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Abstract

Label free imaging of oxygenation distribution in tissues is highly desired in numerous biomedical 

applications, but is still elusive, in particular in sub-epidermal measurements. Eigenspectra 

multispectral optoacoustic tomography (eMSOT) and its Bayesian-based implementation have 

been introduced to offer accurate label-free blood oxygen saturation (sO2) maps in tissues. The 

method uses the eigenspectra model of light fluence in tissue to account for the spectral changes 

due to the wavelength dependent attenuation of light with tissue depth. eMSOT relies on the 

solution of an inverse problem bounded by a number of ad hoc hand-engineered constraints. 

Despite the quantitative advantage offered by eMSOT, both the non-convex nature of the 

optimization problem and the possible suboptimality of the constraints may lead to reduced 

accuracy. We present herein a neural network architecture that is able to learn how to solve the 

inverse problem of eMSOT by directly regressing from a set of input spectra to the desired fluence 

values. The architecture is composed of a combination of recurrent and convolutional layers and 

uses both spectral and spatial features for inference. We train an ensemble of such networks using 

solely simulated data and demonstrate how this approach can improve the accuracy of sO2 
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computation over the original eMSOT, not only in simulations but also in experimental datasets 

obtained from blood phantoms and small animals (mice) in vivo. The use of a deep-learning 

approach in optoacoustic sO2 imaging is confirmed herein for the first time on ground truth sO2 

values experimentally obtained in vivo and ex vivo.

Keywords

Optoacoustic/photoacoustic imaging; multispectral optoacoustic tomography; photoacoustic 
tomography; deep learning; deep neural networks

I. INTRODUCTION

Hemoglobin oxygen saturation is an important indicator of tissue function and disease. 

Quantification and spatial mapping of oxygen saturation (sO2) in tissue provides valuable 

information for studies of tumor hypoxia [1], muscle activity [2], brain activation [3], 

metabolism [4] and other processes [5]. Modern imaging techniques that can provide 

quantitative spatial maps of sO2 are limited ether by penetration depth [6], or by resolution 

[7]. Multispectral Optoacoustic Tomography (MSOT) can uniquely produce high resolution 

label-free spatial maps of sO2 in deep tissue by unmixing the recorded optoacoustic (OA) 

spectra using the reference spectral signatures of oxygenated and deoxygenated hemoglobin 

[8–10]. The method opens a new way to study tissue oxygenation breaking though the 

barriers of other imaging techniques. However, the accuracy of sO2 quantification in MSOT 

is limited by the fact that optical fluence varies with the location in the sample and 

wavelength of light, which affects the recorded OA spectra in a non-linear way [11–14]. 

This phenomenon, known as spectral coloring or spectral corruption, typically worsens with 

tissue depth and is challenging to model or predict due to the dependence of light fluence on 

the typically unknown optical properties in the whole illuminated region. Spectral coloring 

needs to be accounted for in order to achieve acceptable sO2 quantification accuracy.

Several methods that reverse the effect of spectral coloring have been proposed [15–25]. One 

family of methods use a light propagation model that is described by the Radiative Transfer 

Equation (RTE) [15, 20, 21, 23, 24] or its approximations [15–17, 19, 21, 25] and attempt to 

invert a model predicting optical fluence. However, the application of these methods to sO2 

quantification in experimental data is challenging due to long computational times, reliance 

on perfect image reconstruction, and the need for accurate knowledge of various setup 

specific factors, e.g. illumination. Recently, eigenspectra MSOT (eMSOT) methodology was 

proposed [26]. The approach makes use of a simple linear spectral model for the wavelength 

dependence of optical fluence, termed the eigenspectra model, that describes fluence spectra 

based on only three parameters, termed the eigenfluence parameters. The spectral unmixing 

problem in eMSOT is formulated as the eigenspectra model inversion that relies on 

optimization to find the eigenfluence parameters that accurately predict the spectrum of the 

optical fluence. The eigenspectra model is inverted using a set of several sparsely distributed 

locations in the region-of-interest (ROI) simultaneously, allowing to analyze well-

reconstructed parts of the data. However, eMSOT inversion is based on a number of 

constraints. Such constraints in eMSOT are hand engineered, with the specific values of 
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certain parameters selected in an ad hoc manner. These constraints aim to enforce spatial 

smoothness or depth-dependence of the eigenfluence parameters, and may not be entirely 

accurate or sufficient, and therefore may lead to inaccuracies with certain samples.

A Bayesian variant of eMSOT was developed that models the constraints as prior 

distributions and takes into account the noise in the recorded spectra [27]. This algorithm 

assumes that noise is spatially non-uniform, which can improve sO2 estimation, especially in 

deep-seated, highly absorbing structures. Nevertheless, Bayesian eMSOT also suffers from 

the major restrictions of eMSOT such as the ad hoc constraints and the non-convex nature of 

the optimization problem. Additionally, it requires longer computational times for 

convergence as compared to the original eMSOT.

Herein we examine deep-learning (DL) for improving eMSOT. DL was selected due to its 

advantages over other types of machine learning (ML) methods, in particular its 

performance when learning highly non-linear mappings. ML, and DL in particular, has been 

previously proposed for optoacoustic sO2 quantification. Ref. [28, 29] use convolutional 

neural networks (CNN) that are trained with simulated images. Since training occurs in the 

spatial domain (whole images), certain spatial features may be learned that do not always 

capture the appearance of the experimental data, which may affect the performance of the 

method. A fully connected architecture has been recently proposed to analyze OA spectra 

[30], independently of spatial dependencies. The method considers an OA spectrum without 

any knowledge of its location in tissue or neighboring spectra, and maps it to the 

corresponding sO2 value. This allows for straightforward training and application since no 

spatial structure needs to be learned. However, such an approach is limited in accuracy since 

the problem of decoupling fluence and absorption is generally ill-posed [26], i.e. various 

combinations of fluence and absorption spectra may result in the same measured OA 

spectrum. In this respect, spectral information alone is not adequate for inferring blood 

oxygenation while a combination of spectral and spatial features is required. In [31], a 

random forest approach has been considered. To account for the spatial context, the method 

relies on so called Fluence Contribution Maps that are computed for a given system using 

the Monte Carlo simulations, which may be a potential drawback if the optical properties of 

the imaged objects significantly deviate from the ones assumed in simulations. 

Consequently, none of these methods has been demonstrated with experimental data against 

ground truth sO2 values.

In this work, we consider the eMSOT framework, which operates on spatially distributed 

spectra and takes into account spectral and spatial information. We hypothesized that the 

eMSOT inversion could be replaced by a neural network which learns how to map a set of 

spatially distributed input spectra to the corresponding eigenfluence parameters. The neural 

network works without specifying any ad hoc inversion parameters or constraints but instead 

learns such constraints from a large simulated set of training data. Due to the prominent 

dependence of fluence on tissue depth, we use an architecture for the neural network that is 

based on a bi-directional recurrent neural network (RNN). The input spectra are split in a 

sequence depth-wise, where spectra measured at a similar depth constitute one point in the 

sequence. Using training, validation and test data derived from simulations, we show that the 

proposed architecture is well-suited to learn how to solve the inverse problem in eMSOT for 

Olefir et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data that covers a wide range of tissue appearances, physiologically relevant optical 

parameters and sO2 levels. We demonstrate that DL-based eMSOT gives more accurate sO2 

estimates than conventional eMSOT on the simulated test data. Using the proposed 

architecture, we train an ensemble of networks that outperforms conventional eMSOT in the 

majority of cases for experimental datasets of blood phantoms and small animals, although 

no experimental data were used in training.

II. METHODS

A. Forward Model

In optoacoustics, illumination of tissue by a short laser pulse leads to the generation of 

ultrasound waves through thermoelastic expansion of the tissue due to light absorption. The 

ultrasound waves propagate towards the detectors and pressure signals are recorded. An 

image reconstruction algorithm is then applied to reconstruct the location- and wavelength-

dependent initial pressure rise p0 that relates to the optical fluence Φ and tissue absorption μa 

as follows [32]:

p0 r, λ = Γ r Φ r, λ μa r, λ , (1)

where r denotes the spatial coordinates, λ is the illumination wavelength and Γ is the 

spatially varying Grüneisen parameter.

In eigenspectra MSOT, correcting for the effects of fluence is achieved by using a linear 

spectral model for the normalized fluence Φ′ r, λ = Φ r, λ / Φ r 2, Φ(r) being a vector 

corresponding to the fluence spectrum at position r; and Φ r 2 being the l2-norm of the 

optical fluence spectrum [26]. It has been hypothesized that the fluence spectra in tissue 

cannot be arbitrary but instead can be approximated by a low-dimensional spectral model. 

Such a model is derived by performing principal component analysis (PCA) on a training set 

of normalized fluence spectra. The spectra in the dataset are simulated to capture the 

variability of fluence due to tissue depth and varying sO2. It has been confirmed in 

simulations and experiments that only 3 principal components Φi λ , i = 1…3 derived by 

PCA along with the mean spectrum of the training dataset ΦM (λ) are enough to 

approximate normalized fluence spectra in tissue as follows [26]:

Φ′ r, λ = ΦM λ + ∑
i = 1

3
mi r Φi λ , (2)

where ΦM (λ), Φi λ , i = 1…3 are termed the eigenspectra, and mi are scalars referred to as 

the eigenfluence parameters. For a known spectrum Φ′(r,λ), the eigenparameters can be 

computed by projecting), Φ′(r,λ) onto the eigenspectra: mi = Φ′ r − ΦM, Φi , where , , 

denotes inner product.

In the near-infrared spectral region, the model for tissue absorption is [33]:
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μa r, λ = cHHb r εHHb λ + cHbO2 r εHbO2 λ , (3)

where cHHb and cHbO2 are the concentrations of deoxy- and oxyhemoglobin, respectively; 

and εHHb and εHbO2 are the corresponding absorption spectra. To exclude the spatially 

varying Grüneisen parameter from consideration, eMSOT considers normalized initial 

pressure spectra (or simply normalized OA spectra), i.e. p′ r = p0 r / p0 r 2. The 

eigenspectra model for a normalized OA spectrum therefore is [26]:

p r, λ, θ = ΦM λ + ∑
i = 1

3
mi r ϕi λ

. c′HHb r εHHb λ + c′HbO2 r εHbO2 λ .
(4)

where c′HHb and c′HbO2 are relative concentrations of deoxygenated and oxygenated 

hemoglobin, respectively, and θ = m1, m2, m3, c′HHb, c′HbO2  is a vector of model parameters. 

In this study, a set of illumination wavelength from 700 nm to 900 nm with a step size of 10 

nm (21 in total) is utilized.

B. eMSOT Algorithm Overview

Fig. 1 schematically describes the steps of eMSOT algorithm (top row) as well as the steps 

of the proposed modification based on the use of a neural network (bottom row). eMSOT 

can be summarized in the following steps:

1. Grid Setup. A sparse grid G = r k, l k = 1…nln, l = 1…npt  of points is placed in 

the ROI by intersecting nln radial lines and npt circles with decreasing radii. Fig. 

1A shows an example of a grid G consisting of nln = 8 and npt = 8, i.e. 64 grid 

points in total (red dots) overlaid with a simulated OA image (grayscale). The 

spectra p(r) at spatial locations determined by the grid points r∈G are selected 

for inversion and normalized.

2. Priors. Linear unmixing and Finite Element Method (FEM) simulation of light 

propagation governed by the Diffusion Equation [33] are used to obtain an 

estimate of optical fluence for the imaged object. This results in prior estimates 

m1 r , m2 r  and m3 r  of the eigenfluence parameters m1(r), m2(r) and m3(r), 

respectively. Fig. 1B demonstrates maps of m1 r , m2 r  and m3 r  for the dataset 

shown in Fig. 1A.

3. Inversion. In this key step, model inversion is performed by using a constrained 

minimization procedure as described in the Supplementary Material Sec. I. In the 

Bayesian version of the eMSOT algorithm, the inverse problem is derived in a 

probabilistic framework, with constraints replaced by prior distributions of the 

sought parameters and the level of noise in the measured signal taken into 

account [27]. At the core, however, still lies an optimization procedure. Fig. 1C 

schematically shows this step, with Fig. 1D demonstrating the output of the 

inversion, which is an estimate of the eigenfluence parameters for each grid 

point.
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4. Interpolation. With the values of the eigenfluence parameters 

mi
k, l : i = 1…3, k = 1…nln, l = 1…npt for the grid points r∈G available, 

interpolation is used to estimate the values of the eigenfluence parameters for 

every pixel within the convex hull of G [27]. Fig. 1E shows the resulting maps of 

the eigenfluence parameters overlaid in color with the simulated dataset shown in 

Fig. 1A (shown in grayscale).

5. sO2 Estimation. For every pixel within the convex hull of G, the corresponding 

values of the eigenfluence parameters are used to reconstruct the estimated 

fluence. The effect of spectral coloring is then reverted and the resulting spectra, 

i.e. scaled true absorption spectra, are unmixed linearly for the relative 

concentrations c′HbO2 and c′HHb of oxy- and deoxyhemoglobin, respectively that 

are used to compute sO2 [27]. Fig. 1F demonstrates the sO2 computed by 

eMSOT in color overlaid with the p0 map shown in grayscale.

A more detailed description of eMSOT can be found in the Supplementary Material (Sec. I).

C. Deep Learning Based eMSOT

While eMSOT has been shown to provide a much more accurate estimation of sO2 in tissue 

as compared to the commonly used linear unmixing method, its accuracy is not absolute. 

Among other reasons, this is due to the inversion relying on ad hoc, hand-engineered 

constraints (Suppl. Eqs. S2–4) and regularization terms. The Bayesian version of eMSOT 

implements the mentioned constraints as prior distributions in an attempt to optimize the 

parameters of the distributions to improve the estimation accuracy while simultaneously 

weighing the measurements according to the amount of noise present. While certain 

progress has been made, the method is still prone to errors.

In this study, we aim to replace the optimization procedure in the inversion step with a 

neural network, resulting in a Deep Learning based eMSOT (DL-eMSOT). A function that 

maps the set of original spectra to the set of eigenfluence parameters is learned by means of 

an appropriately trained neural network. In this way, inversion constraints, such as the spatial 

dependencies of the eigenfluence parameters, are learned from data rather than being hard-

coded, which may improve the accuracy of the method.

C.1. DL-eMSOT Overview—The proposed method is summarized in Fig. 1G–L and 

consists of the following steps:

1. Grid Setup. The first step involves grid placement and spectra extraction and 

normalization, which are identical to step 1 of eMSOT described above. Here we 

fix nln = 8 and npt = 8. Fig. 1G shows an example of a grid G consisting of nln = 

8 and npt = 8 grid points (red dots) overlaid with a simulated OA image 

(grayscale).

2. Dimensionality Reduction. Unlike eMSOT, after the normalization of the 

measured spectra, the resulting set of the normalized spectra p′ r , r ∈ G
(dimensions 8×8×21) are projected on a 4-dimensional OA spectral model, 
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previously described in [27], to obtain input features pf r , r ∈ G (dimensions 

8×8×4) as follows:

pf r = p′ − pM, pi λ i = 1, …, 4 (5)

where pM is the mean spectrum of the OA spectral model and pi are the four 

spectral components of the model that are created by performing PCA on a 

training set of normalized OA spectra [27]. The OA spectral model describes all 

possible normalized OA spectra found in tissue under the assumption of 

hemoglobin being the main absorber. pf r , r ∈ G are used as input data for the 

neural network. Fig. 1H illustrates this step which is similar to the traditional 

dimensionality reduction through PCA frequently used in ML, the difference 

being that PCA in the case of DL-eMSOT is not computed on the data used for 

training of the algorithm, but rather on a pre-computed dataset described in [27].

3. Eigenfluence parameter estimation. The estimation of the eigenfluence 

parameters is performed by feeding the input features pf r , r ∈ G to the neural 

network that is based on a bi-directional Recurrent Neural Network. Fig. 1I 

schematically demonstrates the process. RNNs work with sequential data, 

therefore the input features need to be split into a sequence. Since the depth 

dependence of fluence is prominent, the input features are split depth-wise, i.e. 

the input features stemming from the spectra recorded at the same depth 

constitute one point in the input sequence. The network itself consists of two 

LSTM cells. One accepts inputs from the superficial layers of pixels first, the 

other one is starting at the deepest pixels. The output of the cells is then resized 

using a fully connected layer and reshaped into the 8×8×3 shape followed by two 

convolutional layers to incorporate further spatial, non depth-related 

dependencies. The output (shape 8×8×3) represents the eigenfluence parameters 

for the spectra in the grid. Fig. 1J shows the output of step 3 as a tensor of the 

eigenfluence parameters for the spectra in the grid. More details on the 

architecture of the network are provided in the following subsection.

4. Interpolation. This step is identical to step 4 of eMSOT. Fig. 1K shows the 

resulting maps of the eigenfluence parameters overlaid with the simulated dataset 

shown in Fig. 1G (grayscale).

5. sO2quantification. This step is identical to step 5 of eMSOT. Fig. 1L shows the 

resulting sO2 map overlaid with the dataset shown in Fig. 1G.

To summarize, the proposed DL-eMSOT algorithm differs from eMSOT in (1) the data 

preprocessing step and (2) the eigenfluence parameter inference step. In the data 

preprocessing, DL-eMSOT works with data of reduced dimensionality and uses a OA 

spectral model previously introduced in [27] to achieve this dimensionality reduction. In the 

eigenfluence parameter estimation step, DL-eMSOT maps directly the input features to the 

corresponding eigenfluence parameters by employing a neural network rather than 

performing inversion using an optimization algorithm. Moreover, DL-eMSOT does not 
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require prior estimates of eigenfluence parameters (step 2 of eMSOT). We train an ensemble 

of 50 neural networks and their median-filtered output for improved results.

C.2. Architecture—The core of the DL-eMSOT architecture was selected to be a bi-

directional RNN. The intuition behind this design selection is the following. The shape of 

the light fluence spectrum and thus the art of spectral corruption at a specific point depends 

on the absorption spectra of the surrounding tissue. The spectral corruption manifests itself 

stronger as the imaging depth increases, while the shallow tissue spectra strongly affect the 

appearance of the deep tissue spectra. Both of these observations have been hard-coded as 

spatial constraints in eMSOT (Suppl. Eqs. S2–4) which were crucial for achieving good 

performance. Since RNNs are ideal in capturing dependencies along sequences, we selected 

an RNN that operates across the tissue depth to capture the prominent depth dependency of 

spectral corruption. The grid that samples the spectra for eMSOT can be viewed as 

containing several layers of points coming from similar depth making it suitable as an input 

to an RNN. To capture neighbor dependencies between spectra with similar depth we 

allowed a relatively large number of hidden units in the RNN cells (1024) to allow for more 

expressive power, as well as applied several convolutional layers to the output of the RNN. 

Fig. 2 demonstrates the used architecture schematically and a detailed description of the 

parameters used is provided below.

Input is the tensor of input features. Its size is 8×8×4, 8×8 corresponds to grid dimensions 

and 4 being the number of features corresponding to each spectrum after dimensionality 

reduction. The features corresponding to each of the grid layers are concatenated into a 

single vector thus resulting in a 8×32 tensor, which can be viewed as a sequence of 8 feature 

vectors that will be used as an input to the bi-directional RNN.

The bi-directional RNN is the core element of the architecture and consists of two LSTM 

cells of identical structure (1×32 input vector, 1×1024 output vector, depth 8). In our 

experiments we found that using a bi-directional RNN was crucial for achieving optimal 

performance, while network depth or the number of output neurons per layer were of 

reduced importance (see Sec. II-D Competing Architectures) The outputs of the two LSTMs 

are concatenated into an 8×2048 tensor, and reshaped into a 1×16,384 vector to be passed 

through a dense layer.

Dense layer with 192 output units serves as a means of resizing the output of the bi-

directional RNN to the desired output size. The output of the dense layer is reshaped into a 

8×8×3 tensor which has the shape of the network output (3 eigenparameters per spectrum on 

an 8×8 grid).

Two convolutional layers of the CNN block (Conv. 1 with 3 2×2 filters and Conv. 2 with 3 

1×1 filters) are meant to add expressive power to the network and allow to better account for 

any local spatial dependencies, specifically within a layer of spectra coming from the same 

depth.

Tanh are used as activation functions in all layers.
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Further notes on the selection of certain hyperparameters (i.e. grid size and ensemble size) 

are available in the Supplementary Material (Sec. IV).

D. Competing Architectures

For reference, we train two more models based on a simple architecture consisting of six 

fully connected layers and evaluate their performance on simulated data as described above. 

Similarly to the network proposed in [30], the model termed DENSE (sO2) maps a single 

input spectrum directly to the corresponding sO2 value, therefore not taking into account any 

spatial information. The second model termed DENSE (fluence) attempts to solve the 

inverse problem of eMSOT, but with a less sophisticated architecture than the one proposed 

for DL-eMSOT. The structure of input and output of this network is therefore identical to 

that of the proposed RNN based architecture, but the network is based solely on fully 

connected layers. Details on the reference models are provided in the Supplementary 

Material (Sec. II).

E. Training

Both all the DL-eMSOT models as well as all the models from the competing architectures 

were trained with the same parameters (batch size: 128; Loss: L2; Optimizer: ADAM; 

epochs: 200).

During training, every OA spectrum was augmented with white Gaussian noise ϵ N μ, σ
with zero mean μ and standard deviation σ randomly sampled from the uniform distribution 

σ ~ U (.005– .015) before performing the dimensionality reduction.

The best model was selected by evaluating the absolute error in sO2 estimation on a 

validation dataset (see Sec. III-C) every 10 training iterations. If the obtained result was 

better than that of the previously selected best model, the current model was saved as the 

new best model. Otherwise, the current model was discarded.

DENSE (fluence) was trained using the same data as the DL-eMSOT. DENSE (sO2) used 

the same training dataset, but every spectrum was considered as a separate example unlike 

DL-eMSOT and DENSE (fluence), where a grid of sampled spectra constituted a training 

example.

F. Performance Assessment

We quantify the performance of the algorithm in terms of absolute error in sO2 estimation:

sO2alg − sO2GS , where sO2alg is the sO2 value obtained by a certain algorithm and sO2GS is 

the ground truth value. For simulated data, gold standard values are naturally available for 

every location in the image. For experimental data, gold standard values are available for 

certain locations (see Fig. 3). We note that we use this absolute error metric throughout the 

entire manuscript and it should not be confused with relative sO2 estimation error. The errors 

presented herein in per cent are still absolute, since sO2 is a ratiometric quantity measured in 

%.
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Due to the large size of the evaluation datasets and in order to reduce computational effort, 

the interpolation step for the simulated data in eMSOT and DL-eMSOT was skipped and the 

sO2 error is computed and reported only for the grid pixels. In the Supplementary Material 

we present the effect of the interpolation in the overall error in a smaller dataset. The 

interpolation step was retained in the case of experimental data. For the 50 trained DL-

eMSOT models, test results on simulated test data are reported per model and as an 

ensemble, where the outputs of 50 models are median-filtered. Test results on experimental 

data are reported from an ensemble.

III. DATA

The generation of an appropriate training, validation and test dataset is particularly crucial 

for obtaining a well-trained neural network that would not only work in specific simulations, 

but also generalize well to cases not covered by the training dataset. Since the generation of 

a large and versatile experimental optoacoustic dataset of living tissue with known sO2 

values is impractical, in this work we had to resort to using simulations for the purpose of 

creating training, validation and test data. Nevertheless, in order for the model to have 

practical value, it needs to be applicable in experimental data as well. Therefore, we also test 

the model using a limited set of experimental MSOT images of blood phantoms and mice 

with available ground truth sO2 values. We note that no experimental images are used for 

training the model. In the following subsections, we describe the used data in detail. Fig. 3 

shows representative examples of the data used.

A. Simulations of Multispectral p0 maps

In order to generate training, validation and test data-sets of multispectral optoacoustic 

images with available ground truth of fluence and sO2 values, simulations of initial pressure 

rise p0 were used. A circular slice of tissue with 1 cm radius with varying optical properties 

was assumed. A detailed description of the algorithm for simulating p0 maps is provided in 

[27], below we provide a brief summary of the steps.

1. Optical properties of the background tissue: Randomly varying spatial maps of 

background tissue absorption μa(r) at 800 nm (isosbestic point of hemoglobin), 

reduced scattering μ’s(r) (assumed constant with wavelengths) and sO2 are 

generated.

2. (OPTIONAL) Optical Properties of structures: μa(r), μ’s(r) and sO2 maps of the 

background are augmented to represent structures.

3. Extension to multispectral range: Using the output of step 1 or 2 and the 

absorption spectra of hemoglobin, the optical absorption map μa(r, λ) is created 

for all the illumination wavelengths.

4. Light propagation: Light propagation through the sample is simulated by solving 

the Diffusion Equation using FEM [33] to obtain fluence map Φ(r, λ).

5. Multispectral p0 map: The product of μa(r,λ) and Φ(r, λ) results in a simulated 

map of the initial pressure rise p0(r,λ) assuming Γ(r) = 1. Such an assumption 
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does not affect the performance of the considered algorithms since the eMSOT 

type of algorithms use normalized OA spectra.

Various randomly generated maps of optical properties were used to simulate a range of 

biological tissues [34]. Values for both μa(r) and μ’s(r) were drawn from normal 

distributions with means and standard deviations that were different for training, validation 

and test data to obtain a wide range of biologically plausible scenarios. The mean values of 

the optical parameters as well as standard deviations for every type of dataset are presented 

in Supplementary Table 1.

Notably, generation of p0 maps relies on 2D simulations of light propagation (i.e. assuming 

infinite sample thickness in z dimension), mainly for computational reasons. Since any 

fluence pattern simulated in 3D may be obtained by constructing a corresponding 2D 

simulation with modified optical properties, using 2D simulations in this study is justified by 

using an extensive set of randomly distributed optical properties.

B. Training Data

For obtaining the training data for the neural network, the following steps were performed:

1. p0 Simulations: Simulated multispectral p0 maps of tissue were created as 

described above (1,368 distinct simulations in total). The optical properties were 

sampled from the normal distributions with the parameters summarized in 

Supplementary Table 1. The random optical absorption maps were created with 

low spatial heterogeneity to simulate soft tissue. To include also areas of higher 

spatial heterogeneity due to vasculature, the simulations were augmented with 0, 

4, 8 or 16 randomly located circles of optical absorption that is up to five times 

(exact number set randomly) higher than the background. The radius of every 

circle varied also randomly. The sO2 of the circles was randomly set to be 20%–

60% higher or lower than the mean sO2 of the background. Fig. 3A shows an 

example of a generated p0 map used for training.

2. Grid Placement: The grids (8 per dataset) of varying depth, angular width and 

location were placed on the datasets generated in step 1. Fig 3B demonstrates 4 

grids (red dots) placed on the dataset shown in Fig. 3A. The grids always 

contained 8×8 location points.

3. Spectra Sampling: For every grid, the simulated spectra at the locations of the 

grid points were sampled, normalized and saved, resulting in 10,944 training 

examples, with one grid of spectra representing one example.

4. Labels Sampling: For every recorded spectrum, the corresponding fluence 

spectrum was sampled from the simulated light fluence map. Each fluence 

spectrum was normalized and projected on the eigenspectra, yielding a set of 

three real-valued parameters (m1, m2, m3) corresponding to the labels. The 

corresponding sO2 values are also sampled, resulting in the sO2 labels dataset.
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C. Simulated Validation and Test Data

When producing the validation and test data, the aim was to create data that is sufficiently 

different in structure to the training data to test the generalization ability of the trained 

models. Validation and test data consisted of three distinct datasets.

The “background” dataset was created as follows:

1. p0 Simulations: Simulated multispectral p0 maps of the background were created 

as described above (Section III-A), resulting in 228 distinct simulations in total. 

The optical properties were sampled from the distributions with the parameters 

summarized in Supplementary Table 1. The random absorption maps were 

created with spatial heterogeneity varying from low to high between datasets. No 

augmentations of μa(r), μ’s(r) and sO2 maps were performed.

2. Grid Placement: The grids (8 per dataset) of varying depth, angular width and 

location were placed on the datasets generated in step 1. The maximum width of 

the sampled grids exceeded that of the grids in the training data.

3. Spectra Sampling: Identical to the training data. The result is 1,824 examples.

4. Labels Sampling: Identical to the training data.

Fig. 3C shows an example of a generated p0 map form “background” dataset with a grid (red 

dots). Note the width of the grid as compared to the grids shown in Fig. 3B.

The “vascularized” dataset was created as follows:

• p0 Simulations: Simulated multispectral p0 maps of the background were created 

as described above (570 distinct simulations in total). The optical properties were 

sampled from the distributions with the parameters summarized in 

Supplementary Table 1. The random absorption maps were created with low 

spatial heterogeneity and augmented with a structure that represents a network of 

large vessels.

• Grid Placement: Identical to “background” dataset.

• Spectra Sampling: Identical to the training data. The result is 4,560 examples.

• Labels Sampling: Identical to the training data.

Fig. 3D shows an example of a generated p0 map form “vascularized” dataset.

The “croissant” dataset was created similarly to the “background” dataset, with a notable 

difference being the irregular shape of the simulated tissue (after which the dataset is named) 

as compared to other datasets. The purpose of this dataset is to examine the applicability of 

the considered quantification methods to a dataset with the geometry that is substantially 

different from that of the training data. The dataset consists of 304 simulations and 4 grids 

sampled per simulation (1,216 examples in total). Fig. 3E shows a generated p0 map form 

“croissant” dataset with the sampled grids denoted by the red dots. We note that the field of 

view in Fig. 3E is 2.5×2.5 cm2, while in Fig. 3A–D the field of view is 2×2 cm2. More 

details on simulations are available in the Supplementary Material (Sec. III).
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For every model, “background” dataset was shuffled and split, with 10% of the set used for 

model validation and 90% used for test. “Vascularized” and “croissant” datasets were used 

as test entirely.

D. Experimental Test Data

For the neural network to have practical value, and since it is trained purely on simulated 

data, it is crucial to generalize well to experimental data in terms of accuracy in sO2 

estimation. For this reason, 3 types of experimental data with the available ground truth were 

used that will be referred to as Uniform Phantoms, Insertion Phantoms and Mouse Data.

Phantoms.—The 2-cm-diameter cylindrical tissue mimicking phantoms were created by 

mixing agarose, intralipid and porcine blood. The details can be found in [26]. Each 

phantom contained blood of known oxygenation (0% or 100%). Two types of phantoms 

were used. Uniform Phantoms are homogeneous with the ground truth sO2 values known for 

the whole phantom. Fig. 3F demonstrates an MSOT image (one wavelength shown) of a 

uniform phantom. Insertion phantoms contain a capillary tube filled with blood of known 

oxygenation. Fig. 3G shows an MSOT image (one wavelength shown) of an insertion 

phantom. The location of the capillary tube is marked with a red arrow.

Mouse Data.—All procedures involving animal experiments were approved by the 

Government of Upper Bavaria. Nude-Foxn1 mice were imaged under anesthesia while 

breathing medical air, followed by 100% O2. A capillary tube filled with porcine blood of 

known oxygenation (0% or 100%) was rectally inserted in each imaged animal. More details 

can be found in [26]. In the final imaging stage, animals were sacrificed with an overdose of 

CO2. Fig. 3H shows an MSOT image of a mouse. The location of the capillary tube is 

marked with a red arrow.

All experimental data has been obtained with the commercially available inVision256 

system [35] and was used for test in its entirety.

IV. RESULTS

A. Simulated Data

First we trained the neural networks (DL-eMSOT, DENSE (fluence)) using 10944 grid 

examples coming from 1368 simulations of p0 maps with varying optical properties, spatial 

structures and sO2 levels. DENSE (sO2) is trained on all the available simulated OA spectra 

with the corresponding sO2 values used as labels. Then we compared the performance of the 

resulting algorithms with conventional eMSOT for estimating sO2 in an independent set of 

~7500 test grid examples coming from simulated datasets of “background”, “vascularized” 

and “croissant”. The test grids included examples having larger angular width than any of 

the training samples. “background” and “vascularized” simulations also differed from the 

training simulations in terms of spatial variability of the optical properties (“background”) 

and type of structures present in the image (“vascularized”). The “croissant” dataset differed 

in simulation geometry. Table 1 provides average test results for the 50 trained DL-eMSOT 

models as well as for an ensemble and reference networks on datasets of “background”, 
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“vascularized” and “croissant”. Since data from the “background” dataset was partly used 

for validation of the models (see Sec. III-C), it was not used for testing the performance of 

the ensemble. The results of eMSOT obtained on the same datasets are also shown for 

reference. As evident, DL-eMSOT achieves the best performance in terms of sO2 

quantification accuracy out of all the considered methods and seems to generalize well to the 

simulated data that is dissimilar to the training examples. Notably, DENSE (sO2) which does 

not consider spatial information demonstrates performance that is worse than that of deep 

learning methods that take the information from the spatially distributed grid as input. 

DENSE (fluence) performs consistently better than the original eMSOT, but fails to 

outperform DL-eMSOT, which is the overall best performing algorithm in our tests.

Fig. 4 shows a representative example comparing the performance of eMSOT and DL-

eMSOT in a multispectral p0 simulation coming from the “background” dataset that was not 

used for validation of any network in the ensemble. Fig. 4A shows a simulated multispectral 

p0 map (one wavelength presented) in grayscale together with a grid (red dots) defining the 

locations of the spectra selected for the application of the quantification methods. The red 

square defines the ROI shown in Fig. 4B, C. Fig. 4B, C show the sO2 quantification results 

produced by eMSOT (Fig. 4B) and DL-eMSOT (Fig. 4C) with mean error of both methods 

indicated in the corresponding panels. Fig. 4D shows the errors produced by both methods 

as a function of tissue depth. It can be observed that DL-eMSOT manages to better account 

for spectral coloring as tissue depth increases.

B. Experimental Data

To test the ability of the DL-based eMSOT to generalize to experimental data, we applied an 

ensemble of 50 neural networks to experimental data.

B.1. Phantoms—Fig. 5 demonstrates the performance of DL-eMSOT ensemble on 

experimental datasets of the following types: Uniform Phantom (Fig.5A–B), and Insertion 

Phantom (Fig.5C–F). Fig. 5A shows an MSOT image of a uniform deoxygenated phantom 

with the color-coded map of sO2 estimated by DL-eMSOT. Fig. 5B demonstrates the 

absolute sO2 estimation errors obtained by eMSOT (red, green) and DL-eMSOT (blue, cyan) 

within the same ROI shown in Fig. 5A. The presented errors are sorted per pixel depth. It 

can be readily seen that DL-eMSOT estimates sO2 with better accuracy. Fig. 5C shows an 

MSOT image of an insertion phantom with the color-coded map of sO2 estimated by DL-

eMSOT. The location of the tube filled with deoxygenated blood is marked with a red arrow. 

The white arrows (I and II) denote the positions at which the spectra analyzed in Fig. 5E, F, 

respectively, were measured. Fig. 5D shows errors in sO2 estimation obtained by eMSOT 

and DL-eMSOT at the location of the inserted tube. Fig 5E, F demonstrate the spectra 

measured at locations I and II, respectively, shown in Fig. 5C (black) together with the 

corresponding fits obtained by eMSOT (red) and DL-eMSOT (blue). Notably, the spectra 

produced using the eigenfluence parameters found by DL-eMSOT are meaningful.

B.2. Mouse Data—Fig. 6A, C show MSOT images of abdominal cross-sections of two 

mice with the color-coded maps of sO2 estimated by DL-eMSOT. The locations of the tubes 

filled with blood of known oxygenation (0% in Fig. 6A and 100% in Fig. 6C) are marked 
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with red arrows in respective panels. Fig. 6B shows errors in sO2 estimation obtained by 

eMSOT and DL-eMSOT at the location of the inserted tube. Fig. 6C shows errors in sO2 

estimation obtained by eMSOT and DL-eMSOT (ensemble, best performing model and 

worst performing model) at the location of the inserted tube. It can be observed that the 

dataset presented in Fig. 6C, D constitutes a challenging case for the single RNN-based 

models as there is high discrepancy between the best and the worst performing models. This 

case highlights the importance of using an ensemble of models for reducing the upper bound 

of error.

Fig. 7 summarizes and compares the performance of DL-eMSOT and eMSOT in all 

available experimental datasets (25 in total) with the corresponding ground truth: uniform 

phantoms (Fig. 7A), insertion phantoms (Fig. 7B) and mouse data (Fig. 7C). The results are 

grouped per ground truth sO2 level: 0% (left panels) and 100% (right panels). Black dashed 

lines separate results obtained for separate datasets. As evident, DL-eMSOT outperforms 

eMSOT in 21 cases out of 25 and achieves comparable sO2 estimation accuracy in 3 of the 

remaining 4 cases.

The performance of DENSE (fluence) and DENSE (sO2) on the available experimental data 

is presented in the Supplementary Material (Sec. V). In summary, DENSE (sO2) produces 

very high errors (up to ~90%) in some of the considered cases while DENSE (fluence) is 

much more robust and is often comparable in its performance to eMSOT and DL-EMSOT, 

highlighting the importance of the spatial context in the problem of fluence correction.

V. DISCUSSION AND CONCLUSION

An increasingly popular technology, DL has been proposed for solving a variety of problems 

in imaging [36, 37]. In optoacoustic imaging in particular, DL has been considered for 

image reconstruction [38], artifact removal [39, 40] and sO2 quantification [28, 30]. In this 

study, we design an architecture to solve the inverse problem of eMSOT, i.e. correcting a set 

of input optoacoustic spectra for light fluence and computing sO2. We observe that the 

proposed methodology improves the sO2 quantification accuracy as compared to eMSOT.

The combination of spectral and spatial information is essential for achieving sO2 

quantification accuracy in MSOT. A straightforward way to incorporate the spatial 

information into the analysis is to use CNN-based architectures [28, 29]. However, due to 

the need to use simulated data for training, the resulting networks would be biased by the 

structure of the training data impeding their generalization. Sparse sampling of the analyzed 

spectra used in DL-eMSOT alleviates this problem while still providing spatial context, 

ensuring both adequate performance and generalization to experimental data.

Due to the strong dependence of optical fluence on tissue depth, we split the input spectra 

into a sequence along the tissue depth, i.e. spectra at the same tissue depth constitute one 

element of the input sequence. Accordingly, we base the architecture of the neural network 

on a bi-directional RNN that has been designed to handle sequential data well. We find that 

the proposed architecture is better suited for learning to solve the inverse problem of eMSOT 

than a less sophisticated architecture that is designed without the specific problem 
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characteristics in mind. Importantly, in this study we have not performed an exhaustive 

search for the optimal architecture. Our results rather highlight the importance of tailoring 

the used architecture to the problem at hand as well as the significance of spatial context in 

quantitative MSOT imaging.

Because of the lack of OA data with the available ground truth for fluence, we use 

simulations to obtain data for training the neural network. It is important to note that our 

simulations do not take into account many physical phenomena that occur in the scanner 

during imaging. We do not simulate wave propagation, spatial and electric impulse 

responses of the detectors or effects and artifacts introduced by reconstruction. Despite these 

simplifications, we find that the ensemble of 50 networks trained on our simulated data 

performs better than the original eMSOT in both simulated and experimental test data.

In addition to better performance in sO2 estimation accuracy, the proposed method provides 

potential advantages in terms of processing speed, especially if multiple grids are analyzed 

simultaneously. Since eMSOT requires ~5 sec per inversion, total inversion time for the test 

dataset “vascularized” would be approximately 6.3 hours, compared to only 6 minutes for 

the ensemble of 50 networks. On the other hand, DL-eMSOT still displays errors of ~20% 

when estimating sO2 from experimental data. Moreover, in certain cases models in the 

ensemble show considerable discrepancy in the estimated sO2 values. Unfortunately, neural 

networks do not allow for detailed analysis of suboptimal performance. We assume that 

including more physical phenomena (acoustic wave propagation, image reconstruction, etc.) 

in the simulations that produce the training data will improve the performance of the 

algorithm, potentially allowing to use a single model instead of an ensemble.

The major limitation in developing accurate sO2 quantification methods for MSOT, 

including DL-eMSOT, is the lack of experimental data with available ground truth sO2 

values. With our experimental setup, we were able to produce only two extreme sO2 values 

(0% and 100%) in a stable manner and the performance on such a limited dataset is not 

necessarily indicative of method’s true capabilities. Ideally, data with the whole range of 

possible sO2 values available as ground truth is needed to properly validate the performance 

of the quantification algorithms.

We have presented a novel sO2 quantification method for MSOT that is based on eMSOT 

with a neural network employed for model inversion. With more realistic training data 

available, it should be possible to further improve quantification accuracy of the algorithm, 

and possibly use the approach for inverting more complex models that take into account 

various absorbers (e.g. fat, exogenous contrast agents), bringing MSOT closer to disease 

screening and diagnosis as well as clinical studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: Original eMSOT and DL-eMSOT.
(A-F) Steps of eMSOT. (A) A grid of points (red dots) is applied to the dataset in the region 

of interest. (B) A simulation of light propagation is used to produce crude prior estimates of 

the eigenfluence parameters. (C) The priors obtained in (B) are used with the spectra 

sampled at the locations specified by the grid in (A) in the inversion step (optimization 

procedure). (D) The output of (C) is the eigenfluence parameters for the grid points. The 

values of the eigenfluence parameters are then interpolated between the grid points (E) and 

are used to estimate and correct for fluence. (F) The corrected spectra are linearly unmixed, 

resulting in an sO2 estimation map. (G-L) Steps of DL-eMSOT. (G) A grid of points (red 

dots) is applied to the dataset in the region of interest. (H) The spectra sampled at the 

locations specified by the grid in (G) are projected on a OA spectral model to reduce data 

dimensionality. (I) The resulting data pf are fed into a neural network based on a 

combination of RNN and CNN. (J) The output of the neural network is the eigenfluence 

parameters for the grid points. (K) The values of the eigenfluence parameters are 

interpolated between the grid points and are used to estimate and correct for fluence. (L) 
The corrected spectra are linearly unmixed, resulting in an sO2 estimation map.
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Fig. 2: 
DL-eMSOT Architecture.
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Fig. 3: Training, validation and test data.
(A) Simulated OA image (one wavelength presented) used for sampling grids for training. 

The background is smoothly varying, with numerous randomly placed circular insertions of 

varying intensity. (B) Examples of four grids (red dots) determining the locations of the OA 

spectra sampled form the dataset presented in (A). The grids have varying width, depth and 

position. (C) Simulated OA image (“background” dataset, one wavelength presented) used 

for sampling spectra for validation and test of the trained models together with an example 

of a grid defining the locations of the OA spectra to be sampled. Validation and test datasets 

have no circular insertions but may have a more inhomogeneous background. Grids used for 

validation and test may be wider than the grids used for training. (D) Simulated OA image 

(“vascularized” dataset, one wavelength presented) used for sampling test data that shows 

structures simulating a network of vessels. (E) Simulated OA image (“croissant” dataset, 

one wavelength presented) used for sampling test data from irregularly shaped tissue. The 
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used grids are shown with red dots. (F) A uniform blood phantom of known oxygenation 

and (G) a blood phantom with an inserted blood-filled capillary tube (target, red arrow) of 

known oxygenation. (H) An abdominal cross-section of a mouse with an inserted blood-

filled capillary tube (target, red arrow) of known oxygenation.
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Fig. 4. Performance of eMSOT and DL-eMSOT in Simulated Data.
(A) Simulated multispectral p0 map (grayscale, one wavelength presented) with a grid 

shown with red dots. Red square marks the ROI shown in (B) and(C). (B, C) sO2 for the grid 

shown in (A) produced by eMSOT (B) and DL-eMSOT (C) shown in color overlaid on the 

p0 map. Mean sO2 estimation error presented for both methods. (D) sO2 estimation errors 

produced by eMSOT (red, mean shown in green) and DL-eMSOT (blue, mean shown in 

cyan) presented per tissue depth.
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Fig. 5: Comparison of DL-eMSOT and eMSOT for sO2 estimation in phantom data.
(A) An MSOT image (one wavelength presented) of a deoxygenated uniform blood phantom 

with the overlaid color-coded result of DL-eMSOT application. (B) Errors in sO2 estimation 

for eMSOT (red/green) and DL-eMSOT (blue/cyan) for the phantom shown in (A) on the 

same grid, presented per pixel depth. (C) An MSOT image (one wavelength presented) of a 

blood phantom with a capillary tube (target) filled with deoxygenated blood (red arrow) with 

the overlaid color-coded result of DL-eMSOT application. The labels I and II mark the 

locations of the spectra presented in (E) and (F), respectively. (D) Errors in sO2 estimation 

for eMSOT and DL-eMSOT at the location of the target shown in (C). (E, F) Spectra at 

locations shown in (C) (black), together with the corresponding fits obtained with eMSOT 

(red) or DL-eMSOT (blue) algorithms.
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Fig. 6: Comparison of DL-eMSOT and eMSOT for sO2 estimation in experimental animal data.
(A, C) MSOT images (one wavelength presented) of abdominal cross-sections of two mice 

with capillary tubes (targets) filled with blood of known oxygenation (0% (A) and 100% 

(C), red arrows) with the overlaid color-coded results of DL-eMSOT application. (B) sO2 

estimation errors of eMSOT and DL-eMSOT obtained at the location of the target shown in 

(A). (D) sO2 estimation errors of eMSOT and DL-eMSOT (ensemble, best performing 

model and worst performing model) obtained at the location of the target shown in (C).
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Fig. 7: Evaluation of DL-eMSOT performance with experimental data.
(A-C) Errors in sO2 estimation for eMSOT (red) and DL-eMSOT (blue) algorithms in (A) 

uniform phantoms, (B) phantoms with insertions and (C) mouse data. Boxplots represent 

data mean and 25th and 75th percentiles of data; whiskers cover ~96% of data. Dashed black 

lines separate results for distinct datasets (25 in total).
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Table 1.

Performance of eMSOT and DL-eMSOT in Simulations

Mean Error Median Error Standard Deviation [25%, 75%] Percentiles

“background” test data

eMSOT 4.9% 3.5% 4.8% [1.5%, 6.8%]

DL-eMSOT 1.4% 0.9% 1.5% [0.3%, 1.9%]

DL-eMSOT (ensemble) - - - -

DENSE (sO2) 7.0% 4.1% 8.4% [1.4%, 9.7%]

DENSE (fluence) 2.8% 2.0% 2.8% [0.8%, 3.8]

“vascularized” test data

eMSOT 11.5% 6.87% 14.25% [2.93%, 13.78%]

DL-eMSOT 3.2% 1.8% 4.5% [0.6%, 4.0%]

DL-eMSOT (ensemble) 3.0% 1.6% 4.2% [0.6%, 3.7%]

DENSE (sO2) 9.9% 5.5% 12.7% [1.9%, 12.9%]

DENSE (fluence) 5.4% 3.4% 6.1% [1.4%, 7.1%]

“croissant’’ test data

eMSOT 4.8% 5.0% 3.4% [1.4%, 6.5%]

DL-eMSOT 2.3% 2.5% 1.8% [0.5%. 3.5%]

DL-eMSOT (ensemble 2.0% 2.0% 1.5% [0.5%, 2.8%]

DENSE (sO2) 7.1% 7.1% 5.1% [2.2%, 9.6%]

DENSE (fluence) 2.4 2.4 1.7 [0.7%, 3.3%]
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