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ABSTRACT: 23 

Comprehensive two-dimensional gas chromatography (GC×GC) is amongst the most powerful 24 

separation technologies currently existing. Since its advent in early 1990, it has become an 25 

established method which is readily available. However, one of its most challenging aspects, 26 

especially in hyphenation with mass spectrometry is the high amount of chemical information it 27 

provides for each measurement. The GC×GC community agrees that there, the highest demand 28 

for action is found. In response, the number of software packages allowing for in-depth data 29 

processing of GC×GC data has risen over the last couple of years. These packages provide 30 

sophisticated tools and algorithms allowing for more streamlined data evaluation. However, 31 

these tools/algorithms and their respective specific functionalities differ drastically within the 32 

available software packages and might result in various levels of findings if not appropriately 33 

implemented by the end users.  34 

This study focuses on two main objectives. First, to propose a data analysis framework and second 35 

to propose an open-source dataset for benchmarking software options and their specificities. 36 

Thus, allowing for an unanimous and comprehensive evaluation of GC×GC software. Thereby, the 37 

benchmark data includes a set of standard compound measurements and a set of chocolate 38 

aroma profiles. On this foundation, eight readily available GC×GC software packages were 39 

anonymously investigated for fundamental and advanced functionalities such as retention and 40 

detection device derived parameters, revealing differences in the determination of e.g. retention 41 

times and mass spectra.   42 

 43 
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1 INTRODUCTION: 45 

There are various factors to consider when determining the best solution for analytical challenges. 46 

Besides the fundamental question (targeted or untargeted analysis) the complexity of the sample 47 

matrix holds a significant influence in determining the suitable analytical technique [1,2]. In brief, 48 

high sample complexity requires high specificity and sensitivity of the utilized technique. 49 

Therefore, separation techniques with high chromaptographic resolution have become 50 

increasingly popular over the last decade. These techniques allow for enhanced separation and 51 

therefore for the evaluation of the total burden of (specific/target) analytes in a single 52 

chromatographic analysis, as well as the identification of unexpected and unknown compounds 53 

especially when hyphenated to mass spectrometry (MS).  54 

In particular, comprehensive two-dimensional gas chromatography (GC×GC) has become popular 55 

in the field of separation science. Due to its versatility, it includes applications related to forensic, 56 

life-/medical, environmental and/or petro-sciences [3–11]. Consequently, the number of reports 57 

and applications utilizing GC×GC has increased as illustrated in Figure S1 in the supporting 58 

information (SI). Increased separation capability, however, does not necessarily solve the general 59 

challenge in chromatography, namely coelution, or facilitate the extraction of meaningful 60 

chemical information. In fact, it demands fast detector acquisition techniques resulting in 61 

information rich data sets with higher order complexity and file size [12] especially when coupled 62 

to sophisticated detection techniques. Evaluation of these datasets is considered a major 63 

challenge in GC×GC and the community agrees that growth, development and a certain degree 64 

of automation is needed [4,6,13–17] in this particular area. It is thereby little surprising that the 65 

variety and availability of dedicated GC×GC software packages (SPs) rose within the last years.  66 
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During the analytical workflow, the general questions (targeted, untargeted, quantitative or 67 

qualitative analysis) dictate the parameters to be extracted from such datasets and the demands 68 

of functionality of the applied SP. Particular consideration is thereby placed on retention and/or 69 

detection-device derived values (e.g. retention time/s, concentration values, calibration 70 

correlations, matching factors etc.), which in case of GC×GC undergo statistical pre-treatment and 71 

chemometrical analysis. Additionally, each research team has its individual data analysis workflow 72 

adding to the complexity of the overall evaluation procedure.  73 

The high chromatographic resolution and the advances in detection technology make GC×GC well 74 

suited for highly powered data-driven evaluation procedures enabling e.g. signal deconvolution 75 

and picture/peak list based chemometrical analysis. Noteworthy is thereby the potential of 76 

GC×GC data allowing differentiation between chemical sample types or classes for which prior 77 

alignment procedures is necessary. Accordingly, the determination of standard parameters 78 

derived from the separation (retention times and retention indices) or from the detection device 79 

(mass spectra or quantitative information), need to be as accurate and reliable as possible [18]. 80 

Such demands, the increased complexity and amount of data do not only require reliable 81 

extraction and interpretation of chemical variation [18], they also lead to increased dependence 82 

of analytical chemists on software tools such as peak alignment features based on retention or (if 83 

available) mass spectral parameters, compensating for retention time variation, e.g. due to 84 

injection over a long period of time [19–21] 85 

Thus, systematic assessment of these SPs is required as illustrated by Koh et al. [22]and Niu et al. 86 

[23]. In these studies, specific datasets were created for performance assessment of one-87 

dimensional (1D) GC alignment tools. Although these studies limit themselves to 1D-GC 88 
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alignment, they illustrate the importance on a reliable data analysis framework and  benchmark 89 

data for systematic evaluation of different software packages using a reliable analytical data 90 

workflow. 91 

In this study, the authors introduce a data analysis framework to address a characterized and 92 

readily available multi-purpose open-source data set (benchmark data) allowing for an objective 93 

performance assessment of eight readily available software packages able to handle GC×GC data. 94 

The standardized evaluation and comparative analysis of fundamental and advanced functionality 95 

demonstrate transparent, systematic and standardized benchmarking practices that can be easily 96 

adapted to individual demands. In addition, the well-defined and characterized benchmark 97 

datasets could prove highly valuable for didactic purposes such as e.g. introducing novices to 98 

general data processing strategies for higher dimensional data. 99 

In summary, the present study focuses on two main objectives: at first, the introduction of a 100 

systematic data analysis frame work and, at second the establishment of an open-source dataset 101 

for benchmarking purposes of GC×GC software. 102 

  103 
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2 MATERIAL AND METHODS 104 

The presented benchmarking dataset comprises two parts: firstly, a set of standard compounds 105 

(fragrances and allergens) measured at different concentration levels (standard set); secondly, a 106 

set of nine different chocolate aroma profiles (chocolate set). Thereby, the dataset contains 107 

enough features to be relevant and representative whilst the complexity is low enough allowing 108 

for reusability and reproducibility. The datasets are readily available and can be downloaded and 109 

referenced at the Harvard Dataverse repository (accessible using the DOIs listed in reference 110 

[24,25]). The data is available as analytical data interchange format in compliance with the ASTM 111 

E1947 standard (netCDF) [26]. Additionally, information such as composition of the chocolates is 112 

documented and available as well. Figure 1 shows GC×GC measurements contained in the 113 

standard and chocolate data set whereas Figure S2 in the supporting information shows a more 114 

detailed breakdown of the datasets structure. 115 

2.1 STANDARD DATA SET 116 

Fragrance and Allergen Standard (Restek, Bellfonte, USA) was prepared and diluted using methyl 117 

tert-butyl ether to concentration levels of 2, 1, 0.4 and 0.2 ppb in 20mL Headspace vials. 118 

Subsequently followed by the addition of 1 μL (20 µg/mL) 1-fluoronaphtalene (Restek, Bellefonte, 119 

USA) and 0.3 μL (50 μg/mL) of retention standard mixture (Restek, Bellfonte, USA). In total, the 120 

mix contained 36 fragrance and allergen compounds. Refer to table TS1 in the supporting 121 

information for more details. Each level was measured in triplicate and in block randomized 122 

fashion. 123 

2.2 CHOCOLATE DATA SET 124 
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Sample preparation of the chocolate samples is described elsewhere [27]. In brief, dark chocolate 125 

bars with nine different types of flavor were purchased at a local chocolate factory. 37.5 g of each 126 

filling type was cryogenically homogenized followed by subsequent division into 5 g aliquots. 127 

Accordingly, these aliquots were placed in 15 mL Falcon tubes and mixed with a total of 5 mL 128 

milliQ water and 2.5 mL HCl (2M). After vigorously mixing (2 min), the sample aliquots were 129 

allowed to sit in an 80 °C water bath for 15 minutes. Once again, the samples were mixed (2 min) 130 

followed by centrifugation (5 min/3000 rpm), which leads to a separation into 4 distinct phases 131 

(solid, aqueous, solidified fat and oil). 3 mL of the aqueous and 200 μl of the respective oily phase 132 

were placed upon 2.9 g of sodium bicarbonate and 1.2 mL of NaOH (2M) in a 20 mL headspace 133 

vial subsequently followed by the addition of 1 μl (20 µg/mL) 1-fluoronaphtalene (Restek, 134 

Bellefonte, USA) and 0.3 μl (50 μg/mL) of retention standard (Restek, Bellfonte, USA). Each 135 

chocolate type was measured in quadruplicate in block randomized fashion. 136 

2.3 SPME-GC×GC-ToF/MS ANALYSIS 137 

A commercially available 10 mm polydimethylsiloxane/divinylbenzene (PDMS/DVB) (SUPELCO, 138 

Darmstadt, Germany) fiber was conditioned prior to the analysis at 250 °C for 15 min. Samples 139 

and standards were submitted to 5 min incubation followed by a 40 min extraction procedure at 140 

60 °C sample temperature and 250 rpm agitation speed. Desorption was performed for 2 min in 141 

splitless mode at a desorption temperature set to 250 °C which corresponds to a 5 °C lower set 142 

point than the maximum recommended coating temperature. Solid phase microextraction 143 

(SPME) was automated using an HTA autosampler (HTA, Brescia, Italy). 144 

For this study, a JEOL AccuToF GC+ mass spectrometer (JEOL, Brussels, Belgium) coupled to an 145 

Agilent 7890 GC (Agilent, Santa Clara, USA) was used. The GC×GC analysis was carried out using a 146 
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30 m Rxi5-ms (0.25 mm/0.25 µm) capillary column (Restek, Bellefonte, PA, USA) as first dimension 147 

and a 2 m Rxi17 (0.1 mm/0.1 µm) capillary column (Restek, Bellefonte, PA, USA) in the second 148 

dimension. Helium was used as carrier gas with a constant flow rate of 1ml/min. Modulation of 149 

the first dimensions effluent was obtained using a solid‐state modulator (SSM 1800 – J&X 150 

Technologies, Shanghai, China) equipped with a 1.05m GsBP-1 (0.25 mm/0.1 µm) trapping 151 

column (GS-Tek, Newark,US). 152 

After 2 min at the oven’s starting temperature (70 °C) the oven was ramped at 10 °C/min to its 153 

final temperature (310 °C) and held for 10 min. The modulator’s temperature settings followed 154 

the GC oven with the appropriate modifications according to the manufacturer's instructions for 155 

optimal performance (temperature offset for entry and exit zones as well as trap settings). In 156 

particular, the exit temperature has been increased preventing the formation of cold spots. Refer 157 

to the supporting information (Figure S3-4) for a detailed graphical representation of oven and 158 

modulator temperature settings. The modulation time was set to 4 s. 159 

Transfer line and source temperature were set to 250 °C. Ionization was carried out in electron 160 

ionization mode at 70 eV with a detector acquisition frequency of 50 Hz (maximal achievable 161 

acquisition frequency) over the mass range m/z: 35-500 amU. 162 

2.4 PRE-PROCESSING AND DATA ANALYSIS FRAMEWORK 163 

The centroid data was converted into the net ANDI MS (*.cdf) data file format. In *.cdf files, time 164 

and mass/charge information are linearly stored. For the 2D information to be accessible, the 165 

linear information has to undergo transformation. For this purpose, the acquisition frequency of 166 

the instrument is multiplied with the targeted second dimension time, allowing to recombine the 167 

appropriate number of spectra as second dimension recording. Based on the number of spectra 168 



pg. 9 

and the pre-set modulation time, the 2tr is calculated (refer Figure S7-S8 for additional information 169 

on data reconstruction and peak placement). 170 

In Figure 2 the conceptual and general data analysis framework used in this study is shown, 171 

illustrating the different data treatment steps, necessary actions and the parameters extracted 172 

for comparison purposes. The internal pre-treatment actions are thereby carried out within each 173 

SP and if possible, kept to the equivalent settings to ensure comparability of the obtained data. 174 

In detail, the signal-to-noise threshold (or equivalent parameter) was set to S/N: 30 with baseline 175 

correction shortly above the calculated noise. After removing of peaks resulting from column 176 

bleed, the resulted methods yielded 75-120 peaks for the standard dataset (depending on the 177 

concentration level) and 150-300 peaks for the chocolate samples. The additional unintentional 178 

peaks in the standard measurement result from manufacturer side impurities in the substances 179 

and injection artifacts. To ensure comparability within the obtained results, the pre-processing 180 

methods were adjusted, under the guidance of expert users and software developers, to yield 181 

approximately the same number of compounds per analysis and maximum quality for the 182 

observed detector response. 183 

The authors consider parameters such as first dimension retention time (1tr), second dimension 184 

retention time (2tr), retention index (RI), correlation coefficient (R2) of obtained calibration curves 185 

and mass spectral quality of crucial importance and therefore mandatory for evaluation by 186 

dedicated GC×GC software (standard parameters). These parameters were obtained for the 1 ppb 187 

level of the standard measurement and averaged across the acquired triplicates. Additionally, the 188 

deconvoluted mass spectra were exported and averaged for comparison (refer section 2.6 for 189 

details).  190 
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Based on these standard parameters eight different software packages (SPs) were closely 191 

examined: Analyzer ProXD v. 1.8 (Spectral Works Ltd, UK), Canvas v.1.6 (J&X- Technologies, 192 

China), ChromaTof v.4.72 (LECO St. Joseph, USA), ChromSpace v. 1.5.1 (SepSolv, UK), 193 

ChromSquare v.2.3. (Shimadzu, Japan), GCImage v. 2.5 HR (GCImage LLC, USA), GasPedal 194 

(Decodon, Germany) and OpenChrom (Lablicate, Germany). The purpose of this article is to 195 

highlight the necessity and value of a data analysis framework and a readily available benchmark 196 

dataset, not to promote the use of a specific SP, therefore the results for the SPs are anonymized. 197 

Table 1 displays the standard duty capabilities of the investigated SPs. Comparing the above-198 

mentioned metrics points out differences within the applied SPs. Thus allowing improvements or 199 

the adaption of specific best practices in terms of data processing, generally aiming to increase 200 

comparability across different platforms. For benchmark purposes it is therefore crucial that 201 

expert users, of the tested SPs, carry out the processing or give advice for the settings of the 202 

investigated algorithms [28,29]. 203 

The authors are aware that they are not necessarily experts in the operation of all the investigated 204 

SPs, which is why, during this study, they kept contact with developers and experts for the 205 

respective SPs to ensure the best performance of each SP.  206 

Alignment of the chromatographic data in the chocolate set was carried out in the using software 207 

packages with this functionality built in. Aligned peak lists were exported, sorted and cleaned 208 

(data wrangling). The area values were standardized to the internal standard (1-209 

flouronaphthalene), mean centered and normalized using z-score normalization for each 210 

compound (variable) followed by a global square root data transformation.  Analysis of variance 211 

(ANOVA), with a significance value of α = 0.05, was carried out to filter for only significant 212 
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compounds. These compounds were then used in a principal component analysis (PCA) to 213 

visualize the effect in discriminating the individual samples and potential as marker substances. 214 

In-built statistics that lead to PCA were performed as allowed by the individual SPs. These PCAs 215 

were then compared to the results obtained with the routine described above.  216 

2.5 CALIBRATION CURVE AND LEAVE ONE OUT EXPERIMENT 217 

Based on the different concentration levels, a calibration curve and the corresponding correlation 218 

coefficient between the response values and concentrations were calculated for each compound 219 

within each SP capable of doing so. Additionally, calibration curves omitting the 0.4 ppb level 220 

were produced subsequently followed by the determination of the 0.4 ppb levels concentration 221 

(leave one out experiment). These re-predictions were then used as measure for in-software 222 

coherence. 223 

2.6 MASS SPECTRAL COMPARISON 224 

Mass spectral information was extracted and exported from each of the 36 standard compounds 225 

in triplicate. Due to the differences in library matching algorithms, comparability of the results 226 

needed to be ensured. Therefore, the deconvoluted mass spectra were exported, averaged across 227 

the triplicates and matched against the NIST library (v2.2, 2014) using the NIST matching 228 

algorithm. This step was performed externally to ensure fair comparability of the matching 229 

factors. Additionally, unprocessed raw spectra were extracted from the original data file with an 230 

in-house developed tool (refer figure S15 in the supporting information for additional details). 231 

The software processed spectra were then compared to the raw spectra highlighting the effects 232 

of base processing actions on mass spectra. 233 
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 234 

Software  1tr 2tr RI Calibration Library Alignment 

A       

B       

C       

D       

E     
#  

F       

G      
* 

H       

Table 1: Standard duty capabilities of the individual SPs. Checkmark represent that the feature is 235 

implemented in the software whilst the cross indicates the feature is not yet implemented.  # 236 

Software requires pre-processed peak lists and spectra, which is contains an already performed 237 

library search for each compound. * Software does not allow alignment; however, pre-determined 238 

and locally restricted regions can be compared in a batch-wise manner. 239 

 240 

2.7 CHEMOMETRIC DATA ANALYSIS 241 

The chocolate dataset was used to investigate the performance of features that solely relate to 242 

GC×GC data such as alignment and in-built statistics. Aligned peak tables, containing normalized 243 

area information, were exported for each capable SP and wrangled in the shape outlined in Figure 244 

S9 in the supporting information. Values for peaks not present in certain chocolate types were 245 
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set to read not-any-number (NaN). The area values for each analyte and measurement were 246 

standardized to min-max values and their residuals investigated for normal distribution using the 247 

Kolmogorov-Smirnoff test. Since all obtained lists show positive skewness and positive excess in 248 

kurtosis, the data was transformed with a square root transformation, resulting in normal 249 

distributed data fitted for further analysis. 250 

Analysis of Variance (ANOVA) was applied for data reduction purposes filter for analytes with a 251 

significance value of α=0.05. This reduced dataset then underwent principal component analysis 252 

in MATLAB allowing for cluster- and residual analysis highlighting differences in the chemical 253 

composition of the individual chocolates flavor profiles. 254 

  255 
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3 RESULTS AND DISCUSSION 256 

To demonstrate the added value of the introduced data analysis framework and benchmark 257 

dataset, the performance of the eight different software packages is compared below. As 258 

mentioned before, the authors consider time and detection-dependent parameters as standard 259 

requirements for GC×GC software and focus on them in close detail, highlighting the impact of 260 

the individual SPs on the results and the data. 261 

3.1 FIRST- AND SECOND DIMENSION RETENTION TIMES 262 

Ideally, the retention information for each compound would be identical and independent from 263 

the used SP. However, a comparison of the processed 1tr information revealed deviations among 264 

the individual SPs. These variations are illustrated as distribution for d-limonene, linalool, lilial and 265 

benzylcinnamate (Substances # 1, 5, 24 and 36) in Figure 3A. These compounds were chosen to 266 

represent the dataset since they cover a wide span of chromatographic space and represent a 267 

large variety of chemical compounds. The distribution of all compounds is listed in the supporting 268 

information (Table TS2 and Figures S10-12). Considering different data transformation, peak 269 

detection and placement algorithms (refer to Figure S8, supporting information) as reason for 270 

such variations, software-dependent tendencies are expected. To investigate for such tendencies, 271 

the obtained values for each compound (specifically mean values across the replicates) were 272 

sorted in ascending order, allowing to rank the SPs according to their yielded value (SP yielding 273 

the highest value is ranked 8 the SP with the lowest value is ranked 1). Plotting this rank with a 274 

color code for each SP in order of compound elution allows to determine whether a certain SP is 275 

prone to yield either higher or lower values (illustrated in Figure 3B). It is evident that SPs C and 276 

D mainly provide the extreme values within the 1tr.  277 
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In terms of comparability, a change in software from the SP yielding the highest to the SP yielding 278 

the lowest value would thereby represent the “worst-case” with a maximal difference. Plotting 279 

this difference against the compounds elution order (Figure 3C) allows to read for trends based 280 

on (in this case) volatility. Lower volatile compounds appear to be more prone for larger 281 

maximum differences. Thereby, the mean value calculated from the differences would be the 282 

worst-case expectancy value for a change in software. For the applied eight SPs this expectancy 283 

value calculates to 4.2 s (figure 3 C), which roughly corresponds to the applied modulation time 284 

of 4 s.  285 

This discrepancy indicate general differences in raw data transformation and peak placement 286 

between software C and D. The fact that software C purely processes based on 1D raw data and 287 

software D relies exclusively on a 2D transformed raw data set, supports this conclusion. It should 288 

also be valid in case of general differences within the data transformation algorithms, which is 289 

investigated by the creation of two “next-to-worse” scenarios by leaving out either the SP prone 290 

to yield the highest or lowest values (either SP C or SP D) for the calculation of the expectancy 291 

value. This resulted in a change of the expectancy value to 3.7/3.8 s, which again resembles the 292 

applied modulation period of 4 s and thus indicating differences in the data transformation 293 

algorithms.  294 

Figure 4 depicts the results for 2tr information. Evaluation for tendencies were performed as 295 

described above. Again, software dependent tendencies are observed with SP C yielding the 296 

highest value of 2tr whilst software E yielded the lowest value. The worst-case expectancy (Figure 297 

4C) evaluates as deviation of 0.15 s and the “next-to-worse” case scenario evaluates to 0.1 s 298 

deviation. In the GC×GC community 2nd dimension peak widths are generally considered as a 299 
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criterion for the quality of the 2nd dimension’s separation. For cryogenic modulation good peak 300 

widths are generally considered between 0.1 and 0.2 s. Considering this ideal peak widths and 301 

the average differences in 2tr of 0.15 allows for the conclusion of deviations of up to 1-2 peak 302 

widths as result of a simple change of software. Underlying missing values for the compounds 303 

(#18, 19, 20, 21 and 22) is the phenomenon of wrap-around. Depending on the SP, these 304 

compounds’ 2tr s are reported close to the modulation time, e.g. 3.992 s, or wrapped e.g. 0.015 s 305 

and therefore result of course in tremendous differences. 306 

The comparison of 1tr information demonstrates that the choice of software affects the 1tr results 307 

due to differences in raw data transformation and peak detection algorithms. Thereby the 308 

maximal differences estimate to be close to the applied modulation period. However, within one 309 

SP the 1tr determination is consistent regarding each compound. The analysis of 2tr revealed 310 

differences among the individual SPs with maximal deviations up to 2 peak widths, thereby 311 

supporting the conclusion drawn from the results for 1tr. 312 

  313 
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3.2 RETENTION INDICES 314 

Allowing for instrument independent normalization, the application of linear temperature-315 

programmed retention indices is widely accepted in GC laboratories. Despite several attempts 316 

[30–32] introducing a similar concept for the second dimension in comprehensive GC, an 317 

applicable and robust system has not been established within the community yet. For this reason, 318 

the dataset permits only “Van den Dool” indices to be calculated. The overall robustness of the 319 

RI within each software package was calculated as the standard deviation of the calculated RI 320 

within the replicate injections. Thereby this measure, with few exceptions, ranked below 1 321 

retention index unit (RIU) indicating that coherence within each individual software package is 322 

granted.  323 

Figure 5 illustrates distribution, ranking and worst-case scenario of the RIs. Software D shows 324 

tendencies to yield the lowest RI values, whereas no software seems to yield exclusively the 325 

highest value. Thereby, worst-case scenario calculates to a difference of 4 RIU. Additionally, an 326 

increasing tendency of the maximal deviation of the RI can be observed with increasing retention 327 

time as illustrated by Figure 5C. The gap thereby is caused by the second isomer of lyral for which 328 

the majority of the SPs could not determine a plausible RI. The reason for this is unknown to the 329 

authors calculating the RI manually yields plausible results however, five out of six SPs capable to 330 

calculate RIs, calculate a RI for this particulate compound with numbers in the range of 1e6. 331 

The variations most likely originate from the aforementioned differences in peak placement or 332 

the inbuilt RI calculation itself, since the total chromatographic runtime is explicitly stored in the 333 

ANDI MS (*.cdf) file-format.  334 
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As a derived value, RIs allow for intersystem comparability. However, calculation algorithms of 335 

the SPs yield results with averaged 5 RIU differences with increasing tendencies toward higher 336 

boiling substances. Nevertheless, the calculation within each SP appeared coherent with 337 

deviations of ≤ 1 RIU. Comparability must be ensured, especially when RIs are used to identify 338 

unknowns. As demonstrated by using the benchmark data set, the individual SPs have a significant 339 

influence on the RI's investigations either through peak placement or calculation. Thereby the 340 

benchmark dataset poses a useful possibility for identifying and harmonizing the algorithms 341 

across different SPs reducing inter-laboratory variability. 342 

  343 
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3.3 MASS SPECTRAL COMPARISON 344 

Table 2 lists the library matching factors (MF) achieved by the individual SPs for d-limonene, 345 

linalool, lilial, benzylcinnamate and safrole. Additionally, the maximal difference across the SPs 346 

for each compound is listed. Overall, the values of the MFs are close together and yield acceptable 347 

results despite slight deviations. However, these differences suggest that MS spectra deviate from 348 

one software to another, indicating alteration induced by each SP. Figure 6 clearly illustrates this 349 

behavior by the comparison of spectral sections of safrole, extracted from SPs A, D and the raw 350 

data. In Figure 6A the m/z range 160-165 is compared. This area represents the region 351 

encompassing the molecular ion at m/z: 162. Software A and D produce similar results although 352 

the raw data yields a higher relative intensity of the non-base peak ions. Considering the 353 

fragmentation of safrole, the abstraction of CH3O and C2H3 yield prominent m/z 131 and 135 354 

signals (Figure 6B). Figure 6C elaborates this region more closely. Again, slight differences within 355 

the ion intensities are observable. However, the ion ratios within the individual spectra changes. 356 

For example, the ratio between m/z 131 and 135 appears to increase by 4% in software D. Instead 357 

of ion ratios sometimes the pure difference between the ion in question is considered 358 

(intensity(131)-intensity(135)). For this particular example the absolute value of the difference 359 

increases by 28% in software D.  360 

Throughout the entire spectrum the differences between significant and relevant ion clusters (50-361 

54, 76-80, 101-105) calculates between 4 and 6%. The added value of the benchmark data set 362 

presented is particularly evident with regard to the mass spectra. In GC×GC-MS, the mass spectra 363 

are the basis for quantitative, qualitative and exploratory analysis. 364 

 365 
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 366 
 

A B C D E F G H max diff. [%] 

d-limonene 905 907 899 895 905 911 903 903 0.6 

linalool 947 902 937 862 947 902 912 817 13.6 

safrole 950 974 969 940 950 971 976 976 3.6 

lilial 946 955 940 891 945 953 954 955 5.6 

benzyl cinnamate 967 974 968 944 966 977 977 977 3.3 

Table 2: Matching factors for d-limonene, linalool, lilial, safrole and benzylcinnamate achieved by 367 

comparing the extracted mass spectra to the NIST (v.2.2, 2014) library. The maximal difference 368 

shows the difference in matching factor for the worst-case scenario (e.g. d-limonene changing 369 

from D to F). 370 

  371 
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3.4 CALIBRATION CURVES AND “LEAVE ONE OUT” 372 

The above stated differences between the spectra might cause differences for quantitative 373 

analysis between the software packages reflected in calibration curves. Table 3 lists the 374 

correlation coefficients (R2) for calibration curves generated from manually extracted values and 375 

automatically generated calibration curves (bold). In general, both approaches yield similar 376 

results with exception for benzylcinnamate. This particular compound is picked as multiple peaks 377 

and therefore the overall peak area is split into several parts. However, with a R2  value of greater 378 

than 0.95, the majority of the curves yield acceptable results for quantitation purposes. Table 4 379 

contains R2 and predictive values for d-limonene, linalool, lilial and benzylcinnamate.  380 

For some of the compounds the 2-ppb point is the detector is saturated (e.g. lilial and 381 

benzylcinnamate), this allows to investigate the SPs capability to handle such occurrences. 382 

Whereas only software G offers to carry out a linearity check, none of the other SPs allow for 383 

compensation or warning mechanisms. 384 

Table 4 lists the predictive values for the 0.4 ppb point for the “leave one out” experiments. 385 

Although the prediction appears very close, software B underestimates the concentration whilst 386 

software D overestimates the concentration slightly. 387 
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A B C* D E* F* G H 

d-limonene 0.95 | 0.95 0.97 | 0.90 0.95 0.89 | 0.64 0.95 0.96 0.93 | 0.86 0.90 | 0.99 

linalool 0.96 | 0.96 0.98 | 0.61 0.94 0.80 | 0.62 0.96 0.93 0.93 | 0.86 0.98 | 0.89 

lilial 0.86 | 0.96 0.79 | 0.99 0.88 0.80 | 0.88 0.86 0.83 0.86 | 0.85 0.83 | 0.92 

benzyl-

cinnamate 
0.55 | 0.91 0.47 | 0.94 0.99 0.61 | 0.76 0.55 0.52 0.59 | 0.95 0.67 | 0.98 

Table 3: R2 values calculated for (manually extracted values) | (each software’s algorithm). 389 

Thereby the peak areas were selected “as-is” without manual reintegration. Concentration levels 390 

0.2-2 ppb for d-limonene and linalool and 0.2-1 ppb for lilial and benzylcinnamte. Software marked 391 

with * does not provide an in-build feature for calibration curves.  392 

 
A B C D E F G H 

d-limonene 0.43 0.35 0.43 0.55 0.43 0.43 0.42 0.50 

linalool 0.43 0.33 0.47 0.40 0.43 0.35 0.44 0.30 

lilial 0.42 0.38 0.55 0.52 0.42 0.43 0.43 0.36 

benzylcinnamate 0.42 0.39 0.45 0.48 0.42 0.43 0.29 0.36 

Table 4: Predictive values for the 0.4 ppb level based on the leave one out experiments. 393 
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The comparison of mass spectral information demonstrated the alterations induced by each SP 395 

e.g. the intensities of prominent ions and ion ratios differed up to 6%. These deviations then result 396 

in different matching factors when performing library comparison. Differences in algorithms such 397 

as deconvolution and background subtraction are the most likely explanation of the observed 398 

mass spectral differences.  399 

The investigation of the quantitative analysis indicate consistency within the SPs. However, 400 

comparison of the re-prediction among the SPs reveal deviations related to the calculated 401 

response e.g. software D yields higher ion intensities than software A for d-limonene and also 402 

overestimates in the re-prediction of the 0.4 ppb level. Regardless of that, the presented 403 

benchmark dataset ensures that the underlying data is identical. 404 
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3.5 Alignment 406 

Software Packages A, C, D, E, F and H are capable of chromatographic alignment using either peak 407 

list or pixel based. Although the underlying data is the same, the number of peaks/compounds 408 

produced by the SPs after alignment differ as indicated by Table 5. To ensure only significant 409 

substances are considered in further chemometrical analysis, normal distribution of the data was 410 

ensured as illustrated in Figure S13 in the supporting information.  411 

Table 5 list the skewness of the residual distribution prior and post the standardization and 412 

transformation procedures as investigative and decision criterion for data transformation 413 

processes. Thereby, the raw distributions deviate to various degrees from the normal distribution 414 

(e.g. the data obtained from SP C is more normally distributed than the data obtained by SP F) 415 

and would therefore demand for different data transformations. However, to keep the treatment 416 

the same for each SP the obtained peak lists were all logarithmic transformed resulting in a good 417 

compromise solution (-1< skewness < 1). 418 

 

A C D E F H 

post Alignment 613 1318 133 5327 286 1100 

pre skewness 1.2 0.56 1.02 1.03 2.16 2.08 

post-skewness 0.07  0.38 -0.01 -0.01 -0.63 -0.6 

post-ANOVA 420 264 55 606 137 221 

Table 5: Number of peaks/compounds after the alignment and after the ANOVA actions. Pre- and 419 

post-skewness show the effect of the standardization and normalization procedure. 420 
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Applying ANOVA (with α = 0.05) allows to reduce the aligned compound lists to substances 421 

responsible for the differences within the individual chocolate types. This represents a drastic 422 

data reduction (Table 5, post-ANOVA column). In Figure 7 the PCAs for theses pre filtered 423 

compound sets are displayed. Based on the hypothesis, similar flavoured chocolates will cluster 424 

closely, the software packages A, C, D and H provide comparable results with close clusters 425 

according to chocolate type and/or filling.  426 

Regarding the explained variance, each analysis performs similarly, ranging between 53 and 72%. 427 

Thereby, the density of the clusters varies within the individual SPs. However, the general 428 

tendencies shown by each analysis are similar, clear separation of chocolates with orange and 429 

mint flavour from the bulk based on principal component 1 (PC1). According to the ingredients 430 

list the mint flavoured chocolate contains 80% cocoa whilst the rest of the chocolates range 431 

between 40 and 60%. The orange chocolate covering the lower end of this range. This suggests 432 

that the principle component 2 (PC2) separates the chocolates according to their cocoa content. 433 

Thereby, the strongly correlated features (grey) are the same compounds within each analysis 434 

when they are detected. 435 

Even though approaches for data alignment varied, the visualization of the results via PCA 436 

revealed consistent trends among all SPs. Although the underlying data is the same, the different 437 

alignment procedures yielded different amounts of features as input for the PCAs, resulting in 438 

differences in cluster density or cluster separation. Based on such pre-filter and visualization 439 

techniques, conclusions for marker substances are typically drawn. Thereby, the utilized 440 

statistical technique poses great influence on such selection processes. Therefore, it is important 441 

that the compounds responsible for the formation of the cluster are still present after alignment. 442 
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Considering the degree of overlap between the aligned lists would allow the investigation of this 443 

measure. However, the dataset is not set-up to investigate such a measure in detail and might be 444 

extended in the near feature (e.g. artificial created matrix on-purpose differences). Regardless of 445 

the utilized approach for alignment, the aligned features should be consistent especially 446 

considering the further use of statistical techniques such as e.g. marker identification.  447 

 448 

 449 

  450 
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3.6 “In-built” statistics 451 

Figure S14 (supporting information) illustrates the result of “in-built” of the SP allowing for PCA. 452 

Comparing these plots to the above reported results reveal similar trends. However, the 453 

customizability of these plots varies within each SPs and sometimes necessitates the export of 454 

the data to third-party programs. For example, the SP D allows no customization resulting in PCA 455 

charts that are hard to read due to small font and marker sizes or colours. For comparison 456 

purposes, the Eigenvalues were extracted and plotted externally in Matlab R2018a. 457 

Other features such as pre-filter of the matched peak lists, using e.g. Fisher Ratios, t-test, Vulcano 458 

charts etc. have not been exploited since each SP follows different calculation guidelines 459 

rendering these features incomparable. It also became evident that none of the investigated SPs 460 

allow for normal distribution investigations, which is a basic assumption for most of the 461 

chemometric analyses. 462 

SPs that allow for in-built statistics and post-data treatment are of particular appeal especially 463 

when considering GC×GC for “out-of-academia” applications. Although the general trends appear 464 

similar to the manually obtained results, the limited customizability and the lack of transparence 465 

of the applied techniques still require the use of third-party software for adequate display or more 466 

detailed and accurate analysis. The individual SPs differ widely in the extent of their additional in-467 

build statistics and thus allowing only a partial evaluation of the complete chemometric 468 

capabilities. 469 

 470 

  471 
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4. CONCLUSION 472 

A fixed data analysis framework and benchmark data enables the objective comparison of 473 

different data processing options. As demonstrated above, differences and tendencies within 474 

individual software packages can be identified and addressed. Thereby, it is of utmost importance 475 

that the underlying data is the same and of high quality. Additionally, the authors acknowledge 476 

that, despite guidance from program authors regarding program parameters for optimal 477 

performance were sought and given, optimal performance for each SP might not have been 478 

achieved. However, within this study, it became evident, that different SPs show differences in 479 

1tr, 2tr and RI results, indicating differences in the peak placement or reconstruction algorithms. 480 

This fact should not be overlooked, particularly if these parameters are used for identification 481 

purposes. The presented dataset might help developers to overcome these differences, ensuring 482 

inter-laboratory and inter-experimental comparability. 483 

Generally, the detector response represents the parameter that is used for further chemical 484 

analysis such as quantitative, qualitative or even chemometric analyses. Therefore, the response 485 

is required to be stable and comparable. As demonstrated, the SPs influence the quality of the 486 

mass spectra by alteration of the mass spectra via deconvolution or background subtracting 487 

method. These methods often differ from manufacturer to manufacturer and are often 488 

proprietary. To ensure a certain degree of harmonization and standardization, a globally 489 

recognized benchmark dataset is needed. 490 

With the increase in GC×GC’s popularity, the demand for sophisticated post-data treatment 491 

increased as well. Currently such analyses are time consuming and need to be performed by 492 

trained experts. Therefore, “all-in-one” solutions are highly desirable, which demands that the 493 
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user can be aware of the underlying algorithms that are used especially when in-built statistic 494 

tools are included.  However, only few of the available SPs offer this capability. Considering 495 

routine or designed applications with several replicates, alignment procedures are essential. 496 

However, as demonstrated by this dataset the different strategies lead to different alignment 497 

results and, although general tendencies appear to be consistent, different number of 498 

compounds are aligned and used as input for post-analysis. It is evident that for the core strengths 499 

of GC×GC, such as identification of marker substances, the outcome of the alignment procedures 500 

needs to be coherent independently of the applied algorithms. 501 

Certainly, the presented data analysis framework and data sets do not show the complexity and 502 

scope reached by other GC × GC studies, but allow for performance assessment of different 503 

processing tools as well as a didactic entrance in evaluation of multidimensional data. Moreover, 504 

not each and every special case in terms of processing is represented by the dataset, on the 505 

contrary the dataset needs to be evolved, adapted and made available for future elevation in the 506 

field of GC×GC data analysis. 507 

More information of this data can be found in the supporting information and on the homepage 508 

of the obiachem group (https://www.obiachem.uliege.be/cms/c_5882500/en/data-509 

visualization-projects). In conclusion, the presented data framework and benchmark data 510 

represent a valuable opportunity to test, harmonize and improve existing and future features in 511 

GC×GC SPs.  512 
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CAPTIONS 630 

Figure 1: GC×GC Chromatogram for A) the standard Dataset (1ppb) and B) a representative 631 

chocolate measurement (mint and lime flavor). For the standard dataset more than the 36 632 

standard compounds and the added alkane standard can be observed as result of manufacturer 633 

sided impurities and injection artefacts. 634 

Figure 2: Conceptual and general data analysis framework used in this study separated whether 635 

the necessary steps and actions were performed within the used GC×GC software packages or in 636 

external software. In the bottom row the extracted chemical information is listed that was used 637 

to derive measures for comparative purposes. 638 

Figure 3: A) distribution of 1tr for d-limonene, linalool, lilial and benzylcinnamate (Substances # 1, 639 

5, 24, 36). these substances represent the spectrum of standard compounds and encompass the 640 

entire 2D separation space. B) Software dependent ranking of the 1tr values for each compound 641 

(highest to lowest value). Thereby, 8 represents the highest value, 1 the lowest. Different colours 642 

represent individual software packages. For example, for compound 36 software C yields the 643 

highest and D the lowest value. C) Worst-case scenario for changing the software. The mean value, 644 

represented by the dashed line, thereby resembles the applied modulation time. 645 

Figure 4: A) distribution of 2tr for d-limonene, linalool, lilial and benzylcinnamate (Substances #1, 646 

5, 24 and 36). B) Software dependent ranking of the 2tr values for each compound (highest to 647 

lowest value). Thereby, 8 represents the highest value, 1 the lowest. Different colours represent 648 

individual software packages. C) Worst-case scenario for changing the software. Mean value 649 

represented by the dashed line. Gap in-between as result from compounds on the verge of 650 
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wrapping. Several SPs report these compounds as unwrapped whilst the other report them as 651 

wrapped.  652 

Figure 5: A) distribution of RI for d-limonene, linalool, lilial and benzylcinnamate. B) Software 653 

dependent ranking of the RI values for each compound (highest to lowest value). Thereby, 6 654 

represents the highest value, 1 the lowest. Different colours represent individual software 655 

packages. C) Worst-case scenario for changing the software. Mean value represented by the 656 

dashed line. The gap in the line represents the second isomer of lyral for which the majority of the 657 

software packages could not determine a plausible retention index.  658 

Figure 6: A) Comparison of the m/z area 160-165 in the spectrum of safrole. Grey shaded spectrum 659 

(middle) is extracted from the raw data. B) Formation of m/z 131 and 135 fragments of safrole 660 

due to CH3O and C2H3 separation. C) Comparison of the m/z area 130-135. Differences between 661 

software A and D visible. 662 

Figure 7: PCAs after ANOVA with α = 0.05 for the SPs allowing for overall alignment (software A, 663 

C, D, E, F, H). Grey Stars represent the matched features used as input for the different chocolate 664 

types. 665 
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