi is intended to give researchers
the possibility to apply a consistent and reproducible analysis
workflow on their data. Ideally, the selection of the workflow
building blocks should be set up once and independent of any
hypothesis about the data, thus avoiding the fallacy of start-
ing “fishing” for results that best suit a previously formulated
hypothesis.NetCoMi can, however, serve as an ideal tool for prin-
cipled sensitivity analysis of the inferred results, for instance, by
assessing how different normalization and zero handling meth-
ods affect the estimated networks, their structural properties
and their comparison. Finally, we envision NetCoMi to provide
a useful framework for future simulation studies that evaluate
and compare the performance of different association measures
and network inference tools in a reproducible fashion.

Current limitations and future developments

The current version of NetCoMi is designed to model networks
from a single domain of life, e.g. bacteria, fungi or viruses.
However, microbes from different domains of life often share the
same habitat and likely influence each other [120]. Joint cross-
domain network inference already revealed considerable alter-
ations of the overall network structure and network features,
compared to their single-domain counterparts [121]. Extending
NetCoMi to cross-domain network analysis is thus an important
future development goal. Likewise, environmental factors, such
as chemical gradients and temperature, as well as batch effects
are known to influence microbial abundances and composi-
tion and thus bias network estimation [117, 122, 123]. In the
current NetCoMi version, we assume that the user has already
corrected the microbiome data for these latent influences. How-
ever, several inference methods can directly incorporate known
[124, 125] or unknown latent factors [122] into network learn-
ing. Including or connecting these approaches with NetCoMi

will likely increase the robustness and generalizability of future
workflows.

A core feature of NetCoMi is the use of statistical tests at
various stages of the computational workflow. For instance,
statistical tests can be employed for edge selection in network
sparsification. Since statistical power depends on sample size,
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the sparsified structure of a network will likely depend on the
number of available samples. A comprehensive understand-
ing between number of samples, sparsification and network
structure is currently elusive. NetCoMi relies on permutation
tests for several statistical tests. The lower limit of P-values
arising from permutation tests is directly related to the num-
ber of available permutations (Section 4). This already required
proper adjustment of the calculation for small numbers [126,
127]. For extended simulation studies, NetCoMi’s dependence on
permutation tests may prove to be computer intensive. Thus,
integration of less demanding alternatives to permutation tests
would represent a welcome feature in NetCoMi.

Finally, despite incorporating a comprehensive list of meth-
ods in our R package, we do not claim completeness. This can
hardly be achieved in the vibrant field of microbiome research
where new methods are constantly developed. We alleviated
this shortcoming via NetCoMi’s modular structure which allows
certain parts of our workflow to be combined with external
methods. For instance, users can input a user-defined associa-
tion or dissimilarity matrix rather than a data matrix, and then
proceed with NetCoMi’s standardized network analysis modules.

In summary, we believe that NetCoMi is a useful addition to
the modern microbiome data analysis toolbox, enabling rapid
and reproducible microbial network estimation and compari-
son and ideally leading to robust hypotheses about the role of
microbes in health and disease [19].

Key Points
• Current high-throughput sequencing count data carry

only relative or compositional information, thus
requiring dedicated statistical analysis methods.

• NetCoMi is a comprehensive R package that
implements the complete workflow of constructing,
analysing, and comparing microbial association
networks.

• NetCoMi integrates an extensive list of methods
that take into account the special characteristics
of marker-gene and metagenomic sequencing data,
including methods for zero count handling, normal-
ization and association estimation.

• The package also offers functionality for constructing
sample similarity networks as well as differential net-
works including appropriate methods for identifying
differentially associated taxa.
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