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Proliferation of endothelial cells (ECs) and vas-
cular smooth muscle cells (SMCs) is essential 
for cardiovascular development (1), but also 
contributes to the repair and remodeling of the 
injured vessel wall (2). The major trigger of 
vascular injury is atherosclerosis, which is to-
day the most important cause of morbidity in 
the Western world. Spontaneous rupture of the 

atherosclerotic plaque and vascular interven-
tions for atherothrombotic disease (e.g., balloon 
angioplasty) induce EC damage. Disruption of 
the endothelial integrity initiates proliferation 
of ECs, which promotes reendothelialization 
of the vascular lesion (3, 4), but also triggers 
local accumulation of SMCs, leading to inti-
mal hyperplasia and occlusion of the diseased  
vessel (2).

At fi rst, neointimal ECs and SMCs were be-
lieved to originate exclusively from adjacent cells 
within the vessel wall that migrate to the site 
of injury and start to proliferate (3).  However, 
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The accumulation of smooth muscle and endothelial cells is essential for remodeling 

and repair of injured blood vessel walls. Bone marrow–derived progenitor cells have been 

implicated in vascular repair and remodeling; however, the mechanisms underlying their 

recruitment to the site of injury remain elusive. Here, using real-time in vivo fl uorescence 

microscopy, we show that platelets provide the critical signal that recruits CD34+ bone 

marrow cells and c-Kit+ Sca-1+ Lin− bone marrow–derived progenitor cells to sites of 

vascular injury. Correspondingly, specifi c inhibition of platelet adhesion virtually abrogated 

the accumulation of both CD34+ and c-Kit+ Sca-1+ Lin− bone marrow–derived progenitor 

cells at sites of endothelial disruption. Binding of bone marrow cells to platelets involves 

both P-selectin and GPIIb integrin on platelets. Unexpectedly, we found that activated 

platelets secrete the chemokine SDF-1𝛂, thereby supporting further primary adhesion and 

migration of progenitor cells. These fi ndings establish the platelet as a major player in the 

initiation of vascular remodeling, a process of fundamental importance for vascular repair 

and pathological remodeling after vascular injury. 
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recently BM-derived progenitor cells (BM-PCs) have been 
implicated in remodeling and repair of the injured vessel wall 
(4–9). Indeed, BM-PCs appear to give rise to substantial num-
bers of neointimal ECs and SMCs after endothelial denudation 
(4–9). However, the signals that target BM-PCs to foci of 
vascular injury have not been understood thus far.

The fi rst response to vascular injury is platelet adhesion to 
the exposed subendothelium (10–13). Here, we show that 
platelet adhesion not only triggers vascular thrombosis, lead-
ing to myocardial infarction and ischemic stroke, but also 
represents the critical step for the targeting of BM-PCs to 
sites of endothelial disruption. Using real-time in vivo double 
fl uorescence microscopy of the mouse carotid artery, we 
demonstrate that CD34+ and c-Kit+ Sca-1+ Lin− (KSL) 
BM-PCs directly adhere to platelets after vascular injury in a 
process that involves platelet P-selectin and GPIIb integrin. 
Once activated, platelets secrete the chemokine SDF-1α, 
which supports primary adhesion of PCs on the surface of 
 arterial thrombi in vivo. BM-PCs recruited to platelet aggre-
gates give rise to neointimal cells, indicating that accumula-
tion of BM-PCs in arterial thrombi may contribute to 
vascular  repair and, eventually, to pathological remodeling. 
Together, the present results identify a central role of platelets 
for the targeting of BM-PCs to the arterial intima, a process 
of fundamental importance for vascular repair and pathologi-
cal remodeling after vascular injury.

RESULTS

BM-PCs are recruited rapidly to sites 

of endothelial denudation

Because primitive long-term repopulating mouse hemato-
poietic PCs are enriched among CD34+ BM cells (14), we 
fi rst addressed the accumulation of mouse CD34+ BM-PCs 
to foci of vascular injury. We injured the carotid artery of 
C57BL/6J mice (12) and infused CD34+ cells tagged with 
dichlorofl uorescein (DCF). We used intravital video fl uores-
cence microscopy (IVM) to directly visualize and quantify 
the dynamic process of BM-PC accumulation. In the absence 
of vascular injury, CD34+ BM-PCs rolled along short dis-
tances of the intact vessel wall; however, fi rm adhesion was 
not detected. In contrast, numerous CD34+ BM-PCs were 
recruited to the vascular wall within 5 min after endothelial 
denudation, reaching a plateau 60 min after vascular injury 
(375 ± 83 adherent cells/mm2 60 min after injury, P < 0.05 
vs. baseline; Fig. 1, a and b).

CD34 expression on mouse BM-PCs has been demon-
strated to vary with the activation status of the precursor cells 
(15) and considerable amounts of mouse long-term reconsti-
tuting BM-PCs reside in the CD34−/low cell fraction (16). 
Hence, we next analyzed the recruitment of phenotypically 
defi ned mouse hematopoietic BM-PCs (16). We isolated 
KSL cells by fl uorescence-activated cell sorting (purity of 
KSL >98%; Fig. 1 c). DCF-tagged KSL cells were infused i.v. 
and visualized by intravital microscopy before and after ca-
rotid injury. Like CD34+ cells, KSL BM-PCs did not fi rmly 
adhere to the intact vessel wall. However, after endothelial 

disruption, KSL cells readily attached to the site of injury 
(1,110 ± 428 adherent KSL cells/mm2 30 min after injury; 
P < 0.05 vs. uninjured vessel wall; Fig. 1, d and e). This dem-
onstrates for the fi rst time in vivo that BM-PCs are recruited 
rapidly to sites of vascular injury.

BM-PCs do not adhere directly to subendothelial matrix 

proteins under high arterial shear

Next, we elucidated the determinants that initiate BM-PC 
recruitment to the subendothelium. Adhesion of CD34+ or 

Figure 1. Recruitment of BM-PCs to the injured carotid artery. 

(a) CD34+ BM-PC adhesion before and after carotid injury was monitored 

by in vivo microscopy. *, P < 0.05 vs. baseline (pre). (b) The microphoto-

graphs show representative in vivo fl uorescence microscopy images of 

CD34+ BM-PCs at distinct time points. Bars, 50 μm. (c) Purifi cation of 

c-Kit+ Sca-1+ Lin− PCs. Lin− cells were stained with propidium iodide (PI), 

FITC-conjugated anti–Sca-1 (Ly 6A/E) antibody, and PE-conjugated anti–

c-Kit (CD117) antibody. Viable (PI−) c-Kit+ Sca-1+ cells were sorted. After 

sorting, the purity of c-Kit+ Sca-1+ Lin− cells was >98%. (d) Assessment 

of c-Kit+ Sca-1+ Lin− BM-PC adhesion before and after carotid injury by 

in vivo microscopy. *, P < 0.05 vs. no injury. (e) The microphotographs 

show representative in vivo fl uorescence microscopy images of c-Kit+ 

Sca-1+ Lin− BM-PCs before and after vascular injury. Bars represent 50 μm. 

Arrows in b and e indicate nonadherent BM-PCs, arrowheads indicate 

adherent BM-PCs. Data are means ± SEM.
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KSL BM-PCs was monitored in a parallel plate fl ow cham-
ber at a wall shear rate of 1,000 s−1. To our surprise, nei-
ther vitronectin, nor fi bronectin, fi brinogen, or collagen, the 
major constituents of extracellular matrices exposed at sites 
of vascular injury, promoted considerable BM-PC adhesion 
under fl ow (Fig. 2 a). Correspondingly, fl ow cytometric ex-
amination of mouse CD34+ or KSL BM-PCs failed to dem-
onstrate expression of adhesion molecules that would allow 
adhesion of fl owing cells to the subendothelial matrix under 
arterial shear conditions, such as GPIb-V-IX or GPVI (Fig. 
2 b). However, as reported previously by others, α4 inte-
grin (CD49d) and P-selectin glycoprotein ligand (PSGL)-1 

were the major adhesion receptors present on the surface 
of CD34+ and KSL BM-PCs (17, 18) (Fig. 2 b). PSGL-1 
and α4 integrin mediate PC homing to the endothelial lin-
ing of BM microvessels; however, they are not suffi  cient to 
promote cellular adhesion to subendothelial matrices. Col-
lectively, the latter results imply that BM-PCs are not able 
to adhere directly to the exposed extracellular matrix after 
vascular injury.

Platelets interact with BM-PCs in vitro and at sites 

of vascular injury in vivo

One of the fi rst responses to vascular injury is platelet adhe-
sion and aggregation at the site of endothelial denudation 
(Fig. 3, a and b) (11, 12, 19, 20). To evaluate the potential 
role of platelets for the recruitment of PCs to the injured ves-
sel wall, we investigated whether BM-PCs are able to inter-
act with platelets. Using fl ow cytometry, we observed that 
resting and particularly thrombin-activated platelets bind to 
BM-derived CD34+ and KSL cells in vitro (Fig. 3 c). Scan-
ning electron microscopy revealed that platelets interact di-
rectly with BM-PCs (Fig. 3 d).

To identify whether similar interactions also occur under 
physiological shear conditions, mouse platelets were allowed 
to adhere to collagen-coated coverslips and the adhesion of 
CD34+ or KSL BM-PCs was monitored in a parallel plate 
fl ow chamber at a wall shear rate of 1,000 s−1 as described 
in previous paragraphs (Fig. 2 a). BM-PCs did not attach to 
collagen-coated coverslips in the absence of platelets (Fig. 2 a, 
Col). However, when the collagen matrix was covered with 
platelets, BM-PCs readily adhered in the presence of arterial 
shear conditions (Fig. 2 a, Plts).

To fi nd out whether similar interactions between BM-
PCs and platelets are present in vivo, we injured the carotid 
artery of mice. Diff erentially tagged KSL cells (DCF) and 
platelets (rhodamine-6G) were infused i.v. Platelet–KSL in-
teractions at the site of the vascular lesion were monitored by 
real-time double fl uorescence IVM. Although platelet adhe-
sion occurred within seconds after endothelial disruption, 
KSL BM-PCs started to adhere to the injured vessel wall 5–
10 min after induction of vascular injury. Interestingly, we 
observed that KSL BM-PCs bound exclusively to adherent 
platelets, whereas no adherent KSL cells were detected at ar-
eas devoid of platelet adhesion (Fig. 3 e).

Platelet adhesion is critically involved in BM-PC recruitment 

after vascular injury

Because these fi ndings were very suggestive, we subse-
quently addressed whether the presence of adherent platelets 
might actually be mandatory for the recruitment of BM-
PCs. Platelet adhesion to the subendothelium involves the 
platelet vWF receptor GPIbα and the major platelet collagen 
receptor GPVI (10–12, 21). Correspondingly, inhibition of 
platelet GPIbα or GPVI by function-blocking mAb almost 
completely prevents platelet adhesion at sites of vascular in-
jury (12). Because the platelet adhesion receptors GPIbα or 
GPVI are not expressed by BM-PCs (Fig. 2 b), inhibition 

Figure 2. BM-PCs do not adhere directly to subendothelial matrix 

proteins under arterial shear conditions. (a) The adhesion of BM-PCs 

(2 × 104/ml KSL cells or CD34+ cells) to coverslips coated with vitronectin 

(Vn; Becton Dickinson), collagen (Col; Becton Dickinson), fi brinogen (Fb; 

Sigma-Aldrich), fi bronectin (Fn; Sigma-Aldrich), or to surface adherent 

platelets was assessed in a transparent fl ow chamber at a wall shear rate 

of 1,000 s−1 as described elsewhere (reference 22). The number of adher-

ent BM-PCs is given per mm2 surface. *, P < 0.05 vs. collagen. (b) To de-

termine the adhesion receptors present on the surface of BM-PCs, KSL or 

CD34+ cells were incubated with fl uorophore-labeled anti-αIIb, anti-α4, 

anti–PSGL-1, anti-α2β1, anti-GPIbα, or anti-GPVI mAb, or irrelevant iso-

type-matched control antibody and directly analyzed on a FACSCalibur. 

Data are given as difference between the mean fl uorescence intensity 

[arbitrary units] obtained with the specifi c antibodies and the signal ob-

tained with the corresponding irrelevant isotype-matched control antibody. 

Data are means ± SEM.
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of GPIbα or GPVI provides a powerful tool to  selectively 
address the role of platelet adhesion for BM-PC recruitment 
at the injured vessel wall. Hence, to evaluate the functional 
importance of platelets for BM-PC accumulation, we treated 
mice with 2 mg/kg function-blocking anti-GPIbα mAb or 
isotype-matched control IgG. Thereafter, carotid injury was 
induced and the adhesion of DCF-tagged CD34+ (Fig. 4 a) 
or KSL BM-PCs (Fig. 4 b) was monitored in vivo by IVM. 
As reported previously, inhibition of GPIbα virtually abro-
gated platelet aggregation in response to ristocetin in vitro 

and reduced platelet adhesion to the injured vessel wall in 
vivo (Fig. S1, a and b, available at http://www.jem.org/cgi/
content/full/jem.20051772/DC1). However, to our sur-
prise, interference with GPIbα–vWF interactions not only 
prevented platelet adhesion but also virtually completely 
blocked recruitment of CD34+ (Fig. 4 a) and KSL BM-PCs 
(Fig. 4 b) in response to carotid denudation, indicating that 
platelet adhesion is crucial for BM-PC recruitment to the 
injured vessel wall.

A separate group of C57BL/6J wild-type mice was treated 
with soluble GPVI-Fc, which acts as a competitive inhibitor 
of platelet GPVI in vivo and virtually abrogates platelet ac-
cumulation in response to vascular injury (22). In a similar 
manner, as reported in the previous paragraph for inhibition 

Figure 3. Platelets contribute to the recruitment of BM-PCs to 

the injured carotid artery. (a) Interactions of rhodamine-6G–tagged 

platelets before and after carotid injury were investigated by in vivo mi-

croscopy. *, P < 0.05 vs. baseline (pre). Representative microscopic images 

are presented in b. Arrows indicate adherent platelets. (c) BM-PCs were 

incubated with PBS, thrombin, or resting platelets or platelets activated 

with thrombin. Flow cytometry was used to detect the binding of CD41+ 

platelets to BM-PCs. Data are given as increase in mean fl uorescence 

intensity compared with vehicle (PBS)-treated BM-PCs. *, P < 0.05 vs. 

resting. (d) CD34+ BM-PCs were cultivated in the presence of platelets. 

Scanning electron microscopy revealed that platelets (arrows) bind di-

rectly to the surface of CD34+ BM-PCs. Bar, 5 μm. (e) The carotid artery 

of C57BL/6J mice was injured, and differentially tagged KSL cells (DCF, 

green; left) and platelets (rhodamine-6G chloride, red; middle) were visu-

alized by real-time double fl uorescence microscopy. The overlay (right) 

shows that BM-derived c-Kit+ Sca-1+ Lin− cells bind exclusively to ad-

herent platelets (arrows). Bars, 50 μm. Data are means ± SEM.

Figure 4. Platelet adhesion contributes to the recruitment of BM-

PCs to the injured carotid. (a) Carotid injury was induced in wild-type 

mice treated with function-blocking anti-GPIbα, GPVI-Fc, anti–PSGL-1, 

anti-CD62P mAbs, or isotype-matched control IgG. In a separate group of 

animals, carotid injury was induced in mice lacking P-selectin. Adhesion 

of CD34+ BM-PCs was monitored by in vivo fl uorescence microscopy. 

*, P < 0.05 vs. control IgG-treated WT mice. (b) Carotid injury was induced 

in wild-type mice treated with function-blocking anti-GPIbα or anti–PSGL-1 

mAbs. Adhesion of KSL BM-PCs was monitored by in vivo fl uorescence 

microscopy. *, P < 0.05 vs. control IgG-treated mice. (c) CD34+ BM-PCs 

were incubated with thrombin-activated platelets in the absence or pres-

ence of function-blocking anti–PSGL-1 or anti-CD11b mAb. CD41 expres-

sion on the surface of CD34+ BM-PCs was determined to assess platelet 

binding. Data are means ± SEM.
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of GPIbα, blockade of GPVI abrogated the recruitment of 
precursor cells in response to carotid denudation (Fig. 4 a). 
These data demonstrate for the fi rst time that platelet adhe-
sion is strictly required for targeting of CD34+ and KSL BM-
PCs to foci of vascular injury in vivo.

Platelets promote BM-PC recruitment after vascular injury 

by expression of P-selectin

Upon adhesion, platelets become activated and expose 
P- selectin. CD34+ and KSL BM-PCs express PSGL-1 (Fig. 
2 b), the major ligand of P-selectin, and roll on recombinant 
P-selectin in vitro (Fig. S2, available at http://www.jem.
org/cgi/content/full/jem.20051772/DC1). Hence, we next 
evaluated the signifi cance of P-selectin and PSGL-1 for BM-
PC–platelet interactions. We incubated activated platelets 
with CD34+ BM-PCs in the presence of function-blocking 
anti–mouse PSGL-1 mAb 4RA10 (23). Notably, platelet 
binding to BM-PCs was greatly reduced after inhibition of 
PSGL-1 in vitro, as determined by fl ow cytometry (Fig. 4 c). 
To further substantiate the role of P-selectin and PSGL-1 
for BM-PC recruitment in vivo, CD34+ or KSL BM-PCs 
were transfused into mice pretreated with mAbs directed 
against P-selectin or PSGL-1. Inhibition of P-selectin or 
PSGL-1 signifi cantly reduced the recruitment of BM-
 derived CD34+ (Fig. 4 a) or KSL BM-PCs (Fig. 4 b) after 
carotid injury.  Similarly, BM-PC accumulation to the in-
jured vessel walls was signifi cantly reduced in P-selectin–
 defi cient mice (Fig. 4 a).

Platelets mediate BM-PC recruitment by release of SDF-1𝛂
Recently, the CXC chemokine SDF-1α has been implicated 
in attracting blood-borne PCs to the vascular intima (24, 25). 
Hence, we asked whether SDF-1α might contribute to PC 
accumulation on arterial thrombi at sites of vascular injury. 
First, we evaluated the distribution of SDF-1α in the vessel 
wall in response to endothelial denudation. Although SDF-1α 
was not detected in intact carotid arteries, endothelial dis-
ruption triggered a substantial increase in vascular SDF-1α 
expression (Fig. 5 a). SMCs were a major source of SDF-1α 
at 4 and 24 h after endothelial disruption (Fig. 5 a and not 
depicted). This is consistent with previous reports (25–27), 
showing that medial SMCs express SDF-1α very early after 
vascular damage. However, 30 min after vascular injury, 
SDF-1α expression in SMCs was negligible (Fig. 5 a), indi-
cating that SMC-derived SDF-1α is unlikely to contribute 
to BM-PC accumulation on arterial thrombi during the fi rst 
minutes after endothelial disruption (Fig. 1, a and d).

Importantly though, medial SMCs were not the only 
source of SDF-1α at sites of vascular damage. To our sur-
prise, a robust staining for SDF-1α was also present in arterial 
thrombi attached to the injured vessel wall. SDF-1α expres-
sion within arterial thrombi was found as early as 30 min after 
vascular injury and could still be detected at 4 and 24 h (Fig. 
5 a and not depicted) after injury. SDF-1α expression was not 
restricted to mouse thrombi, but could also be observed during 
thrombus formation in the human vasculature. Correspond-

ingly, arterial thrombi isolated from ruptured atherosclerotic 
plaques of human coronary arteries showed substantial SDF-
1α protein expression (Fig. 5 b). Together, these data suggest 
that thrombi that develop at the site of endothelial denudation 
are the initial source of SDF-1α (Fig. 5 a), whereas SMCs ac-
count for SDF-1α release at later stages (25–27).

To identify the source of SDF-1α within arterial thrombi, 
we subsequently performed immunohistochemistry of injured 
mouse carotid arteries. Unexpectedly, we found that SDF-1α 
expression in thrombi is largely confi ned to the surface of ag-
gregated platelets (Fig. 5 c). To further substantiate SDF-1α 
expression by platelets, we analyzed lysates of purifi ed platelets 
(purity >99%) for the presence of SDF-1α using ELISA. In-
deed, purifi ed platelets contained substantial amounts of the 
CXC chemokine SDF-1α (Fig. 5 d). Upon platelet activation, 
SDF-1α can be detected on the platelet surface (Fig. 5 e) and 
is released into the platelet supernatant (Fig. 5). Correspond-
ingly, confocal scanning microscopy demonstrated that SDF-
1α is present in the cytosol of resting platelets, whereas it 
becomes surface expressed after platelet activation (Fig. 5 g).

To defi ne the source of platelet SDF-1α, we examined the 
BM of mice. Interestingly, we found that, apart from stromal 
cells, megakaryocytes stain positive for SDF-1α, albeit to a lesser 
extent (Fig. 6 a). To further substantiate SDF-1α expres-
sion by the megakaryocytic lineage, we determined SDF-1α 
mRNA and protein expression in culture-derived megakary-
ocytes (28). By RT-PCR (Fig. 6 b) and using ELISA (Fig. 
6 c), we show that megakaryocytes contain SDF-1α mRNA 
and protein. Notably, SDF-1α is targeted to α-granules in 
the megakaryocytic/platelet lineage (Fig. S3, available at 
http://www.jem.org/cgi/content/full/jem.20051772/DC1). 
Together, this suggests that platelets obtain SDF-1α basically 
from their PCs.

To test the biological signifi cance of platelet SDF-1α re-
lease, subconfl uent monolayers of adherent embryonic endo-
thelial PCs (T17B) (29) were wounded and subsequently 
incubated in the absence or presence of platelets. Notably, 
platelets induced considerable migration of PCs into the 
wounded area. Function-blocking anti–SDF-1α mAb, but not 
control IgG, virtually abolished platelet-induced PC migra-
tion, indicating that platelet-derived SDF-1α is functionally 
active (Fig. S4, a and b, available at http://www.jem.org/
cgi/content/full/jem.20051772/DC1).

Next, we addressed the biological relevance of platelet 
SDF-1α for the recruitment of BM-PCs into arterial thrombi 
in vivo. We injured the carotid artery of C57BL/6J mice to 
induce arterial thrombosis. Next, the animals were treated 
with function-blocking anti–SDF-1α mAb, and DCF-tagged 
KSL BM-PCs were infused. Adhesion of KSL PCs on the 
thrombus surface was visualized in vivo by IVM as described 
in previous paragraphs. Inhibition of SDF-1α by function-
blocking mAb signifi cantly attenuated KSL accumulation 
within the growing platelet-rich thrombus (267 ± 33 ad-
herent KSL cells/mm2 30 min after vascular injury in the 
presence of anti–SDF-1α mAb; *, P < 0.05 vs. control IgG-
treated mice).
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Platelet GPIIb contributes to BM-PC recruitment in vivo

During adhesion, platelets become activated and start to ag-
gregate in a process mediated by the platelet integrin GPIIb-
IIIa (11). To fi nd out whether GPIIb-dependent platelet 
aggregation is essential for BM-PC accumulation in  vivo, we 

injured the carotid artery of GPIIb-defi cient mice and simul-
taneously visualized the recruitment of diff erentially tagged 
GPIIb−/− platelets and wild-type CD34+ or KSL BM-PCs 
by IVM. As reported previously, platelet aggregation and 
thrombus formation after vascular injury are abolished in 

Figure 5. Platelets express and secrete SDF-1𝛂 and recruit endog-

enous PCs to sites of vascular injury. (a) Paraffi n-embedded sections of 

a mouse carotid artery injured as described (panel a and see Materials and 

methods) and a fresh human coronary thrombus (b) were stained for 

SDF-1α. Sections incubated with irrelevant isotype-matched IgG served 

as controls. The intense red (a) or brown (b) staining indicates that SDF-1α 

is expressed in both mouse and human intravascular thrombi. In a, L, EC, 

M, and A indicate lumen, endothelial cells, media, and adventitia, respec-

tively. Arrows in b indicate mononuclear cells. Bars, 50 (a) or 20 μm (b). 

(c) Triple immunofl uorescence staining of an injured carotid artery shows 

that SDF-1α expression in thrombi is largely confi ned to CD41-expressing 

platelets. Mononuclear cells recruited to the thrombus are indicated by 

blue (DAPI). Bars, 25 μm. Sections incubated with the secondary but not 

the primary antibody served as controls (right). (d) We used ELISA to de-

termine SDF-1α in mouse platelets or whole blood. The mouse melanoma 

cell line B16-D5 served as control. SDF-1α protein expression is given 

in nanograms per 100 μg total protein. *, P < 0.05 vs. whole blood. 

(e) Thrombin-activated human platelets surface express SDF-1α, as 

 indicated by fl ow cytometry (for details, see Materials and methods). The 

diagram (left) summarizes three independent experiments and a repre-

sentative histogram is shown (right). (f) ELISA also demonstrates that 

platelet activation triggers release of SDF-1α, as indicated by an increase 

in SDF-1α protein concentration in the supernatants of α-thrombin–

activated platelets. *, P < 0.05 vs. resting. (g) Confocal laser scanning 

microscopy demonstrates that SDF-1α is present in the cytosol of resting 

platelets, whereas it becomes surface expressed after platelet activation. 

(top left) Resting platelets at high magnifi cation. SDF-1α is present in the 

platelet cytoplasm as identifi ed by the red staining (arrowheads); CD41 

expression is indicated by green. Platelet activation by 20 μM ADP (top, 

middle and right) or 0.2 U/ml thrombin (bottom) induced surface mobili-

zation of SDF-1α (green; arrowheads). The platelet cytoskeleton is high-

lighted by the red staining (phalloidin). Thrombin-activated platelets 

(bottom right) were stained with irrelevant control mAb (green) and 

counter-stained with phalloidin (red). Bars, 10 μm (top, middle; bottom, 

left and right) or 5 μm (top, left and right; bottom, middle). Data are 

means ± SEM.
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mice lacking GPIIb integrin (13). Remarkably, the defect in 
GPIIb-dependent platelet aggregation translated into a pro-
found and signifi cant reduction in CD34+ BM-PC accumu-
lation compared with wild-type animals (P < 0.05; Fig. 7 a). 
Likewise, adhesion of KSL PCs was signifi cantly attenuated 
in mice lacking GPIIb integrin (128 ± 16 or 964 ± 393 ad-
herent KSL cells/mm2 15 min after vascular injury in GPIIb-
defi cient or wild-type mice, respectively).

During aggregation, clustering of GPIIb-IIIa transduces 
inward signals that may aff ect important platelet functions 
 including the release of chemokines (30, 31). Hence, we 
next asked whether, beyond promoting platelet aggregation, 
GPIIb-IIIa might contribute to platelet SDF-1α exposure. 
Platelets were incubated with soluble fi brinogen in the pres-
ence or absence of bivalent mAb antifi brinogen (IgG1), which 
enhances receptor cross-linking (Fig. 7 b). Interestingly, 
SDF-1α release was signifi cantly increased when  GPIIb-IIIa 

was clustered by combined fi brinogen/antifi brinogen incu-
bation. Similarly, mouse anti-GPIIb mAb 7E3 signifi cantly 
increased SDF-1α release in the presence of anti–mouse mAb 
(IgG) that binds mAb 7E3. This indicates that engagement of 
GPIIb during platelet aggregation by itself initiates platelet 
SDF-1α release. Correspondingly, the expression of SDF-1α 

Figure 6. Megakaryocytes express SDF-1𝛂. (a) Paraffi n-embedded 

sections of mouse femura were stained with anti–SDF-1α. SDF-1α was 

expressed not only in stromal cells (arrows) but also in megakaryocytes 

(arrowheads). Bars, 25 μm. (b) Megakaryocytic and platelet SDF-1α mRNA 

expression was determined using RT-PCR. The mRNA expression of GPIIb 

integrin and β-actin served as controls. The primer sequences and their 

corresponding product sizes and annealing temperatures are in Table S1. 

(c) ELISA was used to determine SDF-1α in mouse megakaryocytes or 

mouse BM. SDF-1α protein expression is given in nanograms per 100 μg 

total protein. Data are means ± SEM.

Figure 7. GPIIb-dependent platelet aggregation promotes BM-PC 

recruitment during arterial thrombosis in vivo and contributes to 

SDF-1𝛂 release in vitro. (a) To fi nd out whether platelet GPIIb contrib-

utes to BM-PC recruitment in vivo, carotid injury was induced in mice 

lacking GPIIb. Adhesion of CD34+ BM-PCs was monitored by in vivo fl uo-

rescence microscopy. *, P < 0.05 vs. wild type. (b) Platelets were incu-

bated with medium, thrombin, 100 μg/ml soluble fi brinogen, 5 μg/ml 

mAb anti-fi brinogen, or a combination of both for 30 min. Platelet SDF-1α 

release was determined by ELISA as described in Materials and methods. 

Similar experiments were performed with anti-GPIIb mAb 7E3 (whole IgG, 

5 μg/ml) in the presence or absence of 5 μg/ml mAb goat anti–mouse 

IgG. *, P < 0.05 vs. resting platelets. (c) The carotid artery of wild-type 

(WT) or GPIIb-defi cient mice was injured as described in Materials and 

methods. Paraffi n-embedded sections were stained for SDF-1α. L, M, and 

A indicate lumen, media, and adventitia, respectively. Arrows identify 

SDF-1α deposited at the site of vascular injury. Bars, 20 μm. Data are 

means ± SEM.
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at the site of injury was substantially reduced in mice lacking 
GPIIb as compared with wild-type animals (Fig. 7 c). This 
shows that GPIIb considerably contributes to the local deliv-
ery and release of SDF-1α during arterial thrombosis by pro-
moting the accumulation of SDF-1α–bearing platelets and by 
triggering the release of SDF-1α from platelet storage gran-
ules during platelet aggregation.

Platelets recruit endogenous PCs to the injured vessel wall 

in vivo

To further substantiate the biological signifi cance of platelet–
PC interactions, we fi nally determined whether platelets 
might also contribute to the targeting of circulating endoge-
nous PCs to sites of vascular lesions. We mechanically injured 
the carotid artery of C57BL/6J, P-selectin–, or GPIIb-defi -
cient recipient mice or C57BL/6J mice treated with anti–
SDF-1α mAb. The injured and the uninjured contralateral 
carotid arteries were harvested 24 h after injury. To detect 
the recruitment of endogenous PCs to the site of vascular 
 injury, we determined c-Kit and Sca-1 mRNA expression. In 
wild-type mice, carotid injury induced considerable PC re-
cruitment, as indicated by an approximately fi ve- to sixfold 
increase of c-Kit and Sca-1 mRNA expression in the injured 
vessel compared with the uninjured contralateral control ca-
rotid artery (Fig. 8 a). Correspondingly, on day 1 after vascu-
lar injury, the carotid arteries of wild-type mice showed 
thrombi containing numerous nucleated cells that stained 
positive for c-Kit upon immunohistochemical observation 
(Fig. 8 b). In contrast, the recruitment of c-Kit+ cells (unpub-
lished data) and the concomitant increase in c-Kit and Sca-1 
mRNA expression after vascular injury was substantially 
 attenuated in P-selectin– or GPIIb-defi cient mice, whereas it 
was completely absent in anti–SDF-1α mAb-treated animals 
(Fig. 8 c).

Having shown that platelets recruit BM-PCs to sites of 
vascular injury, we were next interested whether BM-PCs 
targeted to thrombi are a source of neointimal cells. To ad-
dress this, we isolated c-Kit+ Sca-1+ Lin− GFP+ BM-PCs 
from the BM of GFP transgenic mice and injected 105 GFP-
positive BM-PCs into GFP− recipient animals. We mechani-
cally injured the carotid artery and killed the animals 5 d 
thereafter. The injured carotid arteries showed platelet-rich 
thrombi at the site of endothelial denudation. The thrombi 
contained abundant numbers of nucleated cells, indicating 
the onset of thrombus organization and neointima formation. 
Numerous GFP+ cells were detected within the organized 
thrombus 5 d after vascular injury (Fig. 8 d). Together, these 
fi ndings clearly indicate that BM-PCs are recruited into 
platelet-rich thrombi and give rise to neointimal cells in vivo, 
a process that might potentially contribute to vascular repair 
and remodeling.

D I S C U S S I O N 

Platelets are crucial for hemostasis and limit blood loss after  
vascular injury. Here, we have identifi ed a novel and totally 
unexpected role for platelets in the targeting of primitive 

BM-PCs to the vessel wall. We directly visualize BM-PCs in 
vivo using IVM and demonstrate that platelets are absolutely 
mandatory to recruit BM-PCs to foci of vessel injury. Corre-
spondingly, specifi c abrogation of platelet adhesion by inhibition 

Figure 8. Platelets recruit endogenous PCs to sites of vascular 

injury. (a) Carotid arteries of C57BL/6J mice were injured as described in 

Materials and methods. 24 h thereafter, the injured (right) and the unin-

jured (left, control) carotid arteries were excised and Sca-1 and c-Kit 

mRNA expression were determined as described in Materials and methods. 

Isolated mouse CD34+ BM-PCs and the mouse heart EC line MHEC5-T 

served as positive and negative controls, respectively. The constitutively 

expressed β-actin transcript was amplifi ed as an internal control to com-

pare relative abundance of PCR products. One representative PCR gel (out 

of three) is presented. (b) A mouse carotid artery 24 h after vascular injury. 

Immunohistochemistry demonstrates that c-Kit+ cells are recruited to 

the luminal aspect of arterial thrombi in vivo (arrowhead). The arrow 

shows a c-Kit negative cell. Bars, 50 μm (left) and 15 μm (right). (c) In-

jured carotid arteries of P-selectin–, GPIIb-defi cient mice or in anti–SDF-1α 

mAb-treated wild-type mice were analyzed for c-Kit and Sca-1 mRNA 

expression. The relative expression of each mRNA was normalized to the 

expression of β-actin for semiquantifi cation and is presented as fold-

increase (mean values) of the injured carotid artery compared with the 

uninjured control. (d) GFP+ KSL BM-PCs were isolated from the BM of 

GFP transgenic mice and injected into GFP− recipient animals before 

mechanical injury of the carotid artery. 5 d later, the injured carotid arter-

ies were excised and GFP fl uorescence was assessed on cryostat sections. 

The corresponding hematoxylin and eosin stain of the identical section is 

shown on the right. Arrows identify GFP+ cells within the neointima. 

Bars, 25 μm.
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of GPVI or GPIbα, both of which are not expressed by 
BM-PCs, virtually abolished the accumulation of PCs at sites 
of endothelial disruption. We provide evidence that platelets 
attract BM-PCs to the injured vessel wall in a multi-step pro-
cess involving the following: (a) surface exposure of platelet 
P-selectin; (b) GPIIb-dependent platelet aggregate forma-
tion; and, highly unexpected, (c) the release of the CXC che-
mokine SDF-1α by activated platelets (Fig. 9). Together, the 
present study identifi es the mechanism underlying the selec-
tive recruitment of circulating PCs to the vascular intima, a 
process that plays a fundamental role for the repair and regen-
eration of vascular tissue after vessel injury, but also during 
cardiovascular development (1, 2).

Platelet P-selectin and SDF-1𝛂 act in concert to recruit PCs 

to the injured vessel wall in vivo

P-selectin expressed on the platelet surface has previously 
been involved in the accumulation of mature leukocytes, in-
cluding monocytes, neutrophils, and lymphocytes (32, 33). 
Here, we provide direct in vivo evidence that platelet P-se-
lectin is also central for the targeting of primitive precursor 
cells to foci of vascular injury. Correspondingly, inhibition or 
loss of P-selectin or its ligand PSGL-1 drastically reduced 
BM-PC accumulation on the surface of adherent/aggregated 
platelets in vivo. Notably, platelet aggregation and arterial 
thrombus formation were not aff ected by lack or inhibition 
of P-selectin, indicating that the decrease of BM-PC accu-

mulation was not the result of a loss of platelet accumulation 
at the site of vessel injury.

Although P-selectin is required for initial tethering/roll-
ing of BM-PCs, the subsequent fi rm arrest of BM-PCs is 
regulated by chemokines. In particular, the CXC chemokine 
SDF-1α, which is critical for mobilization and homing of 
BM-PCs (34), is required to arrest PCs under fl ow in vitro 
(35). Only recently, SDF-1α has been involved in the pro-
cess of vascular remodeling and intimal hyperplasia (24) by 
inducing recruitment of PCs to the vascular wall. Originally, 
SMCs cells have been identifi ed as the major resource of 
SDF-1α in both atherosclerotic lesions (27) and after vascular 
injury (25, 26). Here, we have identifi ed another important 
source of SDF-1α at sites of vascular lesions. Highly unex-
pected, we found that, apart from SMCs, platelets and their 
megakaryocytic precursors abundantly express SDF-1α. 
 Activated platelets rapidly release SDF-1α from internal 
stores, which is functionally active and promotes the migra-
tion of primitive PCs in vitro. Thus, in addition to SDF-1α 
expressed by vascular SMCs, platelet recruitment during ar-
terial thrombosis is associated with a substantial and rapid rise 
in the local concentrations of SDF-1α released into the mi-
croenvironment of sites of vascular injury.

SDF-1α deposited by activated platelets and SDF-1α re-
leased by injured SMCs (25) appear to act in a sequential 
manner. Correspondingly, we show here that, 30 min after 
vascular injury, the platelet-rich thrombus is the major source 

Figure 9. Adherent platelets recruit BM-PCs to injured vessel wall. 

Within minutes after vessel injury, platelets adhere to the exposed suben-

dothelium in a process involving GPVI and GPIbα-IX. Adherent/activated 

platelets surface express P-selectin and release SDF-1α after engagement 

of GPIIb integrin, thereby initiating BM-PC recruitment within minutes 

after vessel injury. Within the ensuing hours and days after endothelial 

disruption, apoptotic SMCs appear to account for the long-term SDF-1α 

release (reference 25). Hence, SDF-1α delivered by platelets early on and 

by SMCs at later stages act in concert to promote the entry of BM-PCs at 

sites of vascular damage.

 on June 7, 2013
jem

.rupress.org
D

ow
nloaded from

 
Published April 17, 2006

http://jem.rupress.org/


1230 RECRUITMENT OF PROGENITOR CELLS TO THROMBI IN VIVO | Massberg et al.

of SDF-1α at the site of vascular injury, whereas 4 h after 
vascular injury, SDF-1α is abundantly expressed in both 
SMCs and the thrombus. This is consistent with a recent re-
port showing that SDF-1α expression in vascular SMCs oc-
curs within 6–24 h after vascular injury, whereas it is negligible 
within the fi rst hours after endothelial disruption (25). We 
show here that inhibition of SDF-1α signifi cantly reduces 
BM-PC adhesion to the growing thrombus as early as 5–30 
min after vascular injury. Hence, it is tempting to speculate 
that platelets constitute the initial and presumably more short-
lived source of SDF-1α that fi rst directs BM-PCs to the site 
of vessel damage. In contrast, SMCs appear to account for the 
long-term SDF-1α release over the ensuing days and weeks 
after vessel injury required to sustain the process of vascular 
remodeling and repair (24, 25). The proposed temporal rela-
tionship of SDF-1α release by platelets and SMCs, and their 
relative contributions to the recruitment of BM-PCs at sites 
of vessel injury is illustrated in Fig. 9.

GPIIb-dependent platelet aggregation modulates 

the recruitment of PCs to the injured vessel wall

We report here that GPIIb-dependent platelet aggregation 
not only initiates arterial thrombosis (13), but also plays a 
fundamental role for the recruitment of primitive PCs at sites 
of vascular injury. GPIIb may directly promote adhesion of 
BM-PCs into the growing thrombus by forming a link be-
tween platelets and PCs using a GPIIb-dependent bridging 
mechanism previously reported to occur during platelet–EC 
interactions (36). Moreover, GPIIb might also operate indi-
rectly in that cross-linking of platelets through GPIIb forms a 
structure in which PCs get trapped. Finally, we report here 
that engagement of GPIIb during platelet aggregation initi-
ates platelet SDF-1α release. Hence, distinct GPIIb-depen-
dent pathways are likely to act sequentially to promote 
BM-PC recruitment at sites of vessel injury.

BM-PCs recruited to arterial thrombi give rise 

to neointimal cells

There is increasing evidence that KSL or CD34+ BM-PCs 
give rise to ECs and SMCs in the vascular (neo-) intima in 
response to vessel injury (4, 6–8). Here, we demonstrate that 
GFP+ BM-PCs recruited to platelet-rich thrombi grow into 
neointimal cells. Notably, it has been reported recently that 
platelet-derived growth factors, including PDGF-BB and 
VEGF, may modulate PC diff erentiation in vitro (7, 37). We 
show here that, apart from growth factors, activated platelets 
release the CXC chemokine SDF-1α. Beyond its role for PC 
recruitment to sites of vessel injury, SDF-1α has been dem-
onstrated to support BM-PC survival and proliferation (38). 
In addition, SDF-1α appears to be involved in the diff eren-
tiation of c-Kit+ cells into endothelial precursors (39). 
 Although we did not defi ne the progeny of KSL or CD34+ 
BM-PCs recruited to thrombi in vivo, it is tempting to spec-
ulate, based on the fi ndings outlined here, that platelets estab-
lish a microenvironment permissive for BM-PC proliferation 
and early diff erentiation after vascular injury in vivo.

To conclude, PCs normally circulate within the blood in 
a “surveillance mode,” encountering only brief contacts with 
the vascular endothelium. Requirement of tissue renewal or 
tissue repair is communicated to circulating PCs by adher-
ent/aggregated platelets. We propose that platelet-dependent 
BM-PC recruitment is essential for vascular repair and local 
wound healing and/or tissue regeneration at sites of vessel 
damage. However, it may also contribute to undesirable PC 
recruitment and proliferation in the process of neointima 
formation after vascular injury and during atheroprogression 
(4, 6, 9).

MATERIALS AND METHODS
Animals. C57BL/6J mice were purchased from Charles River Laboratories. 

Transgenic C57BL/6J mice ubiquitously expressing enhanced GFP under 

the control of the chicken β-actin promoter and CMV enhancer were ob-

tained from The Jackson Laboratory. P-selectin–defi cient mice were gener-

ated and provided by A.L. Beaudet (Baylor College of Medicine, Houston, 

TX). GPIIb (αIIb integrin)-defi cient mice were generated as described previ-

ously (40). All experimental procedures performed on animals met the re-

quirements of the German legislation on protection of animals and were 

approved by the Government of Bavaria/Germany.

Monoclonal antibodies. 4RA10 (function-blocking anti–mouse PSGL-1) 

were raised as described previously (22, 23, 41). Rat anti–mouse GPIbα 

mAb was obtained from Emfret Analytics. Function-blocking anti–mouse/

human SDF-1α (clone 79014) was obtained from R&D Systems. Anti-α2β1 

mAb (clone: BMA2.1) was obtained from Chemicon. mAb 7E3 (gift from 

B. Coller, The Rockefeller University, New York, NY) inhibits fi brinogen 

binding to GPIIb-IIIa.

Separation and labeling of CD34+ BM-PCs, KSL BM-PCs, and 

platelets. For separation of BM-PCs, mice (C57BL/6J or GFP+) were 

killed by an overdose of pentobarbital, and both femura were harvested 

from each animal. Single cell suspensions of the BM were obtained by fl ush-

ing the femura with PBS using a 21-gauge needle. CD34+ BM-PCs were 

separated as described previously (42). Primitive KSL BM-PCs were purifi ed 

according to a previously published protocol (6) (for details, see supplemen-

tal Materials and methods, available at http://www.jem.org/cgi/content/

full/jem.20051772/DC1). For IVM, CD34+ or KSL BM-PCs were fl uores-

cently labeled with 5-carboxyfl uorescein diacetate succinimidyl ester (DCF). 

For each experiment, 107 fl uorescent CD34+ BM-PCs or 1.5 × 105 fl uo-

rescent KSL cells were infused intravenously. Mouse platelets were isolated 

from whole blood as described previously (12, 19). For IVM, platelets were 

tagged with rhodamine-6G or DCF as reported previously (12, 19).

BM-PC adhesion to purifi ed proteins under fl ow conditions. BM-

PCs were isolated as described in the previous paragraph. BM-PC (2 × 104/

ml) adhesion to coverslips coated with BSA, vitronectin (Becton Dickinson), 

fi brinogen (Sigma-Aldrich), collagen (Becton Dickinson), or recombinant 

mouse P-selectin, generated as described previously (23, 41), was assessed in 

a transparent fl ow chamber at a wall shear rate of 1,000 s−1 as described else-

where (22). In a separate set of experiments, platelets (4 × 108/ml) were 

 allowed to adhere to collagen-coated coverslips before perfusion with 

BM-PCs. Where indicated, function-blocking anti–PSGL-1 mAb (5 μg/ml) 

was added to the BM-PC suspension.

Characterization of BM-PC adhesion receptors and determination 

of platelet-binding by fl ow cytometry. BM-PCs (10 × 103 CD34+ or 

KSL cells/ml) resuspended in PBS were incubated with fl uorophore-labeled 

anti-CD41 (αIIb integrin, clone: MWReg 30), anti-CD49d (α4 integrin, 

clone: 9C10), anti-CD162 (PSGL-1, clone: 2PH1) (all from Becton Dickin-

son), anti-GPIbα (Xia.B2, Emfret) or anti-GPVI mAb (2G3, generated as 
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described (22)), or irrelevant isotype-matched control antibody for 30 min 

at room temperature and directly analyzed on a FACSCalibur (Becton 

 Dickinson). In a separate set of experiments, CD34+ or KSL BM-PCs (2 × 

104/ml) were coincubated with 108/ml resting mouse platelets or platelets 

activated with mouse thrombin (2 U/ml, Sigma-Aldrich) for 15 min. Where 

indicated function-blocking anti-CD11b (M1/70, BD Biosciences) or anti-

PSGL-1 mAb (4RA10, 5 μg/ml) was added to the cell suspension. PBS-

 incubated BM-PCs in the absence or presence of thrombin served as controls. 

Thereafter, the samples were incubated with FITC-labeled anti–mouse 

CD41 (MW Reg30) for 30 min to detect platelets attached to BM-PCs at 

room temperature and directly analyzed.

Assessment of BM-PCs and platelet adhesion and BM-PC–platelet 

interaction in response to carotid injury. Platelet and BM-PC (CD34+ 

or c-Kit+ Sca-1+ Lin−) adhesion dynamics before and after vascular injury 

were monitored in vivo by use of IVM. Carotid injury was induced in anes-

thetized C57BL6/J, P-selectin–, or GPIIb-defi cient mice as described previ-

ously (12, 20). Before and after vascular injury, diff erentially fl uorescent-tagged 

cells (platelets and BM-PCs) were visualized using a Zeiss Axiotech micro-

scope (20× water immersion objective, W 20×/0.5, Zeiss) with a 100W 

HBO mercury lamp for epi-illumination as reported previously (12, 20). 

Where indicated, C57BL6/J mice were pretreated with 2 mg/kg body 

weight RB40.34 (anti–mouse P-selectin), 4RA10 (anti–mouse PSGL-1), rat 

anti–mouse GPIbα, or anti–mouse/human SDF-1α (clone 79014) 5 min 

before intravital microscopy (n = 4–6 per group). BM-PC adhesion to the 

carotid artery after infusion of irrelevant isotype-matched IgG served as 

 control (n = 10).
For direct visualization of platelet–KSL cell interactions at the site of 

vascular lesion diff erentially fl uorescent-tagged cells (rhodamine-tagged 

platelets and DCF-tagged KSL BM-PCs) were infused i.v. KSL binding to 

adherent platelets was analyzed 5 min after induction of carotid injury by 

real-time double fl uorescence IVM using a BX51WI microscope  (Olympus), 

equipped with an Olympus MT20 monochromator.

Assessment of SDF-1𝛂 expression by immunohistochemistry. To 

determine the presence of SDF-1α in megakaryocytes and aggregated plate-

lets, paraffi  n-embedded sections of mouse femura, injured mouse carotid 

 arteries (WT or GPIIb-defi cient, 0.5, 4, and 24 h after endothelial denudation), 

and a fresh thrombus isolated from an occluded human coronary artery were 

cut into 2-μm sections and incubated with anti–mouse SDF-1α (clone 

79018; R&D Systems), or anti–human SDF-1α (polyclonal goat; R&D 

 Systems), respectively, and stained using APAAP chemMATE or DAB 

chemMATE detection kits (both obtained from DakoCytomation). For 

 immunofl uorescence microscopy, cryostat sections of injured mouse carotid 

arteries (24 h after endothelial denudation) were incubated with anti–mouse 

CD41 mAb (MW Reg30; BD Biosciences), anti–mouse SDF-1α mAb 

(clone 79014; R&D Systems), Alexa488-labeled goat anti–rat IgG, Alexa594-

labeled goat anti–mouse IgG (both obtained from Invitrogen), and DAPI 

(D1306; Invitrogen). Fluorescence images were obtained using a Leica 

 fl uorescence microscope.

Determination of platelet and megakaryocytic SDF-1𝛂 protein and 

mRNA expression. Platelet SDF-1α release was determined in vitro by 

enzyme-linked immunosorbent assay (R&D Systems). In brief, mouse SDF-

1α standard lysates obtained from isolated resting mouse platelets, whole 

blood, or mouse BM cells were incubated in SDF-1α mAb precoated mi-

croplates and reacted with a polyclonal anti–SDF-1α–horseradish peroxidase 

antibody (all obtained from R&D Systems). For detection a tetramethyl ben-

zidine peroxidase substrate was used. The mouse melanoma cell line D5 

served as a control. Absorbance was read at 450 nm and the background was 

corrected. SDF-1α concentrations were calculated with standards and are 

adjusted to 100 μg total protein.

To determine SDF-1α expression by the megakaryocytic lineage, we 

generated megakaryocytes from mouse CD34+ cells as reported previously 

(28) (for details see supplemental Materials and methods). Megakaryocytic 

SDF-1α expression was assessed by ELISA as described in the previous para-

graphs. In addition, megakaryocytic SDF-1α mRNA expression was deter-

mined using RT-PCR. The mRNA expression of GPIIb integrin and 

β-actin served as controls. The primer sequences and their corresponding 

product sizes and annealing temperatures are shown in the Table S1 (avail-

able at http://www.jem.org/cgi/content/full/jem.20051772/DC1).

Assessment of SDF-1𝛂 release upon platelet activation. To determine 

the eff ect of platelet activation on SDF-1α release, human platelets (0.5 × 

109 cells/ml) were incubated with 2 U/ml α-thrombin or PBS for 30 min. 

To determine the eff ects of GPIIb receptor cross-linking, human platelets 

were incubated with 100 μg/ml of soluble fi brinogen (Sigma-Aldrich) in 

the presence or absence of 5 μg/ml of bivalent mAb antifi brinogen (2C2-

G7; BD Biosciences), or with 5 μg/ml of mouse anti-GPIIb mAb 7E3 in the 

presence or absence of 5 μg/ml of anti–mouse IgG mAb (DakoCytoma-

tion). SDF-1α release into the supernatants of resting or activated platelets 

was determined by ELISA as described in previous paragraphs.

To analyze the surface exposure of SDF-1α in response to platelet acti-

vation, resting or thrombin-activated human platelets were incubated with 

mouse anti–SDF-1α mAb (R&D Systems) or irrelevant isotype-matched 

control antibody for 30 min at room temperature, followed by staining with 

FITC-labeled rabbit anti–mouse IgG antibody (Becton Dickinson). The 

samples were directly analyzed on a FACSCalibur (Becton Dickinson).

To defi ne the distribution of SDF-1α in resting and activated platelets, 

human platelets (2 × 108 cells/ml) were stimulated with 2 U/ml α-throm-

bin, 5 μM ADP, or PBS for 60 min. The platelets were fi xed and stained 

with FITC-labeled anti-CD41 (P2; Beckman Coulter), monoclonal (R&D 

Systems) or polyclonal anti–SDF-1α antibody (goat; R&D Systems), Alexa 

Fluor 488–tagged goat anti–mouse, Alexa 568–tagged rabbit anti–goat, 

 Alexa Fluor 488–tagged rabbit anti–goat (all obtained from Invitrogen), or 

Rhodamine-Phalloidin (R415; Invitrogen) as indicated. Confocal immuno-

fl uorescence analysis was performed using a LSM510 META confocal laser 

microscope equipped with the LSM510 META software (Carl Zeiss 

 MicroImaging, Inc.).

Incorporation of BM-PCs into the neointima. GFP+ CD34+ BM-PCs 

or KSL GFP+ CD34+ BM-PCs were isolated from the BM of GFP transgenic 

mice as described in previous paragraphs and injected into C57BL/6J recipient 

animals (n = 5; 105 cells per experiment). We mechanically injured the carotid 

artery. After 5 d, the injured carotid arteries were excised. GFP fl uorescence 

was detected on cryostat sections by standard fl uorescence microscopy.

Recruitment of endogenous PCs to the injured carotid artery. To 

determine recruitment of endogenous circulating PCs, carotid arteries of 

C57BL/6J (n = 3), P-selectin–, (n = 4) or GPIIb-defi cient mice (n = 2) or 

in anti–SDF-1α mAb-treated wild-type mice (n = 2) were injured as de-

scribed in previous paragraphs and c-Kit and Sca-1 mRNA expression was 

assessed by RT-PCR (see supplemental Materials and methods). The consti-

tutively expressed β-actin transcript was amplifi ed as an internal control to 

compare relative abundance of PCR products, and the relative expression of 

each mRNA was normalized to the expression of β-actin for semiquantifi ca-

tion. To detect c-Kit positive paraffi  n-embedded sections of injured mouse, 

carotid arteries (24 h after endothelial denudation) were incubated with 

anti–mouse c-Kit mAb (2B8; BD Biosciences) and stained using APAAP 

chemMATE mouse detection kit (DakoCytomation).

Statistical analysis. Comparisons between group means were performed 

using one-way analysis of variance on Ranks. Data represent mean ± SEM. 

A value of P < 0.05 was regarded as signifi cant.

Online supplemental material. Online supplemental Materials and 

methods provides additional methodological information in the following 

categories: separation of BM-PCs; eff ects of anti-GPIbα mAb on platelet 

function; transfection of DAMI cells; scanning electron microscopy; gen-

eration of mouse megakaryocytes; in vitro PC migration; and recruitment 
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of  endogenous PCs. Table S1 contains primer sequences, correspond-

ing product sizes, and annealing temperatures. Fig. S1 shows the eff ects of 

anti- GPIbα mAb on platelet function. Fig. S2 addresses BM-PC binding 

to recombinant P-selectin. Fig. S3 illustrates the subcellular localization of 

SDF-1α in megakaryocytes. Fig. S4 investigates the eff ect of platelet SDF-

1α on PC migration. All online supplemental material is available at http://

www.jem.org/cgi/content/full/jem.20051772/DC1.
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