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1  |  INTRODUC TION

Pancreatic islet transplantation is a minimally invasive therapy to func-
tionally cure type 1 diabetes and its complications. Islets are isolated 
from a deceased human donor pancreas and infused into a diabetic 

patient's liver via the portal vein. The goal is to provide a sufficient 
number of insulin releasing β-cells to control blood glucose levels. 
Although the introduction of standardized protocols of islet isolation 
and transplantation has improved the clinical outcome it still suffers 
from low efficiency and adverse effects as not all recipients maintain 
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Platelet activation and thrombus formation have been implicated to be detrimental 
for intraportal pancreatic islet transplants. The platelet-specific collagen receptor gly-
coprotein VI (GPVI) plays a key role in thrombosis through cellular activation and the 
subsequent release of secondary mediators. In aggregometry and in a microfluidic dy-
namic assay system modeling flow in the portal vein, pancreatic islets promoted plate-
let aggregation and triggered thrombus formation, respectively. While platelet GPVI 
deficiency did not affect the initiation of these events, it was found to destabilize 
platelet aggregates and thrombi in this process. Interestingly, while no major differ-
ence was detected in early thrombus formation after intraportal islet transplantation, 
genetic GPVI deficiency or acute anti-GPVI treatment led to an inferior graft survival 
and function in both syngeneic mouse islet transplantation and xenogeneic human 
islet transplantation models. These results demonstrate that platelet GPVI signaling 
is indispensable in stable thrombus formation induced by pancreatic islets. GPVI de-
ficiency resulted in thrombus destabilization and inferior islet engraftment indicating 
that thrombus formation is necessary for a successful intraportal islet transplantation 
in which platelets are active modulators.
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long-term insulin independence and some experience graft failure.1,2 
Instant blood-mediated inflammatory reactions (IBMIR), which occur 
rapidly when isolated islets are infused to the portal vein and get di-
rect contact with blood, have been suggested to be responsible for 
acute islet destruction observed after transplantation. IBMIR are clin-
ically manifested by the formation of macro- and microthrombi and 
characterized by activation of platelets and the coagulation system.1,3,4 
While platelet consumption and formation of a fibrin capsule around 
the islet is known to be one of the first events in IBMIR, the molecular 
mechanisms behind platelet activation and their contribution to islet 
engraftment remain largely unknown.

Platelets are important players in hemostasis by sealing vascular 
lesions to prevent bleeding and wound infection. Adhesion of plate-
lets to the extracellular matrix (ECM) of the exposed vessel is initi-
ated by the interaction between glycoprotein (GP)Ib/V/IX receptor 
complex and von Willebrand factor (vWF) as well as between plate-
let GPVI/GPIa and collagen at sites of vascular injury.5 Although the 
binding of multimeric vWF to GPIb/V/IX is required for the initial 
adhesion of platelets under high shear conditions, this interaction 
is insufficient for stable adhesion.6 GPVI, a 60-65 kDa type I trans-
membrane receptor belonging to the immunoglobulin superfamily, 
is noncovalently linked to a homodimer of the Fc-receptor-γ chain 
(FcRγ), and known to be a major platelet collagen adhesion receptor.7 
Binding of GPVI to fibrillar collagen initiates platelet cellular acti-
vation followed by converting the integrins GPIa/IIa and GPIIb/IIIa 
into high-affinity adhesion receptors required for stabilizing platelet 
aggregation. Platelet GPVI can also be activated by other ligands of 
the ECM, including laminin and fibrin.8–10 The concomitant release 
of second-wave agonists, most notably ADP, ATP, and TxA2, will am-
plify integrin activation on adherent platelets and mediates plate-
let plug growth by activating additional bystander platelets.11 Thus, 
GPVI-mediated platelet signaling has been shown to be a prerequi-
site for efficient platelet adhesion, aggregation, degranulation, and 
procoagulant activity,12 whereby GPVI has been proposed to be a 
central player in platelet activation and thrombus formation.6

Collagens and noncollagenous glycoproteins such as fibronectin 
and laminin are present in the extracellular matrix and the basement 
membrane of pancreatic islets.13–17 They are involved in the regu-
lation of islet cell differentiation partly by integrin-dependent sig-
naling, particularly enabling β-cells to form clusters.18,19 The vessel 
wall ECM-associated adhesive proteins are normally shielded from 
circulating blood due to their localization in the basement mem-
brane; however, they would get into direct contact with blood when 
infused into the portal vein.20 While tissue factor (TF) expressed in 
islet endocrine cells was found to trigger IBMIR and anti-TF treat-
ment to suppress IBMIR and early graft loss,21–25 we hypothesized 
that platelets and platelet GPVI signaling could be active players in 
IBMIR and islet engraftment because they could be activated via 
interactions between platelet GPVI and islet surface glycoproteins, 
including collagen, laminins and fibrin, and as such modulate throm-
botic events in IBMIR and the islet transplantation outcome.

In the current study, we examined the role of platelet GPVI sig-
naling in islet-mediated thrombotic reactions in the context of IBMIR 

and its contribution to intraportal islet engraftment outcome. The 
results demonstrate that GPVI-dependent platelet activation and 
thrombus stabilization are required for proper outcome of pancre-
atic islet transplantation.

2  |  RESE ARCH DESIGN AND METHODS

2.1  |  Animals

Fourteen-week-old male C57BL/6 N wild-type (WT) mice and 
10-week-old male NMRI nu/nu mice were purchased from Charles 
River. GPVI knockout (Gp6−/−) mice used in this study had been 
described in previous studies.26,27 FcRγ chain mutated mice with 
C57BL/6 background were kindly provided by J. Leusen (Utrecht, 
Netherlands).

2.2  |  Islet isolation

All the islet isolations were performed at the Islet Isolation Facility of 
Clinical Research Unit (Justus Liebig University). Human islets were 
isolated from a single donor pancreas using previously described 
techniques of collagenase digestion and Ficoll purification.28 Porcine 
islets were isolated as previously described.29,30 Murine islets were 
isolated from C57BL/6 mice using pancreatic tissue distension with 
collagenase through common bile duct. Following digestion, mouse 
islets were purified by hand picking. After isolation, the quality of is-
lets was evaluated by trypan blue exclusion, dithizone staining, and 
microscopic inspection. Both purity and viability of islets were more 
than 90% for subsequent experiments. The islets were cultivated 
in a humidified air atmosphere following isolation and used within 
7 days.

For preparation of pseudo-islets, MIN-6 (mouse insulinoma, 6th 
subclone) cells were cultured, washed with Dulbecco's phosphate 
buffered saline (PBS) (without Ca2+ and Mg2+) and treated with tryp-
sin/(ethylenediaminetetraacetic acid) EDTA solution. After incuba-
tion for 2-3 min at 37°C, the detached cells were washed with warm 
Panserin 401 and cultivated overnight for formation of pseudo-islets.

2.3  |  Platelet aggregometry

Blood was drawn from C57BL/6 N wild-type (WT) and GPVI 
knockout (KO) mice into a heparin (20 U/ml)-containing tube and 
blood was centrifuged at 800 rpm for 6 min at room temperature. 
Supernatant was collected and platelet-rich plasma (PRP) was 
obtained. PRP was diluted 1:3 in Tyrode's buffer for platelet ag-
gregation assay where aggregation was induced by 2 or 10 µM 
ADP. Light transmission was recorded by Fibrintimer 4-channel 
aggregometer (APACT Laborgeräte und Analysensysteme) over 
10 min. Untreated plasma was diluted 1:3 and set as 100% aggre-
gation for calibration.
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2.4  |  Ex vivo dynamic thrombus formation assay

Thrombus formation in whole blood was monitored under flow 
conditions using the BioFlux 200 system including inverted mi-
croscope and CCD camera (I&L instruments, Germany). A 48-well 
plate with 24 channels was coated with 100 µg/ml collagen I solu-
tion (Gibco, Invitrogen) per outlet well. C57BL/6 or Gp6-/- citrated 
blood (180 µl each) which was labeled with fluorescent dye Calcein 
AM (Thermofisher) together with 20 porcine islets was added to the 
channels. After the addition of ADP (2.5 µM) into both channels, 
perfusion at 2 dyn/cm2 was immediately started. During the course 
of the flow experiment, images of the channels were recorded 
whereby the position of the camera was not changed. Recorded im-
ages were exported into ImageJ to analyze the clot area. Clot areas 
were measured in every image to receive mean and standard devia-
tion for one run per channel. The time profile of clot area change 
was subjected to regression analysis. Linear model resulted in slope 
of aggregation starting at basal up to time point of maximum clot 
area. Accordingly, disaggregation was defined as declining clot area 
from maximum back to basal. If time point zero basal clot area was 
not attained in disaggregation phase during observation time, the 
last measured value was carried forward.

2.5  |  Intraportal islet transplantation

Intraportal islet transplantation was performed using WT C57BL/6, 
FcRγ-deficient, Gp6−/− mice, or NMRI nu/nu mice as recipients. Before 
transplantation, diabetes was induced in the recipients by a single intra-
peritoneal injection of 180 mg/kg streptozotocin, and nonfasting blood 
glucose levels were measured from the tail vein using a glucometer 
(Elite, Bayer). Mice with a blood glucose value higher than 300 mg/dl for 
at least 2 consecutive days were used as recipients. About 300 mouse 
islets each were transplanted into the liver of recipients via the portal 
vein with a 27-gauge needle using a previously described method with 
modifications.31 Approximately 2,000 human islet equivalents (IEQ) 
were transplanted to male NMRI nu/nu mice using the same technique. 
In order to deplete GPVI from circulating platelets,32 50 µg of anti-
GPVI monoclonal antibody (mAb) JAQ1 (Rat IgG2a) (Emfret, Würzburg, 
Germany) or isotypic immunoglobulin as a control (Origene, Herford, 
Germany) was injected intraperitoneally into NMRI nu/nu mice 60 min 
before transplantation. During surgery, the animals were anesthetized 
using 2.5% avertin (200 µl/100 g) (Sigma) and maintained with isoflu-
rane. The wound was closed in two layers with absorbable sutures. 
Euglycemia and graft survival were defined as nonfasting blood glucose 
with less than 200 mg/dl on 3 consecutive days.

2.6  |  Immunohistochemistry

Grafted livers or blood islet clots were recovered and snap-frozen 
in O.C.T medium (Sakura). Five-micrometer sections were cut and 
mounted onto SuperFrost Ultra Plus slides, air dried and fixed in 

Zamboni fixative for 10 min before staining. After blocking in PBS 
with 1% BSA and 2% donkey serum, the cryosections were probed 
with antibodies against GPIbα (pop3/4), fibrinogen (AbD Serotec), 
CD11b (M1/70.15, ImmunoTools), or insulin (GPAIS, Dako) at 4°C 
overnight. Secondary fluorescence dye-coupled antibodies (Jackson 
ImmunoResearch) were applied on the next day. Nuclei were visual-
ized by Hoechst 33342 (Sigma). The cover slips were mounted with 
ProlongGold (Invitrogen, Darmstadt, Germany), visualized and photo-
graphed using a Leica DMLB microscope (Leica, Germany) equipped 
with Leica DFC420C CCD and processed in Leica Application Suite.

2.7  |  Statistics

All results are expressed as mean ±SEM. Statistical significance was 
determined using student's t-test or one-way ANOVA or two-way 
RM ANOVA, as appropriate. Graft survival between groups was ana-
lyzed by Logrank (Mantel–Cox test) and Gehan–Breslow–Wilcoxon 
test. Rate and maximum disaggregation of platelets were defined 
by slope and minimum of aggregation curve and calculated by fit-
ting with linear equation. All statistical analyses were performed 
with GraphPad Prism (version 8.3.0, GraphPad Software; San Diego, 
USA). A value of p < .05 was considered statistically significant.

3  |  RESULTS

3.1  |  Platelet GPVI deficiency facilitates platelet 
disaggregation

Platelet aggregation was investigated in vitro by aggregometry using 
mouse PRP. ADP dose-dependently induced platelet aggregation in 
PRP from WT mice as expected. ADP-induced platelet aggregation 
was further promoted by mouse pseudo-islets (Figure 1A-C) or isolated 
porcine islets (Figure S1) such that the graphical record of aggregation 
reached higher peak values and was more persistent. A different ag-
gregation profile was observed when PRP from Gp6−/− mice was used 
(Figure 1). Although both the rate and the maximum of aggregation 
were not different as compared to the WT (Figure 1), the aggregates 
of GPVI-deficient platelets were less stable and disaggregated faster. 
With the presence of pseudo-islets at both ADP concentrations, the 
rate (Figure 1) and maximal disaggregation (Figure 1) were significantly 
higher in PRP from Gp6−/− mice as compared to WT mice.

3.2  |  GPVI deficiency destabilizes 
thrombus formation

Ex vivo thrombus formation in whole blood was monitored in a mi-
crofluidic device. In WT mouse blood, ADP stimulation induced the 
formation of small and nonadherent thrombi in the absence of pan-
creatic islets (Figure 2A WT- islets and Figure 2B; maximal clot area 
381 ± 181 µm2), whereas large and adherent thrombi were observed 
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in the presence of porcine islets (Figure 2A WT+islets and Figure 2C; 
maximal clot area 9433 ± 1045 µm2). Thrombus formation in the blood 
from Gp6−/− mice was faster (Figure 2B,E); however, it was smaller in 
the presence of porcine islets (Figure 2C,D). While the rates of aggre-
gation (Figure 2F) were not different between groups, rates of throm-
bus disaggregation (Figure 2G) were significantly faster in blood from 
Gp6−/− mice as opposed to WT, indicating that the thrombi formed in 
the former group were substantially less stable.

3.3  |  GPVI/FcRγ deficiency does not impair early 
thrombus formation but compromises engraftment of 
syngeneic mouse islets

Syngeneic islet transplantations were performed to investigate the 
contribution of platelet GPVI/FcRγ signaling after intraportal islet 

transplantation. Isolated WT mouse islets were transplanted into 
WT mice, or GPVI-deficient mice in either FcRγ-mutant mice or in-
duced by anti-GPVI treatment with a monoclonal antibody (mAb) 
JAQ1. JAQ1 treatment has been shown to induce a rapid and spe-
cific depletion of the collagen receptor GPVI from circulating plate-
lets and offer a long-term antithrombotic protection in the treated 
mice.33 The grafted livers were recovered at 4 h after transplanta-
tion for IHC investigations on the early posttransplant IBMIR events. 
The transplanted islets were entrapped with platelets and fibrin in 
the WT mouse liver after transplantation (Figure 3A,D). Leukocyte 
infiltration toward the islet graft was evidenced by CD11b immu-
nostaining (Figure 3G). Interestingly, no major differences in the 
staining patterns of platelets or CD11b+ cell infiltration was ob-
served in these early grafted livers in GPVI-deficient recipient mice 
as compared to WT. Similar to the WT liver, thrombus formation 
and CD11b+ leukocyte accumulation could be readily detected in 

F I G U R E  1  Platelet GPVI deficiency destabilizes platelet aggregation. In platelet-rich plasma (PRP), platelet aggregation was induced 
by 2 µM (A) or 10 µM ADP (B) in the absence or presence of pseudo-islets, and light transmission was followed. The maximum degree 
of platelet aggregation in PRP from WT mice was quantified for the indicated conditions (C). Platelet aggregation was induced by 2 µM 
(D to G) or 10 µM (H to K) ADP in PRP from WT or GPVI knockout (GP6-/-) mice, and the extent of aggregation was quantified by light 
transmission. The maximum degree of aggregation (E, I), the rate of disaggregation (F, J), and the maximal disaggregation (G, K) were 
calculated.*p < .05,**p < .01, and***p < .001 vs indicated comparator
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the liver sections from either FcRγ-mutant mice (Figure 3B,E,H) or 
JAQ1-treated mice (Figure 3C,F,I) after islet transplantation.

To investigate the contribution of platelet GPVI/FcRγ signaling 
in islet engraftment, syngenic islet transplantations were performed 
where diabetic mice were used as recipients. The islet transplants 

resumed euglycemic control in 100% (5/5) WT mice mostly (4/5) 
within 1 day after transplantation and latest (1/5) within 5 days 
(Figure 4A,B). In contrast, only 60% (3/5) of the FcRγ–deficient mice 
turned euglycemic with the same number of transplanted islets, and 
these mice needed more time (3 to 7 days) to resume euglycemic 

F I G U R E  2  Platelet GPVI deficiency reduces the stability of islet-induced thrombus formation ex vivo. Representative images of thrombus 
formation in a microfluidic device using wild-type (A, WT) or Gp6−/− (A, KO) mouse blood are shown in dual flow 24-well plates. Top inlet 
tube is represented by upper green area and carries blood with pancreatic islets (+ islets). Bottom inlet is separated from top tube conveying 
blood without pancreatic islets (- islets). Thrombus formation was initiated with 2 µM ADP within a time lapse of 2 min between the images 
from left to right shear of 2 dyn/cm2. The time profiles of thrombus formation are shown (B and C) where the clotting areas were calculated 
from two-dimensional images taken every 5 s. The maximum thrombus area (D), t Time to maximum thrombus formation (E), the aggregation 
slope (F), and disaggregation slope (G) were calculated from WT (black circles) and Gp6−/− (gray squares) blood. n = 4 runs.***p < .001 vs WT; 
two-way ANOVA



6  |    CHEN Et al.

control. Logrank analysis confirmed a significant disadvantage of 
FcRγ deficiency (chi-square 5.663, p = .0173; Figure 4B) under such 
conditions. Similar results were obtained when Gp6−/− mice were 
used as recipients in a separated experiment. In contrast to the WT 
mice which resumed immediate and stable euglycemia after islet 
transplantation, Gp6−/− recipients lost euglycemic control within a 
short period of time (Figure 4C; graft survival time 16.6 ± 3.7 days, 
p < .001). Logrank analysis confirmed a significant disadvantage 
of GP6-/- mice (chi-square 13.31, p = .0003; Figure 4D) for this 
maneuver.

3.4  |  Anti-GPVI treatment compromises 
xenogeneic human islet engraftment

The roles of platelet GPVI signaling in human islet engraftment 
was studied by injecting an anti-GPVI monoclonal antibody (mAb) 
JAQ1 into diabetic NMRI nu/nu recipient mice to specially deplete 

GPVI from circulating platelets before human islet transplantation. 
Consistent with the syngeneic mice islet transplantation data, acute 
GPVI depletion in circulation platelets with a single bolus JAQ1 in-
jection before transplantation led to an inferior islet transplantation 
outcome. Using almost identical islet mass transplanted (2286 ± 48 
IEQ in control group vs 2294 ± 36 IEQ in JAQ1-treated group, n.s.), 
whereby all control mice resumed an almost immediate and long-
term stable euglycemia after transplantation, JAQ1-treated recipient 
mice became hyperglycemic again within 2 to 4 days after transplan-
tation (median graft survival time; 2 days) (Figure 5A). Logrank anal-
ysis confirmed a significant disadvantage of anti-GPVI treatment 
(chi-square 15.00, p = .0001; Figure 5B). An intraperitoneal glucose 
tolerance test (IPGTT) was performed on all recipient mice by the 
end of the study. Compared to the control mice, JAQ1-treated mice 
had significantly higher blood glucose at each time point (Figure 5C), 
a significantly higher area under the curve (Figure 5D), and lower 
insulin secretion (Figure S4), further confirming the impaired graft 
function after anti-GPVI treatment.

F I G U R E  3  Immunohistochemical staining of grafted liver sections. Cryosections from grafted liver from WT (A, D, G), FcRγ-deficient (B, 
E, H), or JAQ1-treated (C, F, I) recipient mice, recovered 4 h after transplantation, were probed for insulin (green) and GPIbα (red) for platelet 
aggregations (A-C); or for insulin (green) and fibrinogen (red) for fibrin formation (D-F); or for insulin (green) and CD11b (red) for leukocyte 
infiltration (G-I); scale bar=50 µm

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)
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F I G U R E  4  GPVI/FcRγ deficiency impairs syngeneic mouse islet engraftment. Streptozocin-induced diabetic mice were transplanted with 
syngeneic islets intraportally. Mean nonfasting blood glucose levels (A) are plotted and euglycemia fraction curves (B) are shown for FcRγ-
deficient or WT control recipients, respectively (n = 5 each). Mean nonfasting blood glucose levels (C) are plotted and euglycemia fraction 
curves (D) are shown for GPVI knockout (black triangle) or WT control (black square) recipients, respectively (n = 10 each). *p < .05 vs. WT; 
**p < .01 vs WT

F I G U R E  5  GPVI/FcRγ deficiency impairs xenogeneic human islet engraftment. Streptozocin-induced diabetic NMRI nu/nu mice were 
transplanted with human islets intraportally. Mean nonfasting blood glucose levels (A) are plotted and euglycemia fraction curves (B) are 
shown for JAQ1-treated or control recipients, respectively (n = 10 each). At the end of the experiment, an intraperitoneal glucose tolerance 
test (2 g/kg glucose i.p.) was performed using collecting blood at −10, 0, 15, 30, 45, 60, 90, and 120 min (C) after 16-h fasting. Area under 
the glucose curve during IPGTT was calculated and plotted (D). *p < .05 vs WT; ***p < .001 vs WT
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4  |  DISCUSSION

In the current study, the influence of platelet aggregation and throm-
bus formation on the efficacy of intraportal islet engraftment was 
investigated with particular emphasis on the role of GPVI/FcRγ, the 
prominent platelet receptor for collagen and other matrix proteins. 
When isolated islets are infused into the portal vein and get in di-
rect contact with different blood constituents, platelet-dependent 
hemostasis and the blood coagulation system are triggered intravas-
cularly.1–4,34 From a mechanistic angle, however, the contribution of 
key adhesion receptors of platelets in these events has never been 
explored.

Thrombus formation triggered by intravascularly infused islets 
in direct contact with blood was believed to be dependent on the 
extrinsic tissue factor (TF) pathway. Tissue factor was found to be 
synthesized and secreted by pancreatic islets, and blocking the ac-
tive site of TF with specific antibodies or inactive factor VIIa had 
been found to inhibit the thrombosis reactions triggered by islets in 
vitro.21 In addition, TF gene knockdown in porcine islets had been 
shown to suppress IBMIR and reduced neutrophil infiltration in a 
looping system.24,25 In a recent study, it was shown that expression 
of TF in islets and β-cells was induced by cytokines (IL-1β, TNF-α, and 
IFN-γ) and that TF/FVIIa signaling promoted cytokine-induced β-cell 
death.35 Furthermore, melagatran, a specific thrombin inhibitor, was 
reported to partly reduce IBMIR.36 However, blockage of this path-
way by either melagatran or heparin could not completely prevent 
the activation of platelets and the formation of fibrin surrounding 
the transplanted islets or the infiltration of CD11b+ cells,20,36 indi-
cating other pathways to be involved in parallel.

We investigated the contribution of platelet GPVI signaling in 
the thrombosis events triggered by pancreatic islets at different 
complexity levels in this study: firstly, using in vitro platelet aggre-
gation with mouse PRP, pancreatic islets profoundly promoted ADP-
induced platelet aggregation. Compared to the aggregates formed in 
PRP from WT mice (while the rate and the maximum of aggregation 
were not different in the initiating phase), islet-promoted platelet ag-
gregates in PRP from Gp6−/− mice were less stable and disaggregated 
much faster. Secondly, ex vivo thrombus formation was examined 
in a microfluidic device, thereby modeling blood flow in the portal 
vein where stable thrombus formation was triggered by pancreatic 
islets when using whole blood from WT mice. While initial thrombus 
formation was not much different between groups and consistent 
with the platelet aggregation data, in blood from GP6-/- mice the 
thrombi were unstable and disaggregated at a significantly higher 
rate as compared to control. Similar results were obtained when 
human islets, instead of porcine islets, were used to induced throm-
bus formation in mouse blood (Figure S2; Table S1). Together, these 
data indicate that, while it might not be required for the initial phase 
of platelet aggregation and thrombus formation promoted by pan-
creatic islets, platelet GPVI signaling appears to be essential for the 
stability of platelet aggregates and subsequent thrombus formation.

Next, the relevance of these in vitro and ex vivo results for 
in vivo thrombus formation and leukocyte recruitment were 

investigated in a model of intraportal islet transplantation. 
Interestingly, we found no major difference in the staining pat-
tern of formed platelet plugs surrounding the transplanted islets 
or the infiltration of CD11b+ cells in the early 4-h recovered liver 
from GPVI/FcRγ-deficient recipient mice as compared to the WT 
mice. PSGL-1 and CD11b staining on 24-h recovered livers also 
showed a similar degree of leukocyte accumulation surrounding 
the islet grafts in JAQ1-treated or control mice (Figure S3). The 
lack of differences in thrombus formation in vivo between the WT 
and GPVI-deficient recipients could indicate a different kinetics 
of thrombus formation and dissociation in the hepatic sinusoids 
of the portal vein system as compared to the in vitro or ex vivo 
situations. More importantly, since no heparin was administered 
to these mice during transplantation, our data could result from 
the possibility that TF-thrombin pathway was predominant over 
GPVI/FcRγ pathway in the in vivo situation. Indeed, although GPVI 
has been shown to potentiate thrombin-induced platelet activa-
tion,37,38 thrombin could effectively overcome GPVI/FcRγ defi-
ciency.39,40 Our immunohistochemical analysis also indicates that 
GPVI signaling might not be required for the initiation of thrombus 
formation induced by infused islets which is consistent with our in 
vitro and ex vivo data where the initiation of platelet aggregation 
as well as thrombus formation was largely unaffected by GPVI de-
ficiency. Finally, the contribution of platelet GPVI/FcRγ pathway in 
islet engraftment was investigated in two different transplantation 
models. Here, delayed engraftment or earlier graft failure was in-
dependently observed in two strains of recipient mice genetically 
deficient for GPVI/FcRγ in a syngeneic islet transplantation model. 
Similarly, an acute anti-GPVI treatment with a single bolus JAQ1 
antibody injection in NMRI nu/nu mice resulted in an immediate 
and long-term impairment in graft function model in a xenogeneic 
human islet transplantation model.

While thrombus formation was suggested to be associated 
with islet damages and low transplantation efficiency,20,36 our re-
sults imply GPVI-dependent platelet activation and stable throm-
bus formation in the early posttransplant phase to be necessary 
for successful islet engraftment and long-term graft function 
(Figure S7).

Platelets could potentially modulate islet engraftment by sev-
eral mechanisms that remain to be explored in future studies. For 
example, they have been shown to contain a considerable amount 
of TF in its inactive form which could be transformed into its active 
form and translocate onto the platelet surface upon collagen acti-
vation and interaction with neutrophil or monocytes.41 At the same 
time, platelets are known to contain tissue factor pathway inhibitor 
(TFPI) which is a physiological antagonist of the TF pathway and 
could be rapidly released from platelets upon activation.42 Thus, 
platelets can modulate IBMIR by balancing the TF/TFPI system 
also during their interaction with the islet-associated TF pathway. 
Moreover, platelets contain and release matrix metalloproteinases 
(MMPs) and their inhibitors that could modulate thrombus forma-
tion as well.43,44 In return, these proteases can differently regulate 
platelet activation and functions, including GPVI signaling.45–48 In 
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particular, our group has previously shown that MMP-9 expression 
and activity, which are associated with platelets and granulocytes, 
were found to be increased after transplantation, whereas inhibi-
tion of MMPs reduced leukocytes infiltration and improved islet 
transplantation outcome.49 In addition, MMP-9, which could be de-
livered by a subset of neutrophils recruited to the transplantation 
site, was shown to be required for islet graft revascularization and 
functional integration.50 These findings suggest that platelets may 
modulate transplantation outcome by governing protease activity 
directly into the locally concentrated engrafted site. Furthermore, 
platelets are known to secrete a variety of proteins upon activa-
tion, including growth factors and chemokines.51 Together, these 
platelet-associated activities can influence different steps and 
components of intraportal islet engraftment, including the acute 
thrombus reactions as well as islet revascularization and function 
in the long term.

Besides its roles in thrombus formation and stability, the induc-
tion of which by isolated islets had been investigated in this study, 
platelet GPVI has been recently also suggested to be an immune re-
ceptor to play an active role in the cross talk between inflammatory 
and thrombotic pathomechanisms.52 In addition to collagen, GPVI 
could be activated by numerous other ligands, including fibrin, fi-
brinogen, and the membrane protein EMMPRIN. Blockage of GPVI 
has been shown to affect immune cell recruitment, activation, and 
function at the inflammation site in different disease models.53–56 
Since islet infusion into the portal vein system induced a cascade 
of events, including both thrombus formation and inflammation 
(thrombo-inflammation), our study is limited to provide a mech-
anistic insight into the interactions between infused islet and dif-
ferent components of the portal vein blood together with the local 
microenvironment that collectively determines the transplantation 
outcome. How different platelet activities are coordinated in this 
respect and how their interactions with various blood cells, the tem-
poral dynamics and their contribution to islet engraftment are regu-
lated, warrant more investigations.

In summary, we here show that even though it might not be re-
quired for the initiation of platelet aggregation and thrombus forma-
tion in vitro and in vivo, platelet GPVI/FcRγ signaling is essential for 
the stability of platelet aggregates and formed thrombi as well as for 
the engraftment and function of the transplanted islets. Therefore, 
our data indicate for the first time that thrombus formation, trig-
gered by the infused islets, is required and potentially beneficial for 
the successful intraportal islet engraftment in which platelet are ac-
tive modulators.
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