
Advances in Data Analysis and Classification
https://doi.org/10.1007/s11634-020-00428-1

REGULAR ART ICLE

Adapted single-cell consensus clustering (adaSC3)

Cornelia Fuetterer1 · Thomas Augustin1 · Christiane Fuchs2,3,4

Received: 3 July 2019 / Revised: 11 August 2020 / Accepted: 8 November 2020
© The Author(s) 2020

Abstract
The analysis of single-cell RNA sequencing data is of great importance in health
research. It challenges data scientists, but has enormous potential in the context of
personalized medicine. The clustering of single cells aims to detect different sub-
groups of cell populations within a patient in a data-driven manner. Some comparison
studies denote single-cell consensus clustering (SC3), proposed by Kiselev et al. (Nat
Methods 14(5):483–486, 2017), as the best method for classifying single-cell RNA
sequencing data. SC3 includes Laplacian eigenmaps and a principal component anal-
ysis (PCA). Our proposal of unsupervised adapted single-cell consensus clustering
(adaSC3) suggests to replace the linear PCA by diffusion maps, a non-linear method
that takes the transition of single cells into account. We investigate the performance
of adaSC3 in terms of accuracy on the data sets of the original source of SC3 as well
as in a simulation study. A comparison of adaSC3 with SC3 as well as with related
algorithms based on further alternative dimension reduction techniques shows a quite
convincing behavior of adaSC3.
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1 Introduction

Personalized medicine based on genomic data promises the precise and individu-
alized treatment of diseases using information from a patient’s genome (Cho et al.
2012). There is tremendous research interest in this field, especially with regard
to cancer. Hereby it is of interest to determine the different stages of cancer as
well as the understanding of the complex development of organs for instance, by
analyzing the single cells that are obtained from the single-cell RNA sequencing.
Data-driven approaches have led to projects such as The Human Cell Atlas (2020),
which aims to establish an interpretable structure for the different cell types of sin-
gle cells and serves as an orientation for the study of diseases. The mission of the
Human Cell Atlas is “(t)o create comprehensive reference maps of all human cells—
the fundamental units of life—as a basis for both understanding human health and
diagnosing, monitoring, and treating disease.” Based on the genetic profiles of these
single-cell RNA sequencing data, an unsupervised classification allows a data-driven
distinction of intra- and intertumoral heterogeneities as well as the determination
of different pathways during the development (Duò et al. 2018). The approach of
single-cell consensus clustering (SC3) by Kiselev et al. (2017) has gained much atten-
tion, not only due to its superior performance in the comparison study of Duò et al.
(2018). SC3 is also explicitly tailored to single cell data. Nevertheless, the origi-
nal incorporation of the linear dimension reduction of principal component analysis
may offer a potential for improvement. Following Bendall et al. (2014) and Buet-
tner and Theis (2012), for single cells the transition from one state to another is
a non-linear continuous process. Therefore, we propose to replace the PCA of the
SC3 method by diffusion maps (Haghverdi et al. 2015), resulting in a new unsuper-
vised algorithm, which we call adapted single-cell consensus clustering (adaSC3).
The use of diffusion maps is not only motivated by the biological behavior of sin-
gle cells but is also supported empirically: First, diffusion maps allow for a natural
modeling of the transition of single cells by Markov processes. Secondly, according
to Haghverdi et al. (2015), when applying diffusion maps to single cell data, they
also seem to perform best compared to other non-linear transformation methods such
as independent component analysis, Kernel PCA, Isomap, or Hessian Local Linear
Embedding.

Our paper ist structured as follows: We first give an introduction into single-cell
RNA sequencing data in Sect. 2. In Sect. 3, we present the methodological back-
ground, starting in Sect. 3.1with the proposed adapted single-cell consensus clustering
(adaSC3), as well as some related competing methods. In Sect. 3.2, we focus on the
special suitability of diffusion maps, included in our framework of adaSC3. Ana-
lyzing some characteristic single-cell RNA sequencing data sets, introduced already
in Sect. 2, adaSC3 is compared to its competing methods in Sect. 4. The perfor-
mance of adaSC3 and its competing methods is further evaluated with partition-wise
simulation data in Sect. 5. Section 6 concludes with a brief discussion and out-
look.
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Table 1 Characteristics of the scRNA-seq data sets, with N single cells, G genes and k categories of cell
types

Data set N G k

Biase et al. (2014) 49 13,322 3

Deng et al. (2014) 269 10,333 10

Goolam et al. (2016) 124 11,154 5

Treutlein et al. (2014) 80 5757 5

Yan et al. (2013) 90 10,077 7

2 Single-cell RNA sequencing data (ScRNA-Seq data)

The health and development of living organisms can heavily be impacted by the kind
and activity of their genes, referred to as gene expression.With the technique of single-
cell RNA sequencing (scRNA-seq) introduced by Tang et al. (2009), it is possible to
measure the gene expression for single cells. In scRNA-seq, genomic profiles are
measured in terms of read counts, that is the number of small sequences (“reads”) that
result from a cell’s RNA that can be identified as belonging to a particular gene. A data
set comprising N cells and G genes will hence be a N × G matrix containing non-
negative integers (including zero). The scRNA-seq data of Biase et al. (2014), Deng
et al. (2014), Goolam et al. (2016) and Yan et al. (2013), provided by the Hemberg
Group of the Sanger Institute (2020), contain read counts of single cells of a mouse
or a human with different cell states that are passed during differential transcription
for targeting the analysis of cell division in a pedigree. Gene expression is stochastic,
and often the reads follow different distributions for different cell types. Another
topic of interest is the examination of having reached varying pathway stages. For
example, the experiments of Treutlein et al. (2014) were carried out to investigate
cell transition during lung development. In detail, these experiments aim to analyze
the development of the distal lung epithelium of the mouse based on the different
transcriptional states.

The data sets shown in Table 1 had been used for the evaluation of SC3
by Kiselev et al. (2017). Fulfilling the reproducibility and the sample size cri-
terion for the unsupervised classification leads to the data situation1 described
in Table 1. Except for the data set of Biase et al. (2014), the distributions
of cell types are quite unbalanced encompassing between 80 and 269 single
cells.

1 Since in the SC3 framework, as described in the transformation step of adaSC3 later, components in
higher dimensions are chosen randomly, it is important to focus on data sets with a small amount of single
cells, in order to keep the analysis replicable.Moreover, for providing the same data situation asKiselev et al.
(2017), we had to adapt the data set of Biase et al. (2014) such that the number of single cells corresponds
to the data description of the original SC3 paper.
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3 Methods

In this section, we first present the proposed adapted single-cell consensus clustering
(adaSC3), which allows, by replacing PCA with diffusion maps, to take the varying
pathways and their different transcriptional states into account. Furthermore, we con-
sider several SC3-like approaches that later serve as competitors including different
transformation techniques.

In the second part of this section, we look more closely at diffusion maps, which
allow an appropriate embedding of the complex data structure of single cells in the
transformation step of adaSC3.

3.1 Unsupervised adapted single-cell consensus clustering (adaSC3) and its
competitors

Single-cell consensus clustering aims at classifying the gene expression of single cells
in an unsupervised way such that groups are determined in a data-driven manner for
detecting new subgroups or confirming manually determined cell types. The clas-
sification process subdivides the cell population with regard to the homogeneity of
the genetic profile into subgroups of single cells, which represent, for example, dif-
ferent stages of a disease or of a development process within a patient or within a
mouse. The original SC3 is implemented in the software R (R Core Team 2020) and
can be described as a pipeline consisting of several transformation steps including an
automatic dimension reduction, resulting in a clustering respecting all combinations.
For the construction of the adapted single-cell consensus clustering (adaSC3) and its
competitors, we rely on the same principle framework as SC3 but consider different
transformations.2 The concrete procedure of adaSC3 consists of the following steps:

1. Preprocessing As a result of the scRNA-seq process, one obtains the gene expres-
sion matrix E containing the read counts of N single cells and G genes. As a
preprocessing step, the original matrix E is reduced by a gene filter, as proposed
in the original work, that aims to exclude rare and omnipresent genes.3 This leads
to the expression matrix E ′ of dimension N × G ′.

2. Calculation of distance matrix DBased on the expressionmatrix E ′, the Euclidean
distance matrix is constructed for each pairwise single cell combination. Further-
more, two measures of dissimilarity are applied on the log-transformed data of
E ′ using the Pearson and the Spearman correlation, respectively. For the sake of
simplicity, the obtained distance and dissimilarity matrices will each be referred
to as distance matrix D.

3. Transformation technique T For each of the obtained distance matrices D, we
apply Laplacian eigenmaps4, introduced by Belkin and Niyogi (2003) as proposed
in the original SC3. In addition, we apply diffusion maps, described in more

2 AdaSC3 and its competitors are also implemented inR and are available from the first author upon request.
3 Genes with an expression value of > 2 in less than 6% of the cells as well as genes with a positive
expression value in more than 94% of the single cell population are excluded.
4 That are implemented as a spectral embedding in the Python software library Scikit-learn
(Pedregosa et al. 2011) as the best size of the neighborhood for the aimed embedding.
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detail below, instead of the originally proposed principal component analysis. To
each of the six combinations, consisting of three different distance matrices D
and two transformation techniques, an eigenvalue decomposition is applied. This
leads in total to 3 × 2 = 6 different eigenvalue decompositions, resulting each
in respectively N − 1 eigenvectors ψ1, . . . , ψN−1 with their ordered eigenvalues
1 > λ1 ≥ · · · ≥ λN−1.

4. Consensus clustering In accordance to SC3,we adopt the automatic selection of the
number of eigenvectors to be considered. For each eigenvalue decomposition, a k-
means clustering,with k being deterministic, representing the number of categories
of the underlying cell types as proposed in the original paper of Kiselev et al.
(2017), is conducted. The automatic selection of eigenvectors of the described
scenario starts incorporating the first eigenvector until the rounded integer of the
4% quantile of the set {1, . . . , N }. The subsequent clusterings include each one
further eigenvector until the 7% quantile is reached for including the maximal
range of eigenvectors for the last clustering of each combination. The result of
each k-means clustering m is summarized in a consensus matrix C, indicating the
relative frequency of how often a pair of single cells is grouped together over
all nm clusterings. Based on the obtained consensus matrix C, a final complete-
linkage clustering is performed. It aims to achieve higher performance and a more
robust result for the classification of single cells, leading to the final grouping of
k subgroups. The quality of clustering is evaluated ex-post by the Adjusted Rand
Index (ARI) as proposed in the original work of Kiselev et al. (2017).

Apart from the original SC3 that includes a PCA and Laplacian eigenmaps as
transformation techniques, we construct further competing algorithms following the
same principle as of adaSC3. Instead of diffusion maps and Laplacian eigenmaps, we
propose additional algorithms leading to two different types of constructions, differing
in the number of incorporated transformations. The first construction only uses one
single transformation technique T in Step 3 of adaSC3. We therefore analyze the
influence of the non-linearmanifolds of isomaps (IM), locally linear embedding (LLE)
as well as themultidimensional scaling (MDS), in addition to the transformation of the
principal component analysis (PCA), Laplacian eigenmaps (LE), and diffusion maps
(DM), each on their own.5 The second type of construction consists of the combination
of each mentioned transformation T with Laplacian eigenmaps. This leads to the
algorithms namedby the incorporated transformations, resulting inLE+ IM,LE+LLE
and LE + MDS, in addition to the original SC3 (PCA + LE) and adaSC3 (DM+LE).

3.2 Diffusionmaps

In the following, we describe the motivation of embedding the complex structure of
single cells during transition into an appropriate global non-linear manifold, using

5 For the construction of IM and LLE, Kayo (2006) proposes to use for IM and LLE the same estimate for
the optimal neighborhood size, implemented by the R function calc_k of the R package lle (Diedrich
et al. 2012). Isomaps are then constructed using the R package vegan (Oksanen et al. 2019); the locally
linear embedding further relies on the R package lle (Diedrich et al. 2012) and MDS is based on the
R package stats (R Core Team 2020).
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diffusion maps. As stated in the introduction of Angerer et al. (2016), diffusion maps
allow the reconstruction of the different states that are connected via different transi-
tions. One possible transition is the mutation of one single cell into another. For the
following construction of diffusion maps, we only consider the transition of one single
cell into another within one step. Another decisive fact is the robustness of diffusion
maps to noise. Furthermore, with the normalization, described in the following, diffu-
sion maps are able to detect lowly represented cell types. Coifman and Lafon (2006)
provide the general framework of diffusion maps that can be adapted to single cells
following (Angerer et al. 2016) that is presented in the next steps. For the construction
of diffusion maps, consider two states x, y ∈ Ω , withΩ as the appropriate state space.
x and y represent single cells; their gene expressions, measured by count data, lead to
the pairwise distance D(x, y).

1. For each choice of the distance measure D, each point (single cell) is considered
as a node of a symmetric graph with weight function KD

KD(x, y) = exp

(
−D(x, y)

2α2

)
,

indicating the affinity of a pair of single cells with scale parameter α, reflecting
the best size of the included neighborhood.6

2. In the following, we construct the core of a transition kernel of a Markov chain

PD(x, y) = KD(x, y)

Z(x)
, with Z(x) =

∑
y∈Ω

KD(x, y) .

3. With a density interpretation of the upper term, the following density normalized
transition probability matrix

P̃D(x, y) = 1

Z̃(x)

KD(x, y)

Z(x)Z(y)
, with Z̃(x) =

∑
y∈Ω\x

KD(x, y)

Z(x)Z(y)

can be obtained. As the research question consists of mapping the differentiation
behavior of single cells, we are only interested in the transition between single
cells. Thus, the diagonal of P̃D(x, y) is set to zero, and the normalization is adapted
appropriately, summing up only the gene expression of differing pairs of single
cells with y �= x .

4. Based on the normalizedmatrix P̃D , indicating the transition of one state to another
by an ergodic Markovian diffusion process, the aimed transformation is obtained.

4 Results

In this section, we evaluate the clustering performance of adaSC3 and its competitors.
The accuracy of combining each of thementioned transformations in combinationwith
Laplacian eigenmaps is illustrated in Table 2.

6 The estimation of α relies on the methods implemented in the R package destiny (Angerer et al. 2016).
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Table 2 ARI of all algorithms including two transformation techniques with
*: overall best clustering performance of the combination Laplacian eigenmaps (LE) with isomaps (IM),
locally linear embedding (LLE), and multidimensional scaling (MDS), as well as SC3 and adaSC3;
bold: best performance comparing SC3 and adaSC3

Data Set LE+ IM LE + LLE LE + MDS SC3 adaSC3

Biase et al. (2014) 0.95 1.00* 1.00* 0.95 0.95

Deng et al. (2014) 0.68 0.70 0.56 0.67 0.76*

Goolam et al. (2016) 0.54 0.69* 0.54 0.69* 0.68

Treutlein et al. (2014) 0.53 0.42 0.56 0.66 0.77*

Yan et al. (2013) 0.75 0.75 0.65 0.65 0.75*

AdaSC3 leads in three out of five cases (Deng et al., Treutlein et al. and Yan et al.)
to better clustering results, compared to the original SC3, and it is identical in the case
of the data set of Biase et al.. Concerning the competing algorithms, the combinations
of LE with IM andMDS tend to deliver worse results compared to adaSC3. However,
LE + LLE achieves two times the best performing classification but fails extremely
in the case of the Treutlein et al. data set. The slightly worse performance of adaSC
compared to SC3 concerning the complete Goolam et al. data set of Table 2 should
not be over-interpreted as the resampling results based on leaving out each single cell
once, we reach considerably higher performance compared to SC3. Furthermore, we
can state that adaSC3 delivers the highest overall performance concerning both the
resampling study as well as using only one transformation technique as illustrated
in the Supplementary Material. We therefore consider our proposal as generally the
best approach among its competitors, of SC3 and its related approaches, based on the
benchmarking data sets. This result is especially surprising as the scRNA-seq data
sets were originally used for determining the proposed default settings of SC3, such
as e.g. the automatic choice for the lower dimension.

5 Simulation data

The classification accuracy of the simulation data is investigated in the same way as
the scRNA-seq data. We are interested in the consensus clustering accuracy of two
simulation groups, which are constructed with different ranges of distribution param-
eters describing the read counts. With shifted parameter ranges, one can consider the
simulation groups as representing a healthy and a diseased population. According
to the literature, the use of a zero-inflated negative binomial (ZINB) distribution is
recommended as the most adequate approximate distribution for modeling the read
counts of single cells. It allows larger variability of read counts compared to the former
used Poisson distribution (see e.g.Wagner et al. 2013). Based on the constructed simu-
lation data following a (generalized version of a) ZINB distribution for the expression
of each gene, we will investigate the influence of various parameters describing each
gene for all possible group partitions for a fixed total number N of single cells.
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5.1 Construction of simulation data

The ZINB distribution (Kleiber and Zeileis 2016) is a mixture between a negative
binomial probability mass function and a point mass at zero. For generating ZINB
distributed simulation data we use the R package emdbook (Bolker B, Bolker Main-
tainerBen and Imports,MASS2020),which is basedon ageneralizationof the negative
binomial (NB) distribution with parameters μ and φ for the non-zero inflated part.7

The parameter μ is a continuous positive real value, describing the mean. The disper-
sion parameter φ represents the shape parameter of the gamma distribution underlying
the generalization of the NB. The fraction of zero-inflation is taken into account by
the parameter π .

In the following scenarios, we investigate the influence of different parameters of
the distribution family. In order to mimic a realistic situation, the scRNA-seq data of
Kolodziejczyk et al. (2015) is taken for estimating the parameters of a ZINB distribu-
tion8 and allow the construction of ranges for each parameter looking at the shifted
quantiles of the estimates of the parametersμ andφ. This leads to the parameter ranges
M(1) and Φ(1) for cell population 1 and M(2) and Φ(2) for cell population 2. The
parameter range � for π is set to be the same for both populations.9 Thus, the simu-
lated read counts of each gene follow a ZINB(μ1, φ1, π1) distribution for simulation
group 1 and a ZINB(μ2, φ2, π2) for simulation group 2, according to the following
scenarios:
· Simulation scenario (a) for different ranges of μ:

μ1 ∈ M(1) and μ2 ∈ M(2), φ1 = φ2 ∈ Φ(2), π1 = π2 ∈ �

· Simulation scenario (b) for different ranges of φ:
μ1 = μ2 ∈ M(2), φ1 ∈ Φ(1) and φ2 ∈ Φ(2), π1 = π2 ∈ �

· Simulation scenario (c) for different ranges of μ and φ:
μ1 ∈ M(1) and μ2 ∈ M(2), φ1 ∈ Φ(1) and φ2 ∈ Φ(2), π1 = π2 ∈ �

· Simulation scenario (d) for the same range of μ and φ:
μ1 = μ2 ∈ M(2), φ1 = φ2 ∈ Φ(2), π1 = π2 ∈ �

For each of the simulation scenarios (a) to (d), we sample N1 times out of ZINB(μ1
φ1, π1) and N2 times out of ZINB(μ2, φ2, π2) such that, for comparison purposes, the
gene-specific parameters remain the same when generating all possible partitions of
N1 : N2 (with N1 + N2 = N ), starting with 1 : (N −1) until (N −1) : 1, with N = 50
for the respective scenario. In order to obtain simulation data with the dimension
N × G for each partition, we repeat this procedure 200 times. Thus, read counts of
G = 200 genes are generated with the new parameter values drawn uniformly from
the respective intervals.

7 Details explaining the generalization of the negative binomial distribution function based on a mixture of
Poisson distributions with gamma distributed Poisson rates can be found e.g. in Fuetterer et al. (2019). They
investigate the influence of different heterogeneity degrees of count data using simulation data as well as up-
and downwardly distorted measurements via the ZINB distribution describing the case of measurements
tending to lower read counts and upper read counts.
8 The manual construction of two cell populations rely on the differentially cultured murine embryonic
stem cell populations “2i” and “serum” for each of the 38.616 genes.
9 The constructed parameter ranges are part of the Supplementary Material.
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5.2 Clustering performance based on simulation data

The following plots show how the group partition (x-axis) of a combination of two
transformation methods influences the clustering accuracy, measured by the Adjusted
Rand Index (ARI) (y-axis). In the ideal case, the accuracy is 1 for each of the partitions,
which would indicate that the classification perfectly corresponds to the underlying
group allocation. This criterion is best met for adaSC3, not only in the case of using
only one transformation technique (see Supplementary Material), but also in combi-
nation of those with Laplacian eigenmaps (LE) for simulation scenarios (a) to (c).
Simulation (d) serves as a reference where no difference in the gene-specific param-
eters was simulated and no accurate grouping should be detected. Each partition of
each scenario is repeated 10 times and the accuracy of the respective clustering results
is visualized by boxplots. Results of simulation scenario (c) and (d) can be found in
the Supplementary Material.

5.2.1 Simulation scenario (a): variation in expectation parameter�

In the case of differing parameter μ represented in scenario (a), adaSC3 seems
to perform best among the combined methods (see Fig. 1) as well as compared to
each method on its own. It can also be seen that the inter quantile range of boxplots
have the tendency to be shorter for adaSC3 and reach higher ARI values compared
to its competitors. Therefore, we conclude in general that our approach generates
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Fig. 1 ARI among all partitions of N = 50 with regard to the combination of different transformation
techniques for simulation scenario (a)
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a more efficient clustering allocation. Furthermore, it should also be noted that the
performance of the method adaSC3 seems to be better when more single cells are
part of simulation group 1 compared to simulation group 2. This might allow the
interpretation that the detection of true positives achieves higher accuracy compared
to the detection of false negatives, given the diseased population has on average higher
gene expression.

5.2.2 Simulation scenario (b): variation in size parameter�

For partition-wise created simulation data differing in the parameter φ one can state,
referring to Fig. 2, that apart from adaSC3 the combination of LE + LLE performs
quitewell, too.However, thismethodneedsmore partitions before it starts detecting the
difference in the simulation groups and fails drastically earlier compared to adaSC3.
For approximately balanced data, LE + LLE often leads to worse results. The tendency
that the clustering performance depends on the partitions can be confirmed over all
methods for simulation scenarios (a) to (c), in which adaSC3 is affected the less.

With regard to scenario (c), the simulated differences of both parameters μ and φ

lead to a quite accurate classification for most methods with an overall superiority of
adaSC3, representing the scenario being the closest to the reality. For the simulation
design with no difference in the simulation groups, the allocation of single cells is as
expected and represents random allocation.
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Fig. 2 ARI among all partitions of N = 50 with regard to the combination of different transformation
techniques for simulation scenario (b)
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6 Conclusions

The approach of adapted single-cell consensus clustering (adaSC3) is tailored to the
clustering of single cells. It reflects the biological structure of single cells by including
diffusion maps with the aim to respect the transition process of the underlying data.
Indeed, the inclusion of diffusion maps instead of the originally proposed PCA led to a
better clustering performance. We consider adaSC3 to be the best method compared
to all investigated competitors, both in the analyzed scRNA-seq data as well as in the
simulation study. This motivates further research that takes into account the biological
basis of the data before constructing or combining some methods, as this could be
rewarded both in terms of interpretation and accuracy, as shown in this paper.

Based on the discovery that balanced data seems to be detected correctly with
higher quality, the distribution of classified classes could be taken into account for
an unsupervised evaluation. Furthermore, studies of additional scRNA-seq data and
further simulations are needed to reinforce the results of this paper. This is especially
due to the fact that adaSC3 was evaluated on the same scRNA-seq data used for
the development of the original SC3 method. This makes the overall superiority of
adaSC3 over SC3 even more surprising, while on the other hand some bias of these
data sets favoring SC3-like methods cannot be excluded.
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