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A B S T R A C T

Background: DNA methylation (DNAm) may play a role in age-related outcomes. It is not yet known which
DNAm-based biomarkers of age acceleration (BoAA) has the strongest association with age-related
endpoints.
Methods: We collected the blood samples from two independent cohorts: the Normative Ageing Study, and
the Cooperative Health Research in the Region of Augsburg cohort. We measured epigenome-wide DNAm
level, and generated five DNAm BoAA at baseline. We used Cox proportional hazards model to analyze the
relationships between BoAA and all-cause death. We applied the Fine and Gray competing risk model to esti-
mate the risk of BoAA on myocardial infarction (MI), stroke, and cancer, accounting for death of other reasons
as the competing risks. We used random-effects meta-analyses to pool the individual results, with adjustment
for multiple testing.
Findings: The mean chronological ages in the two cohorts were 74, and 61, respectively. Baseline GrimAgeAc-
cel, and DNAm-related mortality risk score (DNAmRS) both had strong associations with all-cause death, MI,
and stroke, independent from chronological age. For example, a one standard deviation (SD) increment in
GrimAgeAccel was significantly associated with increased risk of all-cause death [hazard ratio (HR): 2.01;
95% confidence interval (CI), 1.15, 3.50], higher risk of MI (HR: 1.44; 95% CI, 1.16, 1.79), and elevated risk of
stroke (HR: 1.42; 95% CI, 1.06, 1.91). There were no associations between any BoAA and cancer.
Interpretation: From the public health perspective, GrimAgeAccel is the most useful tool for identifying at-risk
elderly, and evaluating the efficacy of anti-aging interventions.
Funding: National Institute of Environmental Health Sciences of U.S., Harvard Chan-NIEHS Center for Environ-
mental Health, German Federal Ministry of Education and Research, and the State of Bavaria in Germany.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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1. Introduction

The world population is rapidly growing older, leading to higher
risk of age-related deaths and diseases, such as myocardial infarction
(MI), and cancer. Notably, individuals of the same chronological age
may exhibit different susceptibility to age-related endpoints, which
is likely reflective of differences in their underlying biological aging
processes [1]. Understanding the molecular mechanisms underlying
aging process; identifying at-risk elderly populations; and evaluating
the efficacy of interventions for anti-aging are critical in both basic
research, and public health practice.

In the last decade, DNA methylation (DNAm) has been reported to
be related to aging processes [2-7], and different DNAm ages have
been linked with age-related outcomes [8-15]. More specifically,
there are two generations of DNAm-based biological age metrics. The
first generation includes the two clocks developed by Horvath [5],
and Hannum [6] in 2013. Most recently, a second generation of
DNAm ages incorporated additional age-related markers [12, 13] It
includes DNAm PhenoAge developed by Levine et al. in 2018 [12], and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ebiom.2020.103151&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cuicuiwang@hsph.harvard.edu
https://doi.org/10.1016/j.ebiom.2020.103151
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.ebiom.2020.103151
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ebiom


Research in Context

Evidence before this study

Elderly people with the same chronological age may have sub-
stantially dissimilar risk of death and diseases. DNA methyla-
tion (DNAm) has been reported to be related to the aging
process. However, the potential molecular mechanisms are
unclear. Several DNAm-based biomarkers of aging acceleration
(BoAA) have relationships to age-related endpoints. It is not yet
known which BoAA has the strongest association with specific
age-related endpoints.

Added value of this study

We applied the Fine and Gray competing risk model, which
considers the deaths from other outcomes as competing risks,
to estimate the relationships between BoAA and MI, stroke, and
cancer. The associations’ estimations were more accurate com-
pared to the conditional Cox model. In addition, this study had
sizable samples with two independent cohorts.

Implications of all the available evidence

Our study examined multiple DNAm-based BoAA and diverse
health endpoints. Our present study suggests that GrimAgeAc-
cel could be the most useful tool for identifying at-risk elderly,
and evaluating the efficacy of anti-aging interventions, inde-
pendent from chronological age.
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DNAm GrimAge generated by Lu et al. in 2019 [13], respectively. How-
ever, because of the moderate correlation between DNAm ages, and
chronological age, it is not surprising to find predictive power of
DNAm clocks for the prevalence, and incidence of age-related health
outcomes. Recent studies have revealed that age acceleration (AA),
which is the raw residual in the linear regression model with DNAm
age regressed on chronological age, is a candidate biomarker for all-
cause death, and age-related diseases [13, 16-22]. The well docu-
mented AA measures are epigenetic age acceleration of intrinsic, and
extrinsic (i.e., IEAA, and EEAA) [17]. Most recently, Horvath et al.
showed that PhenoAgeAccel, and GrimAgeAccel had strong predictive
power for all-cause death, coronary heart disease, and cancer [13].
However, most related studies, to date, focused on IEAA, and EEAA
[17-20], and few investigated the associations between PhenoAgeAccel
/ GrimAgeAccel and multiple health endpoints [13, 21].

Besides the epigenetic biomarkers mentioned above, Zhang et al.
developed a continuous DNAm-related mortality risk score (i.e.,
DNAmRS) among 1900 older participants in ESTHER study [23]. In
their study, they independently validated the strong association of
DNAmRS and mortality among 1700 subjects in cooperative health
research in the region of augsburg cohort (KORA F4) [23]. DNAmRS is
a linear combination of 10 probes selected by least absolute shrinkage
and selection operator (LASSO) regression and has been reported as a
strong predictor for all-cause, and cardiovascular mortality [23, 24]
Recently, our group found that DNAmRS was more predictive for all-
cause, cardiovascular, and cancer mortality compared with telomere
length, and PhenoAgeAccel [25]. However, when we conducted this
analysis, GrimAgeAccel had not been generated yet; neither IEAA, nor
EEAA were examined. Moreover, all the above studies including ours
used conventional methods of survival analysis without considering
the competing risk of death [26, 27] which may hinder the observa-
tion of the event of interest or modify the probability the event occurs.
For example, when the onset of MI is of interest, competing risk from
death of stroke or car accident before MI occurrence prevent us from
observing it. Since subjects who die are no longer eligible to become
MI patients, but may have had different MI risks than the uncensored
subjects, this introduces bias into the effect estimates. In this case,
methods such as the Fine and Gray competing risk model [28] that
considers the competing risk should be more appropriate.

Herein, the goal of this present study was to assess the relation-
ships of GrimAgeAccel / PhenoAgeAccel / IEAA / EEAA / DNAmRS and
diverse health outcomes (i.e., all-cause death, MI, stroke, and cancer).
Since higher AA, and DNAmRS were both associated with increased
mortality [13, 19, 23] we defined all of them as biomarkers of age
acceleration (BoAA) in this study. We then chose the most useful BoAA
for identifying at-risk elderly, and evaluating the efficacy of anti-aging
interventions, based on their hazard ratios (HRs) for a one standard
deviation (SD) increment, and adjusted P-values. Analyses on MI,
stroke, and cancer referred to the combination of both morbidity, and
mortality, and were accounted for the competing risk of death [28].

2. Methods

2.1. Study population

2.1.1. Normative ageing study (NAS)
The NAS is a closed cohort study that was established in the

Greater Boston in 1963 (N = 2280) [29]. The participants from NAS
were all men, who were free of known chronic medical conditions at
enrolment. The subjects have undergone examinations every 3 to
5 years on a continuous rolling basis. Information on clinical, and
other health data was collected at these visits. We restricted to the
participants with DNA samples from blood, which were collected
from subjects starting in 1999 [30]. We excluded non-whites (3%),
and visits that did not have complete information on covariates (see
below), leaving a final sample size of 737 men. The examination at
which a DNA sample was first obtained was considered as the base-
line examination. Because of the rolling examinations, and since
some individuals missed visits, the baseline year ranged from 1999 to
2012. The last available update was in 2016. All participants provided
written informed consent. Both the Harvard T.H. Chan School of Pub-
lic Health, and the Institutional Review Boards of the Department of
Veterans Affairs approved this study.

2.1.2. Cooperative health research in the region of augsburg cohort
(KORA F4)

KORA F4 is a population-based cohort in south Germany estab-
lished between 2006 and 2008 (N = 3080) [31]. Methylation profiles
were generated from 1802 participants who were randomly selected
[32]. We included 1725 subjects (882 women) since 75 samples were
removed after quality control, and 2 participants dropped out. The
last available update was in 2016. All participants supplied written
informed consent that was approved by the Ethics Committee of the
Bavarian Medical Association.

2.2. Measures of events

Only endpoints that occurred after the baseline when the first
DNA sample was collected were treated as events. Vital status of par-
ticipants was assessed by follow-up mailings in the two studies. The
events included all-cause death, MI, stroke, and cancer; the latter
three referred to the combination of both morbidity, and mortality.

All-cause death. Vital status was monitored by regular checking in
two cohorts. For participants who have died, their documents were
reviewed to assign cause of death codes according to the 9th revision
of the International Classification of Disease (ICD-9) [33-35].

Incidence and mortality of MI. In NAS, the diagnostic criteria for
MI were adapted from those used in the Framingham Heart Study,
and were adjudicated by a research physician [36]. In KORA F4, MI
was assessed in the Augsburg MI registry [37]. Death of MI was coded
as ICD-9 410.
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Incidence and mortality of stroke. In NAS, non-fatal strokes were
defined as neurological deficit of sudden or rapid onset that persisted
for at least 24 hours [38]. In KORA F4, non-fatal strokes were assessed
by participants’ hospital records [39]. Death of stroke was coded as
ICD-9 431�436.

Incidence and mortality of cancer. In NAS, cancer information
was obtained from questionnaires, and confirmed by medical records
[40]. In KORA F4, incidence of cancer was unavailable, but death of
cancer was certificated by local health authorities [41], and was
coded as ICD-9 140�239.
2.3. Measures of DNAm-based BoAA

DNA samples were extracted from whole blood using QIAamp
DNA Blood Kit (Qiagen, CA, USA), and were bisulphite converted
using the EZ-96 DNA Methylation Kit (Zymo Research, Orange, CA,
USA) as described previously [42, 43]. We measured DNAm across
» 485,000 50-C-phosphae-G-30 (CpG) sites at a single nucleotide reso-
lution, with Illumina Infinium HumanMethylation450 BeadChip
(Infinium HD Methylation protocol, Illumina, San Diego, CA, USA), in
both NAS, and KORA F4. We utilized a two-stage age-stratified algo-
rithm to assign the samples to plates randomly, which standardized
the age distribution across plates [44].

In NAS, the blood samples were collected between 1999 and 2012.
In the quality control step, we removed problematic samples that
might be mislabelled, or contaminated, or had poor performance due
to technological issues [45]. At the probe level, we used non-specific
fluorescence via the ewastools package in GitHub to remove probes
with a detection P > 0.01 [46]. We corrected the data for dye-bias [47].
Instead of normalizing the DNAm data directly [11, 13, 17] we normal-
ized DNAm data by controlling for the normalization factors in the out-
come regression. We used LASSO and an elastic-net regularized
generalized linear model to extract five important experimental cova-
riates � Non polymorphic Red, Specificity I Red, Bisulfite Conversion I
Red, Bisulfite Conversion II, Extension Red � from the control metrics
monitoring the execution of diverse experimental steps [48]. We then
controlled for these five experimental covariates in our outcome
regression (see 2.4 Statistical method). This normalization approach
generally works better [49], and we have applied it previously [30].

In KORA F4, the blood was collected between 2006 and 2008. The
data pre-processing, including data quality (removal of records
according to functional beads, detection P, and SNP frequency), data
improvement (background, and dye bias correction), and probe type
adjustment (normalization using BMIQ package), has been described
in detail previously [50].

Measures of AA. In the New Methylation Age Calculator website
(https://dnamage.genetics.ucla.edu/new), we uploaded our DNAm
data, and sample annotation file. After selecting “Normalize Data”,
and “Advanced Analysis”, we submitted the data, and got outputs
including four AA metrics (i.e., GrimAgeAccel, PhenoAgeAccel, IEAA,
and EEAA) automatically via email. A positive AA measure indicates
that the subject is older than expected based on the chronological
age at the baseline, and vice versa.

Measure of DNAmRS. We calculated DNAmRS based on 10
selected CpGs by Zhang et al. [23]. The formula is:

DNAmRS ¼ cg01612140� ð�0 ¢38253Þ þ cg05575921
�ð�0 ¢92224Þ þ cg06126421� ð�1 ¢70129Þ þ cg08362785

� ð2 ¢71749Þ þ cg10321156 � ð�0 ¢02073Þ þ cg14975410

� ð�0 ¢04156Þ þ cg19572487� ð�0 ¢28069Þ þ cg23665802

� ð�0 ¢89440Þ þ cg24704287� ð�2 ¢98637Þ þ cg25983901

� ð�1 ¢80325Þ
To facilitate comparisons of effect sizes across BoAA metrics, we
expressed our results as differences in HRs per one SD increase in
BoAA.

2.4. Statistical methods

We performed a Pearson correlation analysis, and examined the
data distribution among the five different BoAA (i.e., GrimAgeAccel,
PhenoAccel, IEAA, EEAA, DNAmRS) in each cohort.

For all-cause death, we used Cox proportional hazards model to
estimate the HRs associated with each BoAA collected at baseline. For
MI, stroke, and cancer, we used the Fine and Gray competing risk
model to evaluate the HRs with death from other reasons considered
to be the competing risks [28]. The coefficients estimated from a tra-
ditional Cox model reflect the effect of a covariate on the cause-spe-
cific hazard, considering competing risk events as censoring without
information. Fine-Gray model is a regression on the sub-distribution
hazard which estimates the effect of a covariate on the cumulative
incidence, taking into account the informative censoring of the com-
peting risk [27, 51].

We controlled for covariates a priori based on the relevant litera-
ture [16, 19, 23]: 5-year categories of chronological age, gender
(KORA F4 only), body mass index (BMI), cigarette pack years, smoking
status (never, ever), alcohol consumption (< 2 drinks/day, �
2 drinks/day in NAS; g/day in KORA F4), years of education, 10-mg/dl
categories of serum high-density lipoprotein, serum triglyceride, esti-
mated cell types via the Houseman et al. method [52], and batch
effect. All covariates were measured at baseline. All the categorical
variables were adjusted by strata function in the models. For IEAA,
and EEAA, we did not adjust for cell types [53]. For DNAmRS in the
NAS, we additionally adjusted for the above mentioned five experi-
mental covariates because this biomarker was calculated by 10 CpGs,
which were not normalized directly [48] (We selected “Normalize
Data”when we calculated four AA metrics in the online Calculator).

We performed random-effects meta-analyses [54] to combine the
estimates from the NAS, and KORA F4, and evaluated the overall rela-
tionships between each of the five BoAA and each of the four health
endpoints. In order to capture modification by smoking, we further
added an interaction term between BoAA and smoking status (never,
ever) in the models. We tested the proportional hazards assumption in
the Cox model using the cox.zph() function in the survival package, and
the sub-proportional hazards assumption in the Fine and Gray model
using diag_crr() function in the crskdiag package in R. The two assump-
tions were fulfilled for all variables in two models accordingly.

Results from survival analyses were expressed as HRs for a one SD
increase in BoAA [54]. We applied Benjamini-Hochberg false discov-
ery rate (FDRB-H) to adjust for multiple comparison. The threshold for
statistical significance was 0.05 [55]. We used the I-squared (I2) test
on random-effects estimates to access heterogeneity. I2 < 0.50, and
P-value > 0.05 were considered as homogeneous [50].

All statistical analyses were performed using R Version 3.6.3 (R
Core Team, Vienna, Austria) with survival (Cox proportional hazards
model), cmprsk (Fine and Gray competing risk model), and metafor
(meta-analyses) packages.

3. Results

3.1. Population description

Table 1 presents the summary statistics of participants at baseline.
In the NAS, there were 737 men enrolled. The mean chronological age
was 74 years (SD = 7). Mean of BMI was 28.0 kg/m2 (SD = 4.1). The sub-
jects were well educated, with a mean 15.0 education years (SD = 3.0).
Furthermore, 229 (31.1%) of the 737 individuals were never smokers,
and 602 (81.7%) had fewer than two drinks per day (Table 1). In KORA
F4, there were 1725 participants (882 women) enrolled. The mean
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Table 1
Demographic and characteristics of participants at baseline from the NAS
(N = 737) and KORA F4 (N = 1725).

Variables NAS KORA F4
(Year 1999�2012) (Year 2006�2008)

Chronological age (years),
mean § SD

74 § 7 61§ 9

BMI (kg/m2), mean § SD 28.0 § 4.1 28.1 § 4.8
Missing, n (%) 0 (0) 6 (0.3)
Women, n (%) 0 (0) 882 (51.1)
Smoking, n (%)
Never 229 (31.1) 721 (41.8)
Ever 508 (68.9) 1002 (58.1)

Missing, n (%) 0 (0) 2 (0.1%)
Pack-year smoked (years),
mean § SD

21.2 § 25.3 13.1 § 21.4

Alcohol consumption Drinks/day, n (%) g/day (mean § SD)
�2; 135 (18.3) 15.5 § 20.5
<2; 602 (81.7)

Education (years), mean § SD 15.0 § 3.0 11.5 § 2.6
Missing, n (%) 0 (0) 3 (0.2)
Serum high-density lipoprotein
(mg/dL)

49.0 § 12.8 56.5 § 14.6

Missing, n (%) 0 (0) 0 (0)
Serum triglyceride (mg/dL) 137.5 § 87.1 133.0 § 88.6
Missing, n (%) 0 (0) 0 (0)
Estimated cell types,%
Monocytes 10.5 7.9
B cells 1.5 7.3
CD4+ T lymphocytes 11.5 16.5
CD8+ T lymphocytes 4.1 5.6
Natural killer cells 7.3 7.3

Missing, n (%) 0 (0) 0 (0)

Abbreviations: NAS, Normative Aging Study; KORA F4, Cooperative Health
Research in the Region of Augsburg cohort; MI, myocardial infarction; SD, stan-
dard deviation; BMI, body mass index.
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chronological age was 61 (SD=9). Mean of BMI was 28.1 kg/m2

(SD = 4.8), which was almost the same with that in NAS. The percent-
age of never smokers was 41.8, larger than that of NAS (31.1). The
years of education in KORA F4 (mean=11.5, SD=2.6) were less than
that in NAS (Table 1).

Table 2 shows the summary of events of interest during follow-up
period. In NAS, there were 337 all-cause death after baseline. Sixty-
nine participants had non-fatal MIs or died of MI, 30 had non-fatal
strokes or died of stroke, and 243 had cancer or died of cancer. The
Table 2
Summary of events in the Normative Aging Study (N = 737) and
KORA F4 (N = 1725).

Events NAS KORA F4

Last available update year 2016 2014
Follow-up time (years), median § SD
All-cause death 11.0 § 4.4 8.5 § 1.4
MI 14.0 § 3.9 8.8 § 1.1
Stroke 14.0 § 3.1 8.8 § 1.4
Cancer 12.0 § 5.5 8.5 § 1.4

Counts of events, n (%)
All-cause death 337 (45.7) 146 (8.5)
MI 69 (9.4) 90 (5.2)
Incidence 45 (6.1) 62 (3.6)
Mortality 24 (3.3) 28 (1.6)
Stroke 30 (4.1) 81 (4.7)
Incidence 4 (0.5) 72 (4.2)
Mortality 26 (3.5) 9 (0.5)

Cancer 243 (33.0) 55 (3.2)
Incidence 138 (18.7) NAa

Mortality 105 (14.2) 55 (3.2)
a KORA F4 did not have the record on the incidence of cancer dur-

ing the study period. Abbreviations: NAS, Normative Aging Study;
KORA F4, Cooperative Health Research in the Region of Augsburg
cohort; MI, myocardial infarction.
median follow-up years of all-cause death, MI, stroke, and cancer
were 11.0, 14.0, 14.0, and 12.0 years, respectively (Table 2). In KORA
F4, 146 subjects (90 men, and 56 women) died in total. Ninety partic-
ipants had non-fatal MI or died of MI, 81 had non-fatal stroke or died
of stroke, and 55 died of cancer (KORA F4 did not record the informa-
tion on cancer incidence). The median follow-up years of all-cause
death, MI, stroke, and cancer were 8.5, 8.8, 8.8, and 8.5 years, respec-
tively in KORA F4 (Table 2).

We presented the Pearson correlations, and data distributions
among five BoAA in Supplementary Material (Figure S1). Generally,
they were significantly correlated with each other in both NAS, and
KORA F4. GrimAgeAccel, and DNAmRS had the strongest correlation.

We stratified the 737 NAS men into two groups based on each of
the four AA, and estimated the difference in Kaplan-Meier survival
probability between the two groups. Taking GrimAgeAccel as an
example, we defined a group as biologically older if GrimAgeAccel
was greater than zero, and otherwise defined it as biologically youn-
ger. The number of men in the older, and younger group were 293,
and 444, respectively. We plotted a Kaplan-Meier survival curve for
each group. Similarly, we divided our participants into two groups
based on the other three AA (i.e., PhenoAgeAccel, IEAA, EEAA), and
plotted Kaplan-Meier survival curves for all groups. Fig. 1a sug-
gested the survival probabilities were significantly higher in GrimA-
geAccel younger, PhenoAgeAccel younger, and the EEAA younger
groups (Fig. 1a). We divided the subjects into two groups, and com-
pared the Kaplan-Meier survival curves based on the same rule in
KORA F4, and found that the survival probabilities were higher in
younger groups classified by the same three DNAm AA metrics (i.e.,
GrimAgeAccel, PhenoAgeAccel, and EEAA) (Fig. 1b). We also plotted
the cumulative incidence curves of all-cause death, MI, stroke, and
cancer (Supplementary Material, Figure S2).

3.2. Relationships between baseline DNAm-based BoAA and event of
interests

The meta-analyses indicated significant increased risk of all-
cause death associated with GrimAgeAccel, PhenoAgeAccel, and
DNAmRS (Fig. 2a). More specifically, each increment of a one SD in
GrimAgeAccel (4.07 y), and PhenoAgeAccel (6.13 y) was associated
with all-cause death with multivariate-adjusted HRs of 2.10 (95%CI:
1.15, 3.50, FDRB-H = 0.014), and 1.24 (95%CI: 1.05, 1.45,
FDRB-H = 0.010), respectively. The HR of all-cause death was 1.67
(95%CI: 1.04, 2.70, FDRB-H = 0.034) for a one SD increment in
DNAmRS (0.44 score) (Fig. 2a). The meta-analyses of the Fine and
Gray competing risk models suggested significant increased risks of
MI, and stroke associated with increments in GrimAgeAccel, Phe-
noAgeAccel, EEAA, and DNAmRS (Fig. 2b, and 2c). For instance, the
risks of MI and stroke were about 1.44 (95%CI: 1.16, 1.79,
FDRB-H = 0.001), and 1.42 (95%CI: 1.06, 1.91, FDRB-H = 0.019) times
when GrimAgeAccel increased a one SD (4.07 y). There were no sig-
nificant relationships between any of the five BoAA and cancer
(Fig. 2d). From the public heath perspective, GrimAgeAccel was the
best BoAA for determining at-risk populations, and assessing anti-
aging interventions because the HRs carried the largest risk for all-
cause death, MI, and stroke. Although study-specific associations were
almost all positive (Supplementary Material, Figure S3), there were
significant heterogeneity for GrimAgeAccel / DNAmRS and all-
cause death across two cohorts, and generally no evidence of
heterogeneity in the associations between BoAA and MI
(Supplementary Material, Table S1).

We also categorized our subjects into four groups based on AA: AA
� 0, �2 � AA < 0, �5 � AA < �2, and AA < �5. We set AA > 0 (e.g.,
GrimAgeAccel > 0) as the reference, and estimated the reduced risk
of all-cause death for groups who were younger than expected (i.e.,
AA < 0). The meta-analyses showed that for GrimAgeAccel, all groups
with AA < 0 had reduced risks of mortality while the FDRB-H was



Fig. 1. Kaplan-Meier survival probability curves between two groups (AA > 0 or not).
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larger than 0.05 in the group with AA < �5. The trend test showed
that there were significant trends for reduced mortality as GrimA-
geAccel (P = 0.00), PhenoAgeAccel (P = 0.03), and EEAA (P = 0.04)
decreased (Fig. 3).

The results from models with the interaction term between
BoAA and smoking status (never, ever) suggested strong, and posi-
tive associations between BoAA and all-cause death / MI / stroke
among ever smokers. GrimAgeAccel carried the largest risks for
endpoints (Supplementary Material, Figure S4). Among the never
smokers, GrimAgeAccel, and DNAmRS remained positively associ-
ated with increased risk, however the associations were no longer
significant (Supplementary Material, Figure S5).

4. Discussion

The meta-analysis of two cohorts assessed the application of five
DNAm-based BoAA for differentiating risk for age-related deaths and
diseases. Our findings showed that: independent of chronological
age, 1) GrimAgeAccel, PhenoAgeAccel, EEAA, and DNAmRS were sig-
nificantly positively associated with all-cause death, MI, and stroke;
2) from the public health perspective, GrimAgeAccel was the best
biomarker because it had the largest HRs per one SD increase with
events among all the BoA. Hence, while GrimAgeAccel was developed
as a mortality biomarker originally [13], it is the most useful tool to
identify the elderly who have high-risk of not only all-cause death,
but also other age-related health outcomes.

In the U.S., heart disease ranks as top one cause of death [56]. MI
occurs when blood blow reduces or pauses in a part of the heart,
leading to impairment in the heart muscle. Elderly people are not
only prone to die but have higher risks of having diseases [57].
Among men who are older than 75 years, over 5% have had an MI
without or only little history of symptoms [58]. A stroke happens
when blood cannot flow to a part of the brain, and it is the fourth
leading cause of death in the U.S [59]. Ageing is the most strong risk
factor for stroke � around 75% strokes occur in people aged 65 or
above [60]. According to World Bank, the populations 65 year, and
older were reported at 16% in the U.S., and 21% in Germany in 2018
[61], suggesting that age is a major contributor towards MI and stroke
in these countries. Our stable findings of the strong associations
between GrimAgeAccel / DNAmRS and all-cause death / MI / stroke
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may help us understand some of the underlying biological mecha-
nisms of the aging process. We do not know the 1030 CpG sites of
GrimAgeAccel because Liu et al. have not published them yet [13].
However, the 10 probes of DNAmRS are identifiable [23]. One of the
10 CpGs � cg23665802 � is mapped to the microRNA-19a gene. Cir-
culating microRNA-19a concentration could be a novel biomarker for
the diagnosis of acute MI [62]. In a mouse model, Gao et al. have vali-
dated that microRNA-19a could protect the heart function from MI
and secure heart activity [63]. Hence, microRNA-19a is a potential
therapeutic target to prevent and treat heart disease [63]. Another
CpG site (cg08362785) is mapped to the gene of myocardin related
transcription factor A. In both murine and human hearts, myocardin
related transcription factor A has been shown to be important for
developing cardiac function, maintaining heart structure and homeo-
stasis [64, 65] and might be expected to have a role in age-related MI.

From the public health perspective, our study provides practical
implications for GrimAgeAccel in assessing the risk of age-related
outcomes for the elderly. By identifying elderly populations at higher
risks of death and diseases, those people can be provided with spe-
cific protection, such as medical equipment and community care. In
addition, GrimAgeAccel could also be used to evaluate anti-aging
interventions. As life expectancy increases in people who live up to
65 worldwide, their health span has not increased accordingly.
Developing intervention (e.g., diets) to slow aging and increase health
lifespan may effectively reduce age-related endpoints. Determining
the effects of anti-aging intervention often require decades of follow-
up. Our findings suggest that GrimAgeAccel could be taken as surro-
gates to facilitate assessment of anti-aging intervention efficacy.

In models with an interaction term between BoAA and smoking
status (never, ever), we found consistently strong effects of GrimA-
geAccel / DNAmRS on all-cause death / MI / stroke in ever smokers
whereas no associations remained significant after restricting to
never smokers. GrimAgeAccel and DNAmRS remained positively
associated with mortality, MI, and stroke; and the lack of significance
may reflect the smaller sample size of never smokers. However, it is
possible that GrimAgeAccel and DNAmRS primarily pick up changes
of smoking-related pathways. Because the probes behind GrimA-
geAccel have not been published yet, this study is only able to investi-
gate the 10 CpGs of DNAmRS. Among them, eight (cg01612140,
cg05575921, cg06126421, cg08362785, cg14975410, cg19572487,
cg23665802, cg24704287) were smoking-related probes as described
by Joehanes et al., who investigated the association between cigarette



Fig. 2. Associations between baseline DNAm-based BoAA and endpoints. Abbreviations: IEAA=intrinsic epigenetic age acceleration; EEAA=extrinsic epigenetic age acceleration;
HRs=Hazard Ratios; MI=myocardial infarction; CI=confidence interval; FDR=Benjamini-Hochberg false discovery rate.

Fig. 3. Associations between baseline AA and all-cause death among four groups (AA � 0, �2 � AA < 0, �5 � AA < �2, and AA < �5). Abbreviations: IEAA=intrinsic epigenetic age
acceleration; EEAA=extrinsic epigenetic age acceleration; HRs=Hazard Ratios; CI=confidence interval; FDR=Benjamini-Hochberg false discovery rate.
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smoking and DNAm from 16 cohorts with 15907 blood DNA samples
[66]. However, whether DNAmRS was specific to smoking or repre-
sented the effects of smoking pathways need to be further investi-
gated.

The traditional Kaplan-Meier approach assumes that these indi-
viduals would experience the same probability of event of interest (e.
g., the onset of MI) if they were not censored by death. In fact, people
who die may not have the same underlying risk of having MI. Thus,
Kaplan-Meier method overestimates the cumulative incidence of the
event of interest [67, 68]. For example, if we simply applied Kaplan-
Meier method to estimate DNAmRS’s effect on cancer, we found that
a one SD increment in DNAmRS increased the risk of cancer by
1.53 times (95% CI: 1.24, 1.89) (data not shown), which was greater
than the results from the Fine and Gray competing risk model (HR
1.18, 95% CI: 0.76, 1.85). In the present study, when we evaluated the
relationship between BoAA and each of MI, stroke, and cancer, we
considered deaths from other outcomes as competing risks, and fit
the Fine and Gray competing risk models to investigate the associa-
tions, as applied in other survival analyses [69-71].

Our study does have several limitations: i) we measured these
BoAA in blood samples. Findings in other tissues need to be examined
in future studies; ii) we used the existing literature and a priori
knowledge of clinical relevance to adjust for potential confounders
for the health endpoints. Therefore, we may have neglected unknown
confounding in our analyses; iii) the two different study locations
(the U.S. and Germany) may confound our results because the health
outcomes may be influenced by living environment (e.g., mortality
due to ambient fine particulate matter) [72]; iv) the participants in
KORA F4 were randomly selected, whereas the participants in NAS
were all men and free of known chronic diseases at enrolment. The
different recruiting strategies in two cohorts may limit generalizabil-
ity or induce bias in our results.

The major strengths in the study are as follows: i) two cohorts
with sizable samples (total N = 2462) and DNAm data in epigenome-
wide; ii) assessment the application of multiple DNAm-based BoAA
from currently available candidates for differentiating risks of multi-
ple health endpoints; iii) application of the Fine and Gray competing
risk model, leading to more accurate and meaningful interpretation
of the association estimates; iv) compared with our previous study
[25], this present NAS cohort not only had longer follower up (last
available update was 2016 vs 2014), but considered both morbidity
and mortality, competing risk and more BoAA.

In summary, we reported that baseline GrimAgeAccel was the
strongest DNAm-based BoAA for all-cause death, MI, and stroke,
adjusting for chronological age and other risk factors. GrimAgeAccel
may serve as the useful tool for identifying at-risk elderly, and evalu-
ating anti-aging intervention efficacy. Further investigation in other
cohorts is needed.
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