
Spatiotemporal Characteristics and Driving Factors of Black Carbon
in Augsburg, Germany: Combination of Mobile Monitoring and
Street View Images
Xiansheng Liu, Xun Zhang,* Jürgen Schnelle-Kreis,* Gert Jakobi, Xin Cao, Josef Cyrys, Lanyan Yang,
Brigitte Schloter-Hai, Gülcin Abbaszade, Jürgen Orasche, Mohamed Khedr, Michal Kowalski,
Marcus Hank, and Ralf Zimmermann

Cite This: https://dx.doi.org/10.1021/acs.est.0c04776 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The study investigates the spatial pattern of black carbon (BC) at a high spatial resolution in Augsburg, Germany.
Sixty two walks were performed to assess the concentrations of equivalent black carbon (eBC), ultraviolet particulate matter
(UVPM), and equivalent brown carbon (eBrC) in different seasons and at different times of the day with a mobile platform (i.e.,
trolley). Along with BC measurements, images of street microenvironments were recorded. Meteorological parameters, including
temperature, relative humidity, and wind speed, were monitored. The BC concentrations showed significant spatial heterogeneity
and diurnal variations peaking in the morning and at night. The highest BC concentrations were observed near dense traffic. The
correlations between BC and street views (buildings, roads, cars, and vegetation) were weak but highly significant. Moreover,
meteorological factors also influenced the BC concentration. A model based on street view images and meteorological data was
developed to examine the driving factors of the spatial variability of BC concentrations at a higher spatial resolution as different
microenvironments based on traffic density. The best results were obtained for UVPM and eBC (71 and 70% explained variability).
eBrC (53%), to which other sources besides road traffic can also make significant contributions, is modeled less well.

1. INTRODUCTION

Since the 20th century, air pollution has been one of the major
environmental problems in metropolitan areas,1−3 with black
carbon (BC), an optically absorbing substance, contributing
less than 5−10% to the total mass concentration of particulate
matter (PM2.5).

4 Severely, it has different toxicities to sensitive
targets in the human body, such as the lungs, the body’s main
defense cells, and even systemic blood circulation.5−7 In 2012,
the International Agency for Research on Cancer (IARC)
classified BC containing diesel soot carcinogenic to humans.8

Meanwhile, Janssen et al. (2011) found that BC can be used as
a valuable air quality indicator for assessing the health risks of
traffic-related air pollution.9 Hence, in this study, the spatial
characteristics and driving factors of black carbon were studied.
The monitoring of air quality by high-quality stationary

measurements, as usually performed in official monitoring

networks, has limitations when investigating the spatial
variability of human exposure. Therefore, mobile monitor-
ing10,11 has been widely applied for the collection of real-time
air quality measurements to assess local air quality and air
pollutant exposures. This method can improve the temporal
and spatial resolution of measurement data of in the urban
environment and enables the collection of data such as the
traffic-related air pollutant concentrations and driving factors
in microscale road sections.12 Mobile measurements are,
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therefore, favorably used in human exposure studies to
quantify individual exposures and to demonstrate the
importance of exposure differences in different microenviron-
ments.13−16 For example, Bassok et al. (2010) used a portable
detector to measure the BC concentration of traffic sources in
the Seattle International District and discussed the spatial and
temporal distributions of the BC concentration on a street
scale.17

Changes in the air quality in the city are not only related to
the distribution of vehicle emissions but also to the urban
development, street characteristics, street location, and land
use types.18−22 Hankey et al. (2015) used bicycle-based,
mobile measurements during rush hour in Minneapolis, USA
to build land-use regression models for particulate concen-
trations.16 Apte et al. (2017) equipped Google Street View
vehicles with a fast-response pollution measurement platform
and repeatedly sampled every street in a 30 km2 area of
Oakland, CA, developing the largest urban air quality data set
of its type.23 Messier et al. (2018) mapped spatial air quality
patterns using an unusually rich data set of repeated mobile air
quality measurements collected with specially equipped
Google Street View cars.24 Hankey and Marshall (2015)
studied the regression models of video-derived traffic counts
and particle concentrations.25 They used the counts of each
vehicle type (i.e., passenger cars, trucks, and buses) as
independent variables in the regression model to estimate
the particulate matter concentration. Liang et al. (2017) used
remote sensing images to obtain urban sky, trees, and
architectural landscape factors to study the correlation between
urban environment and air quality.26 Therefore, the use of
images to assess air pollution is potentially feasible and
desirable. However, the previous models, such as Google Street
View and remote sensing images, have certain limitations due
to the detailed information that may not be obtained in small
scales. Nowadays, the street view images provide an excellent
option acquired within urban street canyons and provide a
human-centered view of the built environment.27 However, it
remains unclear how to develop street view images to predict
air pollutants.

In this study, we used portable instrument-based microair
pollution monitoring devices to monitor the actual exposure
level of black carbon pollution to the population in Augsburg
and at the same time to collect the street view images to
predict air pollutants. The primary goals of the present study
were (1) to provide the spatiotemporal variability of BC in
urban street environments with a high spatial and temporal
resolution; and (2) to develop street BC models based on
street view images for predicting spatial patterns in exposure to
BC for Augsburg, Germany. Our approach is innovative
because it investigates a street view image model to predict BC
exposure as experienced by a pedestrian in an urban
environment.

2. MATERIALS AND METHODS
2.1. Study Area. The mobile measurements were carried

out in Augsburg, Germany. It is the third largest city in Bavaria
(after Munich and Nuremberg) with about 300 000
inhabitants and about 660 000 residents in its metropolitan
area. The mean annual temperature and precipitation are 13.2
°C and 767 mm, respectively. It has an oceanic climate that
tends to clouds with precipitation.
This investigation was part of the Smart Air Quality

Network (https://www.smartaq.net/) project. A fixed walking
path within the center of the city was determined. Wherever
possible, the walks were carried out on the right side of the
road due to people’s daily habits (driving and walking on the
right side in Germany) and walked repeatedly in the course of
the investigations. The route started from Augsburg University
of Applied Sciences and passed through different types of land
use to ensure that the selected path runs across different
microenvironments and may be representative for the entire
city. It is approximately 14 km long (Figure 1). The average
walking time for the entire route was approximately 3 h.
We divided the monitoring route into four microenviron-

ment classes, high traffic roads (H_Traffic, average 500−1000
vehicles/h), medium traffic roads (M_Traffic, average 200−
500 vehicles/h), low traffic roads (L_Traffic, average 1−200
vehicles/h), and park area (N_Traffic, average 0 vehicles/h)

Figure 1. Location and road of the sampling sites in Augsburg, Germany. Left: main urban area of Augsburg (Data/Maps Copyright 2018
Geofabrik GmbH and OpenStreetMap contributors), right: sampling route map, different colors represent different traffic densities in the
microenvironments; red, high traffic roads (H_Traffic); yellow, medium traffic roads (M_Traffic); green, low traffic roads (L_Traffic); blue, park
area (N_Traffic); start and end point, UAS (University of Applied Sciences).
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according to the actual traffic density examined during the
daytime, determined from the traffic flow observed by the
street views.
2.2. Sampling Campaign. All walks along the route were

conducted on weekdays from August 2018 to June 2020, with
clear skies (i.e., nonrainy days) and calm winds. The detailed
description for each sampling run is illustrated in Table S1.
Mobile platforms were built on a trolley, and air-monitoring
devices were installed in a box attached to the trolley. It was
equipped with a GPS (GPSMAP 64s, Garmin, USA) to
register the measurement location at 1 s resolution, and a
point-of-view (POV) camera (TG-Tracker, Olympus, Japan)
to record the street view images at 5 s resolution. Comparative
measurements of the MicroAeth MA200 to measurements
carried out with a stationary instrument (Magee, model AE33,
Aerosol Co. Slovenia) were made between the individual
walks.
BC concentrations were measured by a multiwavelength

Aethalometer (microAethalometer, MA200, AethLabs, USA)
with a time resolution of 10 s to avoid excessive noise of the
BC signal. The Aethalometer measures the light attenuation
through a filter tape at five wavelengths, while the filter is
continuously collecting aerosol at a flow rate of 150 mL/min.
Measurement at 880 nm is defined as the concentration of BC,
while measurement at 375 nm is interpreted as ultraviolet
particulate matter (UVPM). The brown carbon (BrC) is the
fraction of carbonaceous aerosols, excluding black carbon,
which absorbs light primarily at the low visible wavelengths
and the near ultraviolet range, expressed as the difference eBrC
= UVPM (375 nm) − eBC (880 nm).28−31

2.3. Meteorological Data Monitoring. The meteoro-
logical parameters including air temperature (T), relative
humidity (RH), and wind speed (WS) were measured by a
monitoring station in Augsburg located in the urban
background on the campus of the University of Applied
Sciences (UAS), which is operated jointly since 2004 by the
Helmholtz Zentrum München (German Research Center for
Environmental Health, Munich) and Environmental Science
Center, University Augsburg.32

2.4. Postprocessing of BC Data. The Aethalometer
measurement in environments with low BC concentrations
and/or at high time resolution triggers for negative value
detection due to the instrumental noise and changing relative
humidity conditions.33 Negative values frequently contain valid
information that is required for postprocessing or smoothing
the data over a long interval; hence, the removal of negative
values may be detrimental to a dataset.34

For postprocessing data, MA200 microAeth users can
upload their data file to AethLabs platform (http://www.
aethlabs.com) and apply “postprocessing tools” to smoothen
their data. Whereas various different algorithms are available in

this process. The commonly applied time-adaptive noise
reduction method is centered moving average (CMA), which
is used to build the underlying trends of a time series.35 Unlike
a simple moving average, there is no shift or group delay in the
data using the CMA. Therefore, the CMA was chosen in this
study. The comparison between original BC measurements
and CMA averaging seven data points is illustrated in Figure
S1. The denoising results show that the CMA can reduce
negative anomalies that occur in the raw BC data. In our study,
comparative measurements of the MicroAeth MA200, which
were used in the trolleys to measurements carried out with a
stationary instrument (Magee, model AE33, Aerosol Co.
Slovenia), were simultaneously made between the individual
walks (see details in the Supporting Information, Section 1).
The comparison showed very good agreement of the results
(Pearson’s r = 0.977 and 0.933 and R2 = 0.955 and 0.871 for
UVPM and eBC, respectively, Figure S2) independent on time
of day and season.

2.5. BC Modeling Using the Street View Image
Model. 2.5.1. Street View Image Model. In order to quantify
the composition of the surface types that pedestrians
experience in the street canyon, the method of deep learning
was used, which can create a unique description of the urban
form and composition as experienced by a pedestrian in the
street and is, therefore, more relevant to the human experience
of cities compared to planar bird’s eye views from satellite data.
In this study, the images are captured by a camera in the
daylight walking, and the street view images were mainly
segmented into five types: buildings, roads (including parking
cars), vegetation, cars (only cars in traffic), and sky.

2.5.2. The Semantic Segmentation Algorithm of Street
Scenes Based on the HRnet Model. To obtain the
surrounding environment elements of the current location,
the street view image is segmented into some categories to
obtain the proportions area of different elements of the scene
in the current image. In this study, the high-resolution network
(HRnet) is selected as the main model structure for semantic
segmentation.36 As a standard backbone network, the HRnet
network structure has obtained good results in image
classification, target detection, and semantic segmentation.
Furthermore, the previous studies proved that HRnetV2, one
version of HRnet, has a good effect in the cityscape public
dataset, and the average intersection ratio (mIoU) obtained by
the model in the verification set is higher than that of classic
networks such as Unet, PSPNet, and DeepLabv3+.37−41

Because our street view images are classified into categories
and image scenes from the cityscape dataset, they are both very
similar to the semantic segmentation of street view images. So
this study adopted the HRnetV2 model as the street view
image segmentation network.

Figure 2. Schematic diagram of sample segmentation image processed by the HRnet model.
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As shown in Figure 2, the HRnet network structure can be
divided into four parts with minor modification.36 Briefly, the
first part is composed of four bottleneck structural blocks, and
the second, third, and fourth parts are all composed of
structural blocks of residual units. After the transmission of the
first part is completed, two branches are generated through two
convolutional layers of different sizes and transmitted to the
second part in parallel. On the branch, four structural blocks of
residual units are serially connected and transmitted. When
transmitting to the third part, a new low-resolution branch is
generated through the convolutional layer again, and then the
feature layers of the three branches are up-sampled and down-
sampled. The sampling methods are combined and transmitted
to the fourth part. Similarly, in the fourth stage, the data is
transmitted in parallel on the four branches, and after the
transmission is completed, it is all merged to the original
resolution through up-sampling. Finally, the feature layer is
output through the convolutional layer. In this study, we used
the pytorch1.3 version, with four GTX 1080ti GPUs to
pretrain the network, batch size is 12, and training round
epochs is 500.
2.5.3. Model Accuracy Evaluation Method. The accuracy

evaluation of the model can reflect the fitting effect and the
error of the model. In this study, we used the cross-validation
(CV) method that used 70% of the monitoring data as the
training data, and the 10-fold CV method to estimate the
accuracy of the model.42 This method can balance the
deviation and variance of the model. By assessing the closeness
between the simulation result of the verification set and the
actual observation value, the simulation accuracy of the model
is reflected. The evaluation indicators used in this study
include the correlation coefficient (R), the root mean square
error (RMSE), the mean absolute error (MAE), and the fitting
index (index of agreement, IA). Where R represents the model,
the fitting effect of RMSE and MAE represent the deviation
between the predicted value and the actual value, and IA
represents the consistency between the predicted value and the
actual value.
2.5.4. Random Forest Algorithm. One of the challenges

derived by regression-based street view image models is
difficulty to capture nonlinear relationships and complex
interactions. Random forest can resist and overcome these

problems.43,44 To predict the urban black carbon concen-
trations, the random forest was selected for the street view
image model. We used the default setting from the package
scikit-learn. A bivariate correlation analysis was used in this
study to extract the target factors required for modeling, and
the concentrations of UVPM, eBC, and eBrC in the training
set and the corresponding target factors were used as data for
the random forest regression method. In order to express the
simulation accuracy of the random forest optimization method,
the fitting indices of the support vector machine (SVM)
optimization method45 and the multiple linear regression
(MLR) method46 were also calculated and compared.

3. RESULTS AND DISCUSSION
3.1. Spatiotemporal Variations of Median Black

Carbon Concentrations across Street Microenviron-
ments. Because the median is a more representative central
tendency measure than the mean,47 the study preferred to use
the median to investigate the spatial variation of BC
concentrations. Figure S3 shows the aggregated median
UVPM, eBC, and eBrC concentrations for each 15 m distance
along the route. The observed median BC concentrations in
different microenvironments exhibited substantial spatial
heterogeneity, with the lowest values in the park environment
(N_traffic) and the highest in the H_traffic environment (see
details in the Supporting Information, Section 2.1). For eBC,
the averages in the busier roads were obviously higher than
those of others (p < 0.05 with ANOVA method) (Figure S4).
The areas with highest traffic intensities, particularly on
crossroads, showed high BC concentrations (Figure S3), e.g.,
the crossroads of P1 (10.3, 10.0, and 0.34 μg/m3), P2 (11.6,
10.4, and 1.20 μg/m3), and P3 (10.88, 9.38, and 1.50 μg/m3).
Meanwhile, based on the Spearman correlation, the three
parameters have weak to strong significant correlations, as
following UVPM versus eBC (0.917, p < 0.01); UVPM versus
eBrC (0.642, p < 0.01); and eBC versus eBrC (0.361, p < 0.01).
Generally, high levels of pollutant concentrations occur in

areas with the largest traffic volumes. These regions are
hotspots for eBC concentrations. It could be concluded that
the direct emissions from the traffic could be an important
source for BC in Augsburg. On the other hand, in the central
business district, the main means of transportation are trams

Figure 3. Correlation matrix of measured compounds in different traffic volumes (A, all roads; N, no traffic volume (park area); L, low traffic
volume; M, middle traffic volume; H, high traffic volume, *p < 0.05, **p < 0.01, and white bands represent nonsense).
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and natural gas-operated buses. In other regions, cars are the
mainstay. Especially on some main roads, high-emission
vehicles like heavy-duty trucks are common. Targino et al.
(2016) pointed out that the pollution concentrations were
positively correlated with traffic loads and observed a strong
relationship between eBC concentrations at intersections
managed by traffic signals and the number of heavy-duty
diesel vehicles.48 Boogaard et al. (2011) averaged the ratio of
the pollutant concentration of multiple streets (10 000−18 000
vehicles/day) to the background and found that the street eBC
concentration was higher than the background.49 In summary,
the highest eBC concentrations in Augsburg were near traffic
roadways, especially at street crossings and traffic lights.
In comparison with temporal variations, the differences in

UVPM, eBC, and eBrC concentrations measured in four
seasons were generally significant (p < 0.05, Figure S5). In
spring, summer, autumn, and winter, the variation trends of the
three air pollutants were similar. The median concentrations of
UVPM, eBC, and eBrC are respectively 3.86, 3.55, and 2.68
times higher in winter than that in spring. This can be
attributed to seasonal differences in meteorological conditions
and emission sources (Figure S5, details in the Supporting
Information, Section 2.2). In addition, the diurnal variation of
BC was strikingly sharp in the morning peaks and late
afternoon to late night. The maximum concentrations around
midnight were 4.2, 3.7, and 6.8 times higher than those
observed in the afternoon for UVPM, eBC, and eBrC,
respectively (Figure S6, details in the Supporting Information,
Section 2.3).
3.2. Association of BC Concentrations and Potential

Driving Factors. The correlation analysis between the BC
concentration and driving factors and the streetscape images

was observed. As shown in Figure 3, the correlations between
street scene (buildings, roads, cars, and vegetation) and
UVPM, eBC, and eBrC carbon are weak but highly significant.
Similarly, Choi et al. (2016) found that the block-scaled
ultrafine particle (UFP) concentrations highly depend on the
built environment and surface turbulence.22 Black carbon has a
similar character to UFP and is related to the built
environment. Open blocks may be one of the reasons and
give the benefit to the dispersion of pollutants, while high and
narrow buildings reduce the dispersion of pollution from the
upper wind. Peters et al. (2013) selected two fixed roads in the
cities of Antwerp and Mol in Belgium to test the UFP.47 The
results also showed that the daily concentration of UFP
changes closely with the traffic density flow and the structure
of the street. Pan et al. (2013) also found that the dispersion of
pollutants in urban canopies is indirectly affected by the shape
of the buildings.50 The impact of automobiles on pollutants is
mainly caused by automobile exhaust, which is the main source
of black carbon.51 The relationship between vegetation and
black carbon is inversely related because the urban forest
system can store and capture dust in the air,52 which purifies
the black carbon concentration. More than that, meteoro-
logical factors (T, RH, and WS) also influence the BC
concentrations in the urban area, which was observed and
found in the current and previous studies34 (see details in
Section 3, Supporting Information).
For different microenvironments, the correlation between

street scene indicators and the three air pollutants is slightly
different, caused by the different proportions of street scenes in
different microenvironments (Figure 3).53 Most of the
vegetation is found in the park area, resulting in the low
concentrations of UVPM, eBC, and eBrC. In the micro-

Figure 4. The random forest method and prediction of the spatial distribution of air pollutants (a−c) random forest optimization method for
UVPM, eBC, and eBrC; and (d−f) spatial distribution for prediction exposure to UVPM, eBC, and eBrC).
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environment of medium traffic flow, the correlation between
UVPM and the building is very weak but still significant.
However, the correlations between eBC, eBrC, and the
building are not significant. A wider range in the proportion
of buildings may be the reason for this observation.
3.3. Evaluation and Prediction of UVPM, eBC, and

eBrC Concentrations. 3.3.1. The Fitting Effects of Random
Forest (RF) and Its Application. The scatterplots of the
predicted and observed values of the UVPM, eBC, and eBrC
for RF methods are shown in Figure 4a−c), and the
relationship between each predictor and the three pollutants
are shown in Figure S8. The scatterplots of the predicted and
observed values of the UVPM, eBC, and eBrC for SVM and
MLR are shown in Figure S9. In the same sampling, 70% of the
monitoring data was selected as the training data, and the 10-
fold CV method was used to estimate the accuracy of the
method, where the data set is randomly separated to 10
partitions with equal-sized folds. The algorithm is trained using
ninefolds and repeated 10 times. We performed the sampling
with replacement, suggesting that every fold could be used as
the validation set exactly once. As a result, the correlation
coefficient (R), root mean square error (RMSE), mean
absolute error (MAE), and fitting index (IA) of the UVPM
(eBC and eBrC) prediction method are shown in Table S2.
Based on the R2 and IA, the RF method is superior to the other
two types of methods, and it performs better in the Augsburg
black carbon aerosol simulation: concentration space simu-
lation. This is because the main advantage of random forest is
that ability to capture the complex and nonlinear relationship
between predictor variables and results with small-scale
training data.54 Moreover, the effects of the SVM and the
MLR method fitting are not suitable for this study (Table S2),
as both applications will lead to an obvious overfitting. If
random forests can indeed capture more patterns based on
street view images, they may be more accurate predictors of
pollutant concentration.54 Thus, to determine the dominant
factors of the model, the weight of each factor was analyzed
based on the RF method, and we found that the relative
humidity has a greater influence for UVPM, eBC, and eBrC. In
addition, other dominant factors are wind speed and
temperature for UVPM, temperature and vegetation for eBC,
and vegetation for eBrC.
Based on the prediction models of three pollutants

established in this study, we have spatialized the model
prediction, as shown in Figure 4d−f. The predicted
concentrations of the three pollutants (UVPM, eBC, and
eBrC) and the actual traffic flow in different microenviron-
ments are mainly consistent (high traffic flow and high
pollutant concentration), which further illustrate the applic-
ability of the model built in this study. It is worth noting that
the RF method is the best for UVPM and eBC prediction;
however, for eBrC, it is poor, which may be caused by the
source of eBrC. Previous studies have shown that wood
combustion in Germany is frequently used for leisure.55 We
therefore estimated that eBrC can be associated with smoke
from the smoldering phase of wood combustion and leisure.
However, during the sampling process, the camera did not
collect relevant information (e.g., wood combustion).
3.3.2. Street View Image Model and Its Comparison with

Other Models. The most widely used models for spatial
distribution simulation include spatial interpolation, remote
sensing inversion, atmospheric diffusion models, land use
regression (LUR), and hybrid models of the latter.56

Atmospheric diffusion models, LUR, and hybrid models can
provide pollution estimates on comparable spatial scale as our
model. Hence, we very briefly discuss advantages and
disadvantages of these models compared to our street view
image-based approach.
If the atmospheric diffusion model (e.g., MISKAM and

computational fluid dynamics (CFD) model)57 is used to
simulate black carbon concentration in the microscale
environment, the input data required in the model are terrain,
meteorological data, pollution source data (point source/area
source), and emission factors of relevant sources as well as
activity pattern (time-dependent emission strengths). A major
advantage is their ability to calculate the pollutant concen-
tration of various sources and integrate simple and complex
terrain. Yet their use is improper for the modeling in low wind
speeds,57 where the wind speed inside Augsburg urban area is
relatively low, especially in winter and spring (Table S1).
Depending on time and spatial resolution of input data, results
are comparable in spatiotemporal resolution to our model.
However, for the calculation of pollutant concentrations with
high spatial resolution (e.g., 10 m grid width),57 on the one
hand, source information in similar resolution is needed, which
is usually not available. For the model calculations, therefore,
assumptions about the sources (i.e., emission position and
intensity and activity pattern) must often be used. On the
other hand, the calculations require high computing power or
long computing times, especially at high spatial resolution.
Regarding LUR, the input data required in this model are
representative concentrations of atmospheric pollutants
determined at several monitoring sites and land use data,
road traffic flow, meteorological data, and other factors
potentially influencing concentrations near the monitoring
points.58 Moreover, this model is a cost-effective tool for
predicting spatial variability in ambient air pollutant concen-
trations with high resolution.16 Usually, input data for LUR
modeling is sufficient to achieve similar spatial resolution like
our approach for the BC estimation. However, results from
LUR modeling are usually time-invariant. In addition, the
selection of the number of monitoring sites and how to
determine the contribution ability of different elements to
pollutants and the distance between them needs to be further
explored and discussed.58 In order to further prove the
superiority of our model, we compare LUR with our model
more specifically (see details in the Supporting Information,
Section 4) in the supporting material, and the results show that
the R2 of LURF (0.33−0.64) in different buffers are lower than
that in our street view image model (0.53−0.71).
Hybrid models that combine elements of LUR and

dispersion models provide the opportunity to exploit the
advantage of the abovementioned techniques while mitigating
their shortcomings.59 When the necessary data support is
lacking, advanced dispersion may perform poorly. In this case,
the LUR model result can be used as input dispersion
modeling.56 As a result, the hybrid model explained more
variance than other compared models in the study. However, it
may require more complex analysis than a single model, and
the lack in uniformity of the verification model will make it
difficult to compare with reviewed models.60

The street view image model proposed in this study can
provide a prediction of UVPM, eBC, and eBrC concentration
levels with high accuracy and efficiency. This model can
effectively overcome some shortcomings of other models in
predicting air pollution, such as, it is applicable in the low wind
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speed level, easily identifying the hotspot and simple analysis.
In addition, the model has strong timeliness, which can capture
the actual conditions of the daytime environment. In the
future, street view image model may prospect to develop in
different areas or even areas that cannot be accessed by air
quality monitoring equipment. The concentrations of UVPM,
eBC, and eBrC can be estimated by using street view images
combined with meteorological factors in the area. Moreover,
street view images can easily obtain the types of features with
highly detailed information. However, the street view image
model still has certain limitations, such as meteorological data
that is not measured along the path (see in the Supporting
Information, Section 5), and further improvements are still
needed in the future.
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Facchini, M.-C.; Decesari, S.; Fuzzi, S.; Gehrig, R.; Hüglin, C.; Laj, P.;
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