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type 1 (Atkinson et al., 2001). It is unclear whether CMCD, 
with these or other manifestations (Shama and Kirkpatrick, 
1980; Bentur et al., 1991; Germain et al., 1994), is immuno-
logically and genetically related to pure CMCD. Low propor-
tions of IL-17A–producing T cells have been documented in 
five patients with CMCD (Eyerich et al., 2008). Moreover, a 
candidate gene approach centered on IL-17 immunity re-
cently revealed the first genetic etiologies of pure CMCD. In 
a consanguineous family from Morocco, a child with CMCD 
was found to display AR complete IL-17RA deficiency (Puel 
et al., 2011). His leukocytes and fibroblasts did not respond  
to IL-17A or IL-17F homodimers, or to IL-17A/F hetero
dimers. Four patients from an Argentinean family were shown 
to harbor dominant-negative mutations in the IL17F gene 
(Puel et al., 2011). Mutated IL-17F–containing homodimers 
and heterodimers were produced in normal amounts but 
were not biologically active, as they were unable to bind to 
the IL-17 receptor. Morbid mutations in IL17RA and IL17F 
demonstrated that CMCD could be caused by inborn errors 
of IL-17 immunity. However, no genetic etiology has yet 
been identified for most patients with CMCD. We set out to 
identify new genetic etiologies of CMCD through a recently 
developed genome-wide approach based on whole-exome 
sequencing (Alcaïs et al., 2010; Bolze et al., 2010; Byun et al., 
2010; Ng et al., 2010).

RESULTS
We investigated one sporadic case and the probands from five 
multiplex kindreds with AD CMCD, by whole-exome se-
quencing. The annotated data were analyzed with sequence 
analysis software that had been developed in-house and made 
it possible to analyze and compare several exome sequences 
simultaneously. A hierarchy of candidate variations was gener-
ated by filtering out known polymorphisms reported in dbSNP 
and 1,000-genome databases. We also used our own database 
of 250 exomes to filter out unreported polymorphisms 
(Table S1). The only relevant gene displaying heterozygous 
variations in at least four of the six unrelated patients with AD 
CMCD was STAT1 (Fig. 1, A and B, Kindreds A, B, G, and L; 
Table I; and Table S2).  Three different STAT1 mutations 
were found in four patients; they were confirmed by Sanger 

Chronic mucocutaneous candidiasis (CMC) is characterized 
by persistent or recurrent disease of the nails, skin, oral, or 
genital mucosae caused by Candida albicans (Puel et al., 2010b). 
CMC may be caused by various inborn errors of immunity. 
CMC is one of a multitude of infectious diseases observed in 
patients with broad and profound T cell deficiencies. In con-
trast, patients with the autosomal dominant (AD) hyper IgE 
syndrome, caused by dominant-negative mutations of STAT3, 
are susceptible principally to CMC and staphylococcal dis-
eases of the lungs and skin (Minegishi, 2009). These patients 
have very low proportions of circulating IL-17A– and IL-22–
producing T cells, probably because of impaired responses to 
IL-6, IL-21, and/or IL-23 (de Beaucoudrey et al., 2008; Ma  
et al., 2008; Milner et al., 2008; Renner et al., 2008; Minegishi  
et al., 2009). Patients with autosomal recessive (AR) IL-12p40 
or IL-12R1 deficiency suffer from Mendelian susceptibility 
to mycobacterial disease (MSMD) and occasionally develop 
mild CMC (Filipe-Santos et al., 2006; de Beaucoudrey et al., 
2010). Some have low proportions of IL-17A– and IL-22–
producing T cells, presumably because of the abolition of 
IL-23 responses (de Beaucoudrey et al., 2008, 2010). The pro-
portion of IL-17A–producing T cells was also found to be low 
in a family with AR CARD9 deficiency, dermatophytosis, 
invasive candidiasis, and CMC (Glocker et al., 2009). Finally, 
CMC is the only infection in patients with autoimmune 
polyendocrinopathy syndrome type 1, who have high titers of 
neutralizing autoantibodies against IL-17A, IL-17F, and IL-22 
(Kisand et al., 2010; Puel et al., 2010a). Thus, regardless of the 
underlying illness, CMC pathogenesis apparently involves 
the impairment of IL-17A, IL-17F, and IL-22 immunity (Puel  
et al., 2010b).

The pathogenesis of CMC was eventually deciphered 
through investigations of patients with CMC disease (CMCD), 
in which CMC is isolated, with no other infectious or auto-
immune signs (Kirkpatrick, 2001; Puel et al., 2010b). The 
definition of CMCD is not absolute, as illustrated in some 
patients by cutaneous staphylococcal disease, which is milder 
than that in patients with AD hyper IgE syndrome (Herrod, 
1990), or by autoimmune features affecting the thyroid in 
particular, although fewer such features are observed than 
in patients with autoimmune polyendocrinopathy syndrome 

Chronic mucocutaneous candidiasis disease (CMCD) may be caused by autosomal dominant (AD) IL-17F deficiency or 
autosomal recessive (AR) IL-17RA deficiency. Here, using whole-exome sequencing, we identified heterozygous germ-
line mutations in STAT1 in 47 patients from 20 kindreds with AD CMCD. Previously described heterozygous STAT1 
mutant alleles are loss-of-function and cause AD predisposition to mycobacterial disease caused by impaired STAT1-
dependent cellular responses to IFN-. Other loss-of-function STAT1 alleles cause AR predisposition to intracellular 
bacterial and viral diseases, caused by impaired STAT1-dependent responses to IFN-/, IFN-, IFN-, and IL-27. In 
contrast, the 12 AD CMCD-inducing STAT1 mutant alleles described here are gain-of-function and increase STAT1-
dependent cellular responses to these cytokines, and to cytokines that predominantly activate STAT3, such as IL-6 and 
IL-21. All of these mutations affect the coiled-coil domain and impair the nuclear dephosphorylation of activated 
STAT1, accounting for their gain-of-function and dominance. Stronger cellular responses to the STAT1-dependent  
IL-17 inhibitors IFN-/, IFN-, and IL-27, and stronger STAT1 activation in response to the STAT3-dependent IL-17 
inducers IL-6 and IL-21, hinder the development of T cells producing IL-17A, IL-17F, and IL-22. Gain-of-function 
STAT1 alleles therefore cause AD CMCD by impairing IL-17 immunity.
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dephosphorylation (Fig. 1 C; Chen et al., 1998; Zhong et al., 
2005; Mertens et al., 2006). In contrast, the other two morbid 
mutations (K201N and K211R) affect residues located on the 
other side of the coiled-coil domain (Fig. 1 C). Moreover, 
these two hypomorphic alleles were shown to be pathogenic 
not because they were missense, but because they promoted 
the splicing out of exon 8, resulting in AR partial STAT1 de-
ficiency, with the production of small amounts of intrinsically 
functional STAT1 molecules (Kong et al., 2010; Kristensen 
et al., 2011). These genetic data strongly suggest that hetero-
zygous missense mutations in the coiled-coil domain of STAT1 
may cause AD CMCD in a large fraction of patients. Never-
theless, the occurrence of other germline mutations in STAT1 
in patients without CMC and with an AD or AR predisposi-
tion to other infectious diseases raised questions about whether 
these mutations were really responsible for CMCD and the 
underlying mechanism of disease.

We functionally characterized the CMCD-causing STAT1 
allele R274Q, which was found in four kindreds (Fig. 1 B and 
Table I). We compared it with a WT and an MSMD-causing 
loss-of-function STAT1 allele (L706S; Dupuis et al., 2001). 
We transfected STAT1-deficient U3C fibrosarcoma cells with 
WT, R274Q, or L706S STAT1 alleles. Upon stimulation with 
IFN-, IFN-, or IL-27, cells transfected with the R274Q 
allele responded two to three times more strongly than those 
transfected with the WT allele, as shown by measurement of 
the induction of -activated sequence (GAS)–dependent re-
porter gene transcription activity, with mock- and L706S-
transfected cells serving as negative controls (Fig. 2 A and 
Fig. S1 A). All STAT1 alleles were expressed at an equal 
strength, as shown by Western blotting (WB; Fig. 2 B). Higher 
levels of STAT1 phosphorylation were observed for the 
R274Q allele than for the WT allele after stimulation with 
IFN-, IFN-, and IL-27, whereas STAT3 phosphorylation 
levels were similar for the two alleles (Fig. 2 B). In contrast, 
the induction of IFN-stimulated response element (ISRE)–
dependent transcription activity by IFN- was normal (Fig. S1, 
B and C). In the same experimental conditions, the other 10 
CMCD-associated STAT1 alleles tested were also gain-of-
function, unlike the K201N and K211R alleles (Fig. S1 D). 
Upon stimulation with IFN-, IFN-, or IL-27, an increase 
in GAS-binding activity was detected in cells transfected with 
the R274Q allele (Fig. S1 E). Accordingly, the transcription of 
the CXCL9 and CXCL10 target genes was enhanced (Fig. 2, 
C and D). Overall, these data indicate that at least 11 of the 
12 CMCD-linked STAT1 missense alleles are intrinsically 
gain-of-function.

The mechanism involved an increase in STAT1 tyrosine 
701 residue phosphorylation, as shown for R274Q by WB 
after stimulation with IFN-, IFN-, and IL-27 (Fig. 2 B). 
STAT1 was not constitutively activated, and STAT3 was nor-
mally activated in R274Q-transfected cells (Fig. 2 B and not 
depicted). Almost all the mutant STAT1 molecules, which 
were phosphorylated in response to IFN-, translocated to 
and accumulated in the nucleus, as shown by immunofluores-
cence (Fig. S1 F). WB showed R274Q STAT1 to be more 

sequencing and shown to be missense mutations. All these 
mutations affected the coiled-coil domain, which plays a key 
role in unphosphorylated STAT1 dimerization and STAT1 
nuclear dephosphorylation (Fig. 1, A and C; Chen et al., 1998; 
Levy and Darnell, 2002; Braunstein et al., 2003; Zhong et al., 
2005; Hoshino et al., 2006; Mertens et al., 2006). We therefore 
sequenced the corresponding coding region of STAT1 (exons 
6 to 10) in another 106 patients, including 57 with spo-
radic CMCD and 49 from 22 multiplex kindreds with AD 
CMCD. 29 patients from 16 kindreds were heterozygous for 
a STAT1 missense mutation (Fig. 1, A and B, Kindreds C-F, 
H-K, and M-T; Fig. 1 C; and Table I; Table S3). In total, 36 
patients from 20 kindreds were heterozygous for 1 of the 12 
missense mutations identified that affected the coiled-coil  
domain of STAT1. 11 other CMCD patients in these kindreds 
were not genotyped. The intrafamilial segregation of the mu-
tations was consistent with an AD trait, as all patients with 
CMCD from the kindreds tested were heterozygous, whereas 
none of these mutations was found in the heterozygous state 
in any of the healthy relatives tested (Fig. 1 B). Moreover, 
the STAT1 haplotypes for common SNPs indicated that the 
five recurrent mutations were caused by mutation hotspots 
rather than founder effects (unpublished data). Finally, the 
mutations were found to have occurred de novo in at least 
four kindreds, which is consistent with a high clinical pene-
trance of these alleles. The mutations were not found in the 
National Center for Biotechnology Information, Ensembl, 
and dbSNP databases. They were also absent from 1,052 con-
trols from 52 ethnic groups in the Centre d’Etude du Poly-
morphisme Humain and Human Genome Diversity panels, 
suggesting that they were rare, CMCD-inducing variants rather 
than irrelevant polymorphisms.

The 12 missense mutations were not conservative and 
were therefore predicted to affect protein structure and func-
tion. Moreover, most of the affected residues were found to 
have been conserved throughout evolution in the species in 
which STAT1 had been sequenced (Table S3). Accordingly, 
POLYphen II predicted that all but one of these mutations 
would be possibly or probably damaging (Adzhubei et al., 2010; 
Table S3). None of the previously described nine patients 
with AD STAT1 deficiency and MSMD was heterozygous 
for mutations affecting the coiled-coil domain (Fig. 1, A and C; 
Dupuis et al., 2001; Chapgier et al., 2006a; Averbuch et al., 
2011; unpublished data). However, three of the eight patients 
with AR STAT1 deficiency and susceptibility to intracellular 
bacterial and viral diseases, who, like their heterozygous rela-
tives, did not display CMC, carried mutations affecting the 
coiled-coil domain (Fig. 1, A and C; Chapgier et al., 2009; 
Chapgier et al., 2006b; Dupuis et al., 2003; Kong et al., 2010; 
Kristensen et al., 2011; Averbuch et al., 2011). These three pa-
tients from two kindreds carried the K201N or K211R mu-
tation (Kong et al., 2010; Kristensen et al., 2011). Nevertheless, 
the three-dimensional structure of phosphorylated STAT1 
molecules revealed that the 12 CMCD-linked missense mu-
tations affected a cluster of residues located in a specific pocket 
of the coiled-coil domain, near residues essential for STAT1 
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Figure 1.  Heterozygous missense mutations affecting the STAT1 coiled-coil domain in kindreds with AD CMCD. (A) The human STAT1  iso-
form is shown, with its known pathogenic mutations. Coding exons are numbered with roman numerals and delimited by a vertical bar. Regions corre-
sponding to the coiled-coil domain (CC), DNA-binding domain (DNA-B), linker domain (L), SH2 domain (SH2), tail segment domain (TS), and transactivator 
domain (TA) are indicated, together with their amino-acid boundaries, and are delimited by bold lines. Tyr701 (pY) and Ser727 (pS) are indicated. Muta-
tions in green are dominant and associated with partial STAT1 deficiency and MSMD. Mutations in brown are recessive and associated with complete 
STAT1 deficiency and intracellular bacterial and viral disease. Mutations in blue are recessive and associated with partial STAT1 deficiency and intracellular 
bacterial and/or viral disease. Mutations in red are dominant and associated with a gain-of-function of STAT1 and CMCD. (B) Pedigrees of 20 families 
with AD “gain-of-function” STAT1 mutations. Each kindred is designated by a letter (A to T), each generation is designated by a roman numeral (I-II-III-IV), 
and each individual is designated by an Arabic numeral (each individual studied is identified by a code of this type, organized from left to right). Black 
indicates CMCD patients. The probands are indicated by arrows. When tested, the genotype for STAT1 is indicated below each individual. (C) Three- 
dimensional structure of phosphorylated STAT1 in complex with DNA. Connolly surface representation, with the following amino acids highlighted: red, 
amino acids mutated in patients with CMCD; blue, amino acids located in the coiled-coil domain and mutated in patients with MSMD and viral diseases; 
yellow, amino acids identified in vitro as affecting the dephosphorylation process.
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Table I.  Summary of the clinical and genetic data for the patients

Patient Age at 
presentation 

Origin Clinical features of CMC Cause of death (age/yr) Autoimmunity Genotype

A-I-1 - France Nails Not related to the disease (old 
age)

None -

A-II-1 - France Nails Not related to the disease (old 
age)

None -

A-III-1 1 mo France Nails, oral cavity, oropharynx, 
genital mucosa

None WT/R274Q

A-III-3 - France Nails, oral cavity Not related to the disease (40) None -
A-III-4 - France Nails, oral cavity None -
A-IV-1 1 mo France Nails, oral cavity, oropharynx None WT/R274Q
B-II-1 - France - None -
B-III-2 3 yr France Skin, nails, oral cavity, oropharynx, 

genital mucosa
None WT/K286I

B-IV-1 5 yr France & 
Congo

Skin, nails, oral cavity, oropharynx None WT/K286I

B-IV-2 5 mo France & 
Congo

Skin, nails, oral cavity, oropharynx Cerebral aneurysm (8) None -

C-III-1 - Turkey Nails, oral cavity, genital mucosa Cerebral aneurysm (34) Thyroid 
autoimmunity

WT/R274Q

C-IV-1 - Turkey Nails, oral cavity None WT/R274Q
D-II-1 - France Nails, oral cavity, genital mucosa - -
D-III-2 7 yr France Skin, oral cavity, oropharynx None WT/M202V
D-IV-2 1 mo France Skin, nails, oropharynx Thyroid 

autoimmunity
WT/M202V

E-II-1 1 yr Germany Skin, oral cavity, oropharynx Squamous cell carcinoma (54) - -
E-III-2 1 yr Germany Nails, oral cavity, oropharynx, 

genital mucosa
Thyroid 

autoimmunity
WT/C174R

E-III-3 9 mo Germany Skin, nails, oral cavity, oropharynx, 
genital mucosa

Thyroid 
autoimmunity

WT/C174R

E-IV-1 18 mo Germany Skin, oral cavity, oropharynx, genital 
mucosa

None WT/C174R

E-IV-2 2 yr Germany Skin, oral cavity, oropharynx Thyroid 
autoimmunity

WT/C174R

E-IV-4 2 yr Germany Skin, oral cavity, oropharynx, genital 
mucosa

None WT/C174R

E-IV-5 1 yr Germany Skin, nails, oral cavity, oropharynx None WT/C174R
F-III-2 1 mo Argentina Nails, oral cavity, oropharynx, 

genital mucosa
- WT/R274W

F-IV-2 1 mo Argentina Skin, nails, oral cavity, oropharynx - WT/R274W
F-IV-3 6 mo Argentina Nails, oral cavity, genital mucosa - WT/R274W
G-II-1 3 mo Ukrainian Nails, skin, oral cavity, oropharynx, 

esophagus
None WT/D165G

H-I-2 1 yr Japan Skin, oropharynx, esophagus - WT/R274Q
H-II-2 5 yr Japan Oral cavity, oropharynx - WT/R274Q
I-II-3 9 mo Mexico Skin, nails, oral cavity, genital 

mucosa
None WT/T288A

J-I-2 - Switzerland Oral cavity, oropharynx None WT/T288A
J-II-2 3 mo Switzerland Oral cavity, oropharynx - WT/T288A
K-II-2 11 mo Switzerland Nails, oral cavity, oropharynx Thyroid 

autoimmunity
WT/Y170N

L-I-2 7 yr France Skin, nails, oropharynx, esophagus Thyroid 
autoimmunity

WT/R274Q

L-II-1 1 mo France Skin, nails, oropharynx, esophagus None WT/R274Q
M-II-2 6 mo Germany Skin, nails, oropharynx, genital 

mucosa
Thyroid 

autoimmunity
WT/D165H
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shift assay (EMSA; Fig. 3, A and C). In contrast, the DNA-
binding activity of ISGF-3 seemed to be normal in cells from 
the patient stimulated with IFN-/ (Fig. S3 A). These data 
strongly suggest that the heterozygous R274Q allele is domi-
nant for STAT1-dependent responses and gain-of-function for 
GAF-dependent cellular responses to key STAT1-activating 
cytokines, such as IFN-/, IFN-, and IL-27. The mutation 
may also affect IFN- responses.

We then tested cytokines that predominantly activate 
STAT3, rather than STAT1, such as IL-6, IL-21, IL-22, and 
IL-23 (Hunter, 2005; Kishimoto, 2005; Kastelein et al., 2007; 
Spolski and Leonard, 2008; Donnelly et al., 2010; Sabat, 2010; 
Ouyang et al., 2011). Peripheral T cell blasts from a patient 
displayed normal STAT3 activation in response to IL-23, as 
shown by WB (Fig. S3 B). No increase in STAT1 phosphory-
lation was detected in cells from a patient or controls upon 
IL-23 stimulation. Furthermore, fibroblasts from a patient 
displayed normal activation of STAT3 in response to IL-22 
(Fig. S3 C). In the same conditions, no STAT1 phosphorylation 
was detected in cells from the patient or controls (unpublished 
data). In contrast, the levels of STAT1 phosphorylation in re-
sponse to IL-6 and IL-21 were higher in the patient’s EBV-B 
cells than in cells from healthy controls and from a patient 
with MSMD heterozygous for the L706S allele, whereas 
STAT3 activation was normal as shown by WB (Fig. 3, F  
and H). Consistent with these findings, stronger GAS activity 
was observed in cells from the patient in response to IL-6 and 
IL-21 stimulation (Fig. 3, E and G). These data suggest that 
heterozygous missense mutations in the coiled-coil domain  
of STAT1 are dominant and gain-of-function for GAF- 
dependent cellular responses for cytokines that predominantly 
activate STAT3, such as IL-6 and IL-21. Overall, these data 
suggest that the STAT1 alleles are truly responsible for CMCD 
in these kindreds and raise questions about the immuno
logical basis of CMCD.

strongly phosphorylated than the WT protein in both cyto-
plasmic and nuclear extracts (Fig. S1 G). The mechanism  
underlying the gain of R274Q phosphorylation was explored 
with the tyrosine kinase inhibitor staurosporine and the 
phosphatase inhibitor pervanadate. The dephosphorylation of 
IFN-–activated R274Q STAT1 was impaired by stauro
sporine, but less than that of the known dephosphorylation 
mutant F77A (Fig. 2 E; Zhong et al., 2005). In contrast, per-
vanadate normalized the phosphorylation of R274Q to 
WT levels (Fig. 2 F). Another CMCD-linked mutation, 
D165G (Fig. 1, A–C), also resulted in impaired dephosphory-
lation that could be normalized by adding pervanadate (Fig. 2 F 
and Fig. S1 H). Thus, at least two CMCD-linked STAT1 mis-
sense alleles (R274Q and D165G) are gain-of-function 
caused by the impairment of nuclear dephosphorylation. 
These alleles may therefore enhance cellular responses to  
cytokines activating STAT1 predominantly and STAT3 to a 
lesser extent, such as IFN-/, IFN-, IFN-, and IL-27, and 
possibly also responses to cytokines activating STAT3 pre-
dominantly and STAT1 to a lesser extent, such as IL-6, IL-21, 
IL-22, and IL-23 (Fig. S2).

We investigated the dominance of the STAT1 alleles at the 
cellular level by testing EBV-B–transformed (EBV-B) cells and 
SV-40–transformed dermal fibroblasts from a CMCD patient 
heterozygous for the STAT1 R274Q allele. We observed en-
hanced IFN-/–, IFN-–, and IL-27–dependent STAT1 
phosphorylation in EBV-B cells from a patient heterozygous 
for the STAT1 R274Q allele, as shown by WB (Fig. 3, B  
and D). Phospho-STAT1 accumulated in the nucleus of 
R274Q heterozygous SV-40 fibroblasts upon IFN- stimulation, 
as well as in EBV-B cells (Fig. 3 I and Fig. S3 D). Moreover, the 
IFN-/–, IFN-–, and IL-27–induced DNA-binding activity 
of GAF was stronger in cells from the CMCD patient than in 
those from a healthy control or from a MSMD patient carrying 
the L706S mutant allele, as shown by electrophoretic mobility 

Table I.  Summary of the clinical and genetic data for the patients (Continued)

Patient Age at 
presentation 

Origin Clinical features of CMC Cause of death (age/yr) Autoimmunity Genotype

N-II-2 1 yr Germany Skin, nails, oropharynx Squamous cell carcinoma (54) None WT/R274W
O-II-1 18 mo Germany Oral cavity, oropharynx None WT/M202I
P-I-1 1 yr Israel Oropharynx, genital mucosa Not related to the disease (46) None -
P-II-1 <2 yr Israel Skin, nails, oropharynx None WT/A267V
P-II-2 <2 yr Israel Skin, nails, oropharynx None WT/A267V
Q-II-1 1 mo France Skin, oral cavity, oropharynx, genital 

mucosa
None WT/R274W

R-I-1 4 yr France Skin, nails, oropharynx Squamous cell carcinoma (55) None -
R-II-1 18 mo France Lips, oropharynx None WT/M202V
S-I-2 6 mo France Skin, oral cavity, oropharynx Systemic lupus 

erythematosus
WT/M202I

S-II-2 1 yr France Nails None -
S-II-3 1 mo France Skin, oropharynx None WT/M202I
T-II-3 1 yr Germany Skin, nails, oropharynx Squamous cell carcinoma (41) None WT/Q271P

None of the patients displays autoantibodies against IL-17A, IL-17F, and IL-22. -, unknown.
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Villarino et al., 2010). Moreover, mouse 
IFN- (Feng et al., 2008; Tanaka  
et al., 2008; Villarino et al., 2010) 
and human IFN-/ (Chen et al., 
2009; Ramgolam et al., 2009) have 
been shown to antagonize the devel-
opment of IL-17–producing T cells 
via STAT1. In addition, IL-6, IL-21, 
and IL-23 are prominent inducers of 
IL-17–producing T cells, via a mecha-
nism dependent on STAT3 and antag-
onized by STAT1 (Hirahara et al., 2010). 
Finally, we recently showed that in-
born errors of IL-17F or IL-17RA 
were genetic etiologies of CMCD 
(Puel et al., 2010b, 2011). We thus 
determined the proportion of IL-17A– 
and IL-22–producing T cells by flow 

cytometry in patients with heterozygous STAT1 mutations 
and AD CMCD. The 18 CMCD patients carrying gain-of-
function mutations in STAT1 that were tested had lower  
proportions of circulating IL-17A– and IL-22–producing  
T cells ex vivo than 28 healthy controls (P < 104) and six 
patients bearing loss-of-function STAT1 alleles (P < 2.103; 
Fig. 4, A and B; and Fig. S4 G). In contrast, they displayed 
normal proportions of IFN-–producing T cells (Fig. S4 F).  

IL-27 is a potent inhibitor of the development of IL-17–
producing T cells in mice (Batten et al., 2006; Stumhofer 
et al., 2006; Yoshimura et al., 2006; Amadi-Obi et al., 2007; 
Diveu et al., 2009; El-behi et al., 2009; Villarino et al., 
2010) and humans (Diveu et al., 2009; Liu and Rohowsky- 
Kochan, 2011), through a mechanism dependent on STAT1 
(Amadi-Obi et al., 2007; Batten et al., 2006; Diveu et al., 2009; 
Liu and Rohowsky-Kochan, 2011; Stumhofer et al., 2006; 

Figure 2.  The mutant R274Q STAT1 allele 
is gain-of-phosphorylation and gain-of-
function for GAF-dependent cellular  
responses. U3C cells were transfected with a 
mock vector, a WT, or two mutant alleles of 
STAT1 (R274Q and L706S). The response to  
IFN-, IL-27, and IFN- was then evaluated by 
determining luciferase activity of a reporter 
gene under the control of the GAS promoter 
(A), and by determining STAT1 and STAT3 phos-
phorylation by Western blot (B). Experiments 
were performed at least three times indepen-
dently. (C and D) Quantitative RT-PCR was used 
to measure the induction of CXCL9 (C) and 
CXCL10 (D) 2–8 h after stimulation with IFN-. 
Experiments were performed two times inde-
pendently. (E) The nuclear dephosphorylation 
of STAT1 was tested by WB in U3C cells trans-
fected with a mock vector, WT STAT1, the 
R274Q, or the F77A (a known loss-of-dephos-
phorylation mutant) STAT1 mutant alleles, and 
treated with IFN- with or without the tyrosine 
kinase inhibitor staurosporine for the indicated 
periods of time (in minutes). Three independent 
experiments were performed. (F) Western blot 
of U3C cells transfected with mock, WT, R274Q, 
D165G, and F77A alleles of STAT1, nontreated 
or treated with IFN- in the absence or pres-
ence of the phosphatase inhibitor pervanadate. 
Two independent experiments were performed. 
Error bars represent SD of one experiment done 
in triplicate (Fig. S1 D).
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T cells and the amounts of IL-17A, 
IL-17F, and IL-22 secreted were small-
est for the four patients with the most 
apparently severe clinical phenotype 
(Fig. 4, A–E and not depicted).

After the culture of PBMCs in 
vitro in the presence of various cyto-
kines, including IL-6, TGF-, IL-1, 
and IL-23, the proportion of IL-17A– 
and IL-22–producing T cell blasts re-
mained significantly lower (P < 104) 
in CMCD patients carrying STAT1 
mutations than in controls (Fig. S4, A 
and B; and not depicted). In contrast, 
the proportions of IL-17A– and IL-22–
producing T cell blasts were normal in 
patients with loss-of-function STAT1 

mutations (Fig. S4, A and B; and not depicted). The amounts 
of IL-17A, IL-17F, and IL-22 in the supernatant of T cell 
blasts stimulated with PMA and ionomycin after culture in 
vitro were also significantly lower in patients with STAT1 
mutations and CMCD (P < 4.104; Fig. S4, C–E; and not 
depicted). In contrast, patients with loss-of-function mutant 
STAT1 alleles displayed normal levels of cytokine secretion 
(Fig. S4, C–E; and not depicted). Finally, levels of IL-12p70 and 

Moreover, only very small amounts of IL-17A, IL-17F, and 
IL-22 were secreted by freshly prepared leukocytes after  
ex vivo stimulation with PMA and ionomycin (P < 8.103), 
as shown by ELISA (Fig. 4, C–E). In contrast, the amounts of 
secreted IL-17A, IL-17F, and IL-22 were normal in patients 
heterozygous or homozygous for loss-of-function or hypo
morphic STAT1 mutations (Fig. 4, C–E). Interestingly, in all 
assays, the proportions of IL-17A– and IL-22–producing  

Figure 3.  The mutant R274Q STAT1  
allele is dominant for GAF-dependent 
cellular responses at the cellular level. The 
responses of the patient’s EBV-B cells (R274Q/
WT) were evaluated independently at least 
twice, by EMSA, with a GAS probe (A, C, E,  
and G), and by Western blot (B, D, F, and H). 
This response was compared with that of one 
or two healthy controls (WT/WT1 and WT/
WT2), heterozygous cells with a WT and a 
loss-of-function STAT1 allele (STAT1+/), cells 
heterozygous for a dominant loss-of-function 
mutation of STAT1 (L706S/WT), cells with 
complete STAT1 deficiency (STAT1/), and 
cells from two patients heterozygous for 
dominant loss-of-function mutations of 
STAT3 (STAT3+/1 and STAT3+/2). Cells were 
left nonstimulated (NS) or stimulated, as indi-
cated, with IFN-, IFN-, IL-27, IL-6, and  
IL-21. pSTAT is an antibody specific for STAT 
with a phosphorylated tyrosine residue. (I) The 
nuclear and cytoplasmic fractions of EBV-B 
cells from a control (WT/WT), a CMCD patient 
(R274Q/WT), a heterozygous patient with a 
dominant loss-of-function mutation of STAT1 
(L706S/WT) and a patient with complete 
STAT1 deficiency (/) stimulated with IFN- 
and IFN- were tested for the presence of 
phosphorylated STAT1 and STAT1 by WB. Anti-
bodies directed against GAPDH and Lamin B1 
were used to normalize the amount of cyto-
plasmic and nuclear proteins, respectively. The 
experiment was performed twice.  on N
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the gain-of-function, which manifests itself in terms of DNA-
binding activity, reporter gene induction, and target gene in-
duction, may not necessarily increase the transcription of all 
target genes, possibly even resulting in the repression of some 
genes. In addition, the various STAT1 mutations, although 
they all affect the coiled-coil domain and are probably all loss-
of-dephosphorylation and gain-of-function, may somewhat 
differ from each other in terms of their functional impact. 
The genome-wide impact of these mutations on the tran-
scriptome remains to be assessed in various cell types stimulated 
with a range of cytokines. In any case, the gain-of-function  
mutant STAT1 alleles were dominant for GAF activation in 
all cell types tested. They affected cellular responses to various 
cytokines, including IFN-/, IFN-, and IL-27, which pre-
dominantly activate STAT1 over STAT3, and IL-6 and IL-21, 
which predominantly activate STAT3 over STAT1. These 
mutations probably also strengthen cellular responses to 
IFN-. However, they do not seem to affect STAT1-containing 
ISGF-3 activation by IFN-/, at least in the conditions 
tested. Moreover, STAT3 activation by IL-6, IL-21, IL-22, and 
IL-23 is maintained, suggesting that STAT3 activation by  
IL-26 is also intact.

IL-12p40 production by whole blood stimulated with IFN- 
were higher in CMCD patients bearing gain-of-function 
STAT1 alleles than in patients bearing loss-of-function 
STAT1 alleles and healthy controls (Fig. 4 F and not depicted). 
Thus, patients with familial or sporadic AD CMCD hetero-
zygous for mutations affecting the coiled-coil domain of 
STAT1, including the dominant gain-of-function R274Q 
mutant allele, displayed lower levels of IL-17 cytokine pro-
duction by peripheral T cells, providing a molecular mecha-
nism for the disease.

DISCUSSION
We have shown that several germline missense mutations  
affecting the coiled-coil domain of STAT1 may cause spo-
radic and familial AD CMCD. The underlying mechanism 
involves a gain of STAT1 phosphorylation caused by the loss 
of nuclear dephosphorylation, resulting in a gain-of-function 
of GAF in response to various cytokines. Impaired dephos-
phorylation may not be the only mechanism influencing the 
impact of these mutations on the transcription of STAT1 target 
genes, as these mutations may also affect other processes, such 
as the dimerization of unphosphorylated STAT1. Moreover, 

Figure 4.  Impaired development and function of IL-17– and IL-22–producing T cells ex vivo in patients with AD CMCD and STAT1 muta-
tions. Each symbol represents a value from a healthy control individual (black circles), a patient bearing a STAT1 gain-of-function (GOF) allele (red upright 
triangles), or a patient bearing one or two STAT1 loss-of-function (LOF) alleles (black upside-down triangles). (A and B) Percentage of CD3+/IL-17A+ (A) 
and CD3+/IL-22+ (B) cells, as determined by flow cytometry, in nonadherent PBMCs activated by incubation for 12 h with PMA and ionomycin. (C–E) Secre
tion of IL-17F (C), IL-17A (D) and IL-22 (E) by whole blood cells, as determined by ELISA, in the absence of stimulation (open symbols) and after stimu
lation with PMA and ionomycin for 48 h (closed symbols). Horizontal bars represent medians. The p-values for the nonparametric Wilcoxon test, between 
patients with STAT1 GOF mutations (n = 18) and controls (n = 28) and patients with STAT1 LOF mutations (n = 6) are indicated. All differences between 
healthy controls and patients with STAT1 LOF alleles were not significant. (F) Secretion of IL-12p70 by whole blood cells, as determined by ELISA, in the 
absence of stimulation (open symbols), after stimulation with BCG (lightly colored symbols), or BCG + IFN- for 48 h (closed symbols). Horizontal bars 
represent medians. The p-values for differences between patients with STAT1 GOF mutations (n = 15) and controls (n = 23) and patients with STAT1 LOF 
mutations (n = 6) are indicated and were calculated in nonparametric Wilcoxon tests. All experiments were performed at least two times independently.
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suffer from mycobacterial disease caused by the impairment 
of IFN- immunity (Chapgier et al., 2006a; Dupuis et al., 
2001). Overall, mutations impairing STAT1 function confer AD 
or AR susceptibility to intracellular agents, through the im-
pairment of IFN-/ (viral diseases) and/or IFN- immu-
nity (mycobacterial diseases). In contrast, the gain-of-function 
STAT1 mutations reported here confer AD CMCD because 
of the enhancement of STAT1-mediated cellular responses 
to STAT1-dependent repressors and STAT3-dependent induc-
ers of IL-17–producing T cells. These studies neatly demonstrate 
that severe infectious diseases in otherwise healthy patients 
may be subject to genetic determinism (Casanova and Abel, 
2005, 2007; Alcaïs et al., 2009, 2010). They also highlight the 
profoundly different effects that germline mutations in the same 
human gene may have, resulting in different infectious dis-
eases through different molecular and cellular mechanisms.

MATERIALS AND METHODS
Massively parallel sequencing
DNA (3 µg) extracted from EBV-B cells from the patient was sheared with a 
S2 Ultrasonicator (Covaris). An adapter-ligated library was prepared with the 
Paired-End Genomic DNA Sample Prep kit (Illumina). The SureSelect  
Human All Exon kit (Agilent Technologies) was then used for exome capture. 
Single-end sequencing was performed on a Genome Analyzer IIx (Illumina), 
generating 72-base reads.

Sequence alignment, variant calling, and annotation
BWA aligner (Li and Durbin, 2009) was used to align the sequences obtained 
with the human genome reference sequence (hg18 build). Downstream pro-
cessing was performed with the Genome analysis toolkit (GATK; McKenna 
et al., 2010), SAMtools (Li et al., 2009), and Picard Tools (http://picard 
.sourceforge.net). Substitution calls were made with a GATK UnifiedGeno-
typer, whereas indel calls were made with a GATK IndelGenotyperV2. All calls 
with a read coverage ≤2x and a Phred-scaled SNP quality of ≤20 were filtered 
out. All the variants were annotated with annotation software that was developed 
in-house. The data were further analyzed with sequence analysis software that 
had been developed in-house (SQL database query–driven system).

Molecular genetics
EBV-B cells and the STAT1-deficient cell line U3C were cultured as previ-
ously described (Chapgier et al., 2006a). Primary fibroblasts were cultured in 
DME supplemented with 10% fetal calf serum. Cells were stimulated with 
the indicated doses (in IU/ml or ng/ml) of IFN- (Imukin; Boehringer  
Ingelheim), IFN-2b (IntronA; Schering-Plough), IL-27 (R&D Systems),  
IL-21 (R&D Systems), IL-22 (R&D Systems), IL-23 (R&D Systems), and 
IL-6 (R&D Systems). Genomic DNA and total RNA were extracted from 
cell lines and fresh blood cells, as previously described (Chapgier et al., 
2006a). Genomic DNA was amplified with specific primers encompassing 
exons 6–10 of STAT1 (available upon request), sequenced with the Big Dye 
Terminator cycle sequencing kit (Applied Biosystems), and analyzed on an 
ABI Prism 3730 (Applied Biosystems). We used the various alleles of STAT1 
in the pcDNA3 STAT1-V5 vector (Chapgier et al., 2006a; Kong et al., 2010). 
We generated the various STAT1 mutations by site-directed mutagenesis 
(QuikChange Site-Directed Mutagenesis kit; Stratagene) with the mis-
matched primers listed in Table S4. U3C cells were harvested by trypsin 
treatment 24 h before transfection and replated at a density of 2.5 × 105 
cells/ml in 6-well plates. Plasmid DNA (5 µg per plate) carrying the WT or 
all the various mutant STAT1 alleles was used for cell transfection with the 
Calcium Phosphate Transfection kit (Invitrogen).

Luciferase reporter assay
U3C cells were dispensed into 96-well plates (1 × 104/well) and trans-
fected with reporter plasmids (Cignal GAS and ISRE Reporter Assay kit;  

The mutant STAT1 alleles described herein enhance  
cellular responses to cytokines such as IFN-/, IFN-, and 
IL-27, which potently inhibit the development of IL-17–
producing T cells via STAT1 (Batten et al., 2006; Yoshimura  
et al., 2006; Stumhofer et al., 2006; Amadi-Obi et al., 2007; 
Feng et al., 2008; Kimura et al., 2008; Tanaka et al., 2008;  
Chen et al., 2009; Ramgolam et al., 2009; Crabé et al., 2009; 
Diveu et al., 2009; El-behi et al., 2009; Guzzo et al., 2010;  
Villarino et al., 2010; Liu and Rohowsky-Kochan, 2011). 
These mutant alleles also increase cellular responses to IL-6 
and IL-21, which normally induce IL-17–producing T cells 
via STAT3 rather than STAT1 (Hirahara et al., 2010). En-
hanced STAT1-dependent cellular responses to these two 
groups of cytokines probably impair the development of  
IL-17–producing T cells. It remains unclear whether this 
mechanism predominantly involves IL-17–inhibiting cytokines 
(IFN-/, IFN-, and IL-27), either individually or in combi-
nation. The available data from the mouse model suggest that 
IL-27 is the most potent of the three inhibitors. There is also 
evidence that these cytokines inhibit IL-17–producing T cell 
development in humans (Ramgolam et al., 2009; Liu and 
Rohowsky-Kochan, 2011). Enhanced STAT1 and GAF acti-
vation in response to the IL-17 inducers IL-6 and IL-21, and 
perhaps IL-23, may also play a key role in disease, by antago-
nizing STAT3 responses. The effect of the aryl hydrocarbon 
receptor on IL-17 T cell development might also be enhanced 
by gain-of-function STAT1 alleles (Kimura et al., 2008). 
Moreover, enhanced STAT1 activity downstream from IL-22 
and IL-26 in cells, not detected in our study, might also contrib-
ute to the CMCD phenotype. Finally, thyroid autoimmunity 
in eight patients and systemic lupus erythematosus in another 
patient in our series probably resulted from the enhancement 
of IFN-/ responses, as such autoimmunity is a frequent 
adverse effect of treatment with recombinant IFN- or IFN- 
(Oppenheim et al., 2004; Selmi et al., 2006). Importantly, 
no autoantibodies against IL-17A, IL-17F, or IL-22 were de-
tected in the patients’ serum (Table I and unpublished data).

Remarkably, germline mutations in human STAT1 un-
derlie susceptibility to three different types of infectious dis-
ease: mycobacterial diseases, viral diseases, and CMC. Patients 
bearing STAT1 mutations and displaying mycobacterial  
and/or viral disease do not suffer from CMC, and the patients 
with CMCD caused by other STAT1 alleles described here 
present no mycobacterial or viral disease. The pathogenic 
mechanisms involved are clearly different, with loss-of-function 
mutations in STAT1 underlying mycobacterial and viral dis-
eases (Dupuis et al., 2001, 2003; Chapgier et al., 2006b, 2009; 
Kong et al., 2010; Averbuch et al., 2011; Kristensen et al., 
2011). Human AR STAT1 deficiency impairs cellular re-
sponses to IFN-/, IFN-, IFN-, and IL-27 (Dupuis  
et al., 2003; Chapgier et al., 2006b, 2009; Kong et al., 2010;  
Kristensen et al., 2011). Viral diseases probably result from 
impaired IFN-/ and, perhaps, IFN- immunity, although 
impaired IFN- and IL-27 immunity may also contribute to 
the phenotype. Patients with AD MSMD, heterozygous for 
loss-of-function dominant-negative mutations of STAT1, 
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incubated for 30 min with 100 ng/ml IL-23. Activation was stopped by add-
ing 1X cold PBS, and cells were processed for immunoblot analysis.

Modeling
Images of the three-dimensional structure of STAT1 (Chen et al., 1998) were 
generated with the 2002 PyMOL Molecular Graphics System (DeLano Sci-
entific), using PDB accession no. 1BF5.

Whole-blood assay of the IL-12–IFN- circuit
Whole-blood assays were performed as previously described (Feinberg et al., 
2004). Heparin-treated blood samples from healthy controls and patients 
were stimulated in vitro with live Mycobacterium bovis BCG (Pasteur) alone or 
with IFN- (5,000 IU/ml; Boehringer Ingelheim). Supernatants were col-
lected after 48 h of stimulation, and ELISA were performed with specific 
antibodies directed against IL-12p40 or IL-12p70, using kits from R&D Sys-
tems according to the manufacturer’s instructions.

Production of IL-17A, IL-17F, and IL-22 by leukocytes
Cell activation. IL-17A– and IL-22–producing T cells were evaluated by 
intracellular staining or by ELISA, as previously described (de Beaucoudrey 
et al., 2008). In brief, PBMCs were purified by centrifugation on a gradient 
(Ficoll-Paque PLUS; GE Healthcare) and resuspended in RPMI supple-
mented with 10% FBS (RPMI/10% FBS; Invitrogen). Adherent monocytes 
were removed from the PBMC preparation by incubation for 2 h at 37°C, 
under an atmosphere containing 5% CO2.

For ex vivo evaluation of IL-17– and IL-22–producing T cells by flow 
cytometry, we resuspended 5 × 106 nonadherent cells in 5 ml RPMI/10% 
FBS in 25 cm2 flasks and stimulated them by incubation with 40 ng/ml PMA 
(Sigma-Aldrich) and 105 M ionomycin (Sigma-Aldrich) in the presence of 
a secretion inhibitor (1 µl/ml GolgiPlug; BD) for 12 h.

For evaluation of the IL-17– and IL-22–producing T cell blasts after in 
vitro differentiation, the nonadherent PBMCs were dispensed into 24-well 
plates at a density of 2.5 × 106 cells/ml in RPMI/10% FBS and activated 
with 2 µg/ml of an antibody directed against CD3 (Orthoclone OKT3; 
Janssen-Cilag) alone, or together with 5 ng/ml TGF-1 (240-B; R&D Sys-
tems), 20 ng/ml IL-23 (1290-IL; R&D Systems), 50 ng/ml IL-6 (206-IL; 
R&D Systems), 10 ng/ml IL-1 (201-LB; R&D Systems), or combinations 
of these four cytokines. After 3 d, the cells were restimulated in the same acti-
vation conditions, except that the anti-CD3 antibody was replaced with 
40 IU/ml IL-2 (Proleukin i.v.; Chiron). We added 1 ml of the appropriate 
medium, resuspended the cells by gentle pipetting, and then split the cell sus-
pension from each well into two. Flow cytometry was performed on one of 
the duplicated wells 2 d later, after stimulation by incubation for 12 h with 
40 ng/ml PMA and 105 M ionomycin in the presence of 1 µl/ml GolgiPlug. 
FACS analysis was performed as described in the following section. The 
other duplicated well was split into two, with one half left unstimulated and 
the other stimulated by incubation with 40 ng/ml PMA and 105 M iono-
mycin for another 2 d. Supernatants were collected after 48 h of incubation, 
for ELISA.

Flow cytometry. Cells were washed in cold PBS, and surface labeling was 
achieved by incubating the cells with PECy5-conjugated anti–human CD3 
antibody (BD) in PBS/2% FBS for 20 min on ice. Cells were then washed 
twice with 2% FBS in cold PBS, fixed by incubation with 100 µl of BD  
Cytofix for 30 min on ice, and washed twice with BD Cytoperm (Cytofix/
Cytoperm Plus, fixation/permeabilization kit; BD). Cells were then incu-
bated for 1 h on ice with Alexa Fluor 488–conjugated anti–human IL-17A 
(53–7179-42; eBioscience), PE-conjugated anti–human IL-22 (IC7821P; 
R&D Systems), or PE-conjugated anti–human IFN- (IC285P; R&D Sys-
tems) antibodies, washed twice with Cytoperm, and analyzed with a FACS-
Canto II system (BD).

ELISA. IL-17A, IL-17F, and IL-22 levels were determined by ELISA on the 
supernatants harvested after 48 h of whole-blood stimulation with 40 ng/ml 
PMA and 105 M ionomycin, or after in vitro PHA blast differentiation and 

SABiosciences) and plasmids carrying the various alleles of STAT1 or a 
mock vector, in the presence of Lipofectamine LTX (Invitrogen). 6 h after 
transfection, the cells were transferred back into medium containing 10% 
FBS and cultured for 24 h. The transfectants were then stimulated with 
IFN- (500 and 1,000 IU/ml), IL-27 (20 and 100 ng/ml), and IFN- 
(500, 1,000, and 5,000 IU/ml) for 16 h and subjected to luciferase assays 
with the Dual-Glo luciferase assay system (Promega). Experiments were per-
formed in triplicate and firefly luciferase activity was normalized with respect 
to Renilla luciferase activity. The data are expressed as fold induction with re-
spect to nonstimulated cells.

Immunoblot analysis and electrophoretic mobility shift assays
The following optimal stimulation conditions were used. EBV-B or U3C 
cells were stimulated by incubation for 20 min with 100 µg/ml IL-21 or 
25 ng of IL-22; 30 min with 103 or 105 IU/ml IFN- and IFN-; 15 min 
with 50 ng/ml IL-6; or 30 min with 50 or 100 ng/ml IL-27. WB was per-
formed as previously described (Dupuis et al., 2003). In brief, cell activation 
was blocked with cold 1X PBS, cells were lysed in 1% NP-40 lysis buffer, and 
the proteins were recovered and subjected to SDS-PAGE. We used antibodies 
directed against phosphorylated STAT1 (pY701; BD), STAT1 (C-24; Santa 
Cruz Biotechnology), V5 (Invitrogen), -tubulin (Santa Cruz Biotechnol-
ogy), phosphorylated STAT3 (Cell Signaling Technology), lamin B1 (Santa 
Cruz Biotechnology), GAPDH (Santa Cruz Biotechnology), and STAT3 
(Santa Cruz Biotechnology). EMSA was performed as previously described 
(Chapgier et al., 2006a). In brief, cell activation was blocked by incubation 
with cold 1X PBS, and the cells were gently lysed to remove cytoplasmic  
proteins while keeping the nucleus intact. We then added nuclear lysis 
buffer and recovered the nuclear proteins, which were subjected to nonde-
naturing electrophoresis with radiolabeled GAS (from the FCR1 promoter: 
5-ATGTATTTCCCAGAAA-3) and ISRE (from the ISG15 promoter:  
5-GATCGGGAAAGGGAAACCGAAACTGAA-3) probes.
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Statistical analysis. We assessed differences between controls, MSMD pa-
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IL-22–producing T cells, as assessed by flow cytometry, and in terms of the 
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Institute). For all analyses, P < 0.05 was considered statistically significant.
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