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Abstract
Aims/hypothesis Many individuals who develop type 2 diabetes also display increased glucagon levels (hyperglucagonaemia),
which we have previously found to be associated with the metabolic syndrome. The concept of a liver–alpha cell axis provides a
possible link between hyperglucagonaemia and elevated liver fat content, a typical finding in the metabolic syndrome. However,
this association has only been studied in individuals with non-alcoholic fatty liver disease. Hence, we searched for a link between
the liver and the alpha cells in individuals with non-steatotic levels of liver fat content. We hypothesised that the glucagon–
alanine index, an indicator of the functional integrity of the liver–alpha cell axis, would associate with liver fat and insulin
resistance in our cohort of women with low levels of liver fat.
Methods We analysed data from 79 individuals participating in the Prediction, Prevention and Subclassification of Type 2
Diabetes (PPSDiab) study, a prospective observational study of young women at low to high risk for the development of type
2 diabetes. Liver fat content was determined by MRI. Insulin resistance was calculated as HOMA-IR. We conducted Spearman
correlation analyses of liver fat content and HOMA-IR with the glucagon–alanine index (the product of fasting plasma levels of
glucagon and alanine). The prediction of the glucagon–alanine index by liver fat or HOMA-IR was tested in multivariate linear
regression analyses in the whole cohort as well as after stratification for liver fat content ≤0.5% (n = 39) or >0.5% (n = 40).
Results The glucagon–alanine index significantly correlated with liver fat and HOMA-IR in the entire cohort (ρ = 0.484,
p < 0.001 and ρ = 0.417, p < 0.001, respectively). These associations resulted from significant correlations in participants with
a liver fat content >0.5% (liver fat, ρ = 0.550, p < 0.001; HOMA-IR, ρ = 0.429, p = 0.006). In linear regression analyses, the
association of the glucagon–alanine index with liver fat remained significant after adjustment for age and HOMA-IR in all
participants and in those with liver fat >0.5% (β = 0.246, p = 0.0.23 and β = 0.430, p = 0.007, respectively) but not in participants
with liver fat ≤0.5% (β = −0.184, p = 0.286).
Conclusions/interpretation We reproduced the previously reported association of liver fat content and HOMA-IR with the
glucagon–alanine index in an independent study cohort of young women with low to high risk for type 2 diabetes.
Furthermore, our data indicates an insulin-resistance-independent association of liver fat content with the glucagon–alanine
index. In summary, our study supports the concept that even lower levels of liver fat (from 0.5%) are connected to relative
hyperglucagonaemia, reflecting an imminent impairment of the liver–alpha cell axis.

Jens J. Holst and Andreas Lechner are joint senior authors.

* Andreas Lechner
andreas.lechner@med.uni-muenchen.de

Extended author information available on the last page of the article

Diabetologia
https://doi.org/10.1007/s00125-020-05334-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-020-05334-x&domain=pdf
https://orcid.org/0000-0002-4218-6945
https://orcid.org/0000-0002-1274-4715
https://orcid.org/0000-0001-9259-0199
https://orcid.org/0000-0002-7404-2364
https://orcid.org/0000-0003-4230-5753
https://orcid.org/0000-0001-6853-3805
https://orcid.org/0000-0002-0276-291X
mailto:andreas.lechner@med.uni-muenchen.de


Keywords Alanine/blood . Amino acids/blood . Cross-sectional studies . Female . Glucagon . Humans . Insulin resistance .

Insulin resistance/physiology . Liver/metabolism . Liver–alpha cell axis

Abbreviations
ISI Insulin sensitivity index
NAFLD Non-alcoholic fatty liver disease
PPSDiab Prediction, Prevention and Subclassification of

Type 2 Diabetes

Introduction

Increased plasma glucagon concentration (hyperglucagonaemia)
has been suggested to play a crucial role in the development of
type 2 diabetes. Indeed, inhibition of glucagon signalling by
treatment with a glucagon receptor antagonist has shown
favourable effects on glucose metabolism in individuals with
type 2 diabetes [1, 2]. However, our previous finding that
hyperglucagonaemia is not present in all individuals at high risk
for type 2 diabetes suggests that hyperglucagonaemia might
drive type 2 diabetes only in a subgroup of individuals [3]. Yet,
the factors that drive hyperglucagonaemia in this subgroup have
no t been fu l ly e luc ida t ed . Fu r the rmore , many
hyperglucagonaemic individuals exhibit characteristics of the
metabolic syndrome [3], indicating that the metabolic syndrome
might be closely related to hyperglucagonaemia.

The concept of a liver–alpha cell axis provides a potential
causal link between the metabolic syndrome and

hyperglucagonaemia [4, 5]. According to this concept, fat
deposition in the liver, a hallmark of the metabolic syndrome
[6], might impair hepatic glucagon signalling. Impaired hepat-
ic glucagon signalling fosters hyperaminoacidaemia because
glucagon regulates ureagenesis from amino acids [7].
Hyperaminoacidaemia, in turn, increases glucagon secretion
from the alpha cell, which causes hyperglucagonaemia [4].
Hyperglucagonaemia may compensate for the increasing
glucagon resistance and thereby restore amino acid metabo-
lism. However, the action of glucagon on hepatic glucose
production might be preserved, leading to increased hepatic
glucose production [8]. Importantly, hyperglucagonaemia
may aggravate the glucagon resistance of hepatocytes.
Similar to insulin resistance, a vicious cycle develops in which
the steadily rising hepatic glucose production eventually
evolves into type 2 diabetes [5].

Evidence for this feedback cycle between the liver (amino
acids) and alpha cells (glucagon) has previously been provid-
ed in participants of the ADDITION-PRO (‘Progression’ arm,
nested within the Anglo–Danish–Dutch Study of Intensive
Treatment In People with Screen Detected Diabetes in
Primary Care study) study cohort [9]. In this context, the
glucagon–alanine index was introduced as a surrogate marker
for the functional status of the liver–alpha cell axis. The index
is calculated as the product of fasting concentrations of plasma
glucagon and plasma alanine and it was suggested that a
higher index indicates functional impairments in the axis [9].
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Hepatic steatosis might be causally involved in the impair-
ment of the liver–alpha cell axis as individuals with non-
alcoholic fatty liver disease (NAFLD) display elevated fasting
glucagon and higher plasma levels of the sum of L-amino
acids compared with individuals without the disease [10].
However, the possible contribution of lower levels of liver
fat (i.e. lower than 5.5%) has not yet been studied.

In the present study, we examined the association of liver
fat, at lower concentrations than those observed in NAFLD,
and insulin resistance with the glucagon–alanine index. We
hypothesised that liver fat content would associate with the
glucagon–alanine index even at levels below the classification
of NAFLD. This association would support the assumption
that a functionally impaired liver–alpha cell axis is already
present in the early pathogenesis of the metabolic syndrome
and type 2 diabetes.

Methods

Cohort The present analyses were conducted on material
obtained at the baseline visit of the Prediction, Prevention
and Subclassification of Type 2 Diabetes (PPSDiab) study
[11]. This study included 304 women 3–16months after preg-
nancy. Participants were consecutively recruited from the
diabetes centre and the obstetrics department of the
University Hospital (Klinikum der Universität München) in
Munich, Germany. Exclusion criteria for this study were alco-
hol or substance abuse, pre-pregnancy diabetes and chronic
diseases requiring continuous medication (except for hypo-
thyroidism [n = 52], bronchial asthma [n = 8], mild hyperten-
sion [n = 4], gastro-oesophageal reflux [n = 2] and history of
pulmonary embolism resulting in rivaroxaban prophylaxis
[n = 1]). Four women were excluded from the baseline visit
of the PPSDiab study due to acute upper respiratory infection
at the study visit (n = 1), overt hyperthyroidism (n = 2) or
positive islet autoantibodies at baseline with diagnosis of type
1 diabetes during follow-up (n = 1) (Fig. 1).

For the present analyses, we further excluded women with
type 2 diabetes diagnosis (n = 7) at the study visit to minimise
possible bias from metabolic adaptions to overt diabetes. As
previously described, measurement of plasma amino acids
was only performed in the first half of the PPSDiab study
cohort [12]. MRI for the determination of liver fat content
was offered on a voluntary basis. Data on both plasma amino
acids and liver fat content were available in 79 out of 293
(27%) participants without type 2 diabetes (Fig. 1). HOMA-
IR and insulin sensitivity index (ISI) data weremissing for one
participant due to missing fasting insulin measurement.

All study participants provided written informed consent
and the protocol was approved by the ethical review commit-
tee of the University Hospital in Munich (Ludwig-

Maximilians-Universität, study ID 300-11). Detailed informa-
tion on the study cohort is described in Rottenkolber et al [11].

OGTTWe conducted an OGTT with a five-point measurement
of plasma glucose and serum insulin as previously described
[11]. For the diagnosis of diabetes, we used ADA criteria
(fasting glucose ≥ 7.0 mmol/l and/or 2 h post-load glucose
≥11.1 mmol/l).

Biochemical measurements and metabolomics Glucagon and
alanine levels were determined using frozen (−80°C) plasma
samples collected in proteinase-stabilised tubes (BD P800;
BD Biosciences, San Jose, CA, USA) after participants had
fasted overnight. Plasma glucagonwas measured by sandwich
ELISA (catalogue no. 10-1271-01; Mercodia, Uppsala,
Sweden). Alanine, as well as 20 other amino acids (arginine,
asparagine, aspartate, citrulline, glutamine, glutamate,
glycine, histidine, isoleucine, leucine, lysine, methionine,
ornithine, phenylalanine, proline, serine, threonine, trypto-
phan, tyrosine and valine), were quantified by using targeted
metabolomics (AbsoluteIDQ™ p180 Kit; Biocrates Life
Sciences, Innsbruck, Austria) with LC-MS/MS. The measure-
ment of plasma samples using this assay has been described in
full detail previously [13]. Total amino acids represent the
sum of a l l 21 L-amino ac ids , measured by the
AbsoluteIDQ™ p180 Kit.

From the OGTT, plasma glucose was measured by a hexo-
kinase method (Glucose HK Gen.3; Roche Diagnostics,
Mannheim, Germany) and serum insulin by a chemilumines-
cent immunoassay (DiaSorin LIASON Systems, Saluggia,
Italy). Fasting values of HDL-cholesterol and triacylglycerols
were measured by enzymatic caloric test (Roche Diagnostics,
Mannheim, Germany).

Anthropometrics Height and waist circumference were
measured to the nearest 1 cm. Body mass was determined
by a bioelectrical impedance analysis scale (Tanita BC-418;
Tanita Corporation, Tokyo, Japan).

MRI Liver fat content was determined by MRI using an
mDixon low-fat fraction map (3 Tesla System, Ingenia or
Achieva; Philips Health Care, Hamburg, Germany). A
detailed description of the MRI measurements is provided
elsewhere [11].

Calculations To measure hepatic insulin resistance, HOMA-
IR was calculated as fasting glucose (mmol/l) × fasting insulin
(mmol/l) / 22.5. To determine peripheral insulin resistance, the
ISI was calculated from the OGTT according to Matsuda and
DeFronzo [14].

For the primary confirmatory analysis, the glucagon–
alanine index was calculated as fasting glucagon × fasting
alanine, as has previously been suggested [9]. Analogously,
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for secondary exploratory analyses, the glucagon–glutamate
index and the glucagon–total amino acid index were calculat-
ed as fasting glucagon × fasting glutamate and fasting gluca-
gon × fasting total amino acids, respectively.

Statistical analysis All metric and normally distributed vari-
ables are reported as mean ± SD; non-normally distributed
variables are reported as median (first quartile–third quartile).
Frequencies are presented as n (%). To address non-normality
of the distribution of the glucagon–alanine index, liver fat
content and HOMA-IR, all three variables were log-
transformed for regression analyses. In addition, we compared
liver fat quartiles using the Kruskal–Wallis test with Dwass,
Steel, Critchlow-Fligner (DSCF) multiple comparison analy-
sis [15]. The following analyses were conducted in all partic-
ipants as well as stratified according to a liver fat content of
≤0.5% vs >0.5% (0.5% is used as proxy for themedian of liver
fat content in the cohort). Correlation analyses between gluca-
gon, alanine, the glucagon–alanine index, liver fat and
HOMA-IR were conducted using Spearman correlation coef-
ficients (ρ).We also performed linear regression analyses with
the glucagon–alanine index (loge-transformed) as the depen-
dent variable and liver fat content or HOMA-IR (both loge-

transformed) as independent variables adjusted for age and
age plus HOMA-IR or liver fat, respectively. A p value
<0.05 was considered statistically significant. All statistical
calculations were performed using SAS statistical software
package, version 9.4 (SAS Institute, Cary, NC, USA).
Figures were created using Tableau 2020.3 (Tableau
Software, Seattle, WA, USA).

Results

Table 1 shows the baseline characteristics of the study cohort.
First, we compared fasting glucagon, alanine and the

glucagon–alanine index between liver fat quartiles. Alanine
continuously increased from quartile 1 to quartile 4 (Fig. 2a
and ESM Table 1) whereas fasting glucagon and the
glucagon–alanine index increased from quartile 2 to quartile
4 (Fig. 2b, c and electronic supplementary material [ESM]
Table 1).

Alanine, glucagon, and the glucagon–alanine index
correlated with liver fat content (Table 2). The correlation
between the glucagon–alanine index and liver fat content
began at around 0.5% fat, which was the median fat content

PPSDiab study

baseline visit

(n=304)

Normoglycaemia / prediabetes

(n=293)

With amino acid 

measurement 

(n=149)

With liver fat 

measurement 

(n=79)

Excluded (n=70) 

(no MRI)

Excluded (n=144) 

(no measurement of 

amino acids)

Excluded due to

type 2 diabetes

(n=7)

Excluded at baseline (n=4) 

Type 1 diabetes (n=1)

Acute upper respiratory 

infection (n=1)

Overt hyperthyroidism (n=2)

Fig. 1 Flow chart for the
PPSDiab study cohort
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in our cohort (Fig. 3a, Table 2 and ESM Fig. 1). Below
0.5%, the correlation was absent. In addition, the
glucagon–alanine index correlated positively with
HOMA-IR, fasting glucose and 2 h plasma glucose
(Table 2 and ESM Fig. 1). The correlation with HOMA-IR

was linear throughout the study cohort (Fig. 3b).
Exploratory correlation analyses of other amino acids with
liver fat content, glucagon and HOMA-IR are displayed in
ESM Table 2. Of all the amino acids, glutamate showed the
highest correlation to both glucagon and liver fat content,
followed by the branched-chain amino acids.

In linear regression models, liver fat content still asso-
ciated significantly with the glucagon–alanine index after
an adjustment for age or age plus HOMA-IR, both in the
whole study cohort as well as in the participants with a
liver fat content of >0.5% (Table 3). Similarly, HOMA-IR
associated with the glucagon–alanine index after adjust-
ment for age or age plus liver fat content in all partici-
pants. However, in participants with a liver fat content of
>0.5%, the association of HOMA-IR with the glucagon–
alanine index was lost when liver fat content was added to
the model (Table 3). No other glucagon–amino acid index
associated as strongly as the glucagon–alanine index
(ESM Tables 3, 4 show linear regression data for the
glucagon–glutamate index and glucagon–total amino acid
index, respectively).

Discussion

The present study provides evidence for a three-way associa-
tion between liver fat content, the glucagon–alanine index and
HOMA-IR. Thus, it supports the concept of a liver–alpha cell
axis and suggests that alterations in this axis are already appar-
ent at slightly increased amounts of liver fat content.

Our study substantiated the association between the liver–
alpha cell axis and liver fat content. Studies in individuals with
NAFLD and non-alcoholic steatohepatitis (NASH) illustrate
that fat accumulation in the liver reduces the sensitivity of

Table 1 Baseline characteristics of the study cohort

Characteristic Measurement

N 79

Age, years 35.6 ± 4.0

Fasting glucagon, pmol/l 6.74 (4.76–8.28)

Fasting glucose, mmol/l 5.11 ± 0.41

2 h glucose, mmol/l 5.98 ± 1.26

Glucose status

NGT 64 (81.01)

IFG 9 (11.39)

IGT 5 (6.33)

IFG+IGT 1 (1.27)

ISI (missing n = 1) 5.49 (3.68–8.43)

HOMA-IR (missing n = 1) 1.40 (0.93–2.30)

BMI, kg/m2 22.96 (21.26–26.85)

Waist circumference, cm (missing n = 2) 78 (72–86)

Systolic BP, mmHg 116 (110–123)

Diastolic BP, mmHg 71 (65–79)

Liver fat content, % 0.51 (0.19–1.27)

Triacylglycerols, μmol/l 723 (576–1028)

HDL-cholesterol, μmol/l 1604 (1267–1862)

Alanine, μmol/l 303.1 ± 75.0

Glucagon–alanine index 1.88 (1.29–2.59)

Values are presented as mean±SD or median (Q1–Q3). Frequencies are
presented as n (%)

IFG, impaired fasting glucose; IGT, impaired glucose tolerance; NGT,
normal glucose tolerance

*
*

*

*
*

*
a b c

Fig. 2 Fasting plasma alanine levels (a), fasting plasma glucagon levels
(b) and glucagon–alanine index (c) stratified by liver fat quartiles. Boxes
represent first quartile to median (dark grey) and median to third quartile

(light grey). Whiskers depict 1.5-times the IQR. Group comparison by
Kruskal–Wallis test with Dwass, Steel, Critchlow-Fligner post hoc test
for multiple comparisons. *p < 0.05 for difference between groups
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Fig. 3 Association of the
glucagon–alanine index with liver
fat content (a) and HOMA-IR (b).
Trend lines of crude models are
shown together with Spearman
correlation coefficients (ρ) and
p values. The association between
liver fat content and the
glucagon–alanine index is shown
as separate models for
participants with liver fat content
≤0.5% (light grey dots; n.s.: non-
significant association) and
>0.5% (dark grey dots)

Table 2 Spearman correlation of
liver fat content and HOMA-IR
with selected characteristics of the
liver–alpha cell axis (fasting
glucagon, alanine and glucagon–
alanine index) for all participants
(n = 79)

Variable Fasting glucagon Alanine Glucagon–alanine index

ρ p value ρ p value ρ p value

All participants (n = 79)

Liver fat content 0.384 <0.001 0.372 <0.001 0.484 <0.001

HOMA-IR (missing n = 1) 0.373 <0.001 0.263 0.020 0.417 <0.001

Fasting glucose 0.187 0.099 0.205 0.070 0.240 0.033

2 h glucose 0.197 0.081 0.120 0.294 0.264 0.019

Participants with liver fat ≤0.5% (n = 39)

Liver fat content −0.151 0.357 0.026 0.877 −0.100 0.545

HOMA-IR 0.086 0.601 −0.129 0.433 −0.003 0.987

Participants with liver fat >0.5% (n = 40)

Liver fat content 0.472 0.002 0.392 0.012 0.550 <0.001

HOMA-IR (missing n = 1) 0.391 0.014 0.334 0.038 0.429 0.006
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hepatocytes towards glucagon [16, 17]. One of glucagon’s
actions on hepatocytes is the amplification of amino acid-
induced urea synthesis [18]. Hence, a reduced glucagon sensi-
tivity results in decreased urea formation from amino acids,
leading to an increase in plasma amino acids [7, 19]. This rise
in the levels of amino acids in turn stimulates glucagon secre-
tion from the alpha cell, which promotes hyperglucagonaemia.
Our analyses support this interrelation and further indicate that
hepatic glucagon sensitivity might already be impaired at non-
steatotic levels of liver fat, starting from 0.5%. Below this value,
liver fat content and the glucagon–alanine index did not asso-
ciate in our cohort. However, this may be related to the MRI
measurement technique, which is the most sensitive among the
non-invasive procedures but still not sufficiently sensitive for
very low levels of fat [20].

Besides alanine, we also found glutamate to be involved in the
liver–alpha cell axis (ESM Tables 2, 3). Glutamate activates
AMPA/kainate receptors on the alpha cell, which increases
glucagon secretion [21, 22]. Hence, a glucagon–glutamate index
might also be suitable to represent the liver–alpha cell axis. In
contrast to previous findings in individuals with and without
NAFLD, total amino acids did not correlate with glucagon, liver
fat or insulin resistance in our cohort ofwomenwith low levels of
liver fat (ESM Table 2) and the association of a glucagon–total
amino acid indexwas not superior to the glucagon–alanine index
or the glucagon–glutamate index. Therefore, the determination of
the glucagon–alanine index seems to be sufficient to characterise
the status of the liver–alpha cell axis.

The extent to which the raised glucagon levels can
compensate for the reduced glucagon sensitivity of hepato-
cytes regarding urea synthesis remains unknown. However,

in the present study, the continuous association between liver
fat content and the glucagon–alanine index points to an effec-
tive adaption of the liver–alpha cell axis to hepatic glucagon
resistance in individuals without clinical steatosis (Fig. 3a).

Though adaption of the liver–alpha cell axis to hepatic
glucagon resistance maintains amino acid turnover at a normal
level, hyperglucagonaemia probably places a burden on
glucose metabolism. In this context, our study revealed that
insulin resistance and elevated plasma glucose levels associate
with alterations in the liver–alpha cell axis (Table 2). Notably,
the association of the glucagon–alanine index with insulin
resistance was independent of liver fat content in the entire
study cohort (Table 3). This independence was narrowlymiss-
ing (p = 0.069) in the subgroup of participants with a liver fat
content of >0.5% but we attribute this mainly to the smaller
size of this subgroup. Previous research indicates that the
action of glucagon on hepatic glucose production persists
independent of a disturbance in hepatic glucagon sensitivity
with regards to amino acid turnover [8]. In individuals with
intact glucose metabolism, an increase in hepatic glucose
production will be compensated for by enhanced insulin
secretion. In the present study, the association of glucagon
and the glucagon–alanine index with plasma glucose and
insulin resistance (HOMA-IR) represented this compensation
(Tables 2, 3). However, if insulin secretion and/or insulin
sensitivity is not intact, hyperglucagonaemia is likely to aggra-
vate the impaired glucose metabolism and finally lead to type
2 diabetes.

The present study supports the potential link between
hepatic fat accumulation and insulin resistance via glucagon
signalling despite the lack of a proven cause–effect

Table 3 Linear regression analy-
ses with glucagon–alanine index
(log-transformed) as the depen-
dent variable and liver fat content
or HOMA-IR (both log-trans-
formed) as independent variables

Participant group Liver fat content HOMA-IR (missing n = 1)

Adjusted R2 β p value Adjusted R2 β p value

All participants (n = 79)

Model 1a 0.112 0.367 0.001 0.188 0.457 <0.001

Model 2b 0.233 0.246 0.023

Model 3c 0.233 0.378 <0.001

Liver fat ≤0.5% (n = 39)

Model 1a −0.012 −0.189 0.264 −0.042 0.074 0.659

Model 2b −0.037 −0.184 0.286

Model 3c −0.037 0.057 0.736

Liver fat >0.5% (n = 40)

Model 1a 0.280 0.563 <0.001 0.187 0.480 0.002

Model 2b 0.322 0.430 0.007

Model 3c 0.322 0.283 0.069

Standardised regression coefficients, β, are shown
aModel 1: adjusted for age
bModel 2: adjusted for age and HOMA-IR
cModel 3: adjusted for age and liver fat
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relationship. Recent data in mice indicates that liver fat
reduces the sensitivity of hepatocytes towards glucagon at
both a transcriptional and a non-transcriptional level [23].
Conversely, pharmacological studies reveal that treatment
with the glucagon receptor antagonist LY2409021 increased
hepatic fat content in individuals with type 2 diabetes [2]. This
might result from blockage of glucagon’s action on β-
oxidation in the hepatocytes [24]. Hence, an increase in liver
fat content might not only be the cause but also the result of
glucagon resistance in hepatocytes. In any case, liver fat
content seems to govern the sensitivity of hepatocytes towards
glucagon. Thus, our results strongly support the concept of a
liver–alpha cell axis.

Previous studies indicate that amino acids other than
alanine may also be involved in the liver–alpha cell axis [7,
19]. The close associations of glutamate and the branched-
chain amino acids with plasma glucagon that we observed
support these previous results (ESM Table 2). However, no
other glucagon–amino acid index performed better than the
glucagon–alanine index in its associations with liver fat
content and insulin resistance.

The strengths of our study include its cohort of young
women at varying risk for type 2 diabetes who otherwise
constitute an extremely homogeneous sample. By including
only women with normoglycaemia, impaired fasting glucose
or impaired glucose tolerance, we prevented possible bias
resulting from sex differences and secondary changes in
metabolism due to overt diabetes. UsingMRI, we could quan-
tify even low amounts of hepatic fat. The main weakness of
our study is its cross-sectional design, which precludes the
determination of a cause–effect relationship. Further, the
homogeneity of the cohort regarding sex and age and the
predominantly white ethnicity limits the transferability of
our findings to the general public.

In conclusion, we reproduced the suggested association
between liver fat, the glucagon–alanine index and insulin
resistance in an independent study cohort of young women
with low to high risk for type 2 diabetes. Our study supports
the concept that even low levels of liver fat (up from 0.5%) are
associated with the integrity of the liver–alpha cell axis, which
probably affects glucose metabolism. To fully establish this
concept, further mechanistic studies to examine the signalling
at a molecular level are necessary. In addition, larger cohorts
including men and more participants with an ethnicity other
than white are required.
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