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Summary

 Nutrient imbalances cause the deterioration of tree health in European forests, but the 

underlying physiological mechanisms are unknown. Here, we investigated the 

consequences of decreasing root carbohydrate reserves for phosphorus (P) mobilization 

and uptake by forest trees.

 In P-rich and P-poor beech (Fagus sylvatica) forests, naturally grown, young trees were 

girdled and used to determine root, ectomycorrhizal and microbial activities related to P 

mobilization in the organic layer and mineral topsoil in comparison with those in non-

girdled trees.

 After girdling, root carbohydrate reserves decreased. Root phosphoenolpyruvate 

carboxylase activities linking carbon and P metabolism increased. Root and 

ectomycorrhizal phosphatase activities and the abundances of bacterial genes catalysing 

major steps in P turnover increased, but soil enzymes involved in P mobilization were 

unaffected. The physiological responses to girdling were stronger in P-poor than in P-rich 

forests. P uptake was decreased after girdling. The soluble and total P concentrations in 

roots were stable, but fine root biomass declined after girdling.

 Our results support that carbohydrate depletion results in reduced P uptake, enhanced 

internal P remobilization and root biomass trade-off to compensate for the P shortage. 

Since reductions in root biomass render trees more susceptible to drought, our results link 

tree deterioration with disturbances in the P supply as a consequence of decreased 

belowground carbohydrate allocation.

Key Words: European beech, carbohydrates, ectomycorrhiza, microbes, phosphorus deprivation, 

phosphatase, tree nutrition
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Introduction

Large-scale surveys across the European continent detected declining forest productivity and 

deterioration of tree mineral nutrition in the past two decades (Wardle, 2004; Ilg et al., 2009; 

Trichet et al., 2009; Jonard et al., 2015; Talkner et al., 2015). Changes in tree nutrition were 

particularly pronounced for phosphorus (P) (Duquesnay et al., 2000; Ilg et al., 2009; Talkner et al, 

2015). At the ecosystem level, increasing constraints on forest P nutrition have been related to 

anthropogenic pollution and climate change (Duquesnay et al., 2000; Prietzel & Stetter, 2010; 

Lang et al., 2016; Augusto et al., 2017), via low P mineralization and mobility in dry soil 

(Schachtman et al., 1998; Schimel et al., 2007; Kreuzwieser & Gessler, 2010), soil acidification, 

and N deposition (Vitousek & Howarth, 1991; Penuelas et al., 2013). However, the physiological 

processes that regulate tree P supply along the soil-root continuum of forest trees are not fully 

understood.

In forest soil, bioavailable P (inorganic P, Pi) is scarce because Pi has low solubility, is bound by 

soil minerals and is replenished slowly from recalcitrant P pools (Holford, 1997). P mobilization 

can be achieved by ion exchange and by the recycling of organically bound P (Lambers et al., 

2015; Lang et al., 2017). Common physiological mechanisms used to increase P bioavailability 

are the exudation of organic acids and extracellular acid phosphatases by plant roots, root-

associated mycorrhizal fungi, and soil microbes (Kandeler, 1990; Schneider et al., 2001; Uroz et 

al., 2007; Kluber et al., 2010; Nannipieri et al., 2011; Pritsch & Garbaye, 2011; Spohn et al., 

2013).

Trees engage two processes to cope with P shortage: they enhance soil P mobilization and 

uptake capacity (Desai et al., 2014; Kavka & Polle, 2016), and they tighten internal P cycling by 

growth adjustment and internal P mobilization (Netzer et al., 2018; Zavišić & Polle, 2018). At the 

molecular level, P deprivation results in the increased expression of P-related enzymes and of 

enzymes involved in carbohydrate and energy metabolism (Misson et al., 2004; Misson et al., 

2005; Gan et al., 2016; Kavka & Polle, 2017; Png et al., 2017). The enzyme PEPC 

(phosphoenolpyruvate carboxylase) is a hub for P and carbon metabolism, catalysing the release 

of P and the production of oxaloacetate from phosphoenolpyruvate and bicarbonate (López-

Arredondo et al., 2014). Oxaloacetate is the precursor of malate, a main compound in root 

exudates used for P mobilization (Richardson et al., 2011; Meier et al., 2020). PEPC activity is 

strongly induced by P starvation (Peñaloza et al., 2004; Shane et al., 2013), thereby driving 

internal P recycling and the production of organic acids.
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The activities of soil microbes, which are key to nutrient mobilization for plants (Bucher, 2007; 

Jacoby et al., 2017; Bargaz et al., 2018; Nehls & Plassard, 2018), crucially depend on their 

supply of photoassimilates via root exudates (Heinonsalo et al., 2004; Cairney, 2011; Becquer et 

al., 2014; Johri et al., 2015; Kaiser et al., 2015; Nehls & Plassard, 2018). A shortage of labile 

carbon in the soil caused by the girdling of trees, for example, results in decreased soil 

respiration, the altered composition of mycorrhizal and microbial communities, and changed soil 

enzyme activities (Heinonsalo et al., 2004; Pena et al., 2010; Kaiser et al., 2015). In contrast, 

enhanced carbon availability after the addition of glucose to soil increases microbial phosphatase 

activities (Högberg et al., 2003; Spohn et al., 2013). Despite the tight links between the 

belowground allocation of plant assimilates and the activities of soil microbiota, on the one hand, 

and the importance of microbes for P mobilization, on the other hand, it is unknown whether the P 

acquisition abilities of trees depend on their carbohydrate resources. Since ectomycorrhizal fungi 

are crucial to the plant P supply (Lambers et al., 2008; Nehls & Plassard, 2018) and thrive on 

plant-derived carbohydrates, we expected to observe a relationship between carbohydrate 

availability and P nutrition.

Here, we investigated whether plant carbohydrate resources are important for P nutrition in 

temperate beech (Fagus sylvatica) forests. We interrupted the belowground allocation of 

photoassimilates by girdling. By comparing the processes in non-girdled controls and girdled 

trees, we disentangled the effects of belowground plant-derived carbohydrates on P uptake, P 

concentrations and enzyme activities related to P mobilization in roots, ectomycorrhizas and soil 

as well as the abundance of bacterial functional genes important for P cycling. Root soil 

exploration as well as microbial and mycorrhizal activities are vertically stratified, with strong 

differences between P-rich and P-poor forest ecosystems (e.g., lower root biomass and lower 

ectomycorrhizal activities in the organic layer than in the mineral layer in P-rich forests compared 

with those in P-poor forests, Jonard et al., 2009; Zavišić et al., 2016; Lang et al., 2017; Clausing 

& Polle, 2020). Furthermore, young beech trees growing in P-poor forest soils show lower 

photosynthesis rates than those growing in P-rich forest soils (Yang et al., 2016). Therefore, we 

expected stronger negative effects of carbon starvation on root metabolism and associated soil 

processes in P-poor than in P-rich soil. Here, we studied the consequences of carbon starvation 

on P metabolism and root biomass in the forest floor and in the mineral topsoil in two well-

characterized forest ecosystems that differ strongly in P stocks (Lang et al. 2017). We addressed 

the following specific hypotheses. (i) Carbohydrate depletion leads to a decrease in root P 

concentrations and an increase in the enzyme activities required for internal P mobilization in 

roots (PEPC, phosphatase) as well as for P mobilization from soil (mycorrhizal phosphatases). (ii) A
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Since soil microbes are not directly reliant on root carbohydrates (Kaiser et al., 2010), microbial 

phosphatases are unaffected by girdling. (iii) The consequences of root carbon starvation on P 

nutrition are stronger in soils with low P availabilities than in soils with high P availabilities 

because the mobilization of scarce P requires higher resource investment than that of sufficient 

P.

Materials and Methods
Site characteristics and study plots
The study was conducted in two beech (F. sylvatica L.) forests, both stocking on silicate rock but 

differing in total P stocks (160 and 900 g P m-2 in P-poor and P-rich forests, respectively, down to 

1 m soil depth). The P-rich (HP) site Bad Brückenau (BBR) is located in the biosphere reserve 

‘Bayerische Rhön’ (50°21'7.2"N 9°55'44.5"E, 801 to 850m a.s.l.). The mean long-term sum of 

annual precipitation is 950mm, and the long-term mean annual temperature (1981-2010) is 6.1°C. 

The average tree age at this beech stand is 137 years (LWF 2016). The soil is a Dystric Skeletic 

Cambisol (Hyperhumic, Loamic) (WRB 2015) derived from basalt. The P-poor (LP) forest site is 

situated in the district Celle in Lower Saxony (52°50'21.7"N 10°1.6'2.3"E, 115 m a.s.l.) and is 

stocked with approximately 120-year-old beech trees (BMEL 2016). The mean annual 

temperature (1981-2010) at this site is 8.6°C, and the mean annual sum of precipitation is 899mm 

(BMEL 2016). The soil is a Hyperdystric Folic Cambisol (Areni, Loamic, Nechic, Protospodic) 

derived from sandy till substrate. Further details are reported by Lang et al. (2017).

For this study, three girdling plots were installed in the HP and four in the LP forest (HP: 

12.05.2017, LP: 05.05.2017) in gaps with a minimum distance of 5 m between large trees. Each 

plot had an area of 4 m² and was separated from the surrounding soil by a 0.25-m-deep trench to 

prevent the roots of the mature beech trees from affecting the study. Each plot was divided into 

two equally-sized subplots by inserting a lawn edge into the soil. The understory was removed. 

The HP plots contained 0.9 mg Ptot g-1 dry mass in both the organic layer and the mineral topsoil 

and had pH values ranging from 3.9 to 4.3 (Table 1). The LP plots contained 0.2 mg and 0.02 mg 

Ptot g-1 dry mass in the organic layer and mineral topsoil, respectively, and had pH values ranging 

from 3.3 to 3.5 (Table 1). Additional information on soil and plant nutrient concentrations is 

provided in Supplemental Table S1.

The young, naturally regenerated beech trees stocking on the plots had an average height of 2 m 

and an average diameter of 24 mm in HP and a height of approximately 4 m and a diameter of 16 

mm in LP. The mean number of trees per plot ranged from 15 to 25. In July 2017, all trees on one A
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half of the plots were girdled by removal of a 20-mm-wide strip of bark at a height of 0.4 m from 

the ground (HP: 18.07, LP: 17.07). The other half of each plot was used as an untreated control.

Harvest and processing of soil cores
In each subplot, 8 soil cores (diameter 55 mm, depth 0.21 m) were sampled one week (HP: 

25.07.2017, LP: 24.07.2017) and eight weeks (HP: 27.09.2017, LP: 20.09.2017) after girdling. A 

schematic overview on the sampling procedure is provided in Supplemental Fig. S1. The soil 

cores were separated into organic and mineral topsoil layers. The average depth of the organic 

layer was 60 mm in the LP and 30 mm in the HP forest. Each sample was further fractionated into 

bulk soil, rhizosphere soil, fine roots (<2 mm) and coarse roots (>2 mm) in the field. We defined 

rhizosphere soil as soil adhering to roots. The rhizosphere soil was collected by streaking the 

adhering soil from the roots with a paintbrush. All fractions were immediately weighed. Bulk soil, 

rhizosphere soil and roots were divided into three aliquots directly in the field: a fresh aliquot that 

was kept cool at 4°C until use, an aliquot that was immediately frozen in liquid nitrogen and 

stored at -80°C (roots) or -20°C (soil), and an aliquot that was dried (40°C, 14 days). Bulk soil 

was sieved (mesh width: 4 mm) before the aliquots were prepared.

Ectomycorrhizal (EMF) morphotyping, species identification, and extracellular 
phosphatase activities
The beech roots were gently washed using 4°C precooled tap water, spread in water in a glass 

dish, and examined under a stereomicroscope (Leica M205 FA, Wetzlar, Germany). The root tips 

were classified as either vital EMF, vital nonmycorrhizal or dead root tips. 

The EMF root tips were categorized into morphotypes using the identification keys of Agerer 

(1987-2012). We collected the morphotypes, which were present on at least three root tips per 

sample. Mycorrhizal species identities were determined after DNA extraction and ITS sequencing 

(Pena et al. 2017). The sequences were analysed with the Staden package 

(http://staden.sourceforge.net), BLASTed against the NCBI GenBank (www.ncbi.nlm.nih.gov) and 

UNITE (unite.ut.ee) databases and deposited in the NCBI GenBank MN970515 to MN970525 
(Supplemental Fig. S2). Species richness, Shannon index, and evenness were determined with 

PAST 4.03 (https://folk.uio.no/ohammer/past/) (Hammer et al., 2001).

Individual EMF root tips, each assigned to a morphotype, were collected, and the extracellular 

acid phosphatase (EC 3.1.3.2) activity was determined with fluorescent 4-methylumbelliferone 

(MUF) phosphate at pH 4.5 using a high-throughput microplate fluorometric assay (Pritsch et al. 

2011). Afterwards, the root tips were scanned, and the activity was related to the tip surface. The 

root tip collection and enzyme activity measurements were performed within 48 h of sampling A
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time. A detailed description of fungal species identification and enzyme activity measurements 

can be found in Supplemental Methods S1.

Quantitative real-time PCR assays of P cycle-related genes in bulk soil
For nucleic acid extraction, a phenol-chloroform-based protocol, modified according to 

Stempfhuber et al. (2017), was used to extract total genomic DNA from 0.5 g frozen bulk soil. The 

extracts were used to determine the abundance of seven bacterial genes that code for enzymes 

catalysing important steps in P turnover, including pitA, a constitutively expressed P transporter, 

pstS, a P transporter involved in the P starvation response, four genes [phoD, phoN, phnX, 

appA], which encode enzymes with phosphatase activities, and gcd, which solubilizes P by the 

oxidation of glucose and aldose sugars (Supplemental Table S2) using the primers described by 

Bergkemper et al. (2016). The genes phoD, phoN, appA and phnX encode extracellular enzymes, 

while the transporters pitA, pstS and gcd are periplasmic. The 16S rRNA gene served as a proxy 

for the overall bacterial biomass (Bach et al., 2002). A detailed description of the methods, 

including the thermal profiles of the PCR, the source of the standard, and the primers used, is 

shown in Supplemental Methods S1.

Enzymatic activities in fine roots, bulk soil and rhizosphere soil
Frozen fine roots were milled and used for the preparation of protein extracts and the analysis of 

potential enzymes (Supplemental Methods S1). Acid phosphatase (EC 3.1.3.2) and 

phosphoenolpyruvate carboxylase (PEPC) (EC 4.1.1.31) activities in root extracts were measured 

spectrophotometrically (Bergmeyer, 2014). A detailed description can be found in Supplemental 

Methods S1.

The rhizosphere and soil enzymes were extracted from fresh soil that had been stored frozen at -

20 °C (Supplemental Methods S1). Enzyme activities in the soil and rhizosphere (using MES 

buffer at pH 6.1 for L-leucine peptidase, α-D-glucosidase, β-D-glucosidase, xylosidase, N-acetyl-

glucosaminidase, acid phosphomonoesterase and phosphodiesterase; MUB buffer at pH 6.1 for 

acid phosphomonoesterase; and MUB buffer at pH 11 for alkaline phosphomonoesterase) were 

determined with fluorescent 4-methylumbelliferone (4-MUF) and L-leucine peptidase with 7-

amino-4-methylcoumarin-linked substrates (Sigma Aldrich, St. Louis, USA) (Marx et al., 2001) in 

soil suspensions (for details, see Supplement Methods S1). The phosphomonoesterases 

activities were determined in both MES buffer at pH 6.1 and MUB buffer at pH 6.1 to account for 

potential differences caused by the buffer system, but no effects were observed. 

Phosphomonoesterases (MES pH 6.1) are, further on, called acid phosphatases.A
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Phenoloxidase and peroxidase activities were determined using 2,2’-azino-bis-(3-

ethylbenzthiazoline-6-sulfonic acid) with MUB buffer at pH 3 in soil and rhizosphere suspensions 

(Floch et al., 2007; Bach et al., 2013). A detailed description can be found in Supplemental 

Methods S1. Using the dry-to-mass ratio of soil, the enzyme activities were expressed on the 

basis of the dry mass.

Total and soluble phosphorus in roots and soil
Dry soil and root samples were milled in a ball mill (Retsch) to a fine powder. For determination of 

total P (Ptot), approximately 50 mg powder was weighed and extracted in 25 ml 65% HNO3 at 

160°C for 12 h (Heinrichs et al. 1986). For the determination of soluble P (Psol), approximately 

100 mg of powder was extracted in 150 ml Bray-1 solution (0.03 N NH4F, 0.025 N HCl) for 60 min 

on a shaker at 180 rpm (Bray & Kurtz, 1945). The extracts were filtered using phosphate-free 

filter paper (MN 280 ¼, Macherey-Nagel, Düren, Germany) and used for elemental analysis by 

inductively coupled plasma–optical emission spectroscopy (ICP-OES) (iCAP 7000 Series ICP–

OES, Thermo Fisher Scientific, Dreieich, Germany) (Clausing & Polle, 2020).

The P stocks in the soils (depth 0.21 m) were determined by multiplying the soil P concentrations 

with the total soil dry mass of the soil cores. The P stocks in the fine roots in the soil cores were 

calculated by multiplying the P root concentrations with the total fine root dry mass in the soil 

cores. To derive P stocks per area, cross sections of the soil cores (0.152 m-2 for 8 soil cores) 

were used.

Microbial phosphorus
For microbial P (Pmic) determination, the soil samples were divided into three subsamples. Two 

subsamples were extracted by hexanol fumigation (with and without spiking with a P standard). 

The third subsample was extracted by deionized water to obtain soluble Pi (Kouno et al., 1995). 

Pmic was obtained by the subtraction of water-soluble Pi and correction for the recovery, as 

described in detail in Supplemental Methods S1.

Carbohydrate concentrations in roots
Frozen fine root powder (described above) was extracted in dimethylsulfoxide 25% HCl 

(80%:20%) and then used for enzymatic carbohydrate analyses (Bergmeyer, 2014), in a 

spectrophotometer at 340nm and 25°C. The analysis is based on the subsequent enzymatic 

conversions of fructose, sucrose and starch into glucose, the concentration of which is 

determined by the formation of NADPH. The details are described in Supplemental Methods S1.A
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Soil pH and water-extractable organic carbon (WEOC)
The pH values were measured by suspending field-moist, sieved soil in 0.01 M CaCl2 (1:5 soil-to-

solution ratio) after 16 h of equilibration (ISO10390, 2005). For the determination of water-

extractable organic carbon (WEOC) field-moist, sieved samples were suspended in deionized 

water (EC <0.06 μS cm−1) at a soil-to-solution ratio of 1:5. After 16 h of equilibration, the 

suspensions were membrane-filtered at 0.45 µm (cellulose-nitrate, Sartorius, Göttingen, 

Germany), and WEOC was measured using a TOC analyser (multi N/C® 2100S, Analytik Jena, 

Jena, Germany).

Microbial biomass by fatty acid determination
Fatty acid methyl esters (FAMEs) were extracted by using the protocol of Frostegård et al. 

(1993). We used the following PLFAs as specific biomarkers for microbial groups: i15:0, a15:0, 

i16:0 and i17:0 for gram-positive bacteria; cy17:0 and cy19:0 for gram-negative bacteria 

(Frostegård et al., 1993); and 18:2ω6,9 for fungi (Frostegård & Bååth, 1996). The sum of these 

markers plus 16:1ω7 was used as a proxy for the total microbial biomass (Frostegård & Bååth, 

1996). A detailed description can be found in Supplemental Methods S1.

Phosphorus uptake of fine roots determined by radioactive labelling
To determine the P uptake of fine roots, a radioactive labelling experiment with H3

33PO4 

(Hartmann Analytic GmbH, Braunschweig, Germany) was conducted under laboratory conditions. 

To test our hypothesis with an independent experiment, we collected 20 young beech trees 

(height: 0.5 m, stem diameter 5 mm, measured 0.1 m above ground) with an intact soil core 

(tube: height: 0.2 m x diameter: 0.12 m) from another beech forest (Billingshäuser Schlucht, 

coordinates: 51°34'43.8"N 9°59'04.8"E, 308 m a.s.l, Göttingen, Germany). The mineral topsoil 

texture consisted of 59% silt, 38% clay and 3% sand (Brumme & Khana, 2009). The average 

pHKCl of the organic layer was 5.16 and that of the mineral topsoil was 5.54, with a P 

concentration of 0.53 mg g-1 in the organic layer and 0.63 mg g-1 in the mineral topsoil (Brumme & 

Khana, 2009). The plants were left in the tubes with intact soil cores and were transported to the 

experimental garden at the University of Goettingen. The plants were acclimated for one month 

under field conditions and watered regularly before the uptake experiments started (Collection: 

13.05.2019, labelling experiments from 13.06.2019 to 25.6.2019). Half of the trees were girdled 

as described above; the other half remained untreated. The trees were used for uptake 

experiments one week after girdling. For this purpose, a beech tree with an intact root system 

was cautiously removed from its pot and washed carefully to rinse off all soil particles. Then, a 

selected root was exposed for 3 h in 2 ml artificial soil solution (after Gessler et al., 2009) A
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containing 1 KBq 33PO4 (Hartmann Analytic GmbH, Braunschweig, Germany). Thereafter, the 

submersed part of the root (exposure part) and the subsequent root segment of approximately 10 

mm (transport part), which was not in contact with the uptake solution, were separately cut off, 

washed with artificial soil solution, dried, combusted, mixed with scintillation cocktail (Rotiszint 

eco plus, Roth, Karlsruhe, Germany), and used to measure the radioactivity of the 33P. A total of 

seven girdled and seven untreated trees were analysed using three fine roots per tree. The 

details of the exposure experiments are described in Supplemental Methods S1.

Statistical analyses
The statistical analyses were performed with R version 3.6.0 (R Core Team 2012). The normal 

distribution and homogeneity of variances were tested by analysing the residuals of the models 

and performing a Shapiro-Wilk test. Data were logarithmically or square-root-transformed where 

necessary to meet the criteria of the normal distribution and homogeneity of variances. Since the 

plots were separated into girdled and non-girdled subplots, we used a paired test to determine 

the girdling effect. The test was conducted with the originally measured data. The graphs show 

response ratios calculated as the means of plotx(girdled) / plotx(non-girdled). To determine the effects of 

the forest type, soil layer, sampling dates, and treatment, linear mixed effect models (´lmer´, R 

package lme4) were used with plot as random factor. Pairwise comparisons of the sample means 

were conducted using Tukey’s HSD (package: ‘multcomp’). Means were considered to be 

significantly different from each other when p ≤ 0.05, and differences with p ≤ 0.1 were 

considered to indicate a trend. Data are shown as the means (HP: n = 3; LP: n = 4) and standard 

errors (±SE), if not indicated otherwise. The function ´anosim´ from the vegan package (Oksanen 

et al., 2019) was used to test differences among the community composition of mycorrhizal fungi 

for the following factors: forest type, treatment, and harvest time point.

Results

Girdling decreases root carbohydrate status and activates PEPC
The non-structural carbohydrate concentrations (determined as sum of starch, glucose, fructose 

and sucrose) in fine roots declined after girdling (Fig. 1). Overall, roots in the organic layer 

already showed significant decreases in carbohydrate concentrations one week after girdling (F = 

48.19, p < 0.001); this decline was particularly strong in the HP forest (Interaction F = 15.99, p = 

0.002, Fig. 1a). The decreases were less pronounced in the mineral layer (F = 4.74, p = 0.064, 

Fig. 1b). Eight weeks after girdling, roots in both soil layers from both the HP and LP forests A
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contained significantly lower carbohydrate concentrations than did the roots of non-girdled trees 

(Fig. 1a, b).

In general, the fine root carbohydrate concentrations were higher in roots from the organic layer 

of the HP than in those from the LP forest (F = 70.20, p < 0.001), whereas no significant 

differences were found between HP and LP roots in the mineral topsoil (F = 0.05, p = 0.822). The 

carbohydrate concentrations were not affected by season (organic layer: F = 3.14, p = 0.088, 

mineral topsoil: F = 0.12, p = 0.730, i.e., sampling one and eight weeks after girdling 

corresponding to summer (July) and early fall (September), respectively) with the exception of the 

mineral layer in the HP forest.

Since girdling showed the strongest effects after eight weeks, we used this time point to test the 

effect of carbon depletion on PEPC activity in roots. We found significant increases in PEPC 

activities in roots of girdled trees compared with control trees in both soil layers and at both study 

sites (means across all site conditions +26 ± 4%, F = 37.36, p < 0.001, Fig. 2).

Girdling stimulates acid phosphatase activities in roots and EM fungi but has a 
moderate impact on microbial P mobilization in soil
To test whether girdling affected P mobilization in beech roots or from soil, we determined the 

intrinsic acid phosphatase activities in fine roots, the extracellular phosphatase activities on the 

mycorrhizal hyphal mantle surfaces and the soil-residing acid phosphatase activities. We also 

determined the gene abundances of P-related enzymes in soil microbes. Since most of these 

variables differed between the HP and LP forests and between different soil layers and time 

points of harvest, we focused on the girdling effects by investigating the response ratios of 

girdled/control treatments (the means of the original data and statistical information can be seen 

in Supplemental Table S3).

After girdling, the response ratios of root phosphatase activities were consistently enhanced at 

the LP site, regardless of soil layer or time point, whereas the HP roots from the organic layer 

showed a strong enhancement only one week after girdling and the HP roots from the mineral 

topsoil showed a moderate enhancement eight weeks after girdling (Fig. 3).

Girdling further caused the strong enhancement of the extracellular phosphatase response ratio 

for ectomycorrhizal root tips in both soil layers in the LP forest (Fig. 3b, d) but not in the HP forest 

(Fig. 3a, c). The ectomycorrhizal colonization of root tips and the community composition of the 

ectomycorrhizal fungi were unaffected by girdling (ANOSIM: R² = 0.418, p > 0.05, Supplemental 

Fig. S2), with the exception of the LP mineral topsoil, where mycorrhizal species richness A
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significantly decreased from an average of 10 to 5 species eight weeks after girdling 

(Supplemental Table S4). The mycorrhizal fungal species composition differed between the HP 

and LP forests (ANOSIM: R² = 0.135 p ≤ 0.05) and between the two harvest time points 

(ANOSIM: R² = 0.988, p < 0.05, Supplemental Fig. S2).

Unlike phosphatases in roots and mycorrhizas, the response ratios of acid phosphatase activities 

in the rhizosphere and bulk soil were unaffected by girdling (Fig. 3). Similarly, acid 

phosphodiesterase (pH 6.1) and alkaline phosphatase activities (monophosphoesterase pH 11) 

did not increase in response to girdling (Supplemental Fig. S3). In agreement with these results, 

no changes in the abundance of genes for microbial P mobilization were detected in the HP 

organic layer or in the mineral topsoil (Fig. 4a, c). Only for gcd and for pitA were late responses to 

girdling in the HP soil observed (Fig. 4a). In contrast to the results of the HP soils, the response 

ratio of gene copy numbers for P transporters and P mineralization of soil microbes (pitA, pstS, 

phoD, phoN, phnX) showed a transient increase one week after girdling in the LP forest (Fig. 4b). 

This response was confined to the organic layer, whereas none of those genes in the mineral soil 

was significantly affected by girdling (Fig. 4d). In general, the HP and LP forest soils differed 

strongly in the abundance of the analysed genes (pitA, pstS, appA, phnX, phoD, phoN, gcd) with 

higher copy numbers in both soil layers (organic layer: F = 58.84, p < 0.001, mineral topsoil: F = 

9.93, p = 0.005) of the HP than the LP forest.

We did not find any significant effects of girdling on PLFA biomarkers for bacterial and fungal 

biomass (Supplemental Fig. S4); but, in agreement with the higher copy numbers for genes 

driving P turnover in HP than in LP soils, the microbial biomass was also higher in HP than LP 

soils (Supplemental Table 3).

We also measured soil enzyme activities involved in carbon or nitrogen mineralization 

(Supplemental Table S5). We found no significant increases in response to girdling 

(Supplemental Fig. S3). However, many of the carbon-related enzymes in the rhizosphere 

(organic layer) showed trends towards increased activities eight weeks after girdling 

(Supplemental Fig. S3e).

P concentrations are stable in roots and soil, while root biomass and P uptake 
decline
Girdling did not affect the P concentrations (Ptot, Psol) in bulk soil, in the rhizosphere or in microbes 

(Pmic) (Table 1). The root P concentrations were also unaffected by girdling, with the exception of 

soluble P in fine roots in the organic layer of the HP forest (Table 1). One week after girdling, an 

approximately two-fold decline occurred (F = 25.26, p = 0.037), but the resulting P concentration A
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was still higher than that of the fine roots in the LP forest (0.18 ± 0.02 mg Psol g-1 dry mass, Table 

1) and recovered after eight weeks.

We found that root biomass decreased in response to girdling, especially in the LP forest 

(Supplemental Table S4). Consequently, the stock of P present in roots was strongly reduced by 

girdling (Fig. 5). In the HP forest, the initial decline was moderate and significant after eight 

weeks, whereas in the LP forest, a strong decline was already apparent one week after girdling 

(Fig. 5). While the fine root biomass decreased in response to girdling, the fraction of vital root 

tips of the remaining roots was unaffected at the early time point and only slightly decreased (-

7%) eight weeks after girdling (Supplemental Table S4). In contrast to roots, the stock of P in soil 

and the stock of Pmic were unaffected by girdling (Supplemental Table S6).

To test whether root P uptake was affected by girdling, we conducted an independent labelling 

experiment with young beech trees under controlled conditions. One week after girdling, roots 

attached to beech trees were exposed to 33Pi in artificial soil solution. The 33Pi uptake of girdled 

plants was only half of that of the roots of the non-girdled trees (Fig. 6). In both girdled and non-

girdled plants, approximately 20% of the total measured 33P uptake was present in the transport 

segment (not in contact with the labelling solution), showing that girdling reduces P uptake but not 

translocation (Fig. 6).

Discussion

Carbohydrate depletion affects P mobilization and the plant P supply
In this study, we investigated the links between root carbohydrate resources, P uptake and P 

mobilization in forest soils. In agreement with previous studies (Druebert et al., 2009; Pena et al., 

2010; Krause et al., 2013; Jing et al., 2015), girdling caused a strong reduction in soluble sugars, 

particularly starch, in fine roots. Girdling blocks the carbon supply from the canopy almost 

completely; therefore, fine root metabolism must rely on stored compounds. An important novel 

result of our study was that these responses occurred relatively fast, within one week after 

girdling in the upper soil layer, and were stronger in roots with higher starch contents than in 

those containing less starch. This finding suggests compensatory resource use in trees from the 

HP forests, which was precluded in the LP forest due to low resource availability. Consequently, 

the young trees at LP, which contained lower carbohydrate reserves and P stocks in their root 

systems, suffered from greater root biomass loss than did those in the HP forest. In our earlier 

studies, we found that the photosynthesis rates of trees in LP soil is suppressed (Yang et al., 

2016) and can be rescued by P fertilization (Zavišić et al., 2018), supporting that the lower A
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availability of photoassimilates in LP than in HP trees is caused by P limitation. To cope with low 

P availability, LP beech trees rely on internal P recycling and adjust their growth accordingly 

(Netzer et al., 2018; Zavišić & Polle, 2018). Therefore, the decline of sugars along with the drastic 

loss of root biomass observed in our girdling study emphasizes the critical situation of young 

trees grown under P-limiting conditions. Environmental stresses such as drought and defoliation 

impede the allocation of photoassimilates to the roots and cause decreases in carbohydrate 

reserves and losses in root biomass (Ruehr et al., 2009; Jing et al., 2015; Hesse et al., 2019); 

these effects are similar to those of girdling (Jordan et al., 1998; Kaiser et al., 2010; Krause et al., 

2013). In light of these observations, our results support that P shortage is likely to aggravate 

other environmental stresses.

According to our initial hypothesis, we expected that the depletion of carbohydrates in response 

to girdling would lead to a decrease in root P concentrations in beech trees because molecular 

studies with model plants such as Populus or Arabidopsis identified sucrose as a central regulator 

of P starvation responses, orchestrating the expression of P-related genes (Lei et al., 2011). At 

the onset of P starvation, phloem loading and sucrose translocation to roots is enhanced 

(Hermans et al., 2006). In addition to increasing P transport and intracellular acid phosphatase 

activities, P starvation increases the transcription of genes encoding enzymes for anaplerotic 

reactions (Wang et al., 2002; Müller et al., 2007; Kavka & Polle, 2016; Kavka & Polle, 2017). For 

example, in poplar trees suffering from P shortage, PEPC is strongly enhanced at the levels of 

transcript abundances (Kavka & Polle, 2017) and enzyme activities (Gan et al., 2016). PEPC is a 

tightly regulated enzyme of primary carbon metabolism that replenishes the tricarboxylic acid 

(TCA) cycle. In Arabidopsis thaliana, PEPC upregulation results in starch depletion (Rademacher 

et al., 2002), whereas knockdown mutants accumulate starch (Shi et al., 2015). In our girdling 

study, the decrease in starch and the increase in PEPC, together with increases in acid 

phosphatases, suggest energy depletion and metabolic P shortage signals, similar to the P 

starvation response described by Plaxton and Tran (2011). This notion is also supported by the 

strong decrease in P uptake seen after girdling. The uptake of Pi is achieved by H+:Pi symporters, 

requiring a pH gradient across the plasma membrane, which is generated by ATP-dependent 

proton pumps (Plassard et al., 2019). Similar to plants, Basidiomycota, which form the major 

clade of fungi that colonized the beech roots in our study, depend on pH-driven H+:Pi symporters 

(Plassard et al., 2019). Therefore, it is likely that carbohydrate depletion of the roots caused an 

energy limitation of P uptake and might have interrupted sucrose signalling that is required for 

regulation of P uptake.A
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It was puzzling that the P concentrations in root tissues were relatively stable despite decreased 

P uptake. Tissue nutrient concentrations are the result of import and export. Translocation to 

aboveground tissues requires the functioning of photosynthesis and transpiration. Previous 

girdling studies showed that these processes decline very slowly over months (Druebert et al., 

2009; López et al., 2015). For instance, Druebert et al. (2009) found no difference in 

photosynthesis ten weeks after girdling compared with non-girdled beech trees. Therefore, it is 

reasonable to assume that photosynthesis was still unaffected in the current study. Moreover, we 

demonstrated that similar fractions of the newly taken-up P were translocated upstream in girdled 

and non-girdled young trees. Therefore, it is unlikely that the stability of the root P concentrations 

was the result of lower export from below- to aboveground tissues. Our results suggest that P 

homeostasis was achieved by a combination of biomass trade-off and P resorption from declining 

roots.

Girdling has little effect on the soil P availability of beech
The interruption of carbohydrate transport to roots affects soil processes by decreasing 

rhizodeposition (Zeller et al., 2008). Labile carbon in soil and microbial activities fluctuate strongly 

with changing environmental conditions, seasons, distances from the root and durations of 

girdling (Giesler et al., 2007; Dannenmann et al., 2009; Kaiser et al., 2010; Koranda et al., 2011) 

and are therefore difficult to compare among different studies. Some studies observed a decline 

in labile carbon shortly after girdling or found transient changes (Giesler et al., 2007; 

Dannenmann et al., 2009; Koranda et al., 2011). Kaiser et al. (2010) reported enhanced activities 

of biomass-degrading enzymes in the second year after girdling but not in the first year. 

Therefore, it may also not be surprising that we found only marginal or no effects on labile P, on 

water-extractable carbon in soil nor on enzymes related to litter degradation.

A notable result was that Ptot and Psol were consistently higher in the rhizosphere than in the bulk 

soil and may have precluded responses of microbial phosphatase activities to girdling. However, 

in the organic layer of the LP forest, where the Psol concentration was lower by almost a factor of 

ten than in the HP forest, girdling transiently affected bacterial P mobilization, indicated by 

increased abundances of bacteria, which catalyse major steps in P transformation. We speculate 

that this activation might be related to a strong competition with roots and to high mycorrhizal P 

uptake efficiency present in the organic layer under P-limiting conditions (Clausing & Polle, 2020). 

Since gene abundances depend on the composition of microbial communities, which are strongly 

influenced by plant carbon (Koranda et al., 2011; Rasche et al., 2011), it is conceivable that, 

initially, the resident microbes responded to girdling, and that, subsequently, the community 

composition changed to adapt to girdling conditions.A
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In our study, we focused on the structure of the mycorrhizal fungal community composition 

associated with roots. In agreement with previous investigations (Zavišić et al., 2016; Clausing & 

Polle, 2020), we found a strong difference between the HP and the LP forest but not between the 

fungal assemblages in the organic and mineral topsoil layers per forest ecosystem. The 

mycorrhizal fungal community structures showed seasonal turnover, as in previous studies (Buée 

et al., 2005; Courty et al., 2008; Pena et al., 2010). Girdling resulted in mycorrhizal fungal species 

loss in the early fall in the mineral soil of the LP forest, which contained the lowest root tip density 

and contributed least to the plant P supply (Hauenstein et al., 2018; Clausing & Polle, 2020). 

Pena et al. (2010) demonstrated that abundant mycorrhizal fungal species were retained after 

girdling of mature beech trees, whereas mainly the rare species colonizing only a small portion of 

the root tips were lost. However, very rare species were excluded by our sampling design since 

we included only mycorrhizal species that colonized more than three root tips

Ectomycorrhizal fungi are important producers of enzymes in soils (Courty et al., 2005; Pritsch & 

Garbaye, 2011). The high abundance of ectomycorrhizal fungi in temperate forest soils (Awad et 

al., 2019; Müller et al., 2020) and their stable composition during the early phase after girdling 

may be a reason for the relatively stable enzyme activities found here. These results agree with 

previous studies, showing little or no change initially but significant increases in enzyme activities 

for the degradation of organic matter with a delay of approximately one year after girdling 

(Weintraub et al., 2007; Kaiser et al., 2010). Significant decreases in root carbohydrates were, 

however, already observed within the first year after the girdling of mature beech trees (Pena et 

al., 2010). Therefore, it is likely that despite a large buffer of carbohydrate reserves in the root 

system, extended periods of drought that restrict production and belowground allocation of 

carbohydrates (Hartmann et al., 2013; Klein et al., 2014; Chuste et al., 2020 Ji et al., 2020) will 

also decrease the P uptake of mature trees. In conclusion, our study emphasizes that P uptake 

and metabolism in young forest trees and associated ectomycorrhizas are more vulnerable to a 

shortage of carbohydrates than the associated soil-residing processes. Neither soil, microbial, 

rhizosphere nor root P levels changed. However, girdling, which caused carbohydrate depletion, 

resulted in a decrease in P uptake into roots, implying that stable root P levels were maintained 

by P recycling from the degradation of root biomass. The negative consequences of carbohydrate 

depletion were massive under P limitation. These results are important because they highlight the 

higher susceptibility of P-deficient trees than well-nourished trees to stress. Consequently, our 

results have critical implications for forest carbon and P cycling in future climates that will be 

warmer and drier than the current climate and suggest the aggravation of nutrient imbalances A
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imposed by high nitrogen deposition (Vitousek et al., 2010; Peñuelas et al., 2013; Huang et al., 

2016).
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Table 1: Soil pH, water-extractable organic carbon (WEOC) and phosphorus concentration (P) in different fractions of soil and roots in P-rich (HP) and P-poor 

(LP) forests. 

Forest                        HP                                             LP                               

Harvest            1wk            8wk            1wk            8wk Forest site Harvest Treatment SxT

Treatment C G C G C G C G F p F p F p F p

Organic layer                         

pH 3.98 ± 0.24 3.97 ± 0.25 4.32 ± 0.29 4.30 ± 0.33 3.26 ± 0.04 3.26 ± 0.03 3.41 ± 0.04 3.41 ± 0.04 12.5 <0.001 47.9 <0.001 0.1 0.826 0.0 0.880

WEOC 1.23 ± 0.25 1.23 ± 0.25 1.33 ± 0.08 1.43 ± 0.07 0.49 ± 0.04 0.51 ± 00.07 0.74 ± 0.14 0.58 ± 0.08 23.2 0.005 7.6 0.015 0.0 0.828 1.2 0.286

Ptot 0.91 ± 0.02 0.93 ± 0.02 1.44 ± 0.14 1.42 ± 0.21 0.17 ± 0.01 0.16 ± 0.01 0.22 ± 0.04 0.18 ± 0.03 336.0 <0.001 36.7 <0.001 0.6 0.469 0.4 0.560

Psol 0.31 ± 0.04 0.33 ± 0.04 0.32 ± 0.08 0.33 ± 0.08 0.037 ± 0.002 0.034 ± 0.003 0.05 ± 0.01 0.042 ± 0.004 33.0 0.002 1.8 0.205 1.1 0.306 3.9 0.068

Bulk soil

Pmic 0.046 ± 0.007 0.045 ± 0.005 0.070 ± 0.006 0.078 ± 0.008 0.012 ± 0.001 0.012 ± 0.002 0.038 ± 0.010 0.025 ± 0.004 38.3 <0.001 54.8 <0.001 0.2 0.668 2.4 0.141

Ptot 2.38 ± 0.39 2.39 ± 0.78 3.28 ± 0.55 2.81 ± 0.93 0.35 ± 0.03 0.47 ± 0.14 0.59 ± 0.17 0.53 ± 0.09 31.5 0.004 2.3 0.150 0.6 0.464 0.8 0.380Rhizo 

sphere Psol 0.30 ± 0.06 0.33 ± 0.03 0.34 ± 0.06 0.41 ± 0.09 0.06 ± 0.00 0.06 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 43.3 0.001 17.9 <0.001 4.0 0.066 7.3 0.017

Ptot 1.29 ± 0.33 1.24 ± 0.04 0.93 ± 0.06 1.12 ± 0.01 0.61 ± 0.04 0.56 ± 0.03 0.47 ± 0.02 0.46 ± 0.05 43.4 0.002 5.6 0.035 0.0 0.879 0.3 0.601Fine 

roots Psol 0.56 ± 0.03 0.72 ± 0.04 0.88 ± 0.07 0.39 ± 0.04 0.26 ± 0.02 0.26 ± 0.02 0.18 ± 0.01 0.18 ± 0.02 201.1 <0.001 5.8 0.032 17.2 0.001 16.4 0.001

Ptot 0.49  0.88 ± 0.10 0.87 ± 0.06 1.33  0.31 ± 0.03 0.31 ± 0.04 0.31 ± 0.02 0.30 ± 0.02 140.4 <0.001 25.6 <0.001 23.6 <0.001 24.8 <0.001Coarse 

roots Psol 0.21  0.50 ± 0.03 0.53  na  0.13 ± 0.02 0.13 ± 0.03 0.15 ± 0.02 0.16 ± 0.02 146.6 <0.001 25.9 <0.001 22.6 <0.001 21.5 <0.001

Mineral topsoil                         

pH 3.98 ± 0.12 3.97 ± 0.11 3.96 ± 0.16 3.92 ± 0.18 3.53 ± 0.05 3.51 ± 0.06 3.42 ± 0.07 3.45 ± 0.05 15.5 0.011 3.7 0.074 0.3 0.605 0.7 0.402

WEOC 0.34 ± 0.04 0.34 ± 0.01 0.36 ± 0.03 0.56 ± 0.18 0.23 ± 0.02 0.27 ± 0.02 0.31 ± 0.04 0.30 ± 0.04 6.3 0.054 4.8 0.044 2.0 0.175 1.3 0.277

Ptot 0.88 ± 0.02 0.90 ± 0.02 1.16 ± 0.05 1.29 ± 0.02 0.08 ± 0.01 0.08 ± 0.01 0.12 ± 0.03 0.14 ± 0.05 1125.6 <0.001 45.8 <0.001 11.5 0.004 5.9 0.028

Psol 0.20 ± 0.05 0.23 ± 0.08 0.24 ± 0.04 0.24 ± 0.03 0.03 ± 0.00 0.04 ± 0.00 0.04 ± 0.01 0.04 ± 0.01 23.9 0.005 4.6 0.049 2.8 0.115 1.4 0.248

Bulk soil

Pmic 0.014 ± 0.005 0.013 ± 0.008 0.030 ± 0.006 0.034 ± 0.004 0.001 ± 0.000 0.001 ± 0.000 0.005 ± 0.001 0.004 ± 0.001 26.1 0.004 31.5 <0.001 0.1 0.726 0.3 0.570
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Young beech (Fagus sylvatica) trees were girdled (G) or kept as untreated controls (C). Samples were harvested in summer (1wk) and in early fall (8wk) after 

girdling. Bulk soil, rhizosphere, microbes and roots from the organic layer and the mineral topsoil were analyzed separately. Data show means for pH, WEOC (mg 

g-1 dry weight), total phosphorus (Ptot) (mg g-1 dry weight), soluble phosphorus (Psol) (mg g-1 dry weight) and microbial phosphorus (Pmic) (µg g-1 dry weight) (HP: n 

= 3, LP: n = 4) ± SE. When only one coarse root sample was available, SE is missing. To determine the effects of forest, sampling date, treatment and the 

interaction of Forest site x treatment (SxT) linear mixed effect models (´lmer´) were used with plot as random factor. Bold letters indicate significant differences 

at p ≤ 0.05. na = not available

Ptot 2.32 ± 0.46 2.08 ± 0.43 3.14 ± 0.57 3.28 ± 0.24 0.14 ± 0.03 0.13 ± 0.02 0.20 ± 0.02 0.14 ± 0.03 189.8 <0.001 8.0 0.010 0.0 0.833 0.0 0.964Rhizo 

sphere Psol 0.17 ± 0.03 0.20 ± 0.06 0.25 ± 0.03 0.20 ± 0.03 0.03 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 30.1 0.003 10.7 0.005 0.1 0.757 0.1 0.705

Ptot 1.39 ± 0.11 1.23 ± 0.15 1.13 ± 0.12 0.96 ± 0.15 0.47 ± 0.01 0.42 ± 0.01 0.37 ± 0.01 0.38 ± 0.02 69.3 <0.001 19.8 <0.001 6.4 0.023 3.6 0.076Fine 

roots Psol 0.81 ± 0.11 0.66 ± 0.11 0.64 ± 0.05 0.55 ± 0.12 0.17 ± 0.01 0.19 ± 0.02 0.16 ± 0.01 0.16 ± 0.01 42.8 0.001 10.9 0.005 6.9 0.019 5.2 0.038

Ptot 0.90 ± 0.25 1.04 ± 0.25 1.08 ± 0.20 0.99 ± 0.29 0.30 ± 0.01 0.30 ± 0.02 0.27 ± 0.03 0.26 ± 0.02 15.4 0.011 0.1 0.771 0.0 0.890 0.1 0.766Coarse 

roots Psol 0.57 ± 0.05 0.57 ± 0.19 0.70 ± 0.24 0.79 ± 0.33 0.13 ± 0.01 0.14 ± 0.01 0.15 ± 0.02 0.14 ± 0.02 13.5 0.017 0.6 0.448 0.6 0.444 0.6 0.444
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Figure legends

Fig. 1: Carbohydrate concentrations (mg g-1 dw) in fine roots of beech trees (Fagus sylvatica) 

after girdling (G, light colors) and of untreated control plants (C, dark colors) in P-rich (HP) and 

P-poor (LP) forests. Roots from the organic layer (a) and the mineral topsoil (b) were analyzed 

separately one week (1wk) and eight weeks (8wk) after girdling. Data indicate means (HP: n = 3, 

LP: n = 4) ± SE. To determine the effects of forest type, sampling date, treatment their interaction 

linear mixed effect models (´lmer´) were used with plot as random factor and a posthoc Tukey 

HSD was performed to detect differences between means. Different letters indicate significant 

differences at p ≤ 0.05. Colors of bars refer to starch (turquoise), glucose (red), fructose (green) 

and sucrose (orange).

Fig. 2: PEPC activity (µmol g-1 fw h-1) of fine roots of beech trees (Fagus sylvatica) after girdling 

(G, light color) and of untreated controls (C, dark color) in P-rich (HP) and P-poor (LP) forests. 

Roots from the organic layer (a) and the mineral topsoil (b) were analyzed separately. Data 

indicate means (HP: n = 3, LP: n = 4) ± SE. To determine the effects of forest type, treatment and 

their interaction linear mixed effect models (´lmer´) were used with plot as random factor and a 

posthoc Tukey HSD was performed to detect differences between means. Different letters 

indicate significant differences of the means at p ≤ 0.05. 

Fig. 3: Response ratio of acid phosphatase activities after girdling in relation to non-girdled 

controls. Bars indicate the response ratio of phosphatase activities (µmol g-1 fresh weight * h-1) 

for girdled/control determined in fine roots (Root) of Fagus sylvatica, mycorrhiza (EMF), 

rhizosphere (Rhizo) and bulk soil (Bulk) one week (black) and eight weeks after girdling (white 

bars). The response ratios were determined for phosphatase activities in the organic layer of a P-

rich (a) and a P-poor forest (b) and in the mineral topsoil of a P-rich (c) and a P-poor forest (d). 

Data indicate means of the response ratios (HP: n = 3, LP: n = 4) ± SE. Differences between means 

of girdled and non-girdled treatments were tested by Student’s paired t-test and indicated by A
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stars (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001). Black squares above bars indicate a marginal 

difference (trend with p ≤ 0.10). Controls are marked with the dashed line. nd = not determined.
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Fig. 4: Response ratios of gene abundances for P transporters (pitA, pstS), P mineralization 

(phoD, phoN, phnX, appA) and Pi solubilization (gcd) of soil microbes after girdling in relation to 

non-girdled controls. Bars indicate the response ratio for girdled/control of young Fagus 

sylvatica trees determined one week (black) and eight weeks after girdling (white bars). The 

response ratios were determined in the organic layer of a P-rich (a) and a P-poor forest (b) and in 

the mineral topsoil of a P-rich (c) and a P-poor forest (d). Data indicate means (HP: n = 3, LP: n = 

4, ± SE). Differences between means of girdled and non-girdled treatments were tested by 

Student’s paired t-test and indicated by stars (* p ≤ 0.05). Black squares above bars indicate a 

marginal difference (p ≤ 0.10). Controls are marked with the dashed line. bt = below threshold

Fig. 5: Phosphorus stocks in fine roots (mg m-2) in the soil beneath girdled (G, light colors) and 

non-girdled control (C, dark colors) trees (Fagus sylvatica). Trees were investigated in P-rich 

(HP) and P-poor (LP) forests. Fine roots from the organic layer (turquoise bars) and the mineral 

topsoil (orange bars) were analyzed separately one week (1wk) and eight weeks (8wk) after 

girdling. Data indicate means (HP: n = 3, LP: n = 4) ± SE. To determine the effects of forest type, 

harvest time point, treatment and their interaction linear mixed effect models (´lmer´) were used 

with plot as random factor and a posthoc Tukey HSD was performed to detect differences 

between means. Different letters above the bars indicate significant differences at p ≤ 0.05.

Fig. 6: 33P uptake (Bq mg-1 dw h-1) of beech (Fagus sylvatica) roots one week after girdling (G, 

light color) and of non-girdled control plants (C, dark color). Uptake was determined for the 

root part which was exposed to the labeling solution (exposure) and the upstream part of the 

roots to which P was transported (transport). Data indicate means (n = 7) ± SE. To determine the 

effects of treatment and root fraction, linear mixed effect models (´lmer´) were used with root 

number as random factor. A posthoc Tukey HSD was performed to detect differences between 

means. Different letters indicate significant differences at p ≤ 0.05. 
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