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Many diseases in adults originate early in life1. In the pre-
natal period, environmental influences that affect disease 
development are filtered by the mother. After birth, how-

ever, the infant interacts directly with the environment, beginning 
with the colonization of body surfaces by microbiota within the first 
hours of life2. This process consists of mutual adaptation between 
host and microbiota and ultimately educates the host’s immune 
system3. Studies in gnotobiotic mice support an essential role for 
microbial exposure in the development of the immune system4. The 
inverse relationship of microbial exposure and immune-mediated 
diseases, such as allergies and asthma, is the basis for the hygiene 
hypothesis and its amendments explaining the epidemic of inflam-
matory diseases in a world that has abandoned traditional lifestyles5.
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A proposed mechanism by which a traditional lifestyle may 
grant strong protective effects against asthma involves sustained 
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microbial exposure on farms6,7. This protective effect has mainly 
been attributed to the consumption of farm milk and exposure to a 
variety of environmental microbiota in animal sheds6,8.

A highly diverse microbial environment may influence the 
human microbiome and thus mitigate asthma risk, as shown in the 
microbiome of the upper airways9,10. For the gut microbiome, the 
effect on airway disease is less obvious. Murine models have sug-
gested that protection from allergic inflammation in the lung is 
mediated by the production of metabolites, such as short-chain fatty 
acids (SCFAs), by certain gut bacteria11.

The human gut microbiome undergoes profound changes during 
the first year of life and starts stabilizing soon thereafter12,13. Hence, 
we hypothesized that the first year of life, in particular, represents 
a time window during which exposures to the outer environment 
shape the development of the human microbiome with possible 
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Growing up on a farm is associated with an asthma-protective effect, but the mechanisms underlying this effect are largely 
unknown. In the Protection against Allergy: Study in Rural Environments (PASTURE) birth cohort, we modeled maturation 
using 16S rRNA sequence data of the human gut microbiome in infants from 2 to 12 months of age. The estimated microbi-
ome age (EMA) in 12-month-old infants was associated with previous farm exposure (β = 0.27 (0.12–0.43), P = 0.001, n = 618) 
and reduced risk of asthma at school age (odds ratio (OR) = 0.72 (0.56–0.93), P = 0.011). EMA mediated the protective farm 
effect by 19%. In a nested case–control sample (n = 138), we found inverse associations of asthma with the measured level 
of fecal butyrate (OR = 0.28 (0.09–0.91), P = 0.034), bacterial taxa that predict butyrate production (OR = 0.38 (0.17–0.84), 
P = 0.017) and the relative abundance of the gene encoding butyryl–coenzyme A (CoA):acetate–CoA-transferase, a major 
enzyme in butyrate metabolism (OR = 0.43 (0.19–0.97), P = 0.042). The gut microbiome may contribute to asthma protection 
through metabolites, supporting the concept of a gut–lung axis in humans.
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lasting consequences. The large population-based PASTURE birth 
cohort provided the unique opportunity to comprehensively assess 
farm-related environmental effects on the early gut microbiome 
and, through the gut microbiome, on respiratory health.

Results
The PASTURE birth cohort followed children in European rural 
areas, of whom 50% were born to mothers living on a family-run 
farm. In the Austrian, Finnish, German and Swiss arms of this study 
(n = 930, 49% female), fecal samples were taken at months 2 and 12. 
At both time points, we obtained sequence reads for bacterial 16S 
rRNA and the fungal internal transcribed spacer (ITS) region from 
samples from 618 (66%) and 189 (20%) children, respectively, which 
represented all four centers at similar shares between 22% and 33% 
(Extended Data Fig.  1 and Supplementary Table  1). Asthma was 
defined as a physician’s diagnosis of asthma or recurrent obstructive 
bronchitis established until 6 years of age and was present in 8.1% 
of the 930 children.

Bacterial composition at months 2 and 12. At month 2 (Fig. 1a), 
the genus Bifidobacterium was predominant. Despite a positive 
association of the abundance of Bifidobacterium with breastfeed-
ing (β = 0.43 


(0.23–0.64), P < 0.001), this genus was not significantly 

linked with subsequent asthma. At month 12 (Fig.  1b), the rela-
tive abundance of Bifidobacterium was halved, whereas the genus 
Blautia of the family Lachnospiraceae increased substantially in 
relative abundance. In addition, various other genera, including 
Coprococcus, Faecalibacterium and Roseburia, became detectable. 
By clustering bacterial composition data from both time points by 
Dirichlet mixture modeling, we identified five Dirichlet clusters 
(DCs), with two clusters mainly representing month 2 samples, 
two clusters representing month 12 samples and one cluster shared 
by both time points (Fig.  1c,d). The first two clusters (DC1 and 
DC2) were dominated by Bifidobacterium, whereas the third cluster 
(DC3) revealed considerable heterogeneity between samples, with 
various different taxa accounting for at least 1% of relative abun-
dance (Fig.  1c and Supplementary Table  2). DC4 and DC5 dem-
onstrated more stabilized bacterial patterns with the emergence of 
Firmicutes. In month 12 samples, children in this 


cluster showed a 

higher prevalence of asthma, as compared to those in clusters DC4 
and DC5 (Fig. 1e).

Microbial maturation. To better understand the physiological 
changes of the gut microbiome during the first year, we modeled 
the exact age of fecal sampling by random forest analysis of the com-
position of bacterial genera at months 2 and 12 in individuals with 
samples available at both time points. Because this model estimates 
the biological age of the healthy microbiome, we termed the result-
ing prediction score estimated microbiome age EMA. To exclude 
disease interference, we restricted the model building to 133 healthy 
individuals (67 farm children and 66 nonfarm children) who did 
not have diarrhea between months 2 and 12 and were never affected 
by wheeze or asthma.

The taxa that contributed most importantly to the prediction 
model were Blautia and Coprococcus (Fig. 2a). When applying the 
prediction model to the entire population (n = 618), the composi-
tion of genera did not vary notably with EMA at month 2 (Fig. 2b), 
whereas at month 12, a clear pattern emerged, with increases partic-
ularly in Ruminococcus, Roseburia and Coprococcus (Fig. 2c). When 
stratifying for month 2 and 12 samples, the correlation of EMA with 
the exact sampling time point was largely removed (Fig. 2d; ρ = 0.10 
and ρ = 0.15 for month 2 and 12 samples, respectively), thereby 
indicating that EMA essentially reflects maturation from 2 to 12 
months. DC3 comprised month 2 samples with advanced EMA and 
month 12 samples with delayed EMA (Fig. 2d), thereby grouping 
individuals who did not follow the typical maturation pattern. As an  

Q7

Q8

alternative surrogate for maturation, we explored a principal- 
coordinate analysis (PCoA) for both time points (Extended Data 
Fig.  2a), the first axis of which correlated strongly with EMA 
(Extended Data Fig. 2b).

Children with any form of asthma had, on average, significantly 
lower EMA values at month 12 (Fig. 2e). The prevalence of asthma 
was 12% in children with incomplete maturation, as defined by 
having an EMA value in the lowest quartile (Fig.  2e). Children 
with higher EMA values had a lower risk of asthma (OR = 0.48 
(0.25–0.93), P = 0.030) and lung function impairment (OR = 0.48 
(0.27–0.82), P = 0.008), when compared to children from the lowest 
quartile of EMA values. Similarly, as a continuous variable, higher 
EMA values correlated with a reduced risk of asthma (OR = 0.72 
(0.56–0.93), P = 0.011) and particularly well with that of nonatopic 
asthma (Fig. 2f). The effect of EMA on asthma was unchanged when 
adjusted for DC3 at month 12, whereas the effect of DC3 on asthma 
was largely removed when adjusting for EMA (Fig. 2f). The effect of 
EMA was more pronounced in carriers of the non-risk genotype on 
chromosome 17q21 (Supplementary Table 3) and was also observed 
in a sensitivity analysis that excluded the 133 children on whom the 
prediction model was established (Extended Data Fig. 2c,d). When 
predicting EMA at month 2, there was no clear association with 
asthma (OR = 1.24 (0.93–1.65), P = 0.135).

Microbial maturation versus composition. We analyzed micro-
bial composition using a principal-component analysis (PCA) 
approach designed for compositional data. At month 2, the 
third PCA axis exerted an asthma-protective effect (OR = 0.68  
(0.49–0.95), P = 0.024) irrespective of concomitant atopy (Extended 
Data Fig. 3a). This axis correlated positively with the relative abun-
dance of Bacteroides and Parabacteroides and negatively with that of 
Enterococcus (Extended Data Fig. 3b).

At month 12, the first PCA axis was inversely related to non-
atopic asthma (OR = 0.62 (0.39–1.00), P = 0.048) and correlated par-
ticularly well with Roseburia, Ruminococcus and Faecalibacterium 
(Extended Data Fig. 3c,d). A sensitivity analysis based on a PCoA 
using unweighted UniFrac as the distance measurement corrobo-
rated these patterns (Extended Data Fig. 4).

EMA correlated strongly with PCA axis 1 at month 12 (ρ = 0.75) 
and α-diversity (ρ = 0.70 for richness) but not with PCA axis 3 at 
month 2 (Extended Data Fig. 5). EMA and PCA axis 3 at month 
2 emerged as independent determinants of asthma in a mutually 
adjusted model (Extended Data Fig.  3e–g), whereas the effect of 
PCA axis 1 at month 12 was explained by EMA.

EMA and the farm effect on asthma. The PASTURE study was 
designed to assess the farm effect on asthma (OR = 0.53 (0.30–0.92), 
P = 0.023, n = 930). In the present subpopulation (n = 618), farm 
children also had a lower risk of asthma as compared to rural non-
farm children (center-adjusted OR = 0.56 (0.29–1.08), P = 0.082). 
At month 2, no effect of farm exposure on the microbial compo-
sition was observed, while the asthma-protective PCA axis 3 was 
positively associated with breastfeeding and inversely associated 
with Cesarean sections and maternal smoking during pregnancy 
(Fig.  3a), independently of gestational age. In contrast, EMA was 
delayed by prolonged breastfeeding (Extended Data Fig. 6) but pos-
itively influenced by growing up on a farm (β = 0.27 (0.12–0.43), 
P = 0.001) and particular farm exposures, such as 


visits to animal 

sheds or the consumption of milk or eggs directly obtained from a 
farm (Fig. 3b). The latter variables also reflect a more diverse feed-
ing pattern in farm children, as illustrated by more frequent con-
sumption of all six main food items, cereals, meat, bread, yogurt, 
cake and vegetables or fruits (Supplementary Table 4). A sensitivity 
analysis showed independent effects on EMA by a diverse feeding 
pattern (β = 0.18 (0.01–0.34), P = 0.034) and prolonged breastfeed-
ing (β = −0.41 (−0.62 to −0.21), P < 0.001). Farm children were 
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allocated more frequently to the more advanced clusters DC4 and 
DC5 at month 12 (P < 0.001; Fig. 3c).

The effect of EMA at month 12 on asthma was validated in 102 
additional children in the PASTURE cohort, that is, individuals 
without measurements at month 2 (Fig.  3d). This effect was also 
consistent across the different study centers, as was the effect of 
farm exposure on EMA (Fig.  3e,f). The effect of EMA withstood 
adjustment for the childhood asthma locus on chromosome 17q21 
and other potential confounders (Supplementary Table 5).

A structural equation model revealed that EMA mediated 
the asthma-protective effect of growing up on a farm by 19% 
(P = 0.011, Fig. 3g), also in the children of non-asthmatic mothers 
(25%, P = 0.024). Likewise, PCA axis 3 at month 2 tended to medi-
ate the asthma-protective effect of breastfeeding by 18% (P = 0.1). 
Farm children were characterized by a more mature microbiome, 

including Coprococcus and Roseburia (Fig.  3h), known producers 
of SCFAs.

Bacterial metabolites and EMA. To assess bacterial taxa by their 
capacity to produce SCFAs, we modeled SCFA measurements 
obtained at month 12 in 209 children by the composition of bac-
terial genera using random forest models. Production of butyr-
ate, propionate and acetate was most importantly predicted by 
Roseburia, Bacteroides and Turicibacter, respectively (Fig. 4a).

Because the SCFA prediction scores were mutually correlated 
as well as being partially correlated with EMA, we performed a 
four-dimensional PCA on EMA and the SCFA scores (Fig.  4b; 
n = 720). Both the butyrate score and EMA loaded on dimension 
(Dim) 1, which was inversely associated with asthma and non-
atopic asthma (Fig.  4c). The acetate score loaded particularly on 
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Fig. 1 | Composition of the bacterial gut microbiome at months 2 and 12. a,b, 



Log-scaled box plots of the relative abundance of different bacterial genera 

in 618 children at 2 months (a) and 12 months (b). Lower and upper hinges of the boxes denote the first and third quartiles, respectively; the bold central 
line represents the median; the whiskers extend to the most extreme data point within a distance of 1.5 times the interquartile range from the hinges; 
extreme values lie beyond the whiskers and are marked by circles. Names in brackets denote bacterial genera with a relative abundance <0.5% at the 
indicated time point. (F) indicates an unclassified genus from the specified bacterial family. c, Log-scaled heat map of the relative abundance of genera 
within the five clusters of a DMM modeling analysis across both time points, resulting in 2 × 618 samples. d, Transition of all 618 individuals between the 
DCs from months 2 to 12. e, Prevalence of asthma (with s.e. bars, n = 618) within the most prevalent clusters at month 2 (top) and month 12 (bottom).
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Dim 2, which was not associated with asthma. Dim 3 represented 
the propionate score, partially represented the EMA score and was 
inversely associated with atopic asthma. Dim 4 mainly reflected the 
difference between EMA and the butyrate score and had an addi-
tional protective effect on nonatopic asthma.

Dim 1 and Dim 3 (representing EMA, butyrate and propionate 
scores) were positively associated with growing up on a farm and 
were correlated particularly well with the consumption of unpro-
cessed farm milk (Fig. 4d). Dim 1 mediated 15% of the farm effect 
on asthma, and Dim 3 mediated an additional 6% (Fig. 4e).

In a nested case–control sample (44 affected and 94 healthy 
individuals), we validated the butyrate score as the most important 
SCFA score. For this purpose, we determined the relative abun-
dance of the gene encoding a major bacterial enzyme in butyrate 
metabolism, butyryl–CoA:acetate–CoA-transferase, by qPCR. 
When comparing the results of this gene assay with the originally 
measured butyrate levels and the estimated butyrate score, we found 
a particularly high prevalence of asthma in the lowest quartiles of 
the different measures (Fig.  4f). The corresponding associations 
with the different asthma phenotypes were similar for all measures 

(Fig. 4g), for example, OR with asthma, 0.28 (0.09–0.91), P = 0.034 
for the measured level, 0.38 (0.17–0.84), P = 0.017 for the butyrate 
score and 0.43 (0.19–0.97), P = 0.042 for the gene assay. Likewise, 
associations of the asthma phenotypes with the propionate score 
resembled those with the corresponding measured levels in the 
same case–control sample (Extended Data Fig. 7).

Network of bacterial single taxa. Focusing on the result of the 
maturation process, that is, the microbial composition and inter-
relation of the genera at 12 months, we performed a network 
analysis (Fig.  5a). This revealed five network modules with three 
hubs, which were closely connected. Two hubs were Roseburia and 
Ruminococcus and belonged to the green module, the first eigen-
vector of which was correlated with EMA (r = 0.73) and the butyr-
ate score (r = 0.68). The yellow module was moderately associated 
with EMA (r = 0.35) and contained two main taxa of EMA, that is, 
Blautia and Coprococcus; the latter formed the third hub.

When exploring the association of asthma with amplicon 
sequence variants (ASVs) associated with the three hubs, two 
asthma-protective ASVs emerged, one associated with the genus 
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Fig. 2 | EMA as a measure of gut microbiome maturation. a, Variable 



importance in the prediction model of EMA in 133 healthy individuals. b, Stacked 

bar plots of the relative abundances of the main genera plotted against increasing EMA values. The individual samples (n = 618 for each time point) 
are ordered by increasing EMA and the genera are ordered by Spearman’s correlation with changes in relative abundance between months 2 and 12. c, 
Spearman’s correlation of EMA at month 12 with changes in relative abundance between months 2 and 12 in 618 children. The color code is the same 
as that in b. 




Correlation P values were below 0.05, except for those from Escherichia to Bacteroides. d, Scatterplot for chronological age at fecal sampling 

versus EMA at both time points (n = 2 × 618). The color code reflects grouping by DC over both time points. All subsequent analyses relate only to EMA at 
month 12. e, Scatterplot for chronological age at fecal sampling versus EMA at month 12. The color code reflects asthma status at age 6 years. The red and 
blue lines denote average values for chronological age (horizontal) and EMA (vertical) by asthma status. The distribution of EMA values and an estimated 
density curve are given at the top of the scatterplot (n = 618); the vertical line denotes the lowest quartile, that is, 10.6 months. f, 




Association of asthma 

phenotypes with DCs (left) and EMA values (right). ORs were derived from logistic regression models (n = 544 children with data on asthma). Simple 
models were only adjusted for center; mutually adjusted models were adjusted for center and the other microbial variable, that is, EMA in the model for 
DCs and vice versa. Forest plots give point estimates with 95% confidence intervals.
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Fig. 3 | EMA and the farm effect on asthma. a, Bivariate associations of environmental determinants with the asthma-protective PCA axis 3 at month 2 
(n = 618); colored bars denote determinants in the forward selection model. Forest plots give point estimates with 95% confidence intervals. b, Bivariate 
associations of environmental determinants with EMA; colored bars denote determinants in the forward selection model. Forest plots give point estimates 
with 95% confidence intervals. c, Transition of the 618 individuals between the previously defined DCs, stratified by farm status. d, Meta-analysis of the 
effect of EMA on asthma in the 618 children with fecal samples at 2 and 12 months and in the 102 children with fecal samples only at 12 months. For 
626 of the 720 children, data on asthma status were available. Forest plots give point estimates with 95% confidence intervals. e, Meta-analysis of the 
effect of EMA on asthma in different study centers (n = 720 children; Austria, 173; Switzerland, 209; Germany, 176; Finland, 162). Forest plots give point 
estimates with 95% confidence intervals. f, Meta-analysis of the effect of growing up on a farm on EMA in different study centers (n = 720 children, same 
distribution as in e). Forest plots give point estimates with 95% confidence intervals. g, Mediation analysis of the protective effect of growing up on a 
farm on asthma mediated by EMA (n = 626). Shown are the estimates of the path model for direct and indirect effects; the proportion of the mediated 
(indirect) effect was 19%. h, 




Associations of growing up on a farm with the 20 topmost single genera (n = 720; Pseudor., Pseudoramibacter). Forest plots 

give point estimates with 95% confidence intervals.
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Roseburia (OR = 0.42 (0.18–1.01), P = 0.053) and one associated 
with the genus Coprococcus (OR = 0.38 (0.16–0.92), P = 0.032) 
(Supplementary Table  6). Using BLAST searches against the 16S 
ribosomal sequence database, the first ASV was more precisely 
assigned to Roseburia inulinivorans (100% identity), whereas the 
second ASV was more compatible with Anaerobutyricum hal-
lii (98.4%) than with Coprococcus eutactus (92.4%). The presence 
of these ASVs was strongly associated with higher butyrate levels 



(GMR = 1.76 (1.34–2.32), P < 0.001 and 1.52 (1.12–2.05), P = 0.008, 
respectively) and relative abundance of the butyryl–CoA:acetate–
CoA-transferase gene (GMR = 3.33 (1.55–7.15), P = 0.003 and 3.81 
(1.74–8.34), P = 0.001, respectively). The associations of these ASVs 
with asthma, however, did not withstand adjustment for EMA. 
Likewise, no genus was found that had an independent protective 
effect on asthma (Supplementary Table 7), whereas Eggerthella (red 
module) exerted a particular risk effect on asthma (1.43 (1.07–1.92), 
P = 0.016) independently of EMA.

The mycobiome and fungal age. In addition to bacteria, we fur-
ther explored fungal colonization using ITS data (n = 189; Extended 
Data Fig.  1). Estimated fungal age (EFA) was calculated analo-
gously to EMA and mainly depended on changes in Saccharomyces, 
Alternaria and Malassezia. EFA was determined by consumption 
of starchy foods and was not associated with subsequent asthma 
(Extended Data Fig. 8). Although EFA and EMA were not corre-
lated (ρ = 0.02), relative abundance of the highly prevalent genus 
Alternaria at 2 months was associated with subsequent bacterial 
maturation (β = 0.05 (0.01–0.10), P = 0.032).

Sensitivity analyses. EMA was also inversely associated with an 
asthma diagnosis after 3 years of age (Extended Data Fig.  9) and 
particularly with the less common (Supplementary Table 8) persis-
tent wheeze phenotype (OR = 0.49 (0.35–0.70), P < 0.001)14. EMA 
was not associated with sensitization to seasonal, perennial or 
food allergens. Stratification for atopic sensitization in children or 
for maternal asthma did not reveal major differences in the asso-
ciations of asthma phenotypes with EMA (Supplementary Table 9). 
Similarly, the associations of EMA with asthma phenotypes were 
homogeneous between farm and nonfarm children, with the excep-
tion of the association of EMA with atopic asthma, which was 
only observed in nonfarm children (0.68 (0.45–1.02), P = 0.060). 
Unlike microbial maturation and composition, the butyrate score 
did not vary significantly between centers (P = 0.191; Extended  
Data Fig. 10).

Discussion
In the PASTURE birth cohort, farm-related exposures influenced 
the maturation of the gut microbiome during the time window 
from 2 to 12 months. As a measure of maturation, EMA mediated 
a substantial proportion of the well-known farm effect on asthma. 
Bacterial communities with the potential of producing butyrate, 
such as Roseburia and Coprococcus, contributed to asthma protec-
tion (Fig. 5b).

Q15

Mode of birth has often been associated with subsequent colo-
nization of the human gut, as exemplified by Bacteroides12. The 
importance of birth mode for future health15 highlights the role of 
the maternal microbiome in the colonization of the neonatal gut. 
The current analyses, however, suggest that this maternal influ-
ence is gradually replaced by an increasing variety of environmental 
exposures that affect the growing child. Indeed, the most influential 
change in the development of the mammalian gut microbiome is 
probably the transition from breastfeeding to a solid food diet16,17. 
Bifidobacteria, whose early predominance may be fostered by the 
bifidogenic properties of breastmilk18, decrease in abundance after 
weaning. In our analysis, the asthma-protective PCA axis at month 
2 was mainly influenced by mode of birth and correlated with the 
abundance of Bacteroides. The positive association of this axis with 
breastfeeding and its asthma-protective effect was not explained  
by bifidobacteria.

Independently of this very early phenomenon, bacterial matu-
ration between months 2 and 12 exerted a strong protective effect 
on asthma. Various shifts in bacterial composition, including in 
the bacterial families Lachnospiraceae, Ruminococcaceae and 
Bifidobacteriaceae, suggest high plasticity of the intestinal micro-
biome during the first year of life12,13. Evidently, the window of 
opportunity for the establishment of an asthma-protective micro-
biome extends substantially beyond the well-studied19–21 period of 
the first 3 months of life. Early, precipitate maturation might even 
be unfavorable for asthma risk22, which may explain the tendency 
for asthma risk in children with higher EMA values at month 2, 
particularly for those assigned to DC3.

EMA predicted asthma better than DC3 at any time point, 
emphasizing the developmental aspect of a favorable microbiome. 
Possibly bacterial composition is not beneficial on its own but 
may indicate successful maturation. This notion has vast impli-
cations for prevention strategies, as the mere application of dis-
tinct probiotics or combinations thereof seems less promising for  
asthma prevention.

In contrast to the early microbiome, which was favorably 
influenced by breastfeeding, the subsequent maturation process 
was hampered by prolonged breastfeeding. Because the effect of 
prolonged breastfeeding on EMA was independent of the diver-
sity of solid foods, this finding supports the idea that cessation of 
breastfeeding is a key factor that influences microbial composition  
and maturation12,16,17.

The particular setting of the PASTURE study revealed other 
main determinants of maturation, which were all associated with 
farm exposure, the epitome of the hygiene hypothesis. Farm chil-
dren are known to be exposed to a greater variety of environmental 
microbiota6 and potentially beneficial clusters of microorganisms23. 
There may be various mechanisms involved in mediation of the pro-
tective effect of environmental microbiota on asthma. For example, 
when playing in animal sheds, children may inhale environmental 
microorganisms, which may exert their effects directly in the air-
ways9,10. In the present mediation analysis, we demonstrate that 19% 
of the farm effect on asthma was mediated through the maturation 

Fig. 4 | Bacterial metabolites and EMA. a, Variable importance for the prediction scores of the SCFAs butyrate, propionate and acetate, as modeled in 
209 children with measured values. b, PCA for EMA and the three SCFA scores (n = 720). For illustrative purposes, Dim 3 is plotted against Dim 1 and Dim 
4 against Dim 2. Explained variance is given in parentheses. c, Associations of asthma phenotypes with the four PCA dimensions. Forest plots give point 
estimates with 95% confidence intervals. d, Associations of growing up on a farm and consumption of farm milk with the four PCA dimensions. Forest 
plots give point estimates with 95% confidence intervals. e, Mediation analysis of the protective effect of growing up on a farm on asthma mediated by the 
four PCA dimensions (n = 626). Shown are the estimates of the path model for direct and indirect effects; the proportion of the mediated (indirect) effects 
was 23%. f, Validation of the butyrate score in a case–control subsample of 138 children (44 with asthma and 94 healthy individuals). Proportions of 
children with asthma (with s.e. bars) is given in quartiles of the originally measured butyrate level, the estimated butyrate score and the gene assay, that is, 
the relative abundance of the butyryl–CoA:acetate–CoA-transferase gene, encoding an enzyme in the bacterial metabolic pathway for butyrate production. 
g, Associations of asthma phenotypes with the originally measured butyrate level, the estimated butyrate score and the gene assay, all dichotomized at 
the lowest quartile. Forest plots give point estimates with 95% confidence intervals.
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of the gut microbiome, suggesting that environmental microbiota 
are ingested and interact with the gut microbiome. At least, this 
notion is a reminder of the fecal–oral transmitted infections that are 

postulated by the hygiene hypothesis to be protective5. The remain-
ing 81% of the farm effect on asthma might be mediated by other 
mechanisms, also operating beyond the first year of life.
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While exploring a single-taxon approach, we did not identify 
any taxon as protective in itself. This was unlikely to be caused by 
insufficient statistical power, as we detected a risk effect in the single 
taxon Eggerthella, which includes an emerging pathogen associated 

with asthma-risk effects in adults24,25. Likewise, in the nasal micro-
biome, we previously identified individual taxa, such as Moraxella 
catharralis, solely as being harmful10. Therefore, single taxa are more 
likely to exert harmful effects.
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Inconsistencies between studies may arise due to differences 
in sampling time points. For example, risk of atopic wheeze was 
associated with relative abundance of the taxa Faecalibacterium 
sp., Lachnospira sp., Veillonella sp. and Rothia sp. at 3 months but 
not at 12 months20. The beneficial taxon Veillonella may not only 
lose its beneficial effect over time26 but may even emerge subse-
quently as an asthma-risk taxon27. Although Bacteroides, Prevotella 
and Coprococcus were associated with allergic diseases from 6 
months to 8 years, other taxa such as Ruminococcus have been 
shown to lose their beneficial effect within the first year28. Although 
Bifidobacterium was suggested to be a beneficial probiotic in other 
contexts29, its abundance was increased in children with allergies 
at later time points28. In our analysis, Bifidobacterium did not con-
tribute to the asthma-protective effect. These inconsistencies were 
another reason for using an integrative approach that considered 
changes in bacterial composition over time.

A limitation of the current analysis might be the fact that sam-
pling was conducted at only two time points, possibly missing 
fluctuations within this developmental window. Nevertheless, this 
drawback might emerge as an advantage, as comparing the starting 
point and outcome of the core maturation process may highlight 
the essential changes of the microbiota in this time window. Further 
refinement occurs in subsequent years12,13 and, on a smaller scale, 
throughout life22,30. Another limitation is that parent-reported diag-
nosis of asthma is susceptible to misclassification; in previous analy-
ses, however, this outcome definition was validated by lung function 
measurements14.

To better understand how bacterial maturation may impact 
respiratory health, we focused on the functional properties of gut 
bacteria and modeled communities with a high likelihood of pro-
ducing distinct SCFAs. As all resulting SCFA scores were correlated 
with EMA, we tried to disentangle the different aspects of EMA and 
the three SCFA scores by a PCA. The component of EMA that was 
shared with the likelihood of producing butyrate (Dim 1) exerted 
the strongest asthma-protective effect, predominantly for the non-
atopic phenotype. For the atopic phenotype, the aspect of EMA that 
was shared with propionate production (Dim 3) was particularly 
important. Moreover, both aspects were involved in mediating the 
protective farm effect on asthma. In contrast, the likelihood of pro-
ducing acetate, which predominantly represented Dim 2, was not 
associated with asthma. This finding might support the concept of a 
specific effect of butyrate and propionate in humans, in which these 
SCFAs, but not acetate, have been shown to impair the viability of 
eosinophils31. Finally, Dim 4 denoted an aspect of EMA that was not 
shared with butyrate production; hence, bacterial maturation may 
exert an individual protective effect on nonatopic asthma beyond 
butyrate production alone.

To validate the importance of SCFA production, we linked 
asthma directly to SCFA levels measured in the fecal samples32 and 
found consistent associations with butyrate levels and a tendency 
for an association between atopic asthma and propionate levels. The 
gene assay for butyryl–CoA:acetate–CoA-transferase, an enzyme 
that converts butyryl–CoA to butyrate and is part of the main path-
way of bacterial butyrate metabolism33, corroborated the associa-
tion of butyrate production with (nonatopic) asthma.

Butyrate is the main source of energy for colonic epithelial 
cells, contributes to the maintenance of the epithelial gut bar-
rier and has immunomodulatory and anti-inflammatory proper-
ties34. Various taxa, the composition of which varies considerably 
between individuals, can contribute to butyrate production directly 
and by cross-feeding35. Likewise, propionate has anti-inflammatory 
potential but is mainly produced by intestinal Bacteroides taxa, 
although some Roseburia, Coprococcus and Blautia taxa can also 
switch from butyrate to propionate production36. In particular, 
Roseburia has been suggested as a health biomarker because of its 
anti-inflammatory properties37.

We found two promising asthma-protective ASV candidates 
in the genera Roseburia and Coprococcus (or A. hallii), which were 
also directly associated with butyrate production and the butyryl–
CoA:acetate–CoA-transferase gene. Adjustment for EMA, however, 
revealed that these taxa did not carry the asthma-protective effect 
themselves. Rather, they may represent a network of bacteria with the 
capacity to produce SCFAs. This notion is supported by the role of the 
genera Roseburia and Coprococcus as hubs in the network analysis.

Altogether, higher SCFA levels may reduce inflammation at 
various body sites, including the airway mucosa. 


Butyrate- and 

propionate-producing bacteria represent an aspect of healthy matu-
ration of the gut microbiome and add an independent component 
to the asthma-protective EMA effect, thereby extending the concept 
of the gut–lung axis38,39 to humans.

The beneficial effect of gut microbiota may not be specific 
to respiratory health. Bacteria associated with maturation of the 
gut microbiome (Ruminococcus, Faecalibacterium, Roseburia 
and Lachnospiraceae) were also identified in children with a low 
prevalence of enteric infections40. Moreover, a low abundance of 
Roseburia was also observed in patients with rheumatoid arthritis41. 
Hence, the combination of the above taxa might represent a marker 
for well-established host immune systems and good general health 
in the absence of intestinal dysbiosis42.

The definition of asthma and atopy phenotypes may vary from 
study to study. Some studies have focused on early outcomes20,21,26; 
few studies followed up for atopic wheeze43 or an asthma diagno-
sis27 at an age of 5 years, when diagnoses can be established with 
reasonable certainty. Therefore, we assessed various asthma phe-
notypes defined by wheezing patterns or concomitant atopy. EMA 
was consistently associated with the nonatopic phenotype of asthma 
and persistent wheeze but not with atopic sensitization per  se. A 
family history of atopy, however, did not influence the susceptibility 
to the microbiome-associated farm effect on asthma. In contrast to 
the COPSAC2010 study27, we found an inverse association of EMA 
with asthma also in children whose mothers did not have asthma. 
Therefore, studies that focus on atopic outcomes, such as atopic 
wheeze20,43, or are performed in high-risk populations27 might reveal 
other facets of the microbial effect on asthma. 


The current analysis 

points toward an inflammatory pathology behind atopy, supported 
by the anti-inflammatory properties of butyrate44.

Certainly butyrate is only an example and may be a marker 
for other metabolites that might be directly involved in signaling 
between intestinal and respiratory mucosa, such as d-tryptophan45. 
Microbial carbohydrate metabolism has also been implicated in 
health effects exerted by the gut microbiome46. In addition, the vagus 
nerve can sense microbial metabolites with its afferent fibers and can 
contribute to inflammation by a low tone in its efferent part, as shown 
in inflammatory bowel disease47. By analogy with the so-called gut–
brain axis48, the vagus nerve may also be involved in neuro-immune 
crosstalk49 and in communication between the gut microbiome and 
the airway tone, as suggested by the EMA effect on lung function.

In sum, we found strong influences on the maturation of the 
gut microbiome by an environment rich in microbial stimuli. 
Maturation and prediction of butyrate production partially medi-
ated the well-known asthma-protective farm effect, thereby sug-
gesting a gut–lung axis in humans. In contrast, atypical microbial 
maturation may contribute to the pathogenesis of inflammatory 
diseases. This emphasizes the need for prevention strategies in the 
first year of life, when the gut microbiome is highly plastic and ame-
nable to modification.
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data and code availability are available at https://doi.org/10.1038/
s41591-020-1095-x.
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Methods
Study population. The PASTURE birth cohort has been recruited in rural areas 
of Austria, Finland, France, Germany and Switzerland with the aim of exploring 
the asthma-protective effects of growing up on a farm50. Detailed information on 
the study design can be found in the Nature Research Reporting Summary. Briefly, 
pregnant adult women were invited to participate during their third trimester; half 
of them lived on family-run livestock farms. Their children were recruited at birth 
and seen at the ages of 2, 12, 56 and 72 months during home visits. Additional 
questionnaires were completed at 2, 12, 18, 24, 36, 48, 60 and 72 months.

Additional detailed information on the children’s health, nutrition and 
farm-related exposures was gathered by using weekly diaries and monthly 
questionnaires covering the 9th to 52nd weeks of life51,52. Stool samples were 
collected from the children’s napkins during the 2- and 12-month home visits. 
Because fecal sampling was not performed by design in the French arm, these 
children were excluded from the current analyses a priori. All aspects of the study 
were approved by the local institutional review boards in each country (Austria, 
Ethikkommission für das Land Salzburg; Finland, the Research Ethics Committee, 
Hospital District of Northern Savo; Germany, Ethik-Kommission der Bayerischen 
Landesärztekammer; Switzerland, Kantonale Ethik-Kommission St. Gallen; France, 
Comité Consultatif pour la Protection des Personnes en Recherche Biomédicale 
(CCPPRB), Commission Informatique et Libertés (CNIL)). Written informed 
consent was obtained from the parents or guardians.

Definition of health outcomes. Asthma was defined as a physician’s diagnosis of 
asthma at least once up to age 6 years or recurrent diagnoses of spastic, obstructive 
or asthmatic bronchitis, as reported by the parents at age 6 years14.

For a sensitivity analysis, we defined ‘asthma after 3 years’ as an asthma 
diagnosis established in the fourth, fifth or sixth year of life. Wheeze phenotypes 
were derived from a latent class analysis as described previously14.

Allergen-specific IgE was assessed at age 6 years. Seasonal IgE was defined as at 
least one IgE specific to alternaria, alder, birch, hazel, grass pollen, rye, mugwort or 
plantain at levels ≥0.7 IU ml−1 at age 6 years. Perennial IgE (to Dermatophagoides 
pteronyssinus, Dermatophagoides farinae, cat, horse and dog) and food IgE (to 
chicken eggs, cow’s milk, peanuts, hazelnuts, carrots and wheat flour) were 
defined analogously. Assessment was performed on peripheral blood by using 
the semiquantitative AllergyScreen test panel for atopy (Mediwiss Analytic) in a 
central laboratory53. The atopic and nonatopic phenotypes of asthma were defined 
by the presence or absence of concomitant sensitization to inhalant allergens 
(seasonal or perennial) with specific IgE levels ≥0.7 IU ml−1 at age 6 years, while the 
references were always children without asthma.

Spirometry was performed as previously described54, and spirometric 
indices were calculated according to the equations of a task force of the 
European Respiratory Society (https://www.ers-education.org/guidelines/
global-lung-function-initiative/spirometry-tools.aspx). FEV1 values were 
determined as z scores, and the lower quintile was defined as children with ‘bad 
lung function’.

Assessment of exposures. Assessment of environmental exposures by 
questionnaires covered pregnancy and the first year of life and included 
information from premature births (less than 37 weeks of gestation) and infants 
with low birth weight (<2,500 g), as well as variables for birth weight and 
gestational age dichotomized at the median, APGAR score at 5 min and delivery 
mode, including natural vaginal birth, vaginal birth with forceps, vacuum 
extraction or Cesarean section. Data on treatment with systemic antibiotics were 
available for the first 2 months and the first year beyond 2 months; maternal 
treatment with antibiotics during the first 2 months of lactation was also 
considered.

Breastfeeding was defined as any breastfeeding until 2 months of age or current 
breastfeeding at month 2. Duration of breastfeeding was dichotomized at various 
cutoff levels from 2 to 12 months. Food diversity was defined as the introduction 
of five of six main food items (vegetables or fruits, cereals, meat, bread, yogurt 
and cake) within the first year as previously described55. In a sensitivity analysis, 
we explored an extended list of 15 food items (main food items with the addition 
of eggs, fish, nuts, soy, margarine, chocolate, other milk products, cow’s milk 
and butter), which were dichotomized into at least 11 items. Furthermore, the 
children’s diet was assessed with respect to the kind of supplemental food and its 
introduction in terms of at least weekly consumption56. Farm milk consumption 
was defined as the weekly consumption of any milk obtained directly from a farm, 
irrespective of boiling or skimming.

Farm exposure was assessed as growing up on a farm or more specifically 
by regular contact with hay or visits to animal sheds, including sheds with 
bigger animals such as cows, poultry sheds or barns. As further environmental 
determinants, we assessed the number of siblings (at least two siblings) and 
presence of pets (cats or dogs) in each time period, smoking during pregnancy 
and environmental smoke exposure, defined as at least one cigarette smoked at 
home per day by any person. In addition, information on parental history of atopy, 
which is a combination of asthma, hay fever and atopic eczema, or asthma alone 
(maternal, paternal or both) and degree of parental education (at least completion 
of secondary school) were included.

DNA extraction from fecal samples. Fecal samples were frozen within 10 min of 
collection and stored at −20 °C until further processing. At a central laboratory 
(THL Kuopio), DNA was extracted from the fecal samples in batches as follows. 
Partially defrosted fecal samples were homogenized using a Stomacher 80 
microBiomaster laboratory paddle blender (Seward; 2 min at high speed). DNA 
was extracted from 150 mg of ice-cold homogenized fecal samples, using a 
bead-beating method with a fecal DNA Miniprep kit (D6010, Zymo Research) 
according to the manufacturer’s instructions. The bead-beating step was performed 
with a FastPrep FP120 homogenizer (2 min at full speed, 6.5 m s−1). Finally, the 
samples were eluted with 100 µl of elution buffer D3004-4-10 (Zymo Research). 
The samples for extraction were kept on ice throughout the entire procedure.  
The extracted DNA was immediately frozen at −20 °C and stored at −80 °C.

Sequencing analyses. Amplification and sequencing of fecal samples were 
performed as described previously for bacterial and fungal communities57.

Primers F515 (5′-NNNNNNNNGTGTGCCAGCMGCCGCGGTAA-3′) and 
R806 (5′-GGACTACHVGGGTWTCTAAT-3′)58 were used to amplify the V4 
region of the 16S rRNA gene. The forward primers had unique 8-bp barcodes 
(indicated by ‘N’) and a 2-bp linker sequence at the 5′ end. PCR reactions 
contained DNA template, 1× GoTaq Green Master Mix (Promega), 1 mM MgCl2 
and 2 pmol of each primer. Samples were amplified in triplicate PCR reactions. 
Conditions consisted of an initial step at 94 °C for 3 min, followed by 25 cycles  
of 94 °C for 45 s, 50 °C for 60 s and 72 °C for 90 s and a final extension at  
72 °C for 10 min.

Primers BITS (5′-NNNNNNNNCTACCTGCGGARGGATCA-3′) and B58S3 
(5′-GAGATCCRTTGYTRAAAGTT-3′) were used to amplify the fungal ITS 
region 1 (ref. 59). Again, the forward primers had unique 8-bp barcodes and a linker 
sequence 




(bold portion) at the 5′ end. PCR reactions contained DNA template, 

1× GoTaq Green Master Mix (Promega), 1 mM MgCl2 and 2 pmol of each primer. 
Reaction conditions consisted of an initial step at 95 °C for 2 min, followed by  
40 cycles of 95 °C for 30 s, 55 °C for 30 s and 72 °C for 60 s and a final extension at 
72 °C for 5 min.

Amplicons were run on a 0.8% agarose gel to verify amplification by gel 
electrophoresis. Bacterial and fungal amplicons were combined into two separately 
pooled samples, purified using the QIAquick spin kit (Qiagen) and submitted 
to the DNA Technologies Core at the University of California Davis Genome 
Center for Illumina paired-end library preparation, cluster generation and 250-bp 
paired-end sequencing on an Illumina MiSeq instrument in separate runs.

Raw sequencing data from each run were demultiplexed using Sabre60. 
Demultiplexed data were imported into QIIME2-2018.6 (ref. 61) and quality 
trimmed. Reads were denoised using DADA2 (ref. 62) as implemented in 
QIIME2. Taxonomy was assigned to representative sequences using a naive 
Bayes classifier63,64 pre-built from the 99% Greengenes database65 specific to the 
515F–806R region for bacterial data. For fungal sequences, a classifier was built 
from the UNITE dynamic database for taxonomic assignment66. For fungal data, 
no tree was created because there is currently no valid taxonomy available with 
respect to ITS sequences.

Combining sequences from 2 and 12 months together, 5,915 ASVs were 
retrieved from 16S rRNA sequences, after the exclusion of chloroplasts. For ITS, 
54,459 ASVs were retrieved when restricted to fungi. Analyses are reported on the 
genus level. If genera were not identified, we used the name of the lowest identified 
level. If information was only available on the kingdom level, we designated the 
taxon as ‘completely unidentified’. Samples with <1,000 reads were removed.

Genetics. Genotyping for 939 children with available DNA samples in the 
PASTURE study was performed at the Centre National de Génotypage, Evry, 
France, using iPLEX Gold technology and a matrix-assisted laser desorption/
ionization–time-of-flight (MALDI–TOF) mass spectrometry system from 
Sequenom67. Technical errors were minimized by comparing genotypic frequencies 
with the expected allelic population equilibrium based on the Hardy–Weinberg 
equilibrium test. cDNA was amplified in duplicate using an iCycler (Bio-Rad 
Laboratories) and 18S as a reference gene. Quality checks were passed by samples 
from 896 children (95%). Of these, 512 children were included in the present 16S 
rRNA analysis.

Selection of single-nucleotide polymorphisms (SNPs) was based on previous 
reports and included polymorphisms at the chromosome 17q21 childhood-onset 
asthma-risk locus68–70. Specifically, SNPs rs8076131, associated with the ORMDL3 
gene, and rs2290400 and rs7216389, associated with the GSDMB gene, at this locus 
were found to interact with environmental tobacco smoking71 and viral infections72 
for childhood asthma. SNP rs8076131 was selected for the current analysis because 
it has been described in the context of functional regulation73.

SCFAs. Metabolite levels of SCFAs were measured in fecal samples obtained from 
301 children in the PASTURE study at the age of 12 months32. Fecal samples 
were processed as previously described74. Briefly, 1 ml of 0.15 mM H2SO4 was 
added to 0.3 g feces to generate a fecal suspension. After rigorous vortexing, the 
samples were centrifuged twice (14,000g for 30 min) and sequentially filtered 
through a 0.45-µm Millex-HA filter and a 0.2-µm Millex-LG filter (Merck). The 
resultant fecal homogenates were analyzed by HPLC (Merck Hitachi) using a 

Q18

NATURE MEDiCiNE | www.nature.com/naturemedicine

https://www.ers-education.org/guidelines/global-lung-function-initiative/spirometry-tools.aspx
https://www.ers-education.org/guidelines/global-lung-function-initiative/spirometry-tools.aspx
https://www.ncbi.nlm.nih.gov/snp/?term=rs8076131
https://www.ncbi.nlm.nih.gov/snp/?term=rs2290400
https://www.ncbi.nlm.nih.gov/snp/?term=rs7216389
https://www.ncbi.nlm.nih.gov/snp/?term=rs8076131
http://www.nature.com/naturemedicine


A B

DispatchDate:  05.10.2020  · ProofNo: 1095, p.12

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

Articles Nature MediciNe

Rezex ROA-Organic Acid H+ ion exchange column together with a SecurityGuard 
Cartidges, Carbo-H from Phenomenex at a flow 




rate of 0.4 ml at 40 °C with 10 mM 

H2SO4 as the eluent. The samples were quantified in relation to standards75. Of 
the 301 children, 209 (69%) were included in the present 16S rRNA analysis 
(Supplementary Fig. 1).

Relative abundance of the butyryl–CoA:acetate–CoA-transferase gene. Relative 
abundance of the butyryl–CoA:acetate–CoA-transferase gene was measured in 
a nested 1:2 case–control sample of 51 children with asthma and 106 healthy 
individuals with available fecal samples at 12 months of age. 




qPCR primers and 

annealing temperatures used for samples with total bacteria (primers UniF and 
UniR, 0.5 µM final concentration) and the butyryl–CoA:acetate–CoA-transferase 
gene (primers BCoATscrF and BCoATscrR, 2.5 µM final concentration) are 
described in Ramirez-Farias et al.76. Equipment and reagents for qPCR are 
described in Reichardt et al.35. DNA samples were used without further dilution, 
unless their concentration (determined with a Qubit dsDNA HS assay kit, 
Thermo Fisher Scientific) exceeded 4 ng µl−1 in the qPCR assay. 




The data are 

expressed as a percent of butyryl–CoA:acetate–CoA-transferase gene copies 
normalized to total bacterial 16S rRNA gene copies, as described in Ramirez-Farias 
et al.76. Measurement of the relative abundance of the butyryl–CoA:acetate–
CoA-transferase gene was performed in duplicate, and measurements were 
considered valid if the standard deviation was below 0.4. This was necessary to 
eliminate technical artifacts, such as air bubbles, that could interfere with the 
optical fluorescence reading. Of all 157 children who were selected for the case–
control study, valid results were obtained in 138 individuals (88%). Data were 
stored in Excel.

Statistical analysis. Statistical analysis was performed with R versions 3.4.3 and 
3.6.1 (https://www.r-project.org/), particularly with the phyloseq package, and 
Mplus77. Upon request, 




computer code will be made available to readers.

Relative abundance was used to describe the taxonomic distribution of bacteria 
and fungi. Rare taxa were defined as having a relative abundance below 0.5% in 
each population and were subsumed in a category termed ‘rare’. For logarithmic 
presentations, values were transformed by decadic logarithm, in which necessary 
zero values were replaced by the lowest measured value. All statistical tests were 
two sided, and an effective P value <0.05 was considered statistically significant.

Dirichlet clustering. Dirichlet multinomial mixtures (DMM) modeling was 
performed with the R package DirichletMultinomial. We clustered the samples 
over both time points and, as a sensitivity analysis, separately for both time points. 
DMM bins samples on the basis of microbial community structure78. The number 
of clusters was determined by a local minimum of a Laplace approximation score, 
that is, five clusters over both time points and three clusters for the separate 
models. Transitions between clusters were illustrated with the R package Gmisc.

Random forests. 



Random forest regression was performed with the R package 

ranger to model sampling age based on the relative abundance of bacterial or 
fungal genera present at 2 and 12 months in a subsample of 133 (for fungi, 35) 
healthy individuals, that is, children without asthma, who never wheezed or had 
diarrhea during the first year. The models were estimated using 2,000 trees and 
a ceiling of the square root of the number of selected variables per level. The 
resulting prediction model, mainly defined by alterations in relative abundance of 
all genera, was subsequently applied to the entire population, using the ‘predict’ 
function of ranger. These estimates were used as a proxy for bacterial or fungal 
maturation and subsequently called EMA or EFA. To confirm that results were 
independent of the training sets, we performed sensitivity analyses by restricting 
the models to children who were not included in model building. Taxa were ranked 
by their variable importance in random forest models for EMA and EFA, which 
discriminate best between the two measurement time points.

A similar approach was used to estimate SCFA scores for butyrate, propionate 
and acetate. SCFA levels were modeled by the relative abundance of bacterial 
genera in children with available SCFA measurements. These prediction models 
were applied to predict SCFA production scores in the entire population. Taxa 
were ranked by their variable importance for SCFA production in random forest 
models. The number of randomly picked variables was optimized by tenfold 
cross-validation. As a member of the out-of-bag methods, random forest modeling 
has an advantage over classical cross-validation in that it yields an unbiased 
error estimate, that is, high validity79. As random forest modeling integrates 
all information on microbial taxa in a single model, no correction for multiple 
comparisons was necessary. Besides continuous variables, the EMA as well as the 
butyrate score was also dichotomized at the lowest quartile in subsamples to give 
an estimate for a threshold phenomenon.

Microbial diversity and composition. Samples were rarefied at the minimum 
sequence numbers in the available biosamples, that is, 1,029 16S rRNA sequences 
and 1,000 ITS sequences. Rarefaction and calculation of species richness and 
Shannon diversity index was iterated 1,000 times, and the resulting measures 
of α-diversity were subsequently averaged. An independent rarefying step 
was performed only for month 12 samples to analyze the presence or absence 

Q19

Q20

Q21

Q22

Q23

of specific ASVs. For the assessment of bacterial composition, the R package 
composition was used to perform a centered-log ratio (clr) transformation, after 
adding a pseudocount of 0.5 to abundance values. This approach, developed by 



Aitchison, was shown to be essential in microbiome analyses80. The clr-transformed 
abundance values were used in PCA for assessing β-diversity. In addition, 
β-diversity was assessed by PCoA on the ASV level, using unweighted UniFrac 
as a distance measure, calculated by the R package GUniFrac. Samples taken at 2 
and 12 months were evaluated separately by PCA and PCoA. In addition, PCoA 
was also applied in a sensitivity analysis combining all samples from both time 
points. Associations of indices of maturation, butyrate production or microbial 
composition (as determined by PCA) with asthma or determinants were based on 
regression models, in which the microbial variables were usually z standardized to 
render them comparable against each other. All analyses were adjusted for center. 
Models adjusted only for center were termed ‘simple models’, whereas the term 
‘mutually adjusted models’ refers to models in which two exposures were compared 
and forced in the same model. Interaction was analyzed by including a product 
term in the regression models.

Confirmatory analyses for the associations of EMA with growing up on a farm 
or asthma were replicated across study centers and assessed by a meta-analysis with 
fixed effects (R package rmeta).

To compare direct and indirect effects, mediation models were calculated 
in Mplus77 and validated with the R package mediation. The mediated effect is 
reported as the proportion of the estimated indirect effect to the total effect.

To test for associations of single taxa with asthma, we first tested for differences 
in relative abundance by the Wilcoxon test; main associations (P < 0.1) were 
then confirmed in the clr-transformed variables with logistic regression models. 
These models were initially adjusted only for center, or additionally for EMA, to 
determine single-taxon effects that were independent of the general maturation 
process. Single taxa were assessed in an exploratory approach; therefore, 
adjustment for multiple comparisons was not performed. All statistical tests were 
two sided.

Box-and-whisker plots were used as follows: lower and upper hinges denote the 
first and third quartiles, respectively; the bold central line represents the median; 
the whiskers extend to the most extreme data point within a distance of 1.5 times 
the interquartile range from the hinges; extreme values lie beyond the whiskers 
and are marked by circles. Forest plots give point estimates with 95% confidence 
intervals.

Spearman coefficient was used to calculate any kind of correlation between 
different measures, except for network analyses.

Network analyses. Correlations between pairs of bacterial genera were estimated 
using the strength of sparse correlations for compositional data (SparCC) 
approach81. The corresponding correlation network was visualized using the R 
package qgraph. In the network plot, only correlations with an absolute value ≥0.2 
are shown. For readability, nodes without any connections were removed. Node 
sizes were scaled on the eigenvector centrality measure, which was determined via 
the ‘eigen_centrality’ function from the R package igraph.

Hubs were defined as nodes with an eigenvector centrality value greater than 
the 99th percentile of all eigenvector centrality values in the network. Groups 
of highly connected nodes, also called clusters or modules, were identified via 
the ‘cluster_fast_greedy’ igraph function, which is a fast greedy algorithm for 
determining clusters by maximizing the modularity measure over all possible 
clusterings82.




To relate the composition of the network modules to EMA and the butyrate 

score, we used an approach similar to the eigengene analysis83, that is, we used 
the first eigenvector of a PCA with the clr-transformed taxa passing the threshold 
criteria to build the network plots representing each module.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
Taxonomy was assigned using the Greengenes database (http://greengenes.lbl.
gov) for 16S rRNA sequences and the UNITE dynamic database (https://unite.
ut.ee/) for ITS sequences. All 16S rRNA and ITS sequences are deposited in the 
Supplementary Information without metadata. PASTURE is an ongoing birth 
cohort with fieldwork still being executed. As long as the study is not anonymized, 
European data protection legislation prohibits sharing of individual data, even 
when pseudonymized. Upon request, the authors will share aggregate data that do 
not allow identification of individuals.
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Extended Data Fig. 1 | Participant flow. The current microbiome analysis population (n = 720) was selected based on available microbiome data at 
month 12. The French arm was not included because by design microbiome samples were not taken at month 2. The children with samples available at 
month 2 and 12 (n = 618) were quite equally distributed over the centers (Austria N = 139; Switzerland N = 205; Germany N = 136; Finland N = 138). For 
n = 102 children only 12 months samples were available. Subsamples are colored in red, blue, and white according to asthma status (yes, no, not available, 
respectively). The different subsamples colored in grey represent the basis of the respective figures of the main manuscript as indicated*. Samples with 
fungi data are a subsample of the 618 samples with bacteria, and only children with ITS samples at both time points available were analyzed**. Healthy 
controls were defined by no diarrhea between 2 and 12 months and no asthma / wheeze anytime; individuals with missing or implausible values for 
sampling time point were excluded (5 for bacteria, 1 for fungi)***. Butyryl-CoA:acetate CoA-transferase gene assay failed in 19 of the 157 samples (12%) for 
technical reasons.
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Extended Data Fig. 2 | Sensitivity analysis on the effect of estimated microbiome age (EMA). a, Scatter plot of the first two axes of a principal coordinate 
analysis (PCoA) over both time points on ASV (amplicon sequence variants) levels. The values in brackets represent percentage of variance explained 
corrected by negative eigenvalues. b, Scatterplot of the first PCoA-axis against EMA. c,d, Associations of asthma phenotypes with EMA restricted to 
individuals not included when establishing the prediction model (n = 480 children), that is the 618 children with measurements at both time points minus 
the 138 healthy individuals. EMA is used as z-standardized continuous variable (c) and dichotomized at the lowest quartile (d).
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Extended Data Fig. 3 | Principal components analysis for microbial composition at 2 and 12 months and estimated microbiome age (EMA). a, 
Associations of asthma phenotypes with the first five axes of a principle component analysis (PCA) at month 2. b, Correlation of the asthma-protective 
PCA-axis 3 at month 2 (7% variance explained) with single genera. c, Associations of asthma phenotypes with PCA-axes at month 12. d, Correlation 
of the asthma-protective PCA-axis 1 at month 12 (14% variance explained) with single genera. e–g, Mutually adjusted associations of EMA and the 
asthma-protective axes at both time points with asthma (e), atopic asthma (f), and non-atopic asthma (g).
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Extended Data Fig. 4 | Association of principle coordinate axes with asthma phenotypes and bacterial genera. Associations of asthma phenotypes of 
the first five axes of a principle coordinate analysis (PCoA) at month 2 a, and 12 c, using unweighted UniFrac as distance measure. Spearman correlations 
of the 10 most positively and 10 most negatively correlated individual genera with the asthma-protective PCoA-axes at month 2 b, and 12 d. Mutually 
adjusted models for EMA and the asthma-protective PCoA-axes at month 2 and 12 for asthma e, atopic asthma f, and nonatopic asthma g. Associations 
are shown as odds ratios for the z-standardized variables.
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Extended Data Fig. 5 | Correlation of estimated microbiome age (EMA) with asthma-protective axes and richness. Relationship between EMA (x-axis) 
and various microbial measures (y-axis) including asthma-protective PCA- a, and PCoA-axes b, and bacterial richness c. The left column relates to 2 
months, the right column to 12 months. As correlation coefficient Spearman’s rho is given.
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Extended Data Fig. 6 | Association of duration of breastfeeding with estimated microbiome age (EMA). Beta estimates of linear regression model of 
EMA versus duration of breastfeeding dichotomized at the indicated time points.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Acetate score and propionate score in the case-control sample. The upper panels a, refer to propionate, the lower panels b, to 
acetate. The left column gives proportion of asthma cases within quartiles of the respective short-chain fatty acid (SCFA) variables. The right column gives 
odds ratios with 95%-confidence intervals for the associations of asthma phenotypes with the respective dichotomous SCFA variables (upper quartiles 
versus lowest quartile). Propionate and acetate level designate measured SCFA levels, whereas the estimated scores refer to the prediction models of 
measured SCFA levels by the microbial composition.

NATURE MEDiCiNE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


A B

DispatchDate:  05.10.2020  · ProofNo: 1095, p.22

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

Articles Nature MediciNe

Extended Data Fig. 8 | The gut mycobiome and estimated fungal age (EFA). a, Log-scaled box and whiskers plots of relative abundance of most common 
fungal taxa at month 2 and month 12 in 189 children. Lower and upper hinges of the boxes denote the first and third quartiles, respectively; the bold central 
line represents the median; the whiskers extend to the most extreme data point within 1.5 times the interquartile range from the hinges; extreme values lie 
beyond the whiskers and are marked by circles. Missing boxes indicate relative abundance < 0.5% at the respective time point. ‘(F)’, ‘(O)’, or ‘(P)’ stand for 
unclassified genera of the respective fungal family, order or phylum. b, Chronological age, that is the exact sampling time point in months plotted against 
estimated fungal age (EFA) illustrates that all chronologic information is largely removed from EFA. The density plot included in panel b reveals a skewed 
distribution of EFA. c, Fungal taxa most importantly predicting fungal age in the 35 healthy individuals. d, Determinants of EFA in the population with ITS 
data. Odds ratios are given with 95%-confidence intervals. Listed are determinants with p-values <0.01 in bivariate analyses; only consumption of any 
bread (marked in red) remains in a multivariable model. e, Associations of asthma phenotypes with EFA.
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Extended Data Fig. 9 | Association of asthma phenotypes with microbial measures. Asthma was defined as a doctor’s diagnosis of asthma or recurrent 
obstructive bronchitis. Asthma after 3 years was defined as a doctor’s diagnosis of asthma or recurrent obstructive bronchitis after the age of 3 years. The 
atopic and nonatopic phenotypes of asthma were defined by presence or absence of concomitant sensitization to inhalant allergens with specific IgE ≥ 
0.7 IU/ml at age 6 years. Wheeze phenotypes were defined by a latent class analysis as previously performed14. Transient and intermediate wheeze were 
milder forms with better lung function and less medication. Persis-tent wheeze was related to genetic risk encoded on chromosome 17q21 and displayed 
reduced lung function. Lateonset wheeze was particularly associated with atopic sensitization and fraction of exhaled nitric oxide. Seasonal IgE was 
defined as at least one specific IgE to alder, birch, hazel, grass pollen, rye, mugwort, plantain, or alternaria ≥ 0.7 IU/ml at age 6 years. Perennial IgE (D. 
pteronyssinus, D. farinae, cat, horse, or dog) and food IgE (hen’s egg, cow’s milk, peanut, hazelnut, carrot or wheat flour) were defined in analogy.
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Extended Data Fig. 10 | Distribution of the microbial variables over the study centers. PCA=principal component analysis, EMA=estimated microbiome 
age, EFA=estimated fungal age; p-values are derived from two-sided Kruskal-Wallis tests. The analyses were performed in all 618 individuals with data 
available for the respective measures, except for EFA, where data was available only in 189 individuals. Lower and upper hinges of the boxes denote the 
first and third quartiles, respectively; the bold central line represents the median; the whiskers extend to the most extreme data point within 1.5 times the 
interquartile range from the hinges; extreme values lie beyond the whiskers and are marked by circles.
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