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Maturation of the gut microbiome during the
first year of life contributes to the protective
farm effect on childhood asthma
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Growing up on a farm is associated with an asthma-protective effect, but the mechanisms underlying this effect are largely
unknown. In the Protection against Allergy: Study in Rural Environments (PASTURE) birth cohort, we modeled maturation
using 16S rRNA sequence data of the human gut microbiome in infants from 2 to 12 months of age. The estimated microbi-
ome age (EMA) in 12-month-old infants was associated with previous farm exposure (§ = 0.27 (0.12-0.43), P=0.001, n=618)
and reduced risk of asthma at school age (odds ratio (OR) =0.72 (0.56-0.93), P=0.011). EMA mediated the protective farm
effect by 19%. In a nested case-control sample (n=138), we found inverse associations of asthma with the measured level
of fecal butyrate (OR=0.28 (0.09-0.91), P =0.034), bacterial taxa that predict butyrate production (OR =0.38 (0.17-0.84),
P=0.017) and the relative abundance of the gene encoding butyryl-coenzyme A (CoA):acetate-CoA-transferase, a major
enzyme in butyrate metabolism (OR = 0.43 (0.19-0.97), P = 0.042). The gut microbiome may contribute to asthma protection
through metabolites, supporting the concept of a gut-lung axis in humans.

any diseases in adults originate early in life'. In the pre-

natal period, environmental influences that affect disease

development are filtered by the mother. After birth, how-
ever, the infant interacts directly with the environment, beginning
with the colonization of body surfaces by microbiota within the first
hours of life’. This process consists of mutual adaptation between
host and microbiota and ultimately educates the host’s immune
system’. Studies in gnotobiotic mice support an essential role for
microbial exposure in the development of the immune system*. The
inverse relationship of microbial exposure and immune-mediated
diseases, such as allergies and asthma, is the basis for the hygiene
hypothesis and its amendments explaining the epidemic of inflam-

E @ matory diseases in a world that has abandoned traditional lifestylesf‘.:

A proposed mechanism by which a traditional lifestyle may
grant strong protective effects against asthma involves sustained

microbial exposure on farms®’. This protective effect has mainly
been attributed to the consumption of farm milk and exposure to a
variety of environmental microbiota in animal sheds®*.

A highly diverse microbial environment may influence the
human microbiome and thus mitigate asthma risk, as shown in the
microbiome of the upper airways”'’. For the gut microbiome, the
effect on airway disease is less obvious. Murine models have sug-
gested that protection from allergic inflammation in the lung is
mediated by the production of metabolites, such as short-chain fatty
acids (SCFAs), by certain gut bacteria''.

The human gut microbiome undergoes profound changes during
the first year of life and starts stabilizing soon thereafter'>"”. Hence,
we hypothesized that the first year of life, in particular, represents
a time window during which exposures to the outer environment
shape the development of the human microbiome with possible
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lasting consequences. The large population-based PASTURE birth
cohort provided the unique opportunity to comprehensively assess
farm-related environmental effects on the early gut microbiome
and, through the gut microbiome, on respiratory health.

Results

The PASTURE birth cohort followed children in European rural
areas, of whom 50% were born to mothers living on a family-run
farm. In the Austrian, Finnish, German and Swiss arms of this study
(n=930, 49% female), fecal samples were taken at months 2 and 12.
At both time points, we obtained sequence reads for bacterial 16S
rRNA and the fungal internal transcribed spacer (ITS) region from
samples from 618 (66%) and 189 (20%) children, respectively, which
represented all four centers at similar shares between 22% and 33%
(Extended Data Fig. 1 and Supplementary Table 1). Asthma was
defined as a physician’s diagnosis of asthma or recurrent obstructive
bronchitis established until 6 years of age and was present in 8.1%
of the 930 children.

Bacterial composition at months 2 and 12. At month 2 (Fig. 1a),
the genus Bifidobacterium was predominant. Despite a positive
association of the abundance of Bifidobacterium with breastfeed-

ing (f=0.43 (0.23—0.64), P <0.001), this genus was not significantly
linked with subsequent asthma. At month 12 (Fig. 1b), the rela-
tive abundance of Bifidobacterium was halved, whereas the genus
Blautia of the family Lachnospiraceae increased substantially in
relative abundance. In addition, various other genera, including
Coprococcus, Faecalibacterium and Roseburia, became detectable.
By clustering bacterial composition data from both time points by
Dirichlet mixture modeling, we identified five Dirichlet clusters
(DCs), with two clusters mainly representing month 2 samples,
two clusters representing month 12 samples and one cluster shared
by both time points (Fig. 1c,d). The first two clusters (DC1 and
DC2) were dominated by Bifidobacterium, whereas the third cluster
(DC3) revealed considerable heterogeneity between samples, with
various different taxa accounting for at least 1% of relative abun-
dance (Fig. 1c and Supplementary Table 2). DC4 and DC5 dem-
onstrated more stabilized bacterial patterns with the emergence of

Firmicutes. In month 12 samples, children in this éluster showed a
higher prevalence of asthma, as compared to those in clusters DC4
and DC5 (Fig. le).

Microbial maturation. To better understand the physiological
changes of the gut microbiome during the first year, we modeled
the exact age of fecal sampling by random forest analysis of the com-
position of bacterial genera at months 2 and 12 in individuals with
samples available at both time points. Because this model estimates
the biological age of the healthy microbiome, we termed the result-
ing prediction score estimated microbiome age EMA. To exclude
disease interference, we restricted the model building to 133 healthy
individuals (67 farm children and 66 nonfarm children) who did
not have diarrhea between months 2 and 12 and were never affected
by wheeze or asthma.

The taxa that contributed most importantly to the prediction
model were Blautia and Coprococcus (Fig. 2a). When applying the
prediction model to the entire population (n=618), the composi-
tion of genera did not vary notably with EMA at month 2 (Fig. 2b),
whereas at month 12, a clear pattern emerged, with increases partic-
ularly in Ruminococcus, Roseburia and Coprococcus (Fig. 2¢c). When
stratifying for month 2 and 12 samples, the correlation of EMA with
the exact sampling time point was largely removed (Fig. 2d; p=0.10
and p=0.15 for month 2 and 12 samples, respectively), thereby
indicating that EMA essentially reflects maturation from 2 to 12
months. DC3 comprised month 2 samples with advanced EMA and
month 12 samples with delayed EMA (Fig. 2d), thereby grouping
individuals who did not follow the typical maturation pattern. As an

alternative surrogate for maturation, we explored a principal-
coordinate analysis (PCoA) for both time points (Extended Data
Fig. 2a), the first axis of which correlated strongly with EMA
(Extended Data Fig. 2b).

Children with any form of asthma had, on average, significantly
lower EMA values at month 12 (Fig. 2e). The prevalence of asthma
was 12% in children with incomplete maturation, as defined by
having an EMA value in the lowest quartile (Fig. 2e). Children
with higher EMA values had a lower risk of asthma (OR=0.48
(0.25-0.93), P=0.030) and lung function impairment (OR=0.48
(0.27-0.82), P=0.008), when compared to children from the lowest
quartile of EMA values. Similarly, as a continuous variable, higher
EMA values correlated with a reduced risk of asthma (OR=0.72
(0.56-0.93), P=0.011) and particularly well with that of nonatopic
asthma (Fig. 2f). The effect of EMA on asthma was unchanged when
adjusted for DC3 at month 12, whereas the effect of DC3 on asthma
was largely removed when adjusting for EMA (Fig. 2f). The effect of
EMA was more pronounced in carriers of the non-risk genotype on
chromosome 17q21 (Supplementary Table 3) and was also observed
in a sensitivity analysis that excluded the 133 children on whom the
prediction model was established (Extended Data Fig. 2¢c,d). When
predicting EMA at month 2, there was no clear association with
asthma (OR = 1.24 (0.93-1.65), P=0.135).

Microbial maturation versus composition. We analyzed micro-
bial composition using a principal-component analysis (PCA)
approach designed for compositional data. At month 2, the
third PCA axis exerted an asthma-protective effect (OR=0.68
(0.49-0.95), P=0.024) irrespective of concomitant atopy (Extended
Data Fig. 3a). This axis correlated positively with the relative abun-
dance of Bacteroides and Parabacteroides and negatively with that of
Enterococcus (Extended Data Fig. 3b).

At month 12, the first PCA axis was inversely related to non-
atopic asthma (OR=0.62 (0.39-1.00), P=0.048) and correlated par-
ticularly well with Roseburia, Ruminococcus and Faecalibacterium
(Extended Data Fig. 3¢,d). A sensitivity analysis based on a PCoA
using unweighted UniFrac as the distance measurement corrobo-
rated these patterns (Extended Data Fig. 4).

EMA correlated strongly with PCA axis 1 at month 12 (p=0.75)
and o-diversity (p=0.70 for richness) but not with PCA axis 3 at
month 2 (Extended Data Fig. 5). EMA and PCA axis 3 at month
2 emerged as independent determinants of asthma in a mutually
adjusted model (Extended Data Fig. 3e-g), whereas the effect of
PCA axis 1 at month 12 was explained by EMA.

EMA and the farm effect on asthma. The PASTURE study was
designed to assess the farm effect on asthma (OR=10.53 (0.30-0.92),
P=0.023, n=930). In the present subpopulation (n=618), farm
children also had a lower risk of asthma as compared to rural non-
farm children (center-adjusted OR=0.56 (0.29-1.08), P=0.082).
At month 2, no effect of farm exposure on the microbial compo-
sition was observed, while the asthma-protective PCA axis 3 was
positively associated with breastfeeding and inversely associated
with Cesarean sections and maternal smoking during pregnancy
(Fig. 3a), independently of gestational age. In contrast, EMA was
delayed by prolonged breastfeeding (Extended Data Fig. 6) but pos-
itively influenced by growing up on a farm (#=0.27 (0.12-0.43),
P=0.001) and particular farm exposures, such as irisits to animal BE
sheds or the consumption of milk or eggs directly obtained from a
farm (Fig. 3b). The latter variables also reflect a more diverse feed-
ing pattern in farm children, as illustrated by more frequent con-
sumption of all six main food items, cereals, meat, bread, yogurt,
cake and vegetables or fruits (Supplementary Table 4). A sensitivity
analysis showed independent effects on EMA by a diverse feeding
pattern ($=0.18 (0.01-0.34), P=0.034) and prolonged breastfeed-
ing (f=-0.41 (-0.62 to —0.21), P<0.001). Farm children were
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Fig. 1| Composition of the bacterial gut microbiome at months 2 and 12. a,b, Eog—scaled box plots of the relative abundance of different bacterial genera
in 618 children at 2 months (a) and 12 months (b). Lower and upper hinges of the boxes denote the first and third quartiles, respectively; the bold central
line represents the median; the whiskers extend to the most extreme data point within a distance of 1.5 times the interquartile range from the hinges;
extreme values lie beyond the whiskers and are marked by circles. Names in brackets denote bacterial genera with a relative abundance <0.5% at the
indicated time point. (F) indicates an unclassified genus from the specified bacterial family. ¢, Log-scaled heat map of the relative abundance of genera
within the five clusters of a DMM modeling analysis across both time points, resulting in 2 x 618 samples. d, Transition of all 618 individuals between the
DCs from months 2 to 12. e, Prevalence of asthma (with s.e. bars, n=618) within the most prevalent clusters at month 2 (top) and month 12 (bottom).

allocated more frequently to the more advanced clusters DC4 and
DC5 at month 12 (P < 0.001; Fig. 3c).

The effect of EMA at month 12 on asthma was validated in 102
additional children in the PASTURE cohort, that is, individuals
without measurements at month 2 (Fig. 3d). This effect was also
consistent across the different study centers, as was the effect of
farm exposure on EMA (Fig. 3e,f). The effect of EMA withstood
adjustment for the childhood asthma locus on chromosome 17q21
and other potential confounders (Supplementary Table 5).

A structural equation model revealed that EMA mediated
the asthma-protective effect of growing up on a farm by 19%
(P=0.011, Fig. 3g), also in the children of non-asthmatic mothers
(25%, P=0.024). Likewise, PCA axis 3 at month 2 tended to medi-
ate the asthma-protective effect of breastfeeding by 18% (P=0.1).
Farm children were characterized by a more mature microbiome,
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including Coprococcus and Roseburia (Fig. 3h), known producers
of SCFAs.

Bacterial metabolites and EMA. To assess bacterial taxa by their
capacity to produce SCFAs, we modeled SCFA measurements
obtained at month 12 in 209 children by the composition of bac-
terial genera using random forest models. Production of butyr-
ate, propionate and acetate was most importantly predicted by
Roseburia, Bacteroides and Turicibacter, respectively (Fig. 4a).
Because the SCFA prediction scores were mutually correlated
as well as being partially correlated with EMA, we performed a
four-dimensional PCA on EMA and the SCFA scores (Fig. 4b;
n=720). Both the butyrate score and EMA loaded on dimension
(Dim) 1, which was inversely associated with asthma and non-
atopic asthma (Fig. 4c). The acetate score loaded particularly on
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Fig. 2 | EMA as a measure of gut microbiome maturation. a, Variable importance in the prediction model of EMA in 133 healthy individuals. b, Stacked
bar plots of the relative abundances of the main genera plotted against increasing EMA values. The individual samples (n=618 for each time point)
are ordered by increasing EMA and the genera are ordered by Spearman'’s correlation with changes in relative abundance between months 2 and 12. ¢,
Spearman'’s correlation of EMA at month 12 with changes in relative abundance between months 2 and 12 in 618 children. The color code is the same

as thatinb. :Correlation P values were below 0.05, except for those from Escherichia to Bacteroides. d, Scatterplot for chronological age at fecal sampling
versus EMA at both time points (n=2x618). The color code reflects grouping by DC over both time points. All subsequent analyses relate only to EMA at
month 12. e, Scatterplot for chronological age at fecal sampling versus EMA at month 12. The color code reflects asthma status at age 6 years. The red and
blue lines denote average values for chronological age (horizontal) and EMA (vertical) by asthma status. The distribution of EMA values and an estimated

density curve are given at the top of the scatterplot (n=618); the vertical line denotes the lowest quartile, that is, 10.6 months. f, IAssociation of asthma
phenotypes with DCs (left) and EMA values (right). ORs were derived from logistic regression models (n=544 children with data on asthma). Simple
models were only adjusted for center; mutually adjusted models were adjusted for center and the other microbial variable, that is, EMA in the model for
DCs and vice versa. Forest plots give point estimates with 95% confidence intervals.

Dim 2, which was not associated with asthma. Dim 3 represented
the propionate score, partially represented the EMA score and was
inversely associated with atopic asthma. Dim 4 mainly reflected the
difference between EMA and the butyrate score and had an addi-
tional protective effect on nonatopic asthma.

Dim 1 and Dim 3 (representing EMA, butyrate and propionate
scores) were positively associated with growing up on a farm and
were correlated particularly well with the consumption of unpro-
cessed farm milk (Fig. 4d). Dim 1 mediated 15% of the farm effect
on asthma, and Dim 3 mediated an additional 6% (Fig. 4e).

In a nested case—control sample (44 affected and 94 healthy
individuals), we validated the butyrate score as the most important
SCFA score. For this purpose, we determined the relative abun-
dance of the gene encoding a major bacterial enzyme in butyrate
metabolism, butyryl-CoA:acetate—-CoA-transferase, by qPCR.
When comparing the results of this gene assay with the originally
measured butyrate levels and the estimated butyrate score, we found
a particularly high prevalence of asthma in the lowest quartiles of
the different measures (Fig. 4f). The corresponding associations
with the different asthma phenotypes were similar for all measures

(Fig. 4g), for example, OR with asthma, 0.28 (0.09-0.91), P=0.034
for the measured level, 0.38 (0.17-0.84), P=0.017 for the butyrate
score and 0.43 (0.19-0.97), P=0.042 for the gene assay. Likewise,
associations of the asthma phenotypes with the propionate score
resembled those with the corresponding measured levels in the
same case—control sample (Extended Data Fig. 7).

Network of bacterial single taxa. Focusing on the result of the
maturation process, that is, the microbial composition and inter-
relation of the genera at 12 months, we performed a network
analysis (Fig. 5a). This revealed five network modules with three
hubs, which were closely connected. Two hubs were Roseburia and
Ruminococcus and belonged to the green module, the first eigen-
vector of which was correlated with EMA (r=0.73) and the butyr-
ate score (r=0.68). The yellow module was moderately associated
with EMA (r=0.35) and contained two main taxa of EMA, that is,
Blautia and Coprococcus; the latter formed the third hub.

When exploring the association of asthma with amplicon
sequence variants (ASVs) associated with the three hubs, two
asthma-protective ASVs emerged, one associated with the genus
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Fig. 3 | EMA and the farm effect on asthma. a, Bivariate associations of environmental determinants with the asthma-protective PCA axis 3 at month 2
(n=618); colored bars denote determinants in the forward selection model. Forest plots give point estimates with 95% confidence intervals. b, Bivariate
associations of environmental determinants with EMA; colored bars denote determinants in the forward selection model. Forest plots give point estimates
with 95% confidence intervals. ¢, Transition of the 618 individuals between the previously defined DCs, stratified by farm status. d, Meta-analysis of the
effect of EMA on asthma in the 618 children with fecal samples at 2 and 12 months and in the 102 children with fecal samples only at 12 months. For
626 of the 720 children, data on asthma status were available. Forest plots give point estimates with 95% confidence intervals. e, Meta-analysis of the
effect of EMA on asthma in different study centers (n=720 children; Austria, 173; Switzerland, 209; Germany, 176; Finland, 162). Forest plots give point
estimates with 95% confidence intervals. f, Meta-analysis of the effect of growing up on a farm on EMA in different study centers (n=720 children, same
distribution as in e). Forest plots give point estimates with 95% confidence intervals. g, Mediation analysis of the protective effect of growing up on a
farm on asthma mediated by EMA (n=626). Shown are the estimates of the path model for direct and indirect effects; the proportion of the mediated
(indirect) effect was 19%. h, /:Associations of growing up on a farm with the 20 topmost single genera (n=720; Pseudor., Pseudoramibacter). Forest plots
give point estimates with 95% confidence intervals.
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Roseburia (OR=0.42 (0.18-1.01), P=0.053) and one associated
with the genus Coprococcus (OR=0.38 (0.16-0.92), P=0.032)
(Supplementary Table 6). Using BLAST searches against the 16S
ribosomal sequence database, the first ASV was more precisely
assigned to Roseburia inulinivorans (100% identity), whereas the
second ASV was more compatible with Anaerobutyricum hal-
lii (98.4%) than with Coprococcus eutactus (92.4%). The presence
of these ASVs was strongly associated with higher butyrate levels

B8 {GMR = 1.76 (1.34-2.32), P<0.001 and 1.52 (1.12-2.05), P=0.008,
respectively) and relative abundance of the butyryl-CoA:acetate-
CoA-transferase gene (GMR=3.33 (1.55-7.15), P=0.003 and 3.81
(1.74-8.34), P=0.001, respectively). The associations of these ASV's
with asthma, however, did not withstand adjustment for EMA.
Likewise, no genus was found that had an independent protective
effect on asthma (Supplementary Table 7), whereas Eggerthella (red
module) exerted a particular risk effect on asthma (1.43 (1.07-1.92),
P=0.016) independently of EMA.

The mycobiome and fungal age. In addition to bacteria, we fur-
ther explored fungal colonization using ITS data (n=189; Extended
Data Fig. 1). Estimated fungal age (EFA) was calculated analo-
gously to EMA and mainly depended on changes in Saccharomyces,
Alternaria and Malassezia. EFA was determined by consumption
of starchy foods and was not associated with subsequent asthma
(Extended Data Fig. 8). Although EFA and EMA were not corre-
lated (p=0.02), relative abundance of the highly prevalent genus
Alternaria at 2 months was associated with subsequent bacterial
maturation ($=0.05 (0.01-0.10), P=0.032).

Sensitivity analyses. EMA was also inversely associated with an
asthma diagnosis after 3 years of age (Extended Data Fig. 9) and
particularly with the less common (Supplementary Table 8) persis-
tent wheeze phenotype (OR=0.49 (0.35-0.70), P<0.001)"*. EMA
was not associated with sensitization to seasonal, perennial or
food allergens. Stratification for atopic sensitization in children or
for maternal asthma did not reveal major differences in the asso-
ciations of asthma phenotypes with EMA (Supplementary Table 9).
Similarly, the associations of EMA with asthma phenotypes were
homogeneous between farm and nonfarm children, with the excep-
tion of the association of EMA with atopic asthma, which was
only observed in nonfarm children (0.68 (0.45-1.02), P=0.060).
Unlike microbial maturation and composition, the butyrate score
did not vary significantly between centers (P=0.191; Extended
Data Fig. 10).

Discussion

In the PASTURE birth cohort, farm-related exposures influenced
the maturation of the gut microbiome during the time window
from 2 to 12 months. As a measure of maturation, EMA mediated
a substantial proportion of the well-known farm effect on asthma.
Bacterial communities with the potential of producing butyrate,
such as Roseburia and Coprococcus, contributed to asthma protec-
tion (Fig. 5b).

Mode of birth has often been associated with subsequent colo-
nization of the human gut, as exemplified by Bacteroides. The
importance of birth mode for future health™ highlights the role of
the maternal microbiome in the colonization of the neonatal gut.
The current analyses, however, suggest that this maternal influ-
ence is gradually replaced by an increasing variety of environmental
exposures that affect the growing child. Indeed, the most influential
change in the development of the mammalian gut microbiome is
probably the transition from breastfeeding to a solid food diet'*"".
Bifidobacteria, whose early predominance may be fostered by the
bifidogenic properties of breastmilk'?, decrease in abundance after
weaning. In our analysis, the asthma-protective PCA axis at month
2 was mainly influenced by mode of birth and correlated with the
abundance of Bacteroides. The positive association of this axis with
breastfeeding and its asthma-protective effect was not explained
by bifidobacteria.

Independently of this very early phenomenon, bacterial matu-
ration between months 2 and 12 exerted a strong protective effect
on asthma. Various shifts in bacterial composition, including in
the bacterial families Lachnospiraceae, Ruminococcaceae and
Bifidobacteriaceae, suggest high plasticity of the intestinal micro-
biome during the first year of life'>". Evidently, the window of
opportunity for the establishment of an asthma-protective micro-
biome extends substantially beyond the well-studied'”-*! period of
the first 3 months of life. Early, precipitate maturation might even
be unfavorable for asthma risk”’, which may explain the tendency
for asthma risk in children with higher EMA values at month 2,
particularly for those assigned to DC3.

EMA predicted asthma better than DC3 at any time point,
emphasizing the developmental aspect of a favorable microbiome.
Possibly bacterial composition is not beneficial on its own but
may indicate successful maturation. This notion has vast impli-
cations for prevention strategies, as the mere application of dis-
tinct probiotics or combinations thereof seems less promising for
asthma prevention.

In contrast to the early microbiome, which was favorably
influenced by breastfeeding, the subsequent maturation process
was hampered by prolonged breastfeeding. Because the effect of
prolonged breastfeeding on EMA was independent of the diver-
sity of solid foods, this finding supports the idea that cessation of
breastfeeding is a key factor that influences microbial composition
and maturation'>'®".

The particular setting of the PASTURE study revealed other
main determinants of maturation, which were all associated with
farm exposure, the epitome of the hygiene hypothesis. Farm chil-
dren are known to be exposed to a greater variety of environmental
microbiota® and potentially beneficial clusters of microorganisms®.
There may be various mechanisms involved in mediation of the pro-
tective effect of environmental microbiota on asthma. For example,
when playing in animal sheds, children may inhale environmental
microorganisms, which may exert their effects directly in the air-
ways”'’. In the present mediation analysis, we demonstrate that 19%
of the farm effect on asthma was mediated through the maturation

>
>

Fig. 4 | Bacterial metabolites and EMA. a, Variable importance for the prediction scores of the SCFAs butyrate, propionate and acetate, as modeled in

209 children with measured values. b, PCA for EMA and the three SCFA scores (n=720). For illustrative purposes, Dim 3 is plotted against Dim 1and Dim
4 against Dim 2. Explained variance is given in parentheses. ¢, Associations of asthma phenotypes with the four PCA dimensions. Forest plots give point
estimates with 95% confidence intervals. d, Associations of growing up on a farm and consumption of farm milk with the four PCA dimensions. Forest
plots give point estimates with 95% confidence intervals. e, Mediation analysis of the protective effect of growing up on a farm on asthma mediated by the
four PCA dimensions (n=626). Shown are the estimates of the path model for direct and indirect effects; the proportion of the mediated (indirect) effects
was 23%. f, Validation of the butyrate score in a case-control subsample of 138 children (44 with asthma and 94 healthy individuals). Proportions of
children with asthma (with s.e. bars) is given in quartiles of the originally measured butyrate level, the estimated butyrate score and the gene assay, that is,
the relative abundance of the butyryl-CoA:acetate-CoA-transferase gene, encoding an enzyme in the bacterial metabolic pathway for butyrate production.
g, Associations of asthma phenotypes with the originally measured butyrate level, the estimated butyrate score and the gene assay, all dichotomized at
the lowest quartile. Forest plots give point estimates with 95% confidence intervals.
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of the gut microbiome, suggesting that environmental microbiota
are ingested and interact with the gut microbiome. At least, this
notion is a reminder of the fecal-oral transmitted infections that are

postulated by the hygiene hypothesis to be protective’. The remain-
ing 81% of the farm effect on asthma might be mediated by other
mechanisms, also operating beyond the first year of life.
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Fig. 5 | Network of single taxa and summary of findings. a, Network analysis of single genera (n=720). The resulting five modules are marked by different
node colors. Positive correlations are marked by blue edges and negative correlations by red edges. Edge thickness denotes SparCC correlation ranging from
—0.2 to +0.5. Only correlations with an absolute value of at least 0.2 are shown. Network hubs, as defined by an eigenvector centrality value above the
99th percentile, are marked by black circles. b, Summary of findings. At month 2, the intestinal microbiome was mainly determined by prenatal, perinatal
and early postnatal influences, such as prenatal smoke exposure, mode of birth and breastfeeding. An inverse association with asthma at school age was
found for a principal component at month 2. The maturation of the microbiome from 2 to 12 months was quantified by EMA, a prediction score derived from
random forest modeling of sampling time points in relation to changes in the composition of bacterial genera over time. This EMA mediated the protective
farm effect on asthma by about 20%. At month 12, the resulting intestinal microbiome formed distinct network modules, with Roseburia, Ruminococcus and
Coprococcus as hubs. EMA correlated with two dimensions of a PCA combining EMA and SCFA scores. These two dimensions almost exclusively explained
the mediation of the protective farm effect on asthma and mainly represented bacterial producers of butyrate and propionate, respectively.

While exploring a single-taxon approach, we did not identify
any taxon as protective in itself. This was unlikely to be caused by
insufficient statistical power, as we detected a risk effect in the single
taxon Eggerthella, which includes an emerging pathogen associated

with asthma-risk effects in adults****. Likewise, in the nasal micro-

biome, we previously identified individual taxa, such as Moraxella
catharralis, solely as being harmful'’. Therefore, single taxa are more
likely to exert harmful effects.
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Inconsistencies between studies may arise due to differences
in sampling time points. For example, risk of atopic wheeze was
associated with relative abundance of the taxa Faecalibacterium
sp., Lachnospira sp., Veillonella sp. and Rothia sp. at 3 months but
not at 12 months®. The beneficial taxon Veillonella may not only
lose its beneficial effect over time* but may even emerge subse-
quently as an asthma-risk taxon”. Although Bacteroides, Prevotella
and Coprococcus were associated with allergic diseases from 6
months to 8 years, other taxa such as Ruminococcus have been
shown to lose their beneficial effect within the first year®. Although
Bifidobacterium was suggested to be a beneficial probiotic in other
contexts”, its abundance was increased in children with allergies
at later time points®. In our analysis, Bifidobacterium did not con-
tribute to the asthma-protective effect. These inconsistencies were
another reason for using an integrative approach that considered
changes in bacterial composition over time.

A limitation of the current analysis might be the fact that sam-
pling was conducted at only two time points, possibly missing
fluctuations within this developmental window. Nevertheless, this
drawback might emerge as an advantage, as comparing the starting
point and outcome of the core maturation process may highlight
the essential changes of the microbiota in this time window. Further
refinement occurs in subsequent years'>" and, on a smaller scale,
throughout life*>*. Another limitation is that parent-reported diag-
nosis of asthma is susceptible to misclassification; in previous analy-
ses, however, this outcome definition was validated by lung function
measurements'.

To better understand how bacterial maturation may impact
respiratory health, we focused on the functional properties of gut
bacteria and modeled communities with a high likelihood of pro-
ducing distinct SCFAs. As all resulting SCFA scores were correlated
with EMA, we tried to disentangle the different aspects of EMA and
the three SCFA scores by a PCA. The component of EMA that was
shared with the likelihood of producing butyrate (Dim 1) exerted
the strongest asthma-protective effect, predominantly for the non-
atopic phenotype. For the atopic phenotype, the aspect of EMA that
was shared with propionate production (Dim 3) was particularly
important. Moreover, both aspects were involved in mediating the
protective farm effect on asthma. In contrast, the likelihood of pro-
ducing acetate, which predominantly represented Dim 2, was not
associated with asthma. This finding might support the concept of a
specific effect of butyrate and propionate in humans, in which these
SCFAs, but not acetate, have been shown to impair the viability of
eosinophils’. Finally, Dim 4 denoted an aspect of EMA that was not
shared with butyrate production; hence, bacterial maturation may
exert an individual protective effect on nonatopic asthma beyond
butyrate production alone.

To validate the importance of SCFA production, we linked
asthma directly to SCFA levels measured in the fecal samples* and
found consistent associations with butyrate levels and a tendency
for an association between atopic asthma and propionate levels. The
gene assay for butyryl-CoA:acetate—-CoA-transferase, an enzyme
that converts butyryl-CoA to butyrate and is part of the main path-
way of bacterial butyrate metabolism™, corroborated the associa-
tion of butyrate production with (nonatopic) asthma.

Butyrate is the main source of energy for colonic epithelial
cells, contributes to the maintenance of the epithelial gut bar-
rier and has immunomodulatory and anti-inflammatory proper-
ties”’. Various taxa, the composition of which varies considerably
between individuals, can contribute to butyrate production directly
and by cross-feeding™. Likewise, propionate has anti-inflammatory
potential but is mainly produced by intestinal Bacteroides taxa,
although some Roseburia, Coprococcus and Blautia taxa can also
switch from butyrate to propionate production®. In particular,
Roseburia has been suggested as a health biomarker because of its
anti-inflammatory properties.

NATURE MEDICINE | www.nature.com/naturemedicine

We found two promising asthma-protective ASV candidates
in the genera Roseburia and Coprococcus (or A. hallii), which were
also directly associated with butyrate production and the butyryl-
CoA:acetate—-CoA-transferase gene. Adjustment for EMA, however,
revealed that these taxa did not carry the asthma-protective effect
themselves. Rather, they may represent a network of bacteria with the
capacity to produce SCFAs. This notion is supported by the role of the
genera Roseburia and Coprococcus as hubs in the network analysis.

Altogether, higher SCFA levels may reduce inflammation at
various body sites, including the airway mucosa. Butyrate— and
propionate-producing bacteria represent an aspect of healthy matu-
ration of the gut microbiome and add an independent component
to the asthma-protective EMA effect, thereby extending the concept
of the gut-lung axis** to humans.

The beneficial effect of gut microbiota may not be specific
to respiratory health. Bacteria associated with maturation of the
gut microbiome (Ruminococcus, Faecalibacterium, Roseburia
and Lachnospiraceae) were also identified in children with a low
prevalence of enteric infections®. Moreover, a low abundance of
Roseburia was also observed in patients with rheumatoid arthritis*'.
Hence, the combination of the above taxa might represent a marker
for well-established host immune systems and good general health
in the absence of intestinal dysbiosis*.

The definition of asthma and atopy phenotypes may vary from
study to study. Some studies have focused on early outcomes?**'*%;
few studies followed up for atopic wheeze* or an asthma diagno-
sis” at an age of 5 years, when diagnoses can be established with
reasonable certainty. Therefore, we assessed various asthma phe-
notypes defined by wheezing patterns or concomitant atopy. EMA
was consistently associated with the nonatopic phenotype of asthma
and persistent wheeze but not with atopic sensitization per se. A
family history of atopy, however, did not influence the susceptibility
to the microbiome-associated farm effect on asthma. In contrast to
the COPSAC,,,, study”, we found an inverse association of EMA
with asthma also in children whose mothers did not have asthma.
Therefore, studies that focus on atopic outcomes, such as atopic
wheeze?**, or are performed in high-risk populations*” might reveal
other facets of the microbial effect on asthma. ’:Fhe current analysis 8
points toward an inflammatory pathology behind atopy, supported
by the anti-inflammatory properties of butyrate*.

Certainly butyrate is only an example and may be a marker
for other metabolites that might be directly involved in signaling
between intestinal and respiratory mucosa, such as D-tryptophan®.
Microbial carbohydrate metabolism has also been implicated in
health effects exerted by the gut microbiome*. In addition, the vagus
nerve can sense microbial metabolites with its afferent fibers and can
contribute to inflammation by a low tone in its efferent part, as shown
in inflammatory bowel disease*. By analogy with the so-called gut—
brain axis*, the vagus nerve may also be involved in neuro-immune
crosstalk” and in communication between the gut microbiome and
the airway tone, as suggested by the EMA effect on lung function.

In sum, we found strong influences on the maturation of the
gut microbiome by an environment rich in microbial stimuli.
Maturation and prediction of butyrate production partially medi-
ated the well-known asthma-protective farm effect, thereby sug-
gesting a gut-lung axis in humans. In contrast, atypical microbial
maturation may contribute to the pathogenesis of inflammatory
diseases. This emphasizes the need for prevention strategies in the
first year of life, when the gut microbiome is highly plastic and ame-
nable to modification.

Online content

Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of
author contributions and competing interests; and statements of


http://www.nature.com/naturemedicine

DispatchDate: 05.10.2020 - ProofNo: 1095, p.10

ARTICLES

NATURE MEDICINE

data and code availability are available at https://doi.org/10.1038/
$41591-020-1095-x.

Received: 28 September 2019; Accepted: 8 September 2020;

References

1. Barker, D. J. The fetal and infant origins of adult disease. BMJ 301, 1111 (1990).

2. Tamburini, S., Shen, N., Wu, H. C. & Clemente, J. C. The microbiome in
early life: implications for health outcomes. Nat. Med. 22, 713-722 (2016).

3. de Steenhuijsen Piters, W. A. et al. Nasopharyngeal microbiota, host
transcriptome, and disease severity in children with respiratory syncytial
virus infection. Am. J. Respir. Crit. Care Med. 194, 1104-1115 (2016).

4. Chung, H. et al. Gut immune maturation depends on colonization with a
host-specific microbiota. Cell 149, 1578-1593 (2012).

5. Ege, M. ]. The hygiene hypothesis in the age of the microbiome. Ann. Am.
Thorac. Soc. 14, S348-S353 (2017).

6. Ege, M. J. et al. Exposure to environmental microorganisms and childhood
asthma. N. Engl. J. Med. 364, 701-709 (2011).

7. Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite
farm children. N. Engl. ]. Med. 375, 411-421 (2016).

8. Illi, S. et al. Protection from childhood asthma and allergy in Alpine farm
environments—the GABRIEL Advanced Studies. J. Allergy Clin. Immunol.
129, 1470-1477 (2012).

9. Birzele, L. T. et al. Environmental and mucosal microbiota and their role in
childhood asthma. Allergy 72, 109-119 (2017).

10. Depner, M. et al. Bacterial microbiota of the upper respiratory tract and
childhood asthma. J. Allergy Clin. Immunol. 139, 826-834 (2017).

11. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences
allergic airway disease and hematopoiesis. Nat. Med. 20, 159-166 (2014).

12. Stewart, C. J. et al. Temporal development of the gut microbiome in early
childhood from the TEDDY study. Nature 562, 583-588 (2018).

13. Yassour, M. et al. Natural history of the infant gut microbiome and impact of
antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med.
8, 343ra381 (2016).

14. Depner, M. et al. Clinical and epidemiologic phenotypes of childhood
asthma. Am. J. Respir. Crit. Care Med. 189, 129-138 (2014).

15. Kumbhare, S. V., Patangia, D. V,, Patil, R. H., Shouche, Y. S. & Patil, N. P.
Factors influencing the gut microbiome in children: from infancy to
childhood. J. Biosci. 44, 49 (2019).

16. Backhed, E et al. Dynamics and stabilization of the human gut microbiome
during the first year of life. Cell Host Microbe 17, 690-703 (2015).

17. Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome
maturation during early life. Sci. Transl. Med. 8, 343ra382 (2016).

18. Borewicz, K. et al. The effect of prebiotic fortified infant formulas on
microbiota composition and dynamics in early life. Sci. Rep. 9, 2434 (2019).

19. Abrahamsson, T. R. et al. Low gut microbiota diversity in early infancy
precedes asthma at school age. Clin. Exp. Allergy 44, 842-850 (2014).

20. Arrieta, M. C. et al. Early infancy microbial and metabolic alterations affect
risk of childhood asthma. Sci. Transl. Med. 7, 307ral52 (2015).

21. Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood
multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187-1191
(2016).

22. Galazzo, G. et al. Development of the microbiota and associations with birth
mode, diet, and atopic disorders in a longitudinal analysis of stool samples,
collected from infancy through early childhood. Gastroenterology 158,
1584-1596 (2020).

23. Ege, M. J. et al. Environmental bacteria and childhood asthma. Allergy 67,
1565-1571 (2012).

24. Gardiner, B. J. et al. Clinical and microbiological characteristics of Eggerthella
lenta bacteremia. J. Clin. Microbiol. 53, 626-635 (2015).

25. Wang, Q. et al. A metagenome-wide association study of gut microbiota in

asthma in UK adults. BMC Microbiol. 18, 114 (2018).

PASTURE study group

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Stiemsma, L. T. et al. Shifts in Lachnospira and Clostridium sp. in the
3-month stool microbiome are associated with preschool age asthma. Clin.
Sci. 130, 2199-2207 (2016).

Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in
childhood. Nat. Commun. 9, 141 (2018).

Simonyte Sjodin, K. et al. Temporal and long-term gut microbiota variation
in allergic disease: a prospective study from infancy to school age. Allergy 74,
176-185 (2019).

Yang, B. et al. A meta-analysis of the effects of probiotics and synbiotics in
children with acute diarrhea. Medicine 98, 16618 (2019).

Derrien, M., Alvarez, A. S. & de Vos, W. M. The gut microbiota in the first
decade of life. Trends Microbiol. 27, 997-1010 (2019).

Theiler, A. et al. Butyrate ameliorates allergic airway inflammation by limiting
eosinophil trafficking and survival. J. Allergy Clin. Immunol. 144, 764-776
(2019).

Roduit, C. et al. High levels of butyrate and propionate in early life are
associated with protection against atopy. Allergy 74, 799-809 (2019).

Louis, P, Young, P, Holtrop, G. & Flint, H. J. Diversity of human colonic
butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate
CoA-transferase gene. Environ. Microbiol. 12, 304-314 (2010).

Riviere, A., Selak, M., Lantin, D., Leroy, E & De Vuyst, L. Bifidobacteria and
butyrate-producing colon bacteria: importance and strategies for their
stimulation in the human gut. Front. Microbiol. 7, 979 (2016).

Reichardt, N. et al. Specific substrate-driven changes in human faecal
microbiota composition contrast with functional redundancy in short-chain
fatty acid production. ISME J. 12, 610-622 (2018).

Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate
production within the human gut microbiota. ISME J. 8, 1323-1335 (2014).
Tamanai-Shacoori, Z. et al. Roseburia spp.: a marker of health? Future
Microbiol. 12, 157-170 (2017).

Frati, F. et al. The role of the microbiome in asthma: the gut-lung axis. Int. J.
Mol. Sci. 20, 123 (2018).

Marsland, B. J.,, Trompette, A. & Gollwitzer, E. S. The gut-lung axis in
respiratory disease. Ann. Am. Thorac. Soc. 12(Suppl. 2), S150-S156 (2015).
Singh, P. et al. Intestinal microbial communities associated with acute enteric
infections and disease recovery. Microbiome 3, 45 (2015).

Forbes, J. D. et al. A comparative study of the gut microbiota in
immune-mediated inflammatory diseases—does a common dysbiosis exist?
Microbiome 6, 221 (2018).

Kemter, A. M. & Nagler, C. R. Influences on allergic mechanisms through gut,
lung, and skin microbiome exposures. J. Clin. Invest. 130, 1483-1492 (2019).
Arrieta, M. C. et al. Associations between infant fungal and bacterial
dysbiosis and childhood atopic wheeze in a nonindustrialized setting.

J. Allergy Clin. Immunol. 142, 424-434 (2018).

Zhai, S. et al. Dietary butyrate suppresses inflammation through modulating
gut microbiota in high-fat diet-fed mice. FEMS Microbiol. Lett. 366, fnz153
(2019).

Kepert, I. et al. p-Tryptophan from probiotic bacteria influences the gut
microbiome and allergic airway disease. J. Allergy Clin. Immunol. 139,
1525-1535 (2017).

Cait, A. et al. Reduced genetic potential for butyrate fermentation in the gut
microbiome of infants who develop allergic sensitization. J. Allergy Clin.
Immunol. 144, 1638-1647 (2019).

Bonaz, B., Bazin, T. & Pellissier, S. The vagus nerve at the interface of the
microbiota-gut-brain axis. Front. Neurosci. 12, 49 (2018).

Osadchiy, V., Martin, C. R. & Mayer, E. A. The gut-brain axis and the
microbiome: mechanisms and clinical implications. Clin. Gastroenterol.
Hepatol. 17, 322-332 (2019).

Kabata, H. & Artis, D. Neuro-immune crosstalk and allergic inflammation. J.
Clin. Invest. 130, 1475-1482 (2019).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2020

Martin Depner!, Amandine Divaret-Chauveau'?®, Markus J. Ege'®?, Remo Frei*%, Jon Genuneit?>%,
Anne Hyvdrinen3, Sabina llli', Michael Kabesch', Anne M. Karvonen?3, Pirkka V. Kirjavainen3#,
Roger Lauener>”°'°, Lucie Laurent™, Juha Pekkanen3', Petra |. Pfefferle'®24, Harald Renz'8,

Josef Riedler, Caroline Roduit>¢’, Marjut Roponen™, Bianca Schaub™?' and Erika von Mutius'®

Z|nstitute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany. *Pediatric Epidemiology, Department of Pediatrics, Medical Faculty,
Leipzig University, Leipzig, Germany. 2Comprehensive Biomaterial Bank Marburg (CBBM), Philipps University of Marburg, Marburg, Germany.

NATURE MEDICINE | www.nature.com/naturemedicine


https://doi.org/10.1038/s41591-020-1095-x
https://doi.org/10.1038/s41591-020-1095-x
http://www.nature.com/naturemedicine

DispatchDate: 05.10.2020 - ProofNo: 1095, p.11

NATURE MEDICINE

ARTICLES

Methods
Study population. The PASTURE birth cohort has been recruited in rural areas
of Austria, Finland, France, Germany and Switzerland with the aim of exploring
the asthma-protective effects of growing up on a farm®. Detailed information on
the study design can be found in the Nature Research Reporting Summary. Briefly,
pregnant adult women were invited to participate during their third trimester; half
of them lived on family-run livestock farms. Their children were recruited at birth
and seen at the ages of 2, 12, 56 and 72 months during home visits. Additional
questionnaires were completed at 2, 12, 18, 24, 36, 48, 60 and 72 months.
Additional detailed information on the children’ health, nutrition and
farm-related exposures was gathered by using weekly diaries and monthly
questionnaires covering the 9th to 52nd weeks of life’"*?. Stool samples were
collected from the children’s napkins during the 2- and 12-month home visits.
Because fecal sampling was not performed by design in the French arm, these
children were excluded from the current analyses a priori. All aspects of the study
were approved by the local institutional review boards in each country (Austria,
Ethikkommission fiir das Land Salzburg; Finland, the Research Ethics Committee,
Hospital District of Northern Savo; Germany, Ethik-Kommission der Bayerischen
Landesérztekammer; Switzerland, Kantonale Ethik-Kommission St. Gallen; France,
Comité Consultatif pour la Protection des Personnes en Recherche Biomédicale
(CCPPRB), Commission Informatique et Libertés (CNIL)). Written informed
consent was obtained from the parents or guardians.

Definition of health outcomes. Asthma was defined as a physician’s diagnosis of
asthma at least once up to age 6 years or recurrent diagnoses of spastic, obstructive
or asthmatic bronchitis, as reported by the parents at age 6 years'".

For a sensitivity analysis, we defined ‘asthma after 3 years’ as an asthma
diagnosis established in the fourth, fifth or sixth year of life. Wheeze phenotypes
were derived from a latent class analysis as described previously'*.

Allergen-specific IgE was assessed at age 6 years. Seasonal IgE was defined as at
least one IgE specific to alternaria, alder, birch, hazel, grass pollen, rye, mugwort or
plantain at levels >0.71U ml™ at age 6 years. Perennial IgE (to Dermatophagoides
pteronyssinus, Dermatophagoides farinae, cat, horse and dog) and food IgE (to
chicken eggs, cow’s milk, peanuts, hazelnuts, carrots and wheat flour) were
defined analogously. Assessment was performed on peripheral blood by using
the semiquantitative AllergyScreen test panel for atopy (Mediwiss Analytic) in a
central laboratory™. The atopic and nonatopic phenotypes of asthma were defined
by the presence or absence of concomitant sensitization to inhalant allergens
(seasonal or perennial) with specific IgE levels >0.7IU ml" at age 6 years, while the
references were always children without asthma.

Spirometry was performed as previously described™, and spirometric
indices were calculated according to the equations of a task force of the
European Respiratory Society (https://www.ers-education.org/guidelines/
global-lung-function-initiative/spirometry-tools.aspx). FEV, values were
determined as z scores, and the lower quintile was defined as children with ‘bad
lung function.

Assessment of exposures. Assessment of environmental exposures by
questionnaires covered pregnancy and the first year of life and included
information from premature births (less than 37 weeks of gestation) and infants
with low birth weight (<2,500g), as well as variables for birth weight and
gestational age dichotomized at the median, APGAR score at 5min and delivery
mode, including natural vaginal birth, vaginal birth with forceps, vacuum
extraction or Cesarean section. Data on treatment with systemic antibiotics were
available for the first 2 months and the first year beyond 2 months; maternal
treatment with antibiotics during the first 2 months of lactation was also
considered.

Breastfeeding was defined as any breastfeeding until 2 months of age or current
breastfeeding at month 2. Duration of breastfeeding was dichotomized at various
cutoff levels from 2 to 12 months. Food diversity was defined as the introduction
of five of six main food items (vegetables or fruits, cereals, meat, bread, yogurt
and cake) within the first year as previously described™. In a sensitivity analysis,
we explored an extended list of 15 food items (main food items with the addition
of eggs, fish, nuts, soy, margarine, chocolate, other milk products, cow’s milk
and butter), which were dichotomized into at least 11 items. Furthermore, the
children’s diet was assessed with respect to the kind of supplemental food and its
introduction in terms of at least weekly consumption®. Farm milk consumption
was defined as the weekly consumption of any milk obtained directly from a farm,
irrespective of boiling or skimming.

Farm exposure was assessed as growing up on a farm or more specifically
by regular contact with hay or visits to animal sheds, including sheds with
bigger animals such as cows, poultry sheds or barns. As further environmental
determinants, we assessed the number of siblings (at least two siblings) and
presence of pets (cats or dogs) in each time period, smoking during pregnancy
and environmental smoke exposure, defined as at least one cigarette smoked at
home per day by any person. In addition, information on parental history of atopy,
which is a combination of asthma, hay fever and atopic eczema, or asthma alone
(maternal, paternal or both) and degree of parental education (at least completion
of secondary school) were included.
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DNA extraction from fecal samples. Fecal samples were frozen within 10 min of
collection and stored at —20 °C until further processing. At a central laboratory
(THL Kuopio), DNA was extracted from the fecal samples in batches as follows.
Partially defrosted fecal samples were homogenized using a Stomacher 80
microBiomaster laboratory paddle blender (Seward; 2 min at high speed). DNA
was extracted from 150 mg of ice-cold homogenized fecal samples, using a
bead-beating method with a fecal DNA Miniprep kit (D6010, Zymo Research)
according to the manufacturer’ instructions. The bead-beating step was performed
with a FastPrep FP120 homogenizer (2 min at full speed, 6.5ms™). Finally, the
samples were eluted with 100 ul of elution buffer D3004-4-10 (Zymo Research).
The samples for extraction were kept on ice throughout the entire procedure.
The extracted DNA was immediately frozen at —20°C and stored at —80°C.

Sequencing analyses. Amplification and sequencing of fecal samples were
performed as described previously for bacterial and fungal communities™.

Primers F515 (5'-NNNNNNNNGTGTGCCAGCMGCCGCGGTAA-3') and
R806 (5'-GGACTACHVGGGTWTCTAAT-3')" were used to amplify the V4
region of the 16S rRNA gene. The forward primers had unique 8-bp barcodes
(indicated by ‘N’) and a 2-bp linker sequence at the 5" end. PCR reactions
contained DNA template, 1X GoTaq Green Master Mix (Promega), 1 mM MgCl,
and 2 pmol of each primer. Samples were amplified in triplicate PCR reactions.
Conditions consisted of an initial step at 94 °C for 3 min, followed by 25 cycles
of 94°C for 455, 50°C for 60s and 72 °C for 90s and a final extension at
72°C for 10 min.

Primers BITS (5'-NNNNNNNNCTACCTGCGGARGGATCA-3’) and B58S3
(5'-GAGATCCRTTGYTRAAAGTT-3') were used to amplify the fungal ITS
region 1 (gef. *°). Again, the forward primers had unique 8-bp barcodes and a linker
sequence (bold portion) at the 5’ end. PCR reactions contained DNA template,
1X GoTaq Green Master Mix (Promega), 1 mM MgCl, and 2 pmol of each primer.
Reaction conditions consisted of an initial step at 95 °C for 2 min, followed by
40 cycles of 95°C for 305, 55°C for 30s and 72 °C for 60's and a final extension at
72°C for 5min.

Amplicons were run on a 0.8% agarose gel to verify amplification by gel
electrophoresis. Bacterial and fungal amplicons were combined into two separately
pooled samples, purified using the QIAquick spin kit (Qiagen) and submitted
to the DNA Technologies Core at the University of California Davis Genome
Center for Illumina paired-end library preparation, cluster generation and 250-bp
paired-end sequencing on an Illumina MiSeq instrument in separate runs.

Raw sequencing data from each run were demultiplexed using Sabre®.
Demultiplexed data were imported into QIIME2-2018.6 (ref. ') and quality
trimmed. Reads were denoised using DADA?2 (ref. ©*) as implemented in
QIIME2. Taxonomy was assigned to representative sequences using a naive
Bayes classifier”* pre-built from the 99% Greengenes database® specific to the
515F-806R region for bacterial data. For fungal sequences, a classifier was built
from the UNITE dynamic database for taxonomic assignment®. For fungal data,
no tree was created because there is currently no valid taxonomy available with
respect to ITS sequences.

Combining sequences from 2 and 12 months together, 5,915 ASV's were
retrieved from 16S rRNA sequences, after the exclusion of chloroplasts. For ITS,
54,459 ASV's were retrieved when restricted to fungi. Analyses are reported on the
genus level. If genera were not identified, we used the name of the lowest identified
level. If information was only available on the kingdom level, we designated the
taxon as ‘completely unidentified’ Samples with <1,000 reads were removed.

Genetics. Genotyping for 939 children with available DNA samples in the
PASTURE study was performed at the Centre National de Génotypage, Evry,
France, using iPLEX Gold technology and a matrix-assisted laser desorption/
ionization-time-of-flight (MALDI-TOF) mass spectrometry system from
Sequenom®’. Technical errors were minimized by comparing genotypic frequencies
with the expected allelic population equilibrium based on the Hardy-Weinberg
equilibrium test. cDNA was amplified in duplicate using an iCycler (Bio-Rad
Laboratories) and 18S as a reference gene. Quality checks were passed by samples
from 896 children (95%). Of these, 512 children were included in the present 16S
rRNA analysis.

Selection of single-nucleotide polymorphisms (SNPs) was based on previous
reports and included polymorphisms at the chromosome 17q21 childhood-onset
asthma-risk locus®~"". Specifically, SNPs rs8076131, associated with the ORMDL3
gene, and rs2290400 and rs7216389, associated with the GSDMB gene, at this locus
were found to interact with environmental tobacco smoking’ and viral infections’
for childhood asthma. SNP rs8076131 was selected for the current analysis because
it has been described in the context of functional regulation”.

SCFAs. Metabolite levels of SCFAs were measured in fecal samples obtained from
301 children in the PASTURE study at the age of 12 months™. Fecal samples

were processed as previously described”. Briefly, 1 ml of 0.15mM H,SO, was
added to 0.3 g feces to generate a fecal suspension. After rigorous vortexing, the
samples were centrifuged twice (14,000¢ for 30 min) and sequentially filtered
through a 0.45-um Millex-HA filter and a 0.2-um Millex-LG filter (Merck). The
resultant fecal homogenates were analyzed by HPLC (Merck Hitachi) using a
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Rezex ROA-Organic Acid H* ion exchange column together with a SecurityGuard
Cartidges, Carbo-H from Phenomenex at a flow rate of 0.4ml at 40 °C with 10mM
H,SO, as the eluent. The samples were quantified in relation to standards™. Of
the 301 children, 209 (69%) were included in the present 16S rRNA analysis

(Supplementary Fig. 1).

Relative abundance of the butyryl-CoA:acetate-CoA-transferase gene. Relative
abundance of the butyryl-CoA:acetate-CoA-transferase gene was measured in
a nested 1:2 case—control sample of 51 children with asthma and 106 healthy
individuals with available fecal samples at 12 months of age. gPCR primers and
annealing temperatures used for samples with total bacteria (primers UniF and
UniR, 0.5uM final concentration) and the butyryl-CoA:acetate-CoA-transferase
gene (primers BCoATscrF and BCoATscrR, 2.5 uM final concentration) are
described in Ramirez-Farias et al.”. Equipment and reagents for qPCR are
described in Reichardt et al.””. DNA samples were used without further dilution,
unless their concentration (determined with a Qubit dsDNA HS assay kit,
Thermo Fisher Scientific) exceeded 4ngpl™" in the gPCR assay. The data are
expressed as a percent of butyryl-CoA:acetate-CoA-transferase gene copies
normalized to total bacterial 16S rRNA gene copies, as described in Ramirez-Farias
et al.”*. Measurement of the relative abundance of the butyryl-CoA:acetate—
CoA-transferase gene was performed in duplicate, and measurements were
considered valid if the standard deviation was below 0.4. This was necessary to
eliminate technical artifacts, such as air bubbles, that could interfere with the
optical fluorescence reading. Of all 157 children who were selected for the case-
control study, valid results were obtained in 138 individuals (88%). Data were
stored in Excel.

Statistical analysis. Statistical analysis was performed with R versions 3.4.3 and
3.6.1 (https://www.r-project.org/), particularly with the phyloseq package, and
Mplus”. Upon request, computer code will be made available to readers.

Relative abundance was used to describe the taxonomic distribution of bacteria
and fungi. Rare taxa were defined as having a relative abundance below 0.5% in
each population and were subsumed in a category termed ‘rare’ For logarithmic
presentations, values were transformed by decadic logarithm, in which necessary
zero values were replaced by the lowest measured value. All statistical tests were
two sided, and an effective P value <0.05 was considered statistically significant.

Dirichlet clustering. Dirichlet multinomial mixtures (DMM) modeling was
performed with the R package DirichletMultinomial. We clustered the samples
over both time points and, as a sensitivity analysis, separately for both time points.
DMM bins samples on the basis of microbial community structure’. The number
of clusters was determined by a local minimum of a Laplace approximation score,
that is, five clusters over both time points and three clusters for the separate
models. Transitions between clusters were illustrated with the R package Gmisc.

Random forests. lz’\andom forest regression was performed with the R package
ranger to model sampling age based on the relative abundance of bacterial or
fungal genera present at 2 and 12 months in a subsample of 133 (for fungi, 35)
healthy individuals, that is, children without asthma, who never wheezed or had
diarrhea during the first year. The models were estimated using 2,000 trees and
a ceiling of the square root of the number of selected variables per level. The
resulting prediction model, mainly defined by alterations in relative abundance of
all genera, was subsequently applied to the entire population, using the ‘predict’
function of ranger. These estimates were used as a proxy for bacterial or fungal
maturation and subsequently called EMA or EFA. To confirm that results were
independent of the training sets, we performed sensitivity analyses by restricting
the models to children who were not included in model building. Taxa were ranked
by their variable importance in random forest models for EMA and EFA, which
discriminate best between the two measurement time points.

A similar approach was used to estimate SCFA scores for butyrate, propionate
and acetate. SCFA levels were modeled by the relative abundance of bacterial
genera in children with available SCFA measurements. These prediction models
were applied to predict SCFA production scores in the entire population. Taxa
were ranked by their variable importance for SCFA production in random forest
models. The number of randomly picked variables was optimized by tenfold
cross-validation. As a member of the out-of-bag methods, random forest modeling
has an advantage over classical cross-validation in that it yields an unbiased
error estimate, that is, high validity”. As random forest modeling integrates
all information on microbial taxa in a single model, no correction for multiple
comparisons was necessary. Besides continuous variables, the EMA as well as the
butyrate score was also dichotomized at the lowest quartile in subsamples to give
an estimate for a threshold phenomenon.

Microbial diversity and composition. Samples were rarefied at the minimum
sequence numbers in the available biosamples, that is, 1,029 16S rRNA sequences
and 1,000 ITS sequences. Rarefaction and calculation of species richness and
Shannon diversity index was iterated 1,000 times, and the resulting measures

of a-diversity were subsequently averaged. An independent rarefying step

was performed only for month 12 samples to analyze the presence or absence

of specific ASVs. For the assessment of bacterial composition, the R package
composition was used to perform a centered-log ratio (clr) transformation, after
adding a pseudocount of 0.5 to abundance values. This approach, developed by
Aitchison, was shown to be essential in microbiome analyses”. The clr-transformed
abundance values were used in PCA for assessing p-diversity. In addition,
B-diversity was assessed by PCoA on the ASV level, using unweighted UniFrac

as a distance measure, calculated by the R package GUniFrac. Samples taken at 2
and 12 months were evaluated separately by PCA and PCoA. In addition, PCoA
was also applied in a sensitivity analysis combining all samples from both time
points. Associations of indices of maturation, butyrate production or microbial
composition (as determined by PCA) with asthma or determinants were based on
regression models, in which the microbial variables were usually z standardized to
render them comparable against each other. All analyses were adjusted for center.
Models adjusted only for center were termed ‘simple models, whereas the term
‘mutually adjusted models’ refers to models in which two exposures were compared
and forced in the same model. Interaction was analyzed by including a product
term in the regression models.

Confirmatory analyses for the associations of EMA with growing up on a farm
or asthma were replicated across study centers and assessed by a meta-analysis with
fixed effects (R package rmeta).

To compare direct and indirect effects, mediation models were calculated
in Mplus’” and validated with the R package mediation. The mediated effect is
reported as the proportion of the estimated indirect effect to the total effect.

To test for associations of single taxa with asthma, we first tested for differences
in relative abundance by the Wilcoxon test; main associations (P <0.1) were
then confirmed in the clr-transformed variables with logistic regression models.
These models were initially adjusted only for center, or additionally for EMA, to
determine single-taxon effects that were independent of the general maturation
process. Single taxa were assessed in an exploratory approach; therefore,
adjustment for multiple comparisons was not performed. All statistical tests were
two sided.

Box-and-whisker plots were used as follows: lower and upper hinges denote the
first and third quartiles, respectively; the bold central line represents the median;
the whiskers extend to the most extreme data point within a distance of 1.5 times
the interquartile range from the hinges; extreme values lie beyond the whiskers
and are marked by circles. Forest plots give point estimates with 95% confidence
intervals.

Spearman coefficient was used to calculate any kind of correlation between
different measures, except for network analyses.

Network analyses. Correlations between pairs of bacterial genera were estimated
using the strength of sparse correlations for compositional data (SparCC)
approach®. The corresponding correlation network was visualized using the R
package qgraph. In the network plot, only correlations with an absolute value >0.2
are shown. For readability, nodes without any connections were removed. Node
sizes were scaled on the eigenvector centrality measure, which was determined via
the ‘eigen_centrality’ function from the R package igraph.

Hubs were defined as nodes with an eigenvector centrality value greater than
the 99th percentile of all eigenvector centrality values in the network. Groups
of highly connected nodes, also called clusters or modules, were identified via
the ‘cluster_fast_greedy’ igraph function, which is a fast greedy algorithm for
determining clusters by maximizing the modularity measure over all possible
clusterings®.

To relate the composition of the network modules to EMA and the butyrate Q25
score, we used an approach similar to the eigengene analysis™, that is, we used
the first eigenvector of a PCA with the clr-transformed taxa passing the threshold
criteria to build the network plots representing each module.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Taxonomy was assigned using the Greengenes database (http://greengenes.Ibl.

gov) for 16S rRNA sequences and the UNITE dynamic database (https://unite.

ut.ee/) for ITS sequences. All 16S rRNA and ITS sequences are deposited in the
Supplementary Information without metadata. PASTURE is an ongoing birth

cohort with fieldwork still being executed. As long as the study is not anonymized,
European data protection legislation prohibits sharing of individual data, even

when pseudonymized. Upon request, the authors will share aggregate data that do

not allow identification of individuals.
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Extended Data Fig. 1| Participant flow. The current microbiome analysis population (n=720) was selected based on available microbiome data at

month 12. The French arm was not included because by design microbiome samples were not taken at month 2. The children with samples available at
month 2 and 12 (n=618) were quite equally distributed over the centers (Austria N=139; Switzerland N=205; Germany N =136; Finland N=138). For
n=102 children only 12 months samples were available. Subsamples are colored in red, blue, and white according to asthma status (yes, no, not available,
respectively). The different subsamples colored in grey represent the basis of the respective figures of the main manuscript as indicated’. Samples with
fungi data are a subsample of the 618 samples with bacteria, and only children with ITS samples at both time points available were analyzed™. Healthy
controls were defined by no diarrhea between 2 and 12 months and no asthma / wheeze anytime; individuals with missing or implausible values for
sampling time point were excluded (5 for bacteria, 1for fungi)™. Butyryl-CoA:acetate CoA-transferase gene assay failed in 19 of the 157 samples (12%) for
technical reasons.
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Extended Data Fig. 2 | Sensitivity analysis on the effect of estimated microbiome age (EMA). a, Scatter plot of the first two axes of a principal coordinate
analysis (PCoA) over both time points on ASV (amplicon sequence variants) levels. The values in brackets represent percentage of variance explained
corrected by negative eigenvalues. b, Scatterplot of the first PCoA-axis against EMA. ¢,d, Associations of asthma phenotypes with EMA restricted to
individuals not included when establishing the prediction model (n=480 children), that is the 618 children with measurements at both time points minus
the 138 healthy individuals. EMA is used as z-standardized continuous variable (¢) and dichotomized at the lowest quartile (d).

NATURE MEDICINE | www.nature.com/naturemedicine


http://www.nature.com/naturemedicine

ARTICLES

DispatchDate: 05.10.2020 - ProofNo: 1095, p.16

NATURE MEDICINE

a b c d
month 2 month 12
PCA-axis 3, month 2 PCA-axis 1, month 12
ASTHMA: - : Bacteroides- ] ASTHMA: | Roseburia- I
PCA-axis 1 —— Parabacteroides- ] PCA-axis 1 —e Ruminococcus- I
R —— Haemophilus- [ ] 2 e Faecalibacterium- ]
3 ——1 Escherichia- | ] 3 . Ruminococcaceae(F)- | ]
4 —e— Bilophila- 4 —e— Clostridiales(O)- ]
i —— Rothia- ] i —e— Lachnospiraceae(F)- ]
ATOPIC ASTHMA: ' Staphylococcus- [ ] ATOPIC ASTHMA: i Coprococcus- [ ]
; : Veillonella- |} . ! Lachnospira- ]
PCA-axis 1 —l— Ri | PCA-axis 1 —lo—
2] . ikenellaceae(F) ] 2 » N
34 o' Phascolarctobacterium- | ] 3 t Clostridiaceae(F)- | ]
4 R Ruminococcaceae(F)- | | 4 i Campylobacter- ]
5 | Bifidobacterium- | ] N Myxococcales(O)- [ |
NONATORIC ASTHA: 3 * [Eubacterium]- u 5 1[ Megasphaera- ]
PCAaxis 1 | Clostridium(Clostridiaceae)- [ | NONATOPIC ASTHMA: I Caulobacteraceae(F)- | |
A-axis 1 . Varibaculum- | ] PCA-axis 1 - Fusobacterium- |
24 i Actinomyces- || 21 . [Eubacterium]- u
3 * Eggerthella- 3 — [Ruminococcus]- | |
44 —— Peptostreptococcaceae(F)- | 4 —— Bifidobacterium- ]
5 —— Lactobacillus- N 54 —— Enterococcus- [ |
i ! Enterococcus- [ ! Escherichia- |
T + T q : ! L B ] )
05 10 20 S ;g.:tmar?-gorre(i;:ion 05 10 20 S-Ofarmar?gorrela?'.gn
Odds Ratio P Odds Ratio P !
e f g
Asthma Atopic asthma Nonatopic asthma
I | 1 A 1
1 | ]
PCA-axis 3, month 2 —o—| PCA-axis 3, month2 | —e—! PCA-axis 3, month 2 - —e—L
| |
EMA —e—! EMA | —e— EMA| —e—
PCA-axis 1, month 12 —+— PCA-axis 1, month 12 - —— PCA-axis 1, month 12 - —e—
1 1 ]
- T t T - T } T
05 1.0 20 05 10 2 05 1.0 20
Odds Ratio Odds Ratio Odds Ratio

Extended Data Fig. 3 | Principal components analysis for microbial composition at 2 and 12 months and estimated microbiome age (EMA). a,
Associations of asthma phenotypes with the first five axes of a principle component analysis (PCA) at month 2. b, Correlation of the asthma-protective
PCA-axis 3 at month 2 (7% variance explained) with single genera. ¢, Associations of asthma phenotypes with PCA-axes at month 12. d, Correlation

of the asthma-protective PCA-axis 1at month 12 (14% variance explained) with single genera. e-g, Mutually adjusted associations of EMA and the
asthma-protective axes at both time points with asthma (e), atopic asthma (f), and non-atopic asthma (g).
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Extended Data Fig. 4 | Association of principle coordinate axes with asthma phenotypes and bacterial genera. Associations of asthma phenotypes of
the first five axes of a principle coordinate analysis (PCoA) at month 2 a, and 12 ¢, using unweighted UniFrac as distance measure. Spearman correlations
of the 10 most positively and 10 most negatively correlated individual genera with the asthma-protective PCoA-axes at month 2 b, and 12 d. Mutually
adjusted models for EMA and the asthma-protective PCoA-axes at month 2 and 12 for asthma e, atopic asthma f, and nonatopic asthma g. Associations

are shown as odds ratios for the z-standardized variables.
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Extended Data Fig. 5 | Correlation of estimated microbiome age (EMA) with asthma-protective axes and richness. Relationship between EMA (x-axis)
and various microbial measures (y-axis) including asthma-protective PCA- a, and PCoA-axes b, and bacterial richness ¢. The left column relates to 2
months, the right column to 12 months. As correlation coefficient Spearman’s rho is given.
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Extended Data Fig. 6 | Association of duration of breastfeeding with estimated microbiome age (EMA). Beta estimates of linear regression model of

EMA versus duration of breastfeeding dichotomized at the indicated time points.
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Extended Data Fig. 7 | Acetate score and propionate score in the case-control sample. The upper panels a, refer to propionate, the lower panels b, to
acetate. The left column gives proportion of asthma cases within quartiles of the respective short-chain fatty acid (SCFA) variables. The right column gives
odds ratios with 95%-confidence intervals for the associations of asthma phenotypes with the respective dichotomous SCFA variables (upper quartiles
versus lowest quartile). Propionate and acetate level designate measured SCFA levels, whereas the estimated scores refer to the prediction models of
measured SCFA levels by the microbial composition.
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Extended Data Fig. 8 | The gut mycobiome and estimated fungal age (EFA). a, Log-scaled box and whiskers plots of relative abundance of most common
fungal taxa at month 2 and month 12 in 189 children. Lower and upper hinges of the boxes denote the first and third quartiles, respectively; the bold central
line represents the median; the whiskers extend to the most extreme data point within 1.5 times the interquartile range from the hinges; extreme values lie
beyond the whiskers and are marked by circles. Missing boxes indicate relative abundance < 0.5% at the respective time point. ‘(F)’, ‘(O)’, or ‘(P)" stand for
unclassified genera of the respective fungal family, order or phylum. b, Chronological age, that is the exact sampling time point in months plotted against
estimated fungal age (EFA) illustrates that all chronologic information is largely removed from EFA. The density plot included in panel b reveals a skewed
distribution of EFA. ¢, Fungal taxa most importantly predicting fungal age in the 35 healthy individuals. d, Determinants of EFA in the population with ITS
data. Odds ratios are given with 95%-confidence intervals. Listed are determinants with p-values <0.01 in bivariate analyses; only consumption of any
bread (marked in red) remains in a multivariable model. e, Associations of asthma phenotypes with EFA.
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Extended Data Fig. 9 | Association of asthma phenotypes with microbial measures. Asthma was defined as a doctor's diagnosis of asthma or recurrent
obstructive bronchitis. Asthma after 3 years was defined as a doctor’s diagnosis of asthma or recurrent obstructive bronchitis after the age of 3 years. The
atopic and nonatopic phenotypes of asthma were defined by presence or absence of concomitant sensitization to inhalant allergens with specific IgE >
0.7 IU/ml at age 6 years. Wheeze phenotypes were defined by a latent class analysis as previously performed'. Transient and intermediate wheeze were
milder forms with better lung function and less medication. Persis-tent wheeze was related to genetic risk encoded on chromosome 17921 and displayed
reduced lung function. Lateonset wheeze was particularly associated with atopic sensitization and fraction of exhaled nitric oxide. Seasonal IgE was
defined as at least one specific IgE to alder, birch, hazel, grass pollen, rye, mugwort, plantain, or alternaria > 0.7 IU/ml at age 6 years. Perennial IgE (D.
pteronyssinus, D. farinae, cat, horse, or dog) and food IgE (hen's egg, cow's milk, peanut, hazelnut, carrot or wheat flour) were defined in analogy.
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Extended Data Fig. 10 | Distribution of the microbial variables over the study centers. PCA=principal component analysis, EMA=estimated microbiome
age, EFA=estimated fungal age; p-values are derived from two-sided Kruskal-Wallis tests. The analyses were performed in all 618 individuals with data
available for the respective measures, except for EFA, where data was available only in 189 individuals. Lower and upper hinges of the boxes denote the
first and third quartiles, respectively; the bold central line represents the median; the whiskers extend to the most extreme data point within 1.5 times the
interquartile range from the hinges; extreme values lie beyond the whiskers and are marked by circles.

NATURE MEDICINE | www.nature.com/naturemedicine


http://www.nature.com/naturemedicine

QUERY FORM

Nature Medicine

Manuscript ID [Art. Id: 1095]
Author Martin Depner
AUTHOR:

The following queries have arisen during the editing of your manuscript. Please answer by making the requisite corrections
directly in the e.proofing tool rather than marking them up on the PDE This will ensure that your corrections are incorporated
accurately and that your paper is published as quickly as possible.

Query No.| Nature of Query

Q1l: Please check your article carefully, coordinate with any co-authors and enter all final edits clearly in the
eproof, remembering to save frequently. Once corrections are submitted, we cannot routinely make further
changes to the article.

Q2: Note that the eproof should be amended in only one browser window at any one time; otherwise changes will
be overwritten.

Q3: Author surnames have been highlighted. Please check these carefully and adjust if the first name or surname
is marked up incorrectly. Note that changes here will affect indexing of your article in public repositories such
as PubMed. Also, carefully check the spelling and numbering of all author names and affiliations, and the
corresponding email address(es).

Q4: You cannot alter accepted Supplementary Information files except for critical changes to scientific content. If
you do resupply any files, please also provide a brief (but complete) list of changes. If these are not considered
scientific changes, any altered Supplementary files will not be used, only the originally accepted version will
be published.

Q5: Your paper has been copy edited. Please review every sentence to ensure that it conveys your intended mean-
ing; if changes are required, please provide further clarification rather than reverting to the original text.
Please note that formatting (including hyphenation, Latin words, and any reference citations that might be
mistaken for exponents) has been made consistent with our house style.

Q6: In the sentence beginning ‘The estimated microbiome age' please confirm the definition for the abbreviation
OR.
Q7: In the sentence beginning ‘At month 2 (Fig. 1a)’, please confirm if these numbers are correct as a range (0.23-

0.64) as elsewhere in this text, rather than separated by a semicolon. Similarly, please confirm the same for the
sentence beginning ‘A sensitivity analysis showed independent'.

Q8: In the sentence beginning ‘In month 12 samples' please specify which cluster is meant by ‘this cluster'.

Q9: In the legend for Fig. 1a,b, please indicate what is meant by the square brackets.

Q10: In the legend for Fig. 1a, the word ‘importance’ seems vague, is there a more quantitative description for this?
Ql1: In the legend for Fig. 2¢, please confirm that it is correct to say ‘except for those from Escherichia to Bacte-

roides'. Please also indicate the meaning of the square brackets.

Ql12: In the legends for Figs. 2f, 3a,b,d-f,h and 4c,d,g, a description of the dots or squares and bars in the figures was
included from the Methods ‘Forest plots give point estimates with 95% confidence intervals.' Please confirm
if this is correct.

Springer Nature



QUERY FORM

Nature Medicine

Manuscript ID [Art. Id: 1095]
Author Martin Depner
AUTHOR:

The following queries have arisen during the editing of your manuscript. Please answer by making the requisite corrections
directly in the e.proofing tool rather than marking them up on the PDE This will ensure that your corrections are incorporated
accurately and that your paper is published as quickly as possible.

Query No. | Nature of Query

Q13: In the sentence beginning ‘In contrast, EMA was delayed by prolonged', please confirm that it is correct to say
‘visits to animal sheds'.

Q14: In the legend for Fig. 3h, please indicate what is meant by (O).

Q15: In the sentence beginning “The presence of these ASV's was strongly associated, please provide a definition for
GMR.

Q1e: Please check the sentence beginning ‘Butyrate- and propionate-producing bacteria' for accuracy.

Q17: In the sentence beginning ‘The current analysis points toward', please check that it is correct to say ‘pathology
behind atopy'.

Q18: In the sentence beginning ‘Primers BITS', please indicate where the linker sequence is located.

Q19: In the sentence beginning “The resultant fecal homogenates', please check the units provided for flow rate.

Q20: In the sentence beginning ‘qPCR primers', please check that it is correct to say ‘used for samples'.

Q21: In the sentence beginning “The data are expressed as a percent’, please check that it is correct to say ‘normalized
to'.

Q22: Please provide a Code availability statement, with a brief description of the code, if relevant.

Q23: In the sentence beginning ‘Random forests regression was performed’, please check that it is correct to say the

children ‘never wheezed or had diarrhea'.

Q24: In the sentence beginning “This approach, developed by Aitchison', please provide a reference for the approach
developed by Aitchison.

Q25: In the sentence beginning “To relate the composition of the network modules', please check for accuracy.

Q26: Please check that all funders have been appropriately acknowledged and that all grant numbers are correct.

Q27: If applicable, please ensure accession codes are scheduled for release on or before this article’s scheduled pub-

lication date, and update the database record with publication details from this article once available.

Q28: Please check that the Competing Interests declaration is correct as stated. If you declare competing interests,
please check the full text of the declaration for accuracy and completeness.

Springer Nature



QUERY FORM

Nature Medicine

Manuscript ID [Art. Id: 1095]
Author Martin Depner
AUTHOR:

The following queries have arisen during the editing of your manuscript. Please answer by making the requisite corrections
directly in the e.proofing tool rather than marking them up on the PDE This will ensure that your corrections are incorporated
accurately and that your paper is published as quickly as possible.

Query No.| Nature of Query

Q29: Please provide the page range for reference 60.

Q30: For reference 64 (Pedregosa et al. 2011), please provide the title of the article.

Springer Nature



natureresearch

Last updated by author(s): Aug 21, 2020

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X| A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
/N Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OXX O OO0 O000OF%

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection R 3.4.3; Excel 2016
Data analysis Mplus 8.1; R 3.4.3; R 3.6.1; R packages phyloseq, DirichletMultinomial, Gmisc, ranger, composition, GUnifrac, rmeta, ggraph. igraph;
QIIME2-2018.6; sabre; dada2 1.16.0

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
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Taxonomy was assigned using the GreenGenes database (greengenes.lbl.gov) for 16S rRNA sequences and the UNITE dynamic database (unite.ut.ee) for ITS
sequences. All 165 rRNA and ITS sequences are deposited in the Supplementary Information without metadata. PASTURE is an ongoing birth cohort with fieldwork
still being executed. As long as the study is not yet anonymized, European data protection legislation prohibits sharing of individual data, also when pseudonymized.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Participant flow is illustrated by Extended Data Figure 1. All subsamples relevant for the respective figures are identified in Extended Data
Figure 1. The PASTURE birth cohort aimed at including 1000 individuals (von Mutius & Schmid, Allergy 2006). This number was not derived
from a sample size calculation based on an expected effect size.
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Data exclusions  The French subsample of PASTURE was excluded because collection of fecal samples at month 2 was not scheduled by design. For the
calculation of bacterial age, n=5 samples were excluded, for whom exact sampling time point was not given or implausible. This is explained in
detail in the manuscript.

Replication The key findings, i.e. association of farm exposure with bacterial age and bacterial age with asthma, were replicated over the 4 centers of the
PASTURE study, and a common estimate was derived by a meta-analysis with fixed effects.
Measurement of relative abundance of the butyryl-CoA:acetate CoA-transferase gene was performed in duplicates, and measurements were
considered valid if standard deviation was below 0.4. This was necessary to eliminate technical artefacts such as air bubbles that may interfere
with the optical fluorescence reading. Of all 157 children selected into the case-control study, valid results were obtained in 138 individuals
(88%).

Randomization Not applicable, since no intervention was performed. The PASTURE study is an observational birth cohort.

Blinding Not applicable, since no intervention was performed. The PASTURE study is an observational birth cohort.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
|:| Antibodies g |:| ChiIP-seq
|:| Eukaryotic cell lines |Z |:| Flow cytometry
|:| Palaeontology |Z |:| MRI-based neuroimaging

|:| Animals and other organisms
Human research participants

|:| Clinical data
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Human research participants

Policy information about studies involving human research participants

Population characteristics The main characteristics such as age and sex are given in the text, further population characteristics are described in
Supplementary Table 1. Asthma phenotypes are detailed by study group in Supplementary Table 8. Articles with more detailed
population characteristics on PASTURE are referenced.

Recruitment Pregnant mothers were recruited through birth clinics and midwife offices in rural areas during the last trimenon of pregnancy.
Women living on a farm were selected to a meet a proportion of 50%. Self-selection by affected families may have occurred; the
resulting bias is likely to be mild as the asthma prevalence at 6 years (8.1%) is in the range expected from population based
studies (8% - 11%, Ege et al. NEJM 2011, ref. 6). Because of the stratification for farming, self-selection of farmers did not play a
role.

Ethics oversight All aspects of the study were approved by the local institutional review boards in each country (Austria: Ethikkommission fir das
Land Salzburg; Finland: The Research Ethics Committee, Hospital District of Northern Savo; Germany: Ethik-Kommission der
Bayerischen Landesarztekammer; Switzerland: Kantonale Ethik-Kommission St. Gallen; France: Comité Consultatif pour la
Protection des Personnes en Recherche Biomédicale (CCPPRB) Commission Informatique et Libertés (CNIL)). Written informed
consent was obtained from the parents or guardians.




Note that full information on the approval of the study protocol must also be provided in the manuscript.
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