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Whole-genome sequencing analysis of the
cardiometabolic proteome
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Maria Karaleftheri10, George Dedoussis11 & Eleftheria Zeggini 1,2,12✉

The human proteome is a crucial intermediate between complex diseases and their genetic

and environmental components, and an important source of drug development targets and

biomarkers. Here, we comprehensively assess the genetic architecture of 257 circulating

protein biomarkers of cardiometabolic relevance through high-depth (22.5×) whole-genome

sequencing (WGS) in 1328 individuals. We discover 131 independent sequence variant

associations (P < 7.45 × 10−11) across the allele frequency spectrum, all of which replicate in

an independent cohort (n= 1605, 18.4x WGS). We identify for the first time replicating

evidence for rare-variant cis-acting protein quantitative trait loci for five genes, involving both

coding and noncoding variation. We construct and validate polygenic scores that explain up

to 45% of protein level variation. We find causal links between protein levels and disease risk,

identifying high-value biomarkers and drug development targets.
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Cardiometabolic diseases are a leading cause of death and
continue to rise in prevalence across global populations.
Genome-wide association studies (GWAS) have identified

large numbers of susceptibility loci. However, the precise biolo-
gical networks through which these genetic instruments exert
their effects remain largely unknown. The genetics of inter-
mediate traits, such as proteomics, is poised to offer insights into
disease-relevant mechanisms and pathways, point to new drug
targets and identify new biomarkers to improve early detection
and diagnosis. GWAS of protein traits have recently become
viable1–6, but imputed GWAS chip data only offers partial
insights into the genetic architecture of protein traits, in parti-
cular with respect to capturing rare variation. Large studies with
proteomic data coupled to high-depth whole-genome sequencing,
which is required to study the role of rare variation7,8, are cur-
rently lacking. Here, we perform whole-genome-sequence-based
association analysis between 257 cardiometabolic disease-related
serum protein levels9 and 13,419,876 single nucleotide variants
(SNVs) in a population-based cohort (MANOLIS), and assess
colocalization, causation and predictive power of protein quan-
titative trait loci (pQTL) in cardiometabolic disease. We report
new single-variant associations at 50 protein quantitative trait
loci, including from variants with a significantly increased fre-
quency in this isolated cohort. We find robust, replicating evi-
dence of burdens of rare variants, both regulatory and coding,
influencing protein levels at five cis loci (ACP6, PON3, IL1RL1,
DPP7, CTSO) independently of common variant signals. We
describe three loci where causal evidence for protein-disease
association is supported by functional information. Finally, we
demonstrate that predictive models of hypercholesterolemia are
significantly improved by the inclusion of polygenic information
from multiple proteins, highlighting the contribution of geneti-
cally determined protein levels to cardiovascular disease risk.

Results and discussion
Genetic architecture of protein quantitative trait loci. We
identify 116 protein quantitative trait loci (pQTLs) reaching study-
wide significance (P < 7.45 × 10−11) (Supplementary Data 1,
Fig. 1). Thirty-two (27%) of these are driven by multiple inde-
pendent variants (between two and seven per locus (Supplemen-
tary Fig. 1), giving rise to a total of 164 independently-associated
variants), illustrating complex allelic architecture at pQTLs. We
find replicating evidence for association (P < 0.000305) across 131
out of 159 variants (82%) present in an independent, whole-
genome-sequenced population-based cohort with the same serum
biomarker measurements (Pomak10) (n= 1,605, 18.4x WGS).
Replication was expectedly poorer for rare variants (Supplementary
Fig. 2). We find that these robustly-replicating loci explain up to
47.7% of protein level variance, and on average more (one-sided
Mann-Whitney-U test, P= 3.42 × 10−13) than for 37 other, non-
proteomic quantitative traits measured in the same individuals
(Supplementary Fig. 3). This exemplifies how the study of blood
biomarkers can powerfully capture the heritable component of
biological processes underpinning such disease-relevant quantita-
tive traits. Eighty of the associated variants display significant allele
frequency differences between the isolated population studied here
and large reference populations (Supplementary Data 2), 53 of
which have increased frequencies in MANOLIS (66%, P= 0.002,
one-sided 1-sample proportion test). In particular, 14 associated
variants display a frequency increase of more than 5-fold, high-
lighting the advantage of using isolated populations in associations
of protein levels.

Ninety percent of these reproducibly-associated variants are
common (minor allele frequency (MAF) > 5%), and 76% are
located within 1Mb of the gene encoding the respective protein

(i.e. in cis-pQTLs) (Fig. 2). Among these cis loci, thirty-two out of
72 cis-pQTLs (44%) discovered in this cohort have either not
previously been reported in protein-level GWAS (novel loci), or
harbour variants conditionally independent of all previously-
reported associations (novel variants at known loci) (Supplemen-
tary Data 1).

We identify 38 variants in 35 trans loci associated with 32
proteins; 18 of these variants both have not been previously
reported (Supplementary Note 1) in protein-level GWAS and
replicate in the Pomak population. We find the overall replication
rate to be similar for trans- (81%) and cis-associated (79%)
variants. Of the replicating 31 trans-acting variants, 30 are
common and one is low-frequency. We identify trans-pQTL
signals for seven receptor/ligand pairs with experimental evidence
of physical interaction and well-established synergistic roles in
downstream pathways11–17.

Rare regulatory variants affecting protein levels. To enhance our
understanding of rare variant (RV) contribution to serum protein
biomarker levels, we performed gene-based burden analysis across
coding and noncoding sequence variation (Methods). We identify
for the first time 6 study-wide significant (P < 7.45 × 10−11) cis-RV-
pQTLs (Fig. 3, Supplementary Fig. 4), in the ACP6 (lysopho-
sphatidic acid phosphatase type 6, Pmeta-analysis= 3.17 × 10−97),
PON3 (paraoxonase 3, Pmeta-analysis= 7.42 × 10−86), IL1RL1 (inter-
leukin 1 receptor like 1, Pmeta-analysis= 2.15 × 10−58), DPP7 (dipep-
tidyl peptidase 7, Pmeta-analysis= 2.71 × 10−36), CTSO (cathepsin O,
Pmeta-analysis= 2.27 × 10−33) and GRN (progranulin, PMANOLIS=
3.16 × 10−12) genes. All except the GRN burden signal replicate in
the Pomak cohort. The GRN RV-pQTL is driven by the novel splice
donor variant chr17:44349552 (G>A, minor allele count MAC= 4)
and the 5′-UTR variant rs563336550 (MAF= 1.7%) in MANOLIS,
the latter showing a 17-fold increase in frequency in MANOLIS
compared to gnomAD non-Finnish Europeans (MAF= 0.1%), and
more than 2000-fold compared to TOPMed (MAF= 0.00079%).

We find that rare regulatory variants are major contributors to
some of these burdens. For example, one of the two variants
driving the PON3 cis-RV-pQTL resides in promoter
ENSR00000215353 and transcription factor binding site
ENSR00000832511, and is associated with a decrease in PON3
levels (rs149867961, MAF= 3.1%, effect size β=−1.18 in units of
standard deviation, standard error σ= 0.113, P= 7.58 × 10−23).
The other contributing variant, rs772677677 (MAF= 1.9%, β=
−1.55, σ= 0.143, P= 3.15 × 10−24), is a missense variant with a
substantially increased frequency in MANOLIS (MAF= 1.9%
compared to 0.00264% in gnomAD), also associated with a
decrease in PON3 levels. PON3 (paraoxonase 3) inhibits the
oxidation of low-density lipoprotein (LDL), an effect that slows
atherosclerosis progression18. These findings illustrate the con-
tribution of rare variants to the heritability of proteomic traits, and
that this contribution is partly mediated through cis-RV-pQTLs.

Identifying causal associations between proteins and disease.
To detect proteins that may play a causal role in cardiometabolic
disease onset or progression, we performed two-sample Mende-
lian randomization analysis across 93 proteins with study-wide
significant signals here and 193 diseases and traits from UK
Biobank and other large consortial datasets (Methods, Supple-
mentary Data 3a, b). We identify significant (FDR < 0.05) asso-
ciations involving 48 proteins and 75 phenotypes (Supplementary
Data 4, Fig. 4). For 13 of these proteins, pQTL SNPs had both a
lowering effect on circulating levels and a protective effect against
at least one disease (Supplementary Data 5), suggesting potential
antibody-based approaches for therapeutic benefit.
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Providing proof of principle, we find evidence of established links
between dysregulated protein levels and common diseases, such as
an inverse causal correlation between PCSK9 levels and hyperch-
olesterolemia (P= 1.00 × 10−10, PFDR= 9.46 × 10−8), and between
osteopontin levels and risk of osteoporosis (P= 6.49 × 10−5,
PFDR= 0.011) and hypothyroidism (P= 1.2 × 10−4, PFDR= 0.016).
Similarly, we find decreased levels of IL1RL1 and IL1RT2, both
proteins involved in autoimmunity and inflammation-related
disorders19, to be causally linked to risk of autoinflammatory bowel
diseases (Supplementary Data 4).

We further identify new evidence for disease-mediating roles
for proteins circulating in the periphery. For example, rs2306272,
a missense cis-pQTL, is associated with decreased LRIG1 (leucine
rich repeats and immunoglobulin like domains 1) levels (MAF=
31%, meta-analysis β=−0.754, σ= 0.0261, P= 1.50 × 10−183),
and is causally associated with reduced risk of atrial fibrillation
(P= 5.23 × 10−11, PFDR= 5.32 × 10−8) and lower BMI (P=
2.72 × 10−9, PFDR= 1.89 × 10−6), and with increased risk of type
2 diabetes (P= 4.70 × 10−5, PFDR= 8.87 × 10−3) and self-reported

hypercholesterolemia (P= 4.61 × 10−4, PFDR= 0.043) (Fig. 4).
LRIG1 is a transmembrane protein that acts as a feedback negative
regulator of signaling by receptor tyrosine kinases. Variants in
LRIG1 have previously been associated with atrial fibrillation20,21,
and the identified pQTL co-localises with previous pulse rate
(posterior probability of colocalisation P4= 0.939) and QRS
duration (P4= 0.998) loci. Mouse knockout models of LRIG1
exhibit decreased body weight and fat22.

Notably, we find evidence for a genetic link between PRG2
intronic variant rs10642232 and decreased levels of PAPPA
(pregnancy-associated plasma protein-A) (β=−0.299, σ= 0.0320,
P= 1.06 × 10−20). A previous association exists at rs14000016123,
however, this variant is not found in either of our cohorts. PAPPA
is a metalloproteinase involved in normal and pathological insulin-
like growth factor (IGF) physiology. PRG2 codes for eosinophil
granule major basic protein, which reduces PAPPA activity by
interacting with it to form a complex24. PAPPA is a specific
protease targeting IGFBP4 (IGF binding protein 4) in the presence
of IGF. IGFBP4 inhibits IGF binding with its receptor, and PAPPA
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Fig. 1 Genome-wide association signals across all tested proteins. For clarity, variants with P > 1 × 10−5 are not represented in the figure. Variants with
P < 7.45 × 10−11 are plotted in green. Source data are provided as a Source Data File (score test, one-sided).
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promotes IGF activity25. rs10642232 is a PRG2-decreasing eQTL in
multiple tissues. We find reduced PAPPA levels to be causally
associated with decreased risk of diabetic kidney disease in T2D
patients (P= 2.63 × 10−4, PFDR= 0.0304). IGF activity is enhanced
in early diabetic nephropathy, whereas IGF resistance is found in
chronic kidney failure26. Animal knockouts of PAPPA exhibit
decreased body weight and length, type 2 diabetes and hyperch-
olesterolemia. Our results suggest that PAPPA and its inhibition by
PRG2 within the IGF system may play a role in the pathogenesis
and progression of diabetic kidney disease in T2D patients. These
findings are consistent with the reported lower incidence of diabetic
complications in this isolated Cretan population27.

Further, we find that cis-acting variants decreasing levels of
ENTPD5 (rs73301485, MAF= 7.5%, β=−0.637, σ= 0.0487,
P= 4.59 × 10−39; rs140111715, MAF= 3.7%, β=−0.778, σ=
0.0563, P= 2.29 × 10−43) are causally associated with lower risk
of type 2 diabetes (P= 3.56 × 10−4, PFDR= 0.037) and diabetic
kidney disease (P= 2.61 × 10−19, PFDR= 4.93 × 10−16). ENTPD5
(ectonucleoside triphosphate diphosphohydrolase 5) promotes
glycolysis in proliferating cells in response to phosphoinositide 3-
kinase (PI3K) signaling and is primarily expressed in the liver,
kidney, intestine, prostate and bladder, and rs73301485 is an
eQTL in multiple tissues. Mouse knockout models show
decreased body weight, hypoglycemia, decreased cholesterol and
triglycerides28. Small-molecule screens have recently identified
several ENTPD5 inhibitors29 that warrant investigation for their
effect on type 2 diabetes and diabetic complications.

Polygenic prediction of the cardiometabolic proteome. We find
that genome-wide polygenic scores calculated in MANOLIS can
predict up to 45.5% of protein variance in the independent
Pomak dataset, despite a low average predictive performance
(median r2= 0.026, Supplementary Fig. 5). The polygenic score
architecture observed within the power parameters of this study,

indicates the involvement of a small number of strongly-
associated common variants, and a smaller contribution for
rare and low-frequency variants. Notably, both the discovery and
test datasets stem from individuals of European ancestry; further
studies in global populations will be required to assess the
transferability of these polygenic scores.

Predicted protein levels are associated with disease risk. Poly-
genic prediction of the cardiometabolic proteome can lead to the
identification of potential biomarkers through correlation with
disease states in biobanks where clinical and genetic information
is available, without requiring actual proteomics measurements.
We performed logistic regression of 47 proteins with polygenic
scores that had achieved a predictive value of r2 > 0.05 in Pomak,
on 80 indications in UK Biobank, adjusted for genetic principal
components, clinical and lifestyle factors. We find that the scores
for GRN (progranulin), CHI3L1 (chitinase 3 like 1) and PECAM1
(platelet and endothelial cell adhesion molecule 1) levels are
significant predictors of disease status (Wald test P < 1.66 × 10−5)
across a range of cardiometabolic traits (Supplementary Data 6a,
b). The progranulin level polygenic score is correlated with
increased risk of hypercholesterolemia, and is driven by a single
association in CELSR2-SORT1, an established risk locus for lipid
disorders30. Similarly, the PECAM1 score is driven by a signal at
the ABO locus, a known regulator of multiple proteins4. In a joint
predictive model for high cholesterol, inclusion of polygenic
scores for GRN, CHI3L1 and PECAM1 levels results in a sig-
nificant increase of the model accuracy compared to the clinical
and lifestyle covariates-only model (Supplementary Note 2,
Likelihood Ratio Test (LRT) P= 9.07 × 10−126, DeLong’s test for
difference in AUC P= 3.13 × 10−33). This remained significant
when GRN and PECAM1 scores were excluded, leaving only the
newly associated CHI3L1 score (LRT P= 7.33 × 10−10, DeLong’s
P= 3.19 × 10−3).We find that an elastic net model agnostically
selects the same three polygenic scores in a full-proteome analysis
of high-cholesterol, confirming their contribution and demon-
strating the value of including proteomics scores in predictive
models of disease risk.

In summary, using whole-genome sequencing, we identify
robustly-replicating cis- and trans-pQTLs, and show for the first
time that burdens of rare variants contribute to the genetic
architecture of protein biomarker levels. We show that incorpor-
ating information on this genetic contribution leads to improve-
ment in clinical risk models for cardiovascular disease.
Identification of causal contributions of the cardiometabolic
proteome to the risk of multiple chronic diseases can present
opportunities for new therapeutic target discovery and predictive
modeling to accelerate precision medicine.

Methods
Sequencing and variant calling. Genomic DNA (500 ng) from 1482 samples was
subjected to standard Illumina paired-end DNA library construction. Adapter-
ligated libraries were amplified by 6 cycles of PCR and subjected to DNA
sequencing using the HiSeqX platform (Illumina) according to manufacturer’s
instructions.

Basecall files for each lane were transformed into unmapped BAMs using
Illumina2BAM, marking adaptor contamination and decoding barcodes for
removal into BAM tags. PhiX control reads were mapped using BWA Backtrack
and were used to remove spatial artefacts. Reads were converted to FASTQ and
aligned using BWA MEM 0.7.8 to the hg38 reference (GRCh38) with decoys
(HS38DH). The alignment was then merged into the master sample BAM file using
Illumina2BAM MergeAlign. PCR and optical duplicates are marked using
biobambam markduplicates and the files were archived in CRAM format.

Per-lane CRAMs were retrieved and reads pooled on a per-sample basis across
all lanes to produce library CRAMs; these were each divided in 200 chunks for
parallelism. GVCFs were generated using HaplotypeCaller v.3.5 from the Genome
Analysis Toolkit (GATK) for each chunk. All chunks were then merged at sample
level, samples were then further combined in batches of 150 samples using GATK
CombineGVCFs v.3.5. Variant calling was then performed on each batch using
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GATK GenotypeGVCFs v.3.5. The resulting variant callsets were then merged
across all batches into a cohort-wide VCF file using bcftools concat.

Variant-level QC was performed using the Variant Quality Score Recalibration
tool (VQSR) from the Genome Analysis Toolkit (GATK) v. 3.5-0-g36282e431,
using a tranche threshold of 99.4% for SNPs, which provided an estimate false-
positive rate of 6%, and a true positive rate of 95%. For INDELs, we used the
recommended threshold of 1%. For sample-level QC, we made extensive use of a
previously described10 GWAS dataset in 1175 overlapping samples. Four
individuals failed sex checks, 8 samples had low concordance (π^<0.8π^<0.8) with
chip data, 11 samples were duplicates, and 12 samples displayed traces of
contamination (Freemix score from the verifyBamID suite32 >5%). In case of
sample duplicates, the sample with highest quality metrics (depth, freemix and
chipmix score) was kept. As contamination and sex mismatches were correlated, a
total of 25 individuals were excluded (n= 1457). No further samples were excluded
based on depth, heterozygosity, transition/transversion (Ti/Tv) rate, missingness or
ethnicity. We filtered out 14% of variants with call rates < 99%.

Proteomics. The serum levels of 275 unique proteins in 1407 MANOLIS samples
from three Olink panels—CVDII, CVDIII and Metabolism—were measured using
Olink’s proximity extension assay (PEA) technology9. Briefly, for each assay, the
binding of a unique pair of oligonucleotide-labelled antibody probes to the protein
of interest results in the hybridisation of the complementary oligonucleotides,
which triggers extension of by DNA polymerase. DNA barcodes unique to each
protein are then amplified and quantified using microfluidic real-time qPCR.
Measurements were given in a natural logarithmic scale in Normalised Protein
eXpression (NPX) levels, a relative quantification unit. NPX is derived by first
adjusting the qPCR Ct values by an extension control, followed by an inter-plate

control and a correction factor predetermined by a negative control signal. This is
followed by intensity normalisation, where values for each assay are centered
around its median across plates to adjust for inter-plate technical variation. Further
details on the internal and external controls used can be found at http://www.olink.
com. Additionally, a lower limit of detection (LOD) value is determined for each
protein based on the negative control signal plus three standard deviations. For our
samples, NPX values that fall below the LOD were set to missing.

We adjusted all phenotypes using a linear regression for age, age squared, sex,
plate number, and per-sample mean NPX value across all assays, followed by
inverse-normal transformation of the residuals. We also adjusted for season, given
the observed annual variability of some circulating protein levels. Given the dry
Mediterranean climate of Crete, we define season of collection as hot summer or
mild winter. Plate effects are partially offset by the median-centering implemented
by Olink. MANOLIS samples were plated in the order of sample collection, which
results in plate and season information to be largely correlated.

Quality control. We excluded 13 protein measurements across all panels with
missingness or below-LOD proportion greater than 40% (Supplementary Data 7).
BNP was measured across all three panels, and was excluded due to high miss-
ingness in all three. 26, 2, and 14 samples failed vendor QC and were excluded
from CVDII, III and META, respectively. 42 samples were excluded due to
missing age.

Sequencing data quality control has been described before7. Briefly, Variant-
level QC was performed using the Variant Quality Score Recalibration tool (VQSR)
from the Genome Analysis Toolkit (GATK) v. 3.5-0-g36282e4. Sample-level QC
was performed by comparing genotypes with chip data in the same samples. Four
individuals failed sex checks, 8 samples had low concordance with chip data,
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11 samples were duplicates, and 12 samples displayed traces of contamination. As
contamination and sex mismatches were correlated, a total of 25 individuals were
excluded (n= 1457). Variants were further filtered using the Hardy–Weinberg
equilibrium test at P= 1.0 × 10−5. We filtered out 14% of variants with call rates <
99%.

Single-point association. We carry out single-point association using the linear
mixed model implemented in GEMMA33. We use an empirical relatedness matrix
calculated on a LD-pruned set of low-frequency and common variants (MAF > 1%)
that pass the Hardy–Weinberg equilibrium test (P < 1 × 10−5). We further filter out
variants with missingness higher than 1% and MAC < 10. 5 proteins were excluded
due to having a genomic control λGC < 0.97 or λGC > 1.05 after association (total
analysed 257, Supplementary Data 7). 123 signals were extracted using the Peak-
Plotter software (https://github.com/hmgu-itg/peakplotter), which is based on a
combination of distance-based and LD-based pruning. Specifically, the software
sorts variants passing the significance threshold by increasing p-value, then for
each variant, computes SNPs in linkage disequilibrium greater than r2= 0.2,
removes them, and moves on to the next variant. Variants selected in this way
located within less than 2Mb of each other are then grouped together, and the
index variant is set to the variant with lowest p-value. Each index variant defines a
signal, and we use locus and signal interchangeably in this article. We extracted
independent SNV at each associated locus using an approximate conditional and
joint stepwise model selection analysis as implemented in GCTA-COJO34. To
avoid overfitting when too many predictors are included in the model, we perform
LD-based clumping using Plink v.1.9, based on an r2 value of 0.1 and a window of
1Mb prior to the GCTA-COJO analysis35. The extended linkage disequilibrium
(LD) present within MANOLIS can cause very large peaks to be broken up into
several signals. We identified and manually investigated 5 regions where multiple
peaks were present in close proximity of each other, reducing the number of
independent signals to 116 and the number of conditionally independent variants
to 164. Cis-acting protein-altering variants may result in false-positive associations

due to epitope effects. While exact quantification of such effects would have
required comparison using proteomic measurements from an alternative assay
method, we note that only 11 of these 100 replicating cis-acting variants have a
potentially protein-truncating effect. Details of additional notable pQTL not
described in the main text are summarised in Supplementary Note 3.

Rare variant association. For rare variant association, we apply a MAF filter of 5%
and a missingness filter of 1%. We use the linear mixed model extension of SKAT-
O implemented in MONSTER36, using the MUMMY wrapper7 (https://github.
com/hmgu-itg/burden_testing). Following our previously-reported analysis strat-
egy7, we test for rare variant burden association on a gene-by-gene basis: firstly,
restricting burdens to coding variants with Ensembl most severe consequence
stronger than missense; secondly, including all coding variants weighted by
CADD37; thirdly, including exon and regulatory variants using the phred-scaled
Eigen score38; and, finally, regulatory variants only weighted by Eigen. CADD
integrates multiple annotations into one metric by contrasting variants that sur-
vived natural selection with simulated mutations, whereas Eigen is an unsupervised
method based on spectral decomposition of multiple functional annotations in
coding as well as noncoding regions. Regulatory regions are linked to a gene if they
overlap an Ensembl-documented eQTL for that gene in any tissue. A gene-pair was
taken forward for quality control (QC) if it was significant in any of the four
analyses. 17 signals passed this threshold. Because rare variant LD blocks can
extend over long distances and capture overlapping common associations, we
manually inspect LD blocks through the plotburden software (https://github.com/
hmgu-itg/plotburden), and discard signals involving variants in LD with nearby cis
ones. For each remaining signal, we then re-run the burden analysis conditional on
the genotypes of the variant with the lowest single-point p-value that was pre-
viously included in the burden, so as to only consider signals arising from at least
two distinct variants. 6 RV-pQTL signals pass this quality control procedure
(Supplementary Fig. 4).
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Fig. 4 Significant causal protein-disease associations identified through two-sample Mendelian randomisation. Protein (exposure) names are indicated
on the left, diseases (outcomes) on the right. Identical disease names for a given protein indicate a MR signal replicating across multiple studies of the
same disease; further details and causal associations with quantitative traits are displayed in Supplementary Data 4. RA: rheumatoid arthritis, IBD:
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Replication. We performed replication in 1605 samples from the Pomak cohort
sequenced at a mean depth of 18.6×, using an identical sequencing, variant calling
and quality control protocol. The proteomic phenotypes were transformed iden-
tically to MANOLIS. Single-point association analysis was performed using
GEMMA and an identically calculated GRM. The replication p-value was defined
as Preplication= 0.05/Nvariants, where Nvariants= 158 referred to the total number of
independent SNVs associated in MANOLIS and also present in the Pomak cohort.
For burden replication, we specifically analysed the genes associated in MANOLIS
in all conditions, and defined replication if a significant signal was detected in any
of them. The COMT signal driven by rs4680 in MANOLIS (β=−0.373, σ=
0.0405, P= 3.5 × 10−20) could not be replicated due to COMT failing QC in
Pomak. In five cases, associated MANOLIS variants and those tagged (r2 > 0.8) by
them were monomorphic in the Pomak cohort (rs183455943, rs4778724,
rs1053361963, rs200251994, rs186044494). 101/116 (87%) loci had at least one
replicating variant.

Definition of novelty. To assess whether a protein had been previously studied, we
examined protein lists and summary statistics from five large published proteomics
GWAS2–4,6,23. To determine novelty of genetic cis and trans association with
proteins in our study, we first determined previously reported variants within a
2Mb window around the association peaks. Among these five GWAS, one4 per-
formed stepwise conditional analysis to identify independent variants at associated
loci, and three2,6,23 did LD-based detection of independent signals. We were unable
to perform independent variant detection for the remaining study3 since no
summary statistics were publicly available. We used GEMMA33 to perform asso-
ciation analysis using previously-reported independent variants as covariates. The
association signals were declared novel if either there were no known signals in the
2Mb window, or the associations were still study-wide significant (P-value
threshold: 7.45 × 10−11) after conditioning. For trans associations, we further
annotated signals depending on whether they fell within highly pleiotropic genes
that were associated with more than 1 protein in the current study and had evi-
dence of additional associations in the literature (KLKB1, ABO, APOE, FUT2, F12),
or whether they were independent of any cis signals in the vicinity. After this
procedure, 58 cis-associated variants in 44 loci were either not within 1Mb or
independent of a signal reported in previous proteomics GWAS. 22 trans-asso-
ciated variants were both novel and independent from cis loci. 11 of these were not
located within highly pleiotropic genes. For all loci annotated as provisionally novel
using the above method, we queried the GWAS Catalog through the Ensembl
REST API, as well as PhenoScanner39 in a 2Mb window around the lead SNP.
Since proteomics GWAS signals are often designated generically in Ensembl, we
additionally performed direct queries to the GWAS catalog REST API when
phenotype descriptions were not specific enough. We manually investigated the list
of signals in search of variants associated with the protein trait of interest. When
such a variant was found, conditional analysis was performed and the novelty
status updated accordingly. We further incorporated evidence from three asso-
ciation studies with signals that were not reported in the GWAS catalog40–42. Using
this method, there were thirty-nine proteins measured in this study for which we
were not able to find evidence of previous studies of genetic associations. We find
8 cis loci harbouring 11 independent associated variants and one trans locus for 9
of these proteins.

Variant consequences. Consequence was evaluated using Ensembl VEP43 for each
variant with respect to any transcript of the cis gene for cis-associated variants and
to the mapped gene for trans-associated variants. For trans associations, variants
were manually mapped to any gene in a 1 Mb window coding for known ligands or
interactants when they were not contained within gene boundaries, as was the case
for CXCL16 and LDLR. In all, 16 replicating independent variants had a most
severe consequence equal to or more severe than missense according to Ensembl
VEP. For every variant, we extracted tagging SNVs at r2 > 0.8 using PLINK,
however none of these tagging variants had a more severe consequence on the
target gene than the independent variant. Similarly, we overlapped all independent
variants with regulatory features using the Ensembl REST API. 35 variants in 29
loci overlapped with a regulatory feature. When extending the same analysis to
variants with r2 > 0.8 with independent variants, 93 variants in 68 loci could be
mapped to a regulatory feature. We further examined potential variant con-
sequences by performing eQTL overlap analysis, as well as mining of drug targets
and mouse models databases. The details are provided in the Supplementary
Note 4.

Two-Sample MR. We extracted variants characterized as independent signals by
GCTA-COJO on a protein-by-protein basis across all cis and trans loci, and
excluded novel variants without an rs-ID. For each remaining variant, we then
considered summary statistics for all tagging positions with r2 > 0.8, merged the
resulting data frame with the exposure dataset by rs-ID. All such records origi-
nating from all independent signals were then merged by protein and carried over
to MR analysis using the MRBase R package. We excluded trans pleiotropic loci
(ABO, KLKB1, FUT2, APOE, F12). MR was performed on a set of 127 medically-
relevant traits available in MRBase (Supplementary Data 3a). Since all of our
instruments involved a small number of variants (≤10), we used the inverse-variant

weighted method, except for single-instrument analyses where we use the Wald
ratio test, which consists of dividing the instrument-outcome by the instrument-
exposure regression coefficient. We note that all of the GWAS summary statistics
used in this analysis were not derived from WGS-based studies, and therefore
several of our instruments were not found in these datasets and could not be used.
An important caveat of our overlap-maximising approach is that we did not
require overlapping variants to be lead variants in the outcome trait GWAS. This
could potentially lead to false-positives for single-instrument tests if the variant is
located at the shoulders of an association peak in the outcome trait GWAS. The
future availability of population-scale association studies with WGS or WES will
greatly enhance variant overlap compared to GWAS, and hence increase the power
of MR analyses in proteomics.

We also leveraged summary statistics manually downloaded from recent large
association studies for Chronic Kidney Disease44, blood lipids45, Atrial Fibrillation,
Type-II Diabetes, Coronary Artery Disease, estimated glomerular filtration rate46,
albuminuria47, and anthropometric traits48.

Two proteins, PDL2 and TNFRSF10C, had both cis and trans associations
where the trans did not fall in a highly pleiotropic gene. We performed 2-sample
MR excluding trans, and found that no cis variant in TNFRSF10C could be found
in selected external studies. This was due to the lead variant, 8:23108277T/TG,
being novel, and secondary variants, such as rs779159813, being very rare (MAF=
0.573%). For PDL2, the known cis signal driven by rs62556120 (β= 0.416, σ=
0.0276, P= 2.92 × 10−51) was causally associated with increased risk of ulcerative
colitis and inflammatory bowel disease (Supplementary Data 8), whereas in the
cis+trans analysis, the addition of rs10935473 attenuates that signal, but drives a
causal association with height.

We note that due to the small number of instruments for nearly all (189/13,207,
1.4%) protein-outcome pairs, we were unable to apply analyses that account for
violations of MR assumptions, such as MR-Egger regression. As such, we were
unable to assess horizontal pleiotropy, in particular for trans effects, within the
power constraints of this study. In the future, larger meta-analyses will be needed
to produce a higher number of independent and robust instruments, enabling a
more nuanced analysis of the causal relationships between proteins and disease.

Significance thresholds. We calculate the significance thresholds by computing
the effective number of variants, traits and analyses for every analysis requiring
multiple-testing correction.

Single-variant analyses: The effective number of proteins was computed using
the ratio of the eigenvalue variance to its maximum49,50:

Meff ¼ M 1� M � 1ð ÞVλobs
=M2

� �
¼ 1þ

tr
PT P� �

M

where Vλobs is the variance of the eigenvalues of the correlation matrix. For the
M= 257 Olink phenotypes in this study, Meff= 131.5, which we round to 132. The
resulting p-value threshold is 7.45 × 10−11.

Rare-variant analyses: We report both single-point and rare variant burden
signals, therefore increasing the multiple testing burden. The exact magnitude of
this phenomenon being unknown, we performed a simulation study to compute
the effective number of tests in case single-variant, variant-aggregation or both are
reported in an association study. We find that reporting rare variant signals in
combination with single-point signals at 5% and 1% MAF thresholds increased the
multiple testing burden only marginally and by less than one order of magnitude
(Supplementary Fig. 6).

Two-sample MR: To correct for multiple testing in our MR analysis, we adjust
p-values using FDR correction and examine significant results at an FDR of 0.05.

Polygenic prediction: To examine predictive accuracy, we compute polygenic
scores using PRSice 251 (v 2.2.6) with the Pomak as a target dataset. This software
applies LD-pruning and p-value thresholding on the input variant, and
subsequently performs optimization of the p-value threshold against prediction
accuracy, as measured by R-squared, in an external validation cohort. Using Pomak
as the validation cohort, we assess scores between 1 × 10−4 and study-wide
significance with intervals of 1 × 10−10. We further apply three MAF thresholds, at
0.05, 0.01 and MAC= 10, which produces three best scores per protein. We find
allele frequency thresholds not to have an appreciable influence on predictive
power. The scores that achieve high accuracy (r2 > 0.05) in predicting Pomak
protein levels all involve stringent thresholds (P < 1 × 10−6, with the majority at
P < 1 × 10−9, Supplementary Data 9). We examine correlation of these scores and
find five risk scores (CTRC, SELE, ICAM2, CDH5, PECAM1) to be highly
correlated due to signals present in the ABO region. After exclusion of a 2Mb
window centred around the ABO gene, the ICAM2 score is the only one that
maintains r2 > 0.05 in Pomak (Supplementary Data 10c). To guard against
potential overfitting, we perform three rounds of repeated 5-fold cross-validation
with a 20% hold-out set, and obtain similar results to the full analysis
(Supplementary Data 10a,b), with consistent ranking of the 7 top proteins in terms
of r2. To evaluate the predictive power of proteins for complex disease, we leverage
medical and genetic information available in the UK Biobank. Since proteomic
measurements are not available in that cohort, we use polygenic scores to impute
protein levels and correlate them with disease. We compute all scores between 1 ×
10−6 and study-wide significance with the same interval. We then run a logistic
regression of 80 UK Biobank self-reported disease codes (Supplementary Data 11a)
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and ICD codes (Supplementary Data 11b) on all such scores on a protein-by-
protein basis for 47 proteins that achieved r2 > 0.05 in the previous step. Sex,
age, Qualification, Smoking status and BMI as well as 10 principal components are
also added to the model. In order to accurately assess effect sizes, we select the
most predictive score for each protein where at least one score threshold meets
the Bonferroni-corrected P-value threshold (47 proteins, 64 effective phenotypes,
P < 1.66 × 10−5) in the Wald test for variable contribution. We then run the same
model as before, with only this score and covariates as predictors. We removed
associations between 3 proteins (CTRC, ICAM2, SELE) and deep vein thrombosis
and/or pulmonary embolism due to the association being entirely driven by ABO
variants.

In order to validate our approach for variable selection, we pooled all scores for
all proteins in a single model of self-reported high cholesterol, and used elastic net
regression to shrink coefficients for non-informative predictors. We run 10-fold
cross-validation with a 20% hold-out sample to optimize the lambda value, and run
11 models using different values of alpha, from 0 (ridge regression) to 1 (lasso) at
intervals of 0.1. We use a value of lambda one standard deviation away from the
minimal value to increase shrinkage. Overall, the performance was comparable
across models, but small values of alpha yielded a better predictive performance on
the hold-out set. An alpha value of 0.1 yielded almost no loss of AUC compared to
ridge regression, but shrunk almost all coefficients to 0 (Supplementary Fig. 5).
Four protein scores (CHI3L1, PECAM1, SELE and GRN) were shrunk to a value
greater than 0, confirming results of the manual variable selection procedure.

A disease may be manifested as several ICD codes, and broadening phenotype
definition beyond single ICD codes could increase case numbers and thereby boost
power. We use the PheCode Map 1.2 with ICD-10 codes52 to first select any
PheCode whose definition included at least one ICD-10 code included in our
previous analysis. We then used the union of cases for all ICD-10 codes included in
those PheCode definitions to define case/control status, and repeated the analysis.
Regression outputs are presented in Supplementary Data 12 and confirm the
single-protein results obtained with ICD-10 codes. A discussion of the additional
protein signals discovered using the PheCode analysis is detailed in the
Supplementary Note 5.

Finally, related individuals are present in UK Biobank, which might result in
test statistic inflation when predicting disease risk. We perform a sensitivity
analysis excluding related individuals, which confirms the robustness of our multi-
protein models (Supplementary Note 6).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data are available at the European Genome-Phenome Archive (EGA) under
accession number EGAS00001001207 for MANOLIS. The Pomak sequencing data have
not been deposited to the EGA due to the sensitive nature of this population. They are
available through email request from the corresponding author, for research projects not
involving contentious topics such as population genetics. Summary statistics are available
through the GWAS catalog. Accession numbers are provided in Supplementary Data 13.
Summary statistics for MR, including UK Biobank, were accessed using the MRBase R
package. Download links for publicly available datasets not included in MRBase are
available in Supplementary Data 3b. We leveraged information from the DrugBank53,
OpenTargets54, Ensembl release 10055, and IMPC56 databases for variant and gene
annotation. Source data are provided with this paper.

Code availability
Analysis was performed using publicly available software as described in the Methods.
We have deposited scripts on GitHub (github.com/hmgu-itg).
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