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Abstract—Following the issuance of new radiological protection recommendations in
ICRP Publication 103, the Commission released, in ICRP Publication 110, the adult
male and female voxel-type reference computational phantoms to be used for cal-
culation of the reference dose coefficients (DCs) for both external and internal expos-
ures. While providing more anatomically realistic representations of internal
anatomy than the older stylised phantoms, the voxel phantoms have their limita-
tions, mainly due to voxel resolution, especially with respect to small tissue structures
(e.g. lens of the eye) and very thin tissue layers (e.g. stem cell layers in the stomach
wall mucosa and intestinal epithelium).

This publication describes the construction of the adult mesh-type reference compu-
tational phantoms (MRCPs) that are the modelling counterparts of the Publication
110 voxel-type reference computational phantoms. The MRCPs include all source
and target regions needed for estimating effective dose, even the micrometre-thick
target regions in the respiratory and alimentary tract organs, skin, and urinary blad-
der, assimilating the supplementary stylised models. The MRCPs can be imple-
mented directly into Monte Carlo particle transport codes for dose calculations
(i.e. without voxelisation), fully maintaining the advantages of the mesh geometry.

DCs of organ dose and effective dose and specific absorbed fractions (SAFs) calcu-
lated with the MRCPs for some external and internal exposures show that — while
some differences were observed for small tissue structures and for weakly-penetrating
radiations — the MRCPs provide the same or very similar values as the previously
published reference DCs and SAFs, which were calculated with the Publication 110
reference phantoms and supplementary stylised models, for most tissues and pene-
trating radiations. Consequently, the DCs for effective dose (i.e. the fundamental
protection quantity) were not found to be different. The DCs of ICRP Publication
116 and the SAFs of ICRP Publication 133 thus remain valid.
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To demonstrate deformability of the MRCPs in this publication, the reference phan-
toms were transformed to construct non-reference phantoms that represent the 10th
and 90th percentiles of body height and weight for the Caucasian population. The
constructed non-reference phantoms were then used to calculate non-reference DCs
for industrial radiography sources near the body, which can be used to estimate
organ doses of workers accidentally exposed to these sources, and which reflect
the body size of the exposed worker. The MRCPs of this publication were also
transformed to phantoms that represent different postures (walking, sitting, bending,
kneeling, and squatting), which were then used to evaluate variations in the DCs
from the traditional upright standing position.

© 2020 ICRP. Published by SAGE.

Keywords: Phantoms; Polygon mesh; Tetrahedral mesh; Dose coefficients; Internal
and external exposures
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MAIN POINTS

This publication presents mesh-type reference computational phantoms (MRCPs)
representing the Reference Adult Male and Reference Adult Female, which are
counterparts of the voxel phantoms of Publication 110 (ICRP, 2009) developed
from segmented computed tomographic data of real people.

The MRCPs were constructed by converting the voxel phantoms to a high-quality
mesh format, assimilating the supplementary stylised models used in conjunction
with the voxel phantoms to overcome limitations of voxel resolution, and adding
tissue layers that are considered to contain cells at risk of radiogenic cancer.

The MRCPs include all source and target organs/tissues required for the calculation
of effective dose, including the micrometre-thick target layers of the alimentary and
respiratory tract organs, skin, and urinary bladder.

The voxel phantoms remain the reference models for calculation of Publication-103-
based dose coefficients (DCs) (ICRP, 2007), but the MRCPs will be used in all other
future calculations and also provide a resource for wider use in radiological protec-
tion applications.

To demonstrate the flexibility of the MRCPs, they were modified to construct add-
itional non-reference phantoms representing the 10th and 90th percentiles of body
height/weight of Caucasian adults, and non-standing postures, to calculate non-
reference DCs for exposures to industrial radiography sources reflecting these dif-
ferent body sizes or postures.
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1. INTRODUCTION

(1) Implementing a system of radiological protection requires the assessment of
doses from radiation exposures of individuals, including workers and members of the
general public. The protection quantities are used in the control of radiation expos-
ures to ensure that the occurrence of stochastic health effects is kept below acceptable
levels and to avoid tissue reactions.

(2) Effective dose, in units of sievert (Sv), is accepted internationally as the central
radiological protection quantity, providing a risk-adjusted measure of dose delivered
to the human body from both external and internal radiation sources. Effective dose
has proved to be a valuable and robust quantity for use in the optimisation of
protection, for the setting of control criteria (limits, constraints, and reference
levels), and for the demonstration of regulatory compliance. Effective dose is calcu-
lated for sex-averaged Reference Persons of specified ages by estimating their organ
absorbed doses and applying both radiation and tissue weighting factors (ICRP,
2007).

(3) Absorbed dose, in units of gray (Gy), averaged over a specified organ and
tissue is the physical quantity from which effective dose is calculated. Equivalent dose
to organs and tissues is obtained by multiplying the absorbed dose by radiation
weighting factors to account for the relative effectiveness of different radiation
types in causing stochastic effects at low levels of exposure. Nominal stochastic
risk coefficients and corresponding detriment values, to which effective dose relates,
are calculated as averages from sex-, age-, and population-specific values to provide
internationally applicable values for all workers (aged 18—65 years) and for the whole
population (all ages). Tissue weighting factors used in the calculation of effective
dose are a simplified representation of relative detriment values, relating to detriment
for the whole population (sex, age, and population averaged).

(4) The estimation of organ absorbed doses requires, among other tools, compu-
tational anatomical phantoms (or models). A computational anatomical phantom is
a three-dimensional (3D) computerised representation of the human anatomy with
definitions of both internal organs and outer body surfaces.

(5) Until the mid-2000s, the Commission relied on the use of so-called ‘stylised’ or
‘mathematical’ models of organ anatomy, such as those developed at the Oak Ridge
National Laboratory (Snyder et al., 1969, 1978; Cristy, 1980; Cristy and Eckerman,
1987) and by the Medical Internal Radiation Dose Committee of the Society of
Nuclear Medicine. Body and organ surfaces are defined in these stylised phantoms
using geometric 3D surface equations such as spheres, cones, ellipsoids, and toroids.
These models are generally hermaphrodites with both male and female sex organs
included. As an improvement to these early stylised models, ‘Adam’ and ‘Eva’, sep-
arate male and female adult mathematical phantoms, were introduced (Kramer
et al., 1982). Subsequently, four models representing the non-pregnant adult
female and the pregnant female at three stages of pregnancy were developed by
Stabin et al. (1995). All of the above phantoms were employed for the estimation
of reference dose coefficients (DCs) and specific absorbed fractions (SAFs) issued by
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the Commission for internal and external exposures, as given in Publications 30, 53,
56, 60, 61, 66, 67, 68, 69, 71, 72, 74, 80 and 100 (ICRP, 1979, 1988, 1990, 1991a,b,
1993, 1994a,b, 1995a,b, 1996a,b, 1998, 2006).

(6) The most recent ICRP recommendations were published in Publication 103
(ICRP, 2007). In that publication, the Commission includes the specifications of
separate Reference Male and Reference Female anatomical models to be used
together with radiation transport codes that simulate radiation transport and
energy deposition for assessment of the mean absorbed dose in specified target
organs or tissues from which equivalent doses and the effective dose can be calcu-
lated successively.

(7) Consequently, the Commission released new computational phantoms of
Reference Adult Male and Reference Adult Female in Publication 110 (ICRP,
2009). These reference computational phantoms are based on human computed
tomography (CT) data. They are consistent with the information given in
Publication 89 (ICRP, 2002) on the reference anatomical parameters for both
Reference Adult Male and Reference Adult Female.

(8) The reference computational phantoms (or models) were constructed by mod-
ifying the voxel models (Zankl and Wittmann, 2001; Zankl et al., 2005) of two
individuals (Golem and Laura) whose body height and mass closely resembled the
reference data. The organ masses of both phantoms were adjusted to the ICRP data
without significantly altering their realistic anatomy. The phantoms contain all target
regions relevant to the assessment of human exposure to ionising radiation for radio-
logical protection purposes (ICRP, 2007), with the exception of certain very thin
target tissues located within the alimentary and respiratory tracts. Each phantom is
represented in the form of a 3D array of cuboidal voxels. Each voxel is a volume
element, and the voxels are arranged in columns, rows, and slices. Each entry in the
array identifies the organ or tissue to which the corresponding voxel belongs. The
male reference computational phantom consists of approximately 1.95 million tissue
voxels (excluding voxels representing the surrounding vacuum), each with a slice
thickness (corresponding to the voxel height) of 8.0 mm and an in-plane resolution
(i.e. voxel width and depth) of 2.137mm, corresponding to a voxel volume of
36.54mm°’. The number of slices is 220, body height is 1.76 m, and body mass is
73 kg. The female reference computational phantom consists of approximately 3.89
million tissue voxels, each with a slice thickness of 4.84 mm and an in-plane reso-
lution of 1.775mm, corresponding to a voxel volume of 15.25mm?>. The number of
slices is 346, body height is 1.63 m, and body mass is 60 kg. The number of individu-
ally segmented structures is 136 in each phantom, to which 53 different tissue com-
positions have been assigned. The various tissue compositions reflect both the
elemental composition of the tissue parenchyma (ICRU, 1992) and each organ’s
blood content (ICRP, 2002) (i.e. organ composition inclusive of blood).

(9) While providing more anatomically realistic representations of internal anat-
omy than the older stylised phantoms, voxel phantoms have their limitations, mainly
due to image resolution, especially with respect to small tissue structures (e.g. lens of
the eye) and very thin tissue layers (e.g. stem cell layers in the stomach wall mucosa
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and intestinal epithelium). The in-plane resolution of modern CT scanners is gener-
ally >0.5mm. However, the Z dimension of the phantom voxels corresponding
to the image slice thickness can be a few to several millimetres for typical clinical
protocols (Bolch et al., 2010). Images with higher in-plane resolution would be dif-
ficult to obtain as significant absorbed doses would be given to the patient or
volunteer.

(10) The voxel-based reference computational phantoms have been used to esti-
mate the reference DCs for external radiation exposures of Publication 116 (ICRP,
2010), the SAFs of Publication 133 (ICRP, 2016), and for the series of publications
on occupational intakes of radionuclides (ICRP, 2015, 2017a,b). Calculations for
DCs due to ingestion and inhalation from members of the public are in progress. For
these calculations, supplementary organ-specific stylised models were employed to
estimate internal electron and alpha particle SAFs for thin tissue layers to replace
those computed directly in the computational reference voxel phantoms. Similarly,
for some selected external exposures, separate simulations were made to determine
the absorbed dose to the lens of the eye and to local regions of the skin (ICRP, 2010).

(11) In order to overcome the limitations of the voxel-type ICRP reference phan-
toms related to their resolution, to avoid the use of supplementary phantoms, and to
provide all-in-one anatomical computational phantoms, ICRP formed Task Group
103 on Mesh-type Reference Computational Phantoms (MRCPs) to provide a new
generation of ICRP reference computational phantoms, constructed by converting
the voxel-type ICRP reference phantoms to a high-quality mesh format to include
thin target and source regions, even the 8-40-pm-thick target layers of the alimentary
and respiratory tracts.

(12) It is noted that these MRCPs, represented by either polygon mesh (PM) or
tetrahedral mesh (TM) geometry as necessary, are considered presently as the most
advanced type of computational phantoms, in that they can be implemented directly
into Monte Carlo codes (i.e. without the conventionally used ‘voxelisation’ process),
thus fully maintaining the advantages of the mesh geometry in Monte Carlo dose
calculations (Kim et al., 2011; Yeom et al., 2013, 2014; Han et al., 2015). Note that
TM geometry has been available in the Geant4 and MCNP codes since 2013 and in
the PHITS code since 2015. There are many other phantoms in PM or non-uniform
rational B-spline (NURBS) format, but all of these need to be voxelised to be used in
Monte Carlo codes (Zhang et al., 2009; Cassola et al., 2010; Lee et al., 2010). The aim
of Task Group 103 was to provide a new generation of ICRP reference computa-
tional phantoms which do not require voxelisation in Monte Carlo codes, preserving
the original fidelity of the phantoms.

(13) This publication describes: (1) conversion of the voxelised ICRP adult refer-
ence computational phantoms to their mesh-format counterparts; (2) simulation of
several additional tissues such as target cell layers defined by the Commission for the
respiratory and alimentary tract organs, urinary bladder, skin, eyes, and lymph
nodes, and their inclusion in the phantoms; (3) investigation of the impact of the
newly developed phantoms for the determination of DCs within the ICRP system;
and (4) discussions on further applications.
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(14) The new MRCPs preserve the original topology of the voxel-type ICRP ref-
erence phantoms, present substantial improvements in the anatomy of small tissues,
and include all of the necessary source and target tissues defined by the Commission,
assimilating the supplementary stylised models such as those defined for respiratory
tract airways, the alimentary tract organ walls and stem cell layers, the lens of the
eye, and the skin basal layer. In the MRCPs, the skeletal target tissues [red bone
marrow (RBM) and endosteum] are not represented explicitly, but are included
implicitly in the spongiosa and medullary cavity in the same manner as provided
in the Publication 110 (ICRP, 2009) phantoms. Doses to these skeletal tissues can be
estimated using dedicated skeletal dose calculation methods (e.g. fluence-to-dose—
response functions), such as those given in Annexes E and F of Publication 116
(ICRP, 2010).

(15) In general, it can be stated that the MRCPs provide effective dose DCs very
similar to those of the voxel-type ICRP reference phantoms for penetrating radi-
ations and, at the same time, more accurate DCs for weakly-penetrating radiations.

(16) In addition to the greater anatomical accuracy of the MRCPs, they are
deformable and, as such, can serve as a starting point to create phantoms of various
body sizes and postures for use, for example, in retrospective emergency or acciden-
tal dose reconstruction calculations. These non-reference versions may be useful to
calculate organ doses for purposes other than calculating effective dose. To demon-
strate this feature, the MRCPs in this publication were modified via various scaling/
deforming procedures to construct (standing) phantoms which represent the 10th
and 90th body height/weight percentiles of the adult male and female Caucasian
populations (Lee et al., 2019). Furthermore, they were also used to create non-
standing phantoms (i.e. with different postures of the reference size) (Yeom et al.,
2019). The constructed phantoms were then used to calculate DCs for exposures to
industrial radiography sources near the body, reflecting different body sizes or pos-
tures, which can be used to estimate the organ/tissue doses to workers accidentally
exposed to these radionuclide sources.

(17) The new phantoms have applications beyond the calculation of reference
DCs. For example, the deformation capability of the phantoms can facilitate the
virtual calibration of whole-body counters to account for the body size of radiation
workers in efficiency calibration. The new phantoms are in mesh format and there-
fore can be used directly to produce physical phantoms, as necessary, with 3D print-
ing technology. It is relatively easy to model detailed structures in the phantoms and,
therefore, the new phantoms could find applications in medicine and other areas
requiring sophisticated organ models. One of the aims of this publication is to assist
those who wish to implement the phantoms for their own applications; therefore, the
detailed data on the phantoms in both PM and TM formats are provided in the
supplementary electronic data that accompany the printed publication, together with
some input examples of the Monte Carlo codes.

(18) For the calculation of equivalent and effective DCs based on Publication 103
(ICRP, 2007) methodology, the adult voxel phantoms of Publication 110 (ICRP,
2009) remain the primary ICRP/International Commission on Radiation Units and
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Measurements (ICRU) reference anatomical models. Thus, the Publication 110
models have been used to calculate DCs for external exposures (Publication 116;
ICRP, 2010) and internal exposures (Publications 130, 134, 137, and 141; ICRP,
2015, 2016, 2017b, 2019), and ICRU calculations of operational quantities for the
measurement of external exposures (ICRU, in press). Similarly, voxel phantoms for
children (Publication 143; ICRP, 2020) are being used to calculate age-dependent DCs
based on Publication 103 methodology for external exposures (Publication 144; ICRP,
2020) and internal exposures. The MRCP phantoms will replace the voxel phantoms
for further recalculations of DCs following from the next set of general recommen-
dations. In the short term, the MRCP will be used for calculations relating to dos-
imetry in emergencies and accidents, making use of the detailed construction of the
phantoms with all target tissues delineated, and their deformability to non-standard
sizes and postures. The ability to calculate non-reference values using the MRCPs,
including variations based on differences in height, weight, and posture, have many
uses, as described in this publication.

(19) Section 1 explains the main motives for construction of the adult MRCPs.
Section 2 focuses on those tissues of the reference computational phantoms of
Publication 110 (ICRP, 2009) for which the anatomical description has been
improved significantly in the mesh-type formats. Section 3 describes the general
procedure for conversion of the Publication 110 phantoms to the mesh format.
Section 4 describes adjustment of the converted MRCPs to the reference values
for mass, density, and elemental composition of organs and tissues inclusive of
blood content. Section 5 describes the inclusion of the thin target and source regions
of the skin, alimentary tract system, respiratory tract system, and urinary bladder in
the MRCPs. Section 6 describes the general characteristics of the resulting MRCPs.
Section 7 investigates the impact of the improved internal morphology of the
MRCPs on the calculation of DCs for external and internal exposures. Finally,
Section 8 describes an application to the calculation of DCs for industrial radiog-
raphy exposures in order to demonstrate the capability of the MRCPs in calculation
of DCs for accidental or emergency exposure scenarios.

(20) A detailed description of the MRCPs is given in Annexes A-F. Annex A
presents a list of the individual organs/structures (identification list), together with
the assigned media, densities, and masses. Annex B presents a list of the phantom
media and their elemental compositions. Annexes C and D list the source and target
regions, respectively, together with their acronyms and identification (ID) numbers.
Annex E provides organ depth distributions (ODDs) for selected organs from the
front, back, left, right, top, and bottom, along with the respective data of the
Publication 110 (ICRP, 2009) phantoms. Annex F provides chord length distribu-
tions (CLDs) between selected pairs of source and target organs, along with the data
of the Publication 110 phantoms.

(21) Annex G presents selected transverse, sagittal, and coronal slice images of
the MRCPs.

(22) In Annexes H and I, the DCs and SAFs calculated with the MRCPs for some
selected idealised external and internal exposure cases are compared with the
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reference values of Publications 116 and 133 (ICRP, 2010, 2016). Annex H shows
comparisons of the organ and effective dose DCs, calculated for external exposure to
photons, neutrons, electrons, and helium ions, with the Publication 116 values.
Annex I compares the SAFs for photons and electrons with the Publication 133
values.

(23) Annex J presents the DCs for industrial radiography sources calculated with
the MRCPs as well as the body-size-specific phantoms that were constructed by
modifying the MRCPs.

(24) Annex K describes the contents of the supplementary electronic data that
accompanies the printed publication, including the detailed phantom data and the
input examples of some Monte Carlo codes.
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2. IMPROVEMENTS OF THE ADULT MESH-TYPE
REFERENCE PHANTOMS OVER THE ADULT VOXEL-TYPE
REFERENCE PHANTOMS

(25) The adult voxel-type reference computational phantoms described in
Publication 110 (ICRP, 2009) were adopted by ICRP and ICRU as the phantoms
for computation of the ICRP/ICRU reference DCs for radiological protection pur-
poses. These computational phantoms are digital 3D representations of the human
anatomy, constructed using CT images of real people. The phantoms are consistent
with the information given in Publication 89 (ICRP, 2002) on the reference anatom-
ical parameters of Reference Adult Male and Reference Adult Female. The
Publication 110 phantoms are shown in Fig. 2.1.

(26) While providing more anatomically realistic representations of internal anat-
omy than the older type of stylised phantoms, the adult voxel-type reference phan-
toms have limitations due to their voxel resolution, and hence some organs and
tissues could not be represented explicitly or could not be adjusted to their reference
mass due to their small dimensions or complex anatomical structure. This fact was
discussed in Publication 110 (ICRP, 2009). In an attempt to address the limitations of
the voxel-type reference phantoms related to image resolution, further improvements
in representing these organs and tissues were made in the adult MRCPs described in
the present publication. These improvements are summarised in the following
paragraphs.

(27) The skin of the voxel-type reference phantoms is represented by a single voxel
layer, considering only transverse directions, resulting in the skin being discontinu-
ous between individual transverse slices. The total skin mass of the phantoms is 13%
and 18% higher than the reference values for the adult male and female, respectively.
Through the discontinuous parts of the skin, radiation incident at non-zero angles of
incidence relative to the transverse slices can reach internal organs or tissues (e.g.
breasts, testes, and salivary glands) directly without first penetrating the skin layer.
This might lead to an overestimation of DCs for weakly-penetrating radiations inci-
dent at angles that are not perpendicular to the body length axis. The MRCPs, in
contrast, are fully wrapped by the skin, whose total mass is in accordance with the
reference value. Note that other organs and tissues with thin tissue structures (such
as gastrointestinal tract organs and cortical bone) are discontinuous in the voxel-type
reference phantoms; this issue is resolved fully within the MRCPs.

(28) The small intestine of the voxel-type reference phantoms, in addition to
showing discontinuous parts, does not represent its complex tubular structure pre-
cisely. Therefore, high-quality small intestine models were incorporated into the
MRCPs, whereby models were generated using a dedicated procedure based on a
Monte Carlo sampling approach (Yeom et al., 2016a). Similarly, high-quality
detailed models of the spine (cervical, thoracic, and lumbar) and hand and foot
bones were incorporated into the MRCPs (Yeom et al., 2016b).

(29) The lymphatic nodes of the voxel-type reference phantoms were drawn manu-
ally at locations specified in anatomical textbooks (Brash and Jamieson, 1943;
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Fig. 2.1. The voxel-type reference phantoms of Reference Adult Male (left) and
Reference Adult Female (right). The skin, muscle, and adipose tissue are not displayed in
this figure.
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Moller and Reif, 1993, 1997; GEO kompakt, 2005) because they could not be iden-
tified on the original CT images. Although the higher concentration at specific loca-
tions (e.g. groin, axillae, hollows of the knees, crooks of the arms) described in the
textbooks was incorporated correctly into the Publication 110 (ICRP, 2009) phan-
toms, site-specific numbers of the lymphatic nodes presented in Publication 89
(ICRP, 2002) were not considered. In the MRCPs, lymphatic nodes were regenerated
by a modelling approach used for the University of Florida and the National Cancer
Institute (UF/NCI) family of phantoms (Lee et al., 2013) based on the lymphatic
node data derived from the data of Publications 23, 66, and 89 (ICRP, 1975, 1994a,
2002) (see Section 3.4).

(30) The complex structure of the eye could not be represented precisely in the
voxel-type reference phantoms due to the image resolution. Therefore, the detailed
eye model of Behrens et al. (2009) was adopted in Publication 116 (ICRP, 2010), and
the lens DCs of Publication 116 were calculated using either the voxel-type reference
phantoms or the adopted eye model, depending on radiation type, energy, and
irradiation geometry. In order to be able to compute the absorbed dose to the lens
of the eye using only one anthropomorphic phantom for each sex, the detailed eye
model of Behrens et al. (2009) was incorporated directly into the MRCPs (Nguyen
et al., 2015).

(31) The Commission recommended that a range from 50 to 100 pm below the skin
surface should be considered as an appropriate depth for the basal cell layer of most
body regions of the skin (ICRP, 1977, 2010, 2015). The 50-um-thick radiosensitive
skin layer, however, cannot be represented in the voxel-type reference phantoms due
to their limited voxel resolution. The skin DCs of Publication 116 (ICRP, 2010) for
external exposures were thus calculated by averaging the absorbed dose over the
entire skin of the phantoms. This approximation is acceptable for the calculation of
effective doses for penetrating radiations, considering the small tissue weighting
factor of the skin (wr=0.01). However, for weakly-penetrating radiations, such as
alpha and beta particles, this approximation leads to underestimations or overesti-
mations in skin target cell layer doses. In the skin of the MRCPs, the 50-um-thick
radiosensitive target layer was defined explicitly.

(32) Similarly, the micrometre scales of radiosensitive tissues and source regions
for radionuclide retention of the respiratory and alimentary tract systems, as
described in Publications 66 and 100 (ICRP, 1994a, 2006), could not be represented
in the voxel-type reference phantoms. Separate stylised models, describing the
respiratory and alimentary tract organs as mathematical shapes (e.g. a sphere or a
right circular cylinder), were used for the calculation of SAFs for charged particles
(ICRP, 1994a, 2006, 2016). In the MRCPs, the micrometre-thick target and source
regions in the alimentary and respiratory tract systems as described in Publications 66
and 700 (ICRP, 1994a, 2006) were included (Kim et al., 2017). Realistic lung airway
models that represent the bronchial (BB) and bronchiolar (bb) regions were also
developed and incorporated into the MRCPs, whereas in the voxel-type reference
phantoms, the bronchi could not be followed down to more than the very first
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generations of airway branching (Kim et al., 2017). Furthermore, the bronchioles are
too small to be represented in a voxel basis (ICRP, 2009).

(33) Previously, the organ and tissue masses of computational anthropomorphic
phantoms (Lee et al., 2007; ICRP, 2009; Yeom et al., 2013) were commonly adjusted
to the reference values listed in Table 2.8 of Publication 89 (ICRP, 2002). However,
these masses correspond to the masses of organ/tissue parenchyma alone, while
the optimal phantom design would provide organ volumes consistent with both
the organ parenchyma and included blood vasculature. In a living person, on the
other hand, a large proportion of blood is distributed in small vessels and capillaries
within the organs and tissues, thus slightly increasing the organ and tissue masses
within the phantom body. In recognition of this circumstance, target tissue/organ
masses inclusive of blood were used to calculate the self-irradiation SAFs of
Publication 133 (ICRP, 2016). To reflect this in the new MRCPs, the organ and
tissue masses and tissue compositions of these phantoms were adjusted to include
their organ blood content. The blood distribution among the organs and tissues was
derived from the reference regional blood volume fractions given in Publication 89
(ICRP, 2002) using an approach similar to that outlined in Publication 133
(ICRP, 2016).
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3. CONVERSION OF THE ADULT VOXEL-TYPE REFERENCE
PHANTOMS TO MESH FORMAT

3.1. Simple organs and tissues

(34) Most organs and tissues in the MRCPs were constructed by directly convert-
ing the adult voxel-type reference phantoms to the PM format via 3D surface ren-
dering and subsequent refinement procedures. Fig. 3.1 describes the procedure
schematically. The voxel data of the phantoms were imported into 3D-DOCTOR
(Able Software Corp., Lexington, MA, USA). The organs and tissues were then
contoured using the ‘Interactive Segmentation” command of the software. The con-
toured lines were converted to primitive PM models using the ‘Surface Rendering’
command. These primitive PM models, generally showing some stair-stepped sur-
faces with holes and defects, were refined into high-quality PM models using
Rapidform (INUS Technology Inc., Seoul, Korea). In order to minimise distortion
of the original shape during the refinement process, the number of facets was
increased using the ‘Subdivide’ command of the software. The PM models were
smoothed with the ‘Smooth’ command, and their holes and defects were eliminated
using the ‘Fill Holes’ and ‘Healing Wizard’ commands. Subsequently, the number of
polygonal facets was reduced to a reasonable number by applying the ‘Decimate’
command repeatedly. Finally, the refined PM models were adjusted to match
Publication 89 reference masses (ICRP, 2002) using the ‘Deform’ command. For
the organs and tissues including inner structures such as hollow organs, the refined
PM models were replicated to produce separate models to define inner structures.
The sizes of the inner structure models were then reduced by adjusting their volumes
to match the target mass using the ‘Offset’ and ‘Deform’ commands. For some

=
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number of facets

Conversion to primitive ' Adjustment of organ mass
polygonal-mesh (PM) model to reference value
Smoothness of boundary
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Fig. 3.1. Conversion procedure applied for most organs and tissues.
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complex organs such as the colon, the voxels were first converted to NURBS models
and then to PM models.

(35) Note that the reference value for the oesophageal contents is not given in
Publication 89 (ICRP, 2002); thus, the Publication 110 (ICRP, 2009) phantoms do
not include the oesophageal contents, which makes it impossible to calculate SAFs
for the oesophagus for radiations emitted by ingested radioactive material during
passage through the oesophagus. In the MRCPs, therefore, the oesophageal contents
were added as part of the oesophagus, having the same volume as the Publication 100
(ICRP, 2006) stylised models (male 22.0 cm?, female 20.4 cm?). For this change, both
the length and diameter of the original voxel-type oesophagus had to be increased by
~0.3cm. Resultantly, the mass of the residual soft tissue (RST) was decreased in
order to keep the body mass unchanged. RST is discussed in detail in Section 4.3.

(36) During inclusion of the oesophageal contents, it was found that in the
Publication 110 (ICRP, 2009) phantoms, the oesophagus contacts the thyroid for
both the male and female phantoms, and the thyroid contacts the thymus for the
male phantom, which are anatomically incorrect. These organs were separated in the
MRCPs.

(37) Due to the limited voxel resolution of the original voxel-type reference com-
putational phantoms, it was impossible to properly segment the blood in the lungs of
the Publication 110 (ICRP, 2009) phantoms. Consequently, blood mass (male 150 g,
female 101 g) is significantly less than the reference value (male 700 g, female 530 g),
and unsegmented blood is included implicitly in the lung tissue (ICRP, 2009). In the
PM model of the lungs, the segmented blood was included in the lung tissue by
recalculating the density and elemental composition of the lung tissue. This approach
increased lung density by 8.6% (male) and 7.3% (female). These changes will not
significantly affect calculated absorbed doses to the lungs.

(38) During the conversion process, the PM models were adjusted to the voxel
models, monitoring two indices which show the geometric similarity between two
given objects. The first index used in the process was the Dice index (DI), which
simply represents the volume overlap fraction of two objects (Dice, 1945). For con-
firmation of successful adjustment, it was considered that the DI value should be
>95% of the maximum achievable Dice index (MADI) for a given organ. Note that
MADI exists for a given organ due to the fundamental difference in the geometry
format (i.e. voxel vs PM), which was estimated by calculating the DI value between
the PM model under adjustment and its voxelised model with the same voxel reso-
lution as the Publication 110 (ICRP, 2009) phantoms. The second index is the cen-
troid distance (CD), which is the distance between the centroids of the voxel model
and the corresponding PM model. It was considered that the CD value should be
<0.5mm for confirmation of a successful adjustment.

(39) CD values were <0.5mm for all organs and tissues which were converted
directly from the Publication 110 (ICRP, 2009) voxel models. The DI values were
greater than the target DI (=95% of MADI) for most organs and tissues, but there
were some exceptions. For the oesophagus, for example, the DI value was less than
the target DI value because the total volume of the oesophagus of the PM models
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was increased intentionally in order to include the oesophageal contents, as discussed
above. A few other organs and tissues also showed low DI values because the finite
voxel resolution resulted in disconnections of these organs in the Publication 110
phantoms. For the PM models, the disconnected organ/tissue was first connected
and then adjusted to maximise the DI value. After completion of conversion, an
additional geometric similarity index, the Hausdorff distance (HD) (Hausdorff,
1918), was calculated, defined as:

HD = max((D(4 N B, B), D(BN A", A)) (1)
D(A,B) = Ni > D(a.B) ()
@ acA

where «a is a point within an object A, and D(a, B) is the minimum distance from
point a to the other object B. It was found that the HD values are <2.5mm for all
organs and tissues, and <1.2 mm for most cases, which also indicates the high simi-
larity of the PM models with the original voxel models.

3.2. Skeletal system

(40) Most bones [i.e. upper arm bones (humeri), lower arm bones (ulnae and
radii), clavicles, upper leg bones (femora), lower leg bones (tibiae, fibulae, and patel-
lae), mandible, pelvis, scapulae, sternum, cranium and ribs] were produced using the
same conversion procedure employed for the single-region organs and tissues, as
demonstrated above for the liver. For the spine (cervical, thoracic, and lumbar),
which is a very complicated tissue structure, a set of existing high-quality PM
models produced from serially sectioned colour photographic images of cadavers
(Park et al., 2005) was taken and adjusted to the voxel models, monitoring both DI
and CD values. Similarly, for the hands and feet, a set of high-quality PM models
produced from micro-CT data of cadavers (http://dk.kisti.re.kr) was adopted; these
models were not adjusted to the voxel models but simply scaled to match the target
masses and then placed at the ends of the arms and legs of the MRCPs. Note that in
the Publication 110 (ICRP, 2009) female phantom, the feet are inclined (because the
original subject was imaged under CT in a prone position). In the MRCP, the feet
were re-oriented in a flat, standing position such as found in the Publication 110 male
phantom.

(41) In the Publication 110 (ICRP, 2009) phantoms, the cartilage was not fully
segmented, mainly due to low contrast in the original CT data. In the MRCPs, the
costal cartilage and intervertebral discs were also modelled following the method

25



ICRP Publication 14X

used for construction of the UF/NCI phantoms (Lee et al., 2010). To maintain the
reference cartilage mass, the remaining cartilage was simply included in RST, which
is discussed in Section 4.3. Strictly speaking, this approach is equally incorrect as the
approach used in the Publication 110 phantoms in which the non-segmented cartilage
was included in the spongiosa regions. However, the present approach is more
acceptable dosimetrically, considering that the density and effective atomic number
of the cartilage are close to those of soft tissues and that the cartilage is neither a
radiation-sensitive tissue nor a frequent source region for internal dosimetry; the
exact location and distribution of the remaining cartilage is thus not important
from the dosimetric point of view.

(42) The sacrum of the Publication 110 (ICRP, 2009) female phantom lacks cor-
tical bone due to limitations with voxel resolution; therefore, cortical bone was added
to the sacrum of the female phantom, assuming that the female cortical bone mass
fraction is identical to that of the male. To maintain the total cortical bone mass
unchanged, the cortical bone of the female lower leg bones was reduced considering
that the cortical bone mass fraction of the female lower leg bones (19%) was signifi-
cantly higher than that of the male lower leg bones (12%). More detailed informa-
tion on the skeleton conversion can be found in Yeom et al. (2016b).

(43) Note that in the skeletal system, the micron-scale structures of the skeletal
target tissues (i.e. active bone marrow and skeletal endosteum) are not modelled and,
therefore, the dose to these skeletal tissues needs to be calculated using fluence-to-
dose-response functions, such as those presented and described in Annexes D and E
of Publication 116 (ICRP, 2010).

3.3. Small intestine

(44) The small intestine was not represented precisely in the Publication 110
(ICRP, 2009) phantoms, mainly because its complex tubular structure was not
clearly distinguishable in the original cross-sectional CT data and its modelling
was limited due to the finite voxel resolution. Accordingly, a dedicated procedure
and a computer program were used to generate the small intestine models in the
MRCPs (Yeom et al., 2016a). First, a surface frame, entirely enclosing the original
small intestine voxel model, was constructed using the alpha-shape algorithm
(Edelsbrunner et al., 1983). Next, a dedicated computer program developed in
C++ was used to generate a small intestine passage line using a Monte Carlo
sampling approach. Along with the passage line, a PM-format small intestine
model was generated, whose masses of the wall and contents were matched to the
reference values given in Publication 89 (ICRP, 2002). The aforementioned proced-
ure was repeated to produce 1000 different small intestine models, with the best
model selected considering both its geometric and dosimetric similarity. More
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detailed information on construction of the small intestine model can be found in
Yeom et al. (2016a).

3.4. Lymphatic nodes

(45) The lymphatic nodes of the Publication 110 (ICRP, 2009) phantoms could
not be converted directly to the PM format due to their complexity and distrib-
uted nature in the body. The lymphatic nodes in the PM format were therefore
generated using a similar modelling approach as used to generate lymphatic nodes
in the UF/NCI phantoms (Lee et al., 2013) based on the lymphatic node data (see
Table 3.1), which were derived from the data of Publications 23, 66, and 89 (ICRP,
1975, 1994a, 2002). Note that the derived lymphatic node data are consistent with
the values adopted for the calculations of Publication 133 (ICRP, 2016). For gen-
eration of the lymphatic nodes, a dedicated computer program was developed
following the procedure shown in Fig. 3.2. The program first loads the initial
data: (1) the PM phantom data; (2) the single-node PM data; (3) the nodal diam-
eter; (4) the coordinates of the lymphatic node sites; (5) the diameters of the
spherical clusters for the sites; and (6) the site-specific nodal numbers. Next, the
program generates lymphatic nodes satisfying the following two criteria at
random: (1) a node should be placed within the corresponding cluster sphere;
and (2) a node should not overlap other organs and tissues, or the previously
generated nodes. The procedure is repeated until the number of generated nodes
reaches a predefined number.

Table 3.1. Lymphatic node numbers and masses for Reference Adult Male and Reference
Adult Female derived from the data of Publications 23, 66, and 89 (ICRP, 1975, 1994a, 2002),
along with reference node numbers given in Publication 89 (ICRP, 2002).

Reference node Mass (g)

numbers in Derived node
Lymphatic node site Publication 89 numbers Male Female
Extrathoracic 55 15.0 12.0
Cervical 19 5.2 4.1
Thoracic 50-60 55 15.0 12.0
Breast (left and right) 38 10.4 8.3
Mesentery (left and right) 200-500 350 95.5 76.4
Axillary (left and right) 8-37 23 6.3 5.0
Cubital (left and right) 38 10.4 8.3
Inguinal (left and right) 38 10.4 8.3
Popliteal (left and right) 38 10.4 8.3
Total 600-700 654 178.4 142.7
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Initial Data Reading

PHANTOM - 3D PM model OBJ file
LN_RAD - Lymphatic node radius
SITE_CEN = Center point of 16 sites
SITE_RAD - Radius of each site
LN_MUM = Lymphatic node numbers for each site

Lymphatic Node Generation

Randomly sample a point LM CEN'within spherical boundary of
M-th site and generate lymphatic node with a radius (LM RAD)
at the sampled center point (LM_CEN)

If the lymphatic node does
not overlap with any other
organs and previously

ted [ymphatic nodes.

If the lymphatic node is
inside the skin 7

I N=N:T |
NO
YES
I M=M=+1
NO
YES
Export Lymphatic Node

Export generated lymphatic nodes as PLY files

END

Fig. 3.2. Flowchart of program developed to generate lymphatic nodes in the polygon
mesh phantoms.
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3.5. Eyes

(46) The Publication 110 (ICRP, 2009) phantoms, due to their voxel sizes on the
order of a few millimetres, do not properly represent the detailed structure of the eye.
Thelens DCs of Publication 116 (ICRP,2010) on idealised external radiation exposures
were therefore calculated using either the Publication 110 phantoms or the detailed
stylised eye model developed by Behrens et al. (2009), depending on radiation type,
energy, and irradiation geometry. To avoid this situation, the detailed eye model of
Behrens et al. (2009) was incorporated directly into the male and female MRCPs. First,
using the geometric information of Behrens et al.’s detailed eye model, a NURBS-
format eye model was produced and then converted to the PM format. Defects in
the converted model were repaired using the refinement functions of Rapidform
(INUS Technology Inc.). Finally, the PM eye model was placed in the MR CPs, match-
ing the centroid of the eye of the Publication 110 phantoms. More detailed information
on the eye model can be found in Nguyen et al. (2015).

3.6. Blood in large vessels

(47) Only the blood in the large blood vessels is modelled in the Publication 110
(ICRP, 2009) phantoms, again due to the limited resolution of the original CT
image data (8- and 5-mm slice thicknesses for the male and female phantoms,
respectively). Consequently, the mass of the segmented blood in the Publication
110 phantoms (male 371 g, female 384 g) is significantly less than their correspond-
ing reference values (male 1344 g, female 984 g). This issue was addressed in the
MRCPs. For the MRCPs, first, the blood of the large blood vessels was converted
to the PM format, whose mass was then matched to the reference value. For this
step, the blood models of the Publication 110 phantoms were first converted to
primitive PM models using a surface rendering method in 3D-DOCTOR (Able
Software Corp.). Next, the contour lines were generated carefully along the
blood passages identified in the primitive PM models using the ‘Section’ command
of Rhinoceros (Robert McNeel & Associates, Seattle, WA, USA). The generated
contour lines were then used to generate NURBS surfaces using the ‘Loft’ com-
mand of the software. Finally, the NURBS surfaces were converted to the PM
format using the ‘Mesh’ command. In the MRCPs, the remaining part of the blood
in the smaller blood vessels was modelled manually with the NURBS modelling
tools of Rhinoceros, referring to the high-quality 3D blood models provided by
BioDigital (https://www.biodigital.com). The modelled NURBS surfaces were con-
verted to the PM format, and then the converted PM models were connected to the
PM models of the blood in the large vessels using the ‘Union’ command of
Rapidform (INUS Technology Inc.). Finally, the combined PM models were
adjusted to match the reference values using the ‘Deform’ command of the soft-
ware. Fig. 3.3 shows the developed blood PM models, along with the Publication
110 blood voxel models. Note that the intra-organ vasculature is not modelled in
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Male Female Male Female

Fig. 3.3. Blood in large vessels of the Publication 110 (ICRP, 2009) phantoms (left) and the
mesh-type reference computational phantoms (MRCPs) (right). In the MRCPs, the red
colour indicates the blood in the large arteries and the blue colour indicates the blood in
the large veins.

the phantoms; that is, the blood in the large vessels stops at the surface of the
organs, and the blood within the organs is assumed to be homogeneously mixed
with the parenchyma of the organs.

3.7. Muscle

(48) The muscle of the PM models was constructed after completion of all internal
organs and tissues. Most muscle (i.e. trunk, arms, and legs) was constructed by direct
conversion and refinement, whereas the other complex parts (i.e. head, hands, and
feet) were constructed by a modelling approach. For construction, a series of labour-
intensive refinement work was involved to eliminate the defects and overlapping
problems with other organs and tissues using the refinement tools of Rapidform
(INUS Technology Inc.). In addition, the rear side of the muscle (back, hip, and
calf), which had been flattened in the Publication 110 (ICRP, 2009) phantoms due to
the lying position of the individual originally imaged under CT, was reshaped to
produce the muscular shape present in a standing person.
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4. INCLUSION OF BLOOD IN ORGANS AND TISSUES

(49) The organ/tissue masses of the MRCPs include their intra-organ blood con-
tent. This is not the case in the Publication 110 (ICRP, 2009) phantoms, in which the
organ/tissue masses are based on reference values listed in Table 2.8 of Publication 89
(ICRP, 2002) which are the masses of organ/tissue parenchyma (i.e. exclusive of
blood content). Note that a large portion of blood situated in the small vessels
and capillaries is distributed in the organs and tissues. For the MRCPs, therefore,
the organ/tissue masses and compositions inclusive of blood content for adult male
and female were calculated based on the reference regional blood volume fractions
given in Publication 89 (ICRP, 2002) and, accordingly, the MRCPs were adjusted in
volume to include blood content in their organs and tissues. Note that Publication
133 (ICRP, 2016) also considered the target masses inclusive of blood content for the
calculation of SAFs for self-irradiation.

4.1. Calculation of mass, density, and elemental composition of organs
and tissues inclusive of blood content

(50) Blood-inclusive organ/tissue masses, listed in Table 2.8 of Publication 89
(ICRP, 2002), were calculated using the reference values of regional blood volume
fractions given in Table 2.14 of Publication 89 (ICRP, 2002), which is replicated in
Table 4.1 below. There are organs and tissues whose reference blood fraction is given
explicitly (i.e. fat, brain, stomach, oesophagus, small intestine, large intestine, right
heart, left heart, coronary tissue, kidneys, liver, pulmonary, bronchial tissue, skeletal
muscle, pancreas, active marrow, trabecular bone, cortical bone, other skeleton, skin,
spleen, thyroid, lymph nodes, gonads, adrenals, and urinary bladder). Their blood-
inclusive masses were calculated simply as the product of their reference blood frac-
tion and the reference total body blood mass (adult male 5600 g, adult female 4100 g)
given in Publication 89 (ICRP, 2002).

(51) The reference blood fraction for the stomach and oesophagus is given as a
single value, and thus not given separately as shown in Table 4.1; therefore, their
blood mass was assigned in proportion to the organ mass under the assumption that
the blood is distributed uniformly over these two organs. The same approach was
used to calculate the blood mass of the inactive marrow, cartilage, teeth, and mis-
cellaneous skeletal tissue, which are grouped as ‘other skeleton’ in Table 4.1.

(52) In Table 2.8 of Publication 89 (ICRP, 2002), there are organs and tissues
whose blood fractions are not listed explicitly in Table 2.14 of Publication 89 (ICRP,
2002); tongue, salivary glands, gallbladder wall, breasts, eyes, pituitary gland, larynx,
trachea, thymus, tonsils, ureters, urethra, epididymis, prostate, fallopian tubes,
uterus, and ‘remaining 4%’ tissues are represented by ‘all other tissues’ in
Table 4.1. Note that ‘remaining 4%’ tissues indicate all of the organs and tissues
that are not listed explicitly in Table 2.8 of Publication 89 (ICRP, 2002), which is
approximately 4% of the body mass, mostly composed of separable connective

31



ICRP Publication 14X

Table 4.1. Reference values for regional blood volumes in adults given in
Publication 89 (ICRP, 2002).

Blood content (% total blood volume)

Organ/tissue Male Female
Fat 5.0 8.5
Brain 1.2 1.2
Stomach and oesophagus 1.0 1.0
Small intestine 3.8 3.8
Large intestine 2.2 2.2
Right heart 4.5 4.5
Left heart 4.5 4.5
Coronary tissue 1.0 1.0
Kidneys 2.0 2.0
Liver 10 10
Pulmonary 10.5 10.5
Bronchial tissue 2.0 2.0
Skeletal muscle 14 10.5
Pancreas 0.6 0.6
Skeleton 7.0 7.0
Red marrow 4.0 4.0
Trabecular bone 1.2 1.2
Cortical bone 0.8 0.8
Other skeleton 1.0 1.0
Skin 3.0 3.0
Spleen 1.4 1.4
Thyroid 0.06 0.06
Lymph nodes 0.2 0.2
Gonads 0.04 0.02
Adrenals 0.06 0.06
Urinary bladder 0.02 0.02
All other tissues 1.92 1.92
Aorta and large arteries 6.0 6.0
Large veins 18 18

tissues and certain lymphatic tissues. The blood mass of ‘all other tissue’ (male
107.5 g, female 78.7 g) was distributed to these organs and tissues in proportion to
their masses. For this calculation, the mass of the ‘remaining 4%" tissues was reduced
due to extraction of the lymphatic nodes of which the mass (male 178.4 g, female
142.7 g) was adopted in Publication 133 (ICRP, 2016), considering that the reference
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Table 4.2. Reference masses of organs and tissues for Reference Adult Male and Reference

Adult Female.

Male Female

Organ/tissue Blood Organ/tissue Blood
Organ/tissue only (g) content (g) only (g) content (g)
Adipose tissue 14,500 280.000 19,000 348.500
Adrenals 14 3.360 13 2.460
Tongue 73 2.656 60 1.491
Salivary glands 85 3.093 70 1.739
Oesophagus, wall 40 11.789 35 8.200
Stomach, wall 150 44211 140 32.800
Stomach, contents 250 230
Small intestine, wall 650 212.800 600 155.800
Small intestine, contents 350 280
Right colon, wall 150 49.946 145 36.331
Right colon, contents 150 160
Left colon, wall 150 49.946 145 36.331
Left colon, contents 75 80
Rectosigmoid, wall 70 23.308 70 17.539
Rectosigmoid, contents 75 80
Liver 1800 560.000 1400 410.000
Gallbladder, wall 10 0.364 8 0.199
Gallbladder, contents 58 48
Pancreas 140 33.600 120 24.600
Brain 1450 67.200 1300 49.200
Breasts, adipose 15 0.546 300 7.454
Breasts, glandular 10 0.364 200 4.969
Blood in heart chambers 510 510.000 370" 370.000
Heart — tissue only 330 56.000 250 41.000
Total blood 5600 5600.000 4100 4100.000
Eyes 15 0.546 15 0.373
Skin 3300 168.000 2300 123.000
Muscle, skeletal 29,000 784.000 17,500 430.500
Pituitary gland 0.6 0.022 0.6 0.015
Larynx 28 1.019 19 0.472
Trachea 10 0.364 8 0.199
Blood in lung 700" 700.000 530" 530.000
Lung — tissue only 500 420
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Table 4.2. (continued)

Male Female

Organ/tissue Blood Organ/tissue Blood
Organ/tissue only (g) content (g) only (g) content (g)
Bone, cortical 4400 44.800 3200 32.800
Bone, trabecular 1100 67.200 800 49.200
Marrow, active 1170 224.000 900 164.000
Marrow, inactive 2480 36.261 1800 25.448
Cartilage 1100 16.084 900 12.724
Teeth 50 0.731 40 0.566
Skeletal, miscellaneous 200 2.924 160 2.262
Spleen 150 78.400 130 57.400
Thymus 25 0.910 20 0.497
Thyroid 20 3.360 17 2.460
Tonsils 3 0.109 3 0.074
Kidneys 310 112.000 275 82.000
Ureters 16 0.582 15 0.373
Urinary bladder 50 1.120 40 0.820
Urethra 10 0.364 3 0.074
Testes 35 2.240
Epididymes 4 0.145
Prostate 17 0.619
Ovaries 11 1.640
Fallopian tubes 2.1 0.052
Uterus 80 1.987
Lymphatic nodes 178.4" 11.200 142.7° 8.200
Blood, arteries 336.000 246.000
Blood, veins 1008.000 738.000
‘Remaining 4%’ tissues 2633.0% 89.817 2364.6% 40.251
Total body (kg) 73 60

“The mass of blood in the heart chambers and lungs was included in total blood and should not be
included in the whole-body summation.

"The mass of the lymphatic nodes exclusive of blood content was adopted in Publication 133 (ICRP, 2016).
“The mass of the ‘remaining 4%’ tissues was calculated by subtracting the total mass of all other organs
and tissues from body mass.

blood fraction for the lymphatic nodes is given explicitly as shown in Table 4.1. The
reference organ/tissue masses (exclusive of blood content) and the calculated blood-
inclusive masses are given in Table 4.2.

(53) After calculation of the blood masses, the densities and elemental compositions
of the blood-inclusive organs and tissues were calculated using the data in

34



Adult mesh-type reference computational phantoms

Publication 89 (ICRP, 2002) and Report 46 (ICRU, 1992), again under the assumption
that blood content is distributed uniformly over the organs and tissues. The density of
the blood-inclusive liver, for example, was calculated using the following equation:

ICRP89 o
with—blood __ Myiver + Mplood—in—liver (3)
liver - ICRP89
liver Mplood—in—liver
ICRUAG ICRUA6
Pliver blood

where pjjith=bleod i5 the density of the blood-inclusive liver, pICRU46 is the density of the

liver parenchyma as given in Report 46 (ICRU, 1992), pl¢RU% s the density of the
blood, miSRP¥ is the mass of the liver parenchyma as given in Publication 89 (ICRP,
2002), and mpjppd—in—iiver 18 the mass of blood in the liver. Regarding the elemental
composition, the mass percentage of hydrogen in the blood-inclusive liver, for exam-

ple, was calculated using the following equation:

0 ICRU46 . ICRP89Y 0 ICRU46 L
(0/ H)withfblood_ ( A)H)liver mliver + ( A)H)blood Mplood—in—liver
o liver - ICR

P89
Myiser + Mpiood—in—liver

4)

where (% H);""~""*? is the percentage by mass of hydrogen in the blood-inclusive

liver, (% ,’lS!fU% is the percentage by mass of hydrogen in the liver parenchyma as

given in Report 46 (ICRU, 1992), and (%H){,%g46 is the percentage by mass of
hydrogen in the blood. These calculation methods were used to calculate all of the
densities and elemental compositions for the organs and tissues of the MRCPs. The
calculated values of density and elemental compositions are given in Tables B.1 and
B.2.

4.2. Phantom adjustment for blood inclusion

(54) The PM models for all organs and tissues were subsequently adjusted to
increase their volumes to allow for the volumetric inclusion of their blood content.
The adjustment was performed using Rapidform (INUS Technology Inc.).
Preferentially, the volumes of the organs and tissues were increased to match the
blood-inclusive reference masses by globally enlarging a PM surface in the normal
direction of the facets, which tends to maintain the centroid and original shape of the
models. Among the increased organs and tissues, some overlaps were detected; the
overlapping regions of the larger organs and tissues were preferentially eliminated
rather than the smaller organs and tissues, in order to minimise distortion of the
organ/tissue shapes. The organs and tissues with decreased volumes were adjusted
manually to increase their volumes to match the reference masses, while at the same
time monitoring the DI and CD values to minimise deformation of the organ shape
from the original shape.
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(55) If there was insufficient space for the increase of the organ/tissue volumes, the
organs and tissues were moved slightly to secure space. For example, the volume of
the liver was increased significantly (i.e. >30% for both male and female), resulting
in significant overlap problems with the adjacent organs and tissues, especially for
the female mesh phantom. The lungs and ribs, therefore, had to be moved outward in
the lateral direction by ~2mm and ~4mm for the male and female, respectively,
after which the liver and adjacent organs and tissues were adjusted to match the
reference masses without overlapping regions.

(56) Figs 4.1 and 4.2 compare the internal organs and tissues of the MRCPs before
and after inclusion of blood content for male and female, respectively. It can be seen
that, in general, inclusion of blood content does not significantly change the topology
of the phantoms. For detailed investigation to quantify geometric dissimilarity pro-
duced by blood inclusion, three similarity indices (DI, CD, and HD) were evaluated
between the organs and tissues of the phantoms before and after their volumetric
adjustment.

Fig. 4.1. Male phantom before (left) and after (right) adjustment for inclusion of blood
content in organs and tissues.
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€.

Fig. 4.2. Female phantom before (left) and after (right) adjustment for inclusion of blood
content in organs and tissues.

A Q. e

(57) It was found that the CD and HD values were <~2 mm for most organs and
tissues. DI values were >0.8 for most organs and tissues. On the other hand, some
organs and tissues were changed significantly due to blood inclusion. For the liver
and kidneys, for example, CD and HD values ranged from 3.4mm to 5.4 mm, and
DI values ranged from 0.83 to 0.87; these differences are due to the fact that their
mass was increased significantly by blood inclusion. In addition, some organs and
tissues (such as ribs and spleen), located near the liver or kidneys, were changed
significantly because they were moved to secure space for blood inclusion.

4.3. Definition of residual soft tissue

(58) Although most organs and tissues in Table 4.2 are defined in the MRCPs,
several organs and tissues (i.e. adipose tissue, larynx, urethra, epididymis, and fallo-
pian tubes) are not included explicitly in the phantom anatomical structure.
In contrast, several organs and tissues of the phantoms [i.e. main bronchi
(=generation 1), spinal cord, urine, oesophageal contents, extrathoracic (ET) and
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inner air] are not listed in the table, but they can be considered as part of the ‘remaining
4%’ tissues in Table 4.2. In addition, the MRCPs only include costal and interverte-
bral cartilages, the total masses of which are significantly smaller than the reference
values.

(59) Despite these inconsistencies, the phantom mass should be consistent with the
reference total body mass (male 73 kg, female 60 kg). This agreement was reached by
defining an imaginary tissue, RST, in the MRCPs. RST implicitly includes all of the
reference organs and tissues that are not defined explicitly in the phantoms: adipose
tissue, larynx, cartilage (excluding costal and intervertebral cartilages defined in the
phantoms), urethra, epididymis, fallopian tubes, and ‘remaining 4%’ tissue
(excluding the organs and tissues defined in the phantoms but not listed in the ref-
erence values).

(60) This approach has generally been used in the field of phantom development to
match the phantom body mass to the reference body mass (ICRP, 2009; Lee et al.,
2010; Kim et al., 2011; Yeom et al., 2013). In Publication 133 (ICRP, 2016), a similar
approach was used to establish the source organ/tissue masses (see Table A.3 of
Publication 133) for the purpose of use in the latest biokinetic models of the series
of publications on occupational intakes of radionuclides (ICRP, 2015, 2017a,b). The
established source organs/tissues do not include some reference organs/tissues, but
the total mass of the source organs/tissues was matched to the reference body mass
simply by increasing the adipose tissue mass. The increased adipose tissue plays the
same role as RST defined in the MRCPs.
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5. INCLUSION OF THIN TARGET AND SOURCE REGIONS
5.1. Skin

(61) The cells at risk in the skin are assumed to be in the tissue layer
50-100 um below the skin surface (ICRP, 1977, 2010, 2015). However, the
Publication 110 (ICRP, 2009) phantoms, due to their voxel resolution, do not
have this thin target layer and consequently cannot be used for skin dose cal-
culation for weakly-penetrating radiations (ICRP, 2010). In the MRCPs, the 50-
um-thick target layer was defined explicitly within the volume defining the total
skin.

(62) For this, first, the exterior surface of the skin was imported into Rapidform
(INUS Technology Inc.) and then replicated to two additional surfaces. The sizes
of the two surfaces were reduced to define the target layer within the skin at depths
of 50 um and 100 pm from the exterior skin surface, respectively, using the ‘Offset’
command of the software. Note that the ‘Offset” command shrinks or enlarges a
PM surface in the normal direction of the facets in the model, which allows the
creation of surfaces to define the tens-of-micrometre-thick layer at a specific depth.
Fig. 5.1 shows the skin of the MRCPs including the 50-um-thick target layer.

Entire skin

Target layer
Depth: 50-100 um
Thickness: 50 um

o

Fig. 5.1. Skin of the MRCPs including the 50-um-thick target layer: dead layer (purple
colour), target layer (sky blue colour), and dermis layer (black colour).
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5.2. Alimentary tract system

(63) The target regions (stem cell layers) and source regions (mucosal layers) of the
alimentary tract organs (i.e. oral cavity, oesophagus, stomach, small intestine, and
large intestine) were defined in the MRCPs according to the depth and thickness data
for the target and source regions given in Publication 100 (ICRP, 2006). For all
organs except the oral cavity, the thin target and source regions were simply defined
using the ‘Offset’ command of Rapidform (INUS Technology Inc.) following the
same method as used for the skin. Fig. 5.2 shows, as an example, the stomach of the
male phantom including the target and source regions.

v

Target region
Depth: 60-100 pum,
Thickness: 40 um

Source region

p——
300 pm| Retention

Contents

Fig. 5.2. Alimentary tract organs (left) of the male mesh phantom and the enlarged view
(right) of the stomach, including the target and source regions.

(64) Note that the masses of the target regions (i.e. stem cells) for the stomach and
intestines in the MRCPs do not exactly match those of the stylised models in
Publication 100 (ICRP, 2006). For the stomach and large intestine, the difference
in target mass between the mesh models and the stylised models is a natural conse-
quence of their difference in the dimensions of the lumen, more specifically the sur-
face area of the lumen to which the target mass is directly proportional. Note that, in
the MRCPs, the stomach and large intestine were produced directly from the
Publication 110 (ICRP, 2009) reference phantoms, in which the lumen is fully
filled with the contents matching the reference value in Publication 89 (ICRP,
2002). For the small intestine, the difference in target mass is due to the high priority
given to the reference values in Publication 89 (ICRP, 2002) throughout the
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construction of the MRCPs; that is, in the MRCPs, the mass of the contents was
matched to the reference value in Publication 89 (ICRP, 2002). The diameter of the
lumen, for which the reference value is not available, was not considered, resulting in
a difference in target mass when compared with the stylised models in Publication 100
(ICRP, 2006). This approach is consistent with the Publication 110 reference phan-
toms in which the lumen of the small intestine is also fully filled with the contents
matching the reference value in Publication 89 (ICRP, 2002).

(65) In the oral cavity, two source regions were defined: source in food and source
retained on the surface of the teeth. The food source volume (20cm?) should be
placed on the tongue, but in the Publication 110 (ICRP, 2009) phantoms, there
was insufficient space to define the food source region; therefore, the tongue was
divided into two parts — upper and lower — and the upper part was considered to be
the food source region for the purpose of SAF calculation. The teeth-retained radio-
nuclides were defined by adding a 10-um layer to the surface of the teeth. The target
layer in the oral mucosa was defined in three parts: tongue, roof of mouth, and lip
and cheek. More detailed information on the alimentary tract system can be found in
Kim et al. (2017).

5.3. Respiratory tract system

(66) The target and source regions of the respiratory tract organs were defined in
the MRCPs following the morphometric data given in Publication 66 (ICRP, 1994a).
The respiratory tract organs are composed of the extrathoracic regions (i.e. ET; and
ET»), BB, bb, and alveolar-interstitium (AI). The Al region was not defined separ-
ately but simply assumed to be distributed homogeneously within the lung tissue,
except for the BB and bb regions, in the MRCPs, considering the statement of
Publication 66 (ICRP, 1994a, Para. 313): ‘In the Al region, the interalveolar septa
and the walls of blood and lymphatic capillaries are sufficiently thin to ensure that
sensitive target cells are distributed homogenously throughout the tissue mass.
Therefore, it can be assumed that the average dose received by the target cells is
the same as that received by the whole tissue mass.’

(67) For the ET, and ET, regions, they were converted directly from the
Publication 110 (ICRP, 2009) voxel models to a PM format, with their target and
source regions defined using the ‘Offset’ command of Rapidform (INUS Technology
Inc.) following the same method applied for the skin and alimentary tract organs.
The same method was applied to the main bronchi (generation 1) that were con-
verted directly from the Publication 110 voxel models to the PM format. Fig. 5.3
shows the ET, region of the male phantom as an example, including both its
Publication 66 (ICRP, 1994a) source and target regions.

(68) The other generations (i.e. airway generations 2—8) of bronchi and all subse-
quent generations of bronchioles (i.e. airway generations 9—15) could not be con-
verted from the Publication 110 (ICRP, 2009) voxel models; therefore, these airways
were modelled using a dedicated computer program developed by Kim et al. (2017).
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Target region
Depth: 40-50 um,
Thickness: 10 um
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Fig. 5.3. Respiratory tract organs (left) of the male mesh phantom and the enlarged view
(right) of the ET, region, including the target and source regions.

The developed computer program generated branch-centre lines within the left and
right lungs of the MRCPs based on a branching generation algorithm (Tawhai et al.,
2000), following the diameter and length for each airway generation as given in
Publication 66 (ICRP, 1994a). The branch-centre lines were used to construct
airway models in the constructive solid geometry (CSG) format, whose models are
based on an inverted Y-shape represented as a union geometry of spheres and
truncated cones. The spheres, the diameters of which correspond to the branch
diameters, are located at the ends of the branch-centre lines, and the truncated
cones are located so as to be tangent to the mother and daughter spheres. The use
of the inverted Y-shape model makes it possible to not only connect the surfaces of
the neighbouring branches precisely but also to define the micrometre-thick source
and target layers simply by changing the sphere diameters (i.e. branch diameters)
(Lazaro Elias, 2011).

(69) Note that the CSG-format airway models needed to be converted to the PM
format for incorporation into the MRCPs. For this step, however, a large number of
polygonal facets, eventually tetrahedrons, would be necessary to represent the air-
ways properly, requiring a very large memory allocation (>~50GB), which is, at
least at the present time, impractical. Therefore, a different approach was used for
the airways; that is, the MRCPs were overlaid with the CSG lung airways in the
Geant4 code (Agostinelli et al., 2003) using the G4V UserParallelWorld class, which
is used for implementation of hierarchically overlapping multiple geometries called
‘parallel geometries’ (Apostolakis et al., 2008). This overlaying approach is currently
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only available in the Geant4 code, but enables dose calculation to be performed for
the detailed CSG lung airways with minimal additional memory usage.

(70) Fig. 5.4 shows the airway model produced for the lungs of the male phantom
along with the original voxel model of the Publication 110 (ICRP, 2009) male phan-
tom. The airway models of the MRCPs represent a complex tree structure, at the
same time representing the thin target and source layers. The total lengths of the
airway branches for each generation of the lung tree are in good agreement with their
reference values; that is, the discrepancies are <10% for all generations. More
detailed information on the respiratory tract system can be found in Kim et al.
(2017).

Targetregion Source region

3 Sum Sequestersd

20p=  Bound

Fastd

Mesh model

Voxel model

Bronchiolar (bb)

Fig. 5.4. Lung voxel model (left) and lung mesh model (right) for the male phantom (Kim
et al., 2017).

5.4. Urinary bladder

(71) The target layer of the urinary bladder was also defined in the MRCPs. In the
urinary bladder, the basal cells of the epithelium are believed to be the relevant target
cells at radiogenic risk (Colin et al., 2009), but doses have previously been calculated
to the whole wall of the bladder (ICRP, 2016). Eckerman and Veinot (2018) derived
the depth and thickness of the basal cell layer of the urinary bladder as 118 um and
75 pm, respectively, for the adult male and 116 um and 69 pm, respectively, for the
adult female, assuming a constant and reference urine volume of 200cm® for both
phantoms. In the MRCPs, these values were adopted to define the target layer in the
urinary bladder, again using the ‘Offset’ command of Rapidform (INUS Technology
Inc.). Fig. 5.5 shows the urinary bladder of the male mesh phantom including the
target layer.
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Target layer
Depth: 118-193 um
Thickness: 75 um

Fig. 5.5. Urinary bladder of the male mesh phantom including the target layer (red).
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6. DESCRIPTION OF THE ADULT MESH-TYPE
REFERENCE PHANTOMS

6.1. General phantom characteristics

(72) Figs 6.1 and 6.2 show the adult male and female MRCPs, respectively. The
height and weight of the MRCPs are in accordance with the reference values (male
176 cm and 73 kg, female 163cm and 60kg). The male phantom is composed of
2.5 million triangular facets in the PM format and 8.2 million tetrahedrons in the
TM format. The female phantom is composed of 2.6 million triangular facets in the
PM format and 8.6 million tetrahedrons in the TM format. Note that the TM
MRCPs were converted directly from the PM MRCPs using the TetGen code (Si,
2015). The MRCPs include all the radiosensitive organs and tissues relevant to dose
assessment for ionising radiation exposure for radiological protection purposes.
Note that the micron-scale structures of the active bone marrow and skeletal endo-
steum are not modelled in the MRCPs and, therefore, the calculation of the doses to
these skeletal tissues should involve fluence-to-dose—response functions, such
as those presented in Publication 116 (ICRP, 2010). The MRCPs include the

Brain
Eye and Lens
ET region
Salivary gland

Oesophagus
Thyroid
Thymus

Lung
Heart
Breast
Spleen
Liver
Stomach
Kidney

Small intestine
Colon
Lymphatic node
Blood vessel
Urinary bladder
Prostate

Testis

Fig. 6.1. Mesh-type ICRP adult male reference phantom.
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Fig. 6.2. Mesh-type ICRP adult female reference phantom.

tens-of-micrometre-thick source and target regions of the lens of the eye, skin, ali-
mentary tract organs, respiratory tract organs, and urinary bladder. The lung airway
models (representing the various branches of both the bronchi and bronchioles)
produced in the CSG format are incorporated into the MRCPs using the Geant4
code (Agostinelli et al., 2003) via the parallel-geometry technique (Apostolakis et al.,
2008).

(73) The masses of the organs and tissues of the MRCPs match the reference
values inclusive of blood content (see Table 4.2) within 0.1% deviation. Table A.1
provides the numerical information of the MRCPs including the organ ID number,
medium, density, and mass for each organ and tissue. Tables B.1 and B.2 provide the
elemental composition for each medium for the male and female, respectively.
Table C.1 provides the list of source regions, their acronyms, and corresponding
organ ID numbers in the phantoms. Table D.1 provides the list of target regions,
their acronyms, and corresponding organ ID numbers in the phantoms.

(74) For the alimentary and respiratory tract organs, the dose values of the thin
target regions, due to the tiny volumes, tend to have larger statistical uncertainties
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compared with other organs. For external exposures to penetrating radiation
(such as photons and neutrons), the spatial gradients of the absorbed dose are
very small, and thus the absorbed dose averaged over the thin target region tends
to be close to the absorbed dose averaged over the entire region of the organ.
Therefore, for these exposure cases, it is recommended that one use the entire
region of the organ, not the thin target region, for dose calculation in order to
save computation time.

(75) On the other hand, the target region of the skin and lens of the eye should be
used in dose calculation for all external exposure cases, considering that there will be
significant dose differences between the target region and the entire region even for
penetrating uncharged particles (such as photons and neutrons), because charged-
particle equilibrium is not well established in these superficial organs. For the skin
dose calculation, computation time is no longer a problem assuming the entire skin is
exposed to the incident radiation field. For the lens dose calculation, computation
time can be reduced significantly by assuming that only the head of the phantoms is
exposed to radiation.

(76) The thin target regions of the alimentary and respiratory tract systems and the
urinary bladder should be used in dose calculation for internal exposure cases when
subregions of these organs (e.g. contents) are considered as source regions. For these
calculations, computation time is no longer an issue considering the layered geome-
tries of the source and target regions.

(77) For cross-fire irradiation (e.g. stomach < liver), it is recommended that one
use the entire region of the organ, not just the thin target region, for dose calculation,
as once again, dose gradients are small and there will be a saving in computation
time. For electron cross-fire irradiation, there could be significant dose discrepancies,
depending on the electron energy and organ topology, in which case it is recom-
mended to use the thin target region.

(78) The MRCPs have addressed the geometric limitations of the Publication 110
(ICRP, 2009) phantoms due to the limited voxel resolution and the nature of voxel
geometry. Fig. 6.3 shows some internal organs and tissues of the male MRCP
alongside those of the Publication 110 male phantom. It can be seen that the
voxel models show stair-stepped surfaces, whereas the mesh models show smooth
surfaces in their 3D viewing. In addition, the discontinuous structure of the hollow
organs of the Publication 110 phantoms is fully addressed in the MRCPs. Fig. 6.4
shows the female MRCP and the Publication 110 female phantom viewed in the
superior—inferior direction. It can be seen that the Publication 110 phantoms are not
fully enclosed by the skin, showing many holes and several radiosensitive organs and
tissues (such as breasts and muscle) directly exposed to the air. On the other hand,
the MRCPs are fully enclosed by the skin without any holes; this improvement will
prevent significant overestimates in DCs for these organs and tissues for specific
situations of external exposure to weakly-penetrating radiation. Similarly, the spon-
giosa and medullary cavity of the Publication 110 phantoms are not fully enclosed
by the cortical bone; this limitation is also addressed in the MRCPs, as shown in
Fig. 6.5.
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Fig. 6.3. Comparison of organs and tissues of the mesh-type male phantom with those of
the Publication 110 (ICRP, 2009) male phantom.

Muscle
(blue green part)
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(red part)
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Fig. 6.4. Publication 110 (ICRP, 2009) female phantom (left) and mesh-type female phan-
tom (right): muscle (blue green part), spongiosa (red part), and breasts (yellow part) in
Publication 110 female phantom.
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Fig. 6.5. Skeletal system of Publication 110 (ICRP, 2009) female phantom (left) and mesh-
type female phantom (right): spongiosa (red part) and cortical bone (gray part). The mesh
phantom only shows cortical bone (gray part) which fully encloses inner structures (spon-

giosa and medullary cavity).

6.2. Geometric similarity comparison with the adult voxel-type
reference phantoms

(79) In order to determine the geometric similarity between the MRCPs and the
adult voxel-type reference phantoms, DI, CD, and HD values for the organs and
tissues between these phantoms were evaluated as shown in Table 6.1. It can be seen
that for most organs and tissues, DI values were >0.8, and CD and HD values were
<2mm. These results demonstrate good geometric similarity between the MRCPs
and the Publication 110 (ICRP, 2009) phantoms in general.

(80) There were, however, relatively large dissimilarities for some organs and tis-
sues. For example, the female hand bone showed the greatest dissimilarity; DI, CD,
and HD values were 0.13, 27.8 mm, and 15.6 mm, respectively. Such large dissim-
ilarities are mainly due to two reasons: (1) organs and tissues such as spine, hands,
feet, and small intestine could not be converted directly from the voxel models, and
therefore were constructed with modelling approaches; and (2) organs and tissues
such as ribs, liver, spleen, and kidneys were adjusted more significantly to include
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Table 6.1. Dice index (DI), centroid distance (CD), and Hausdorff distance (HD) comparing
the adult MRCPs and the adult voxel-type reference phantoms.

Male Female
Organs DI CD (mm) HD (mm) DI CD (mm) HD (mm)
Humeri 0.88 0.8 1.5 092 0.6 0.7
Ulnae and radii 0.89 0.5 0.8 0.90 0.7 0.9
Wrists and hand bones 024 178 12.7 0.13 27.8 15.6
Clavicles 0.83 04 0.8 0.84 1.1 0.8
Cranium 0.76 33 1.6 0.83 1.6 1.0
Femora 0.89 04 1.8 0.94 1.1 0.9
Tibiae, fibulae, and patellae  0.90 0.5 1.1 0.91 0.4 1.1
Ankles and foot bones 0.56 8.0 43 0.32 4.1 11.8
Mandible 0.85 0.5 0.9 0.84 1.4 2.0
Pelvis 0.89 0.3 1.0 093 04 0.6
Ribs 0.56 49 2.0 0.32 2.1 2.7
Scapulae 0.82 1.4 1.0 0.86 04 0.7
Cervical spine 0.57 42 2.8 0.60 4.5 2.0
Thoracic spine 0.67 6.6 2.6 0.70 6.0 2.5
Lumbar spine 0.70 5.1 2.0 0.63 9.3 2.5
Sacrum 0.86 1.3 1.0 0.80 0.8 1.0
Sternum 079 5.1 1.3 0.31 9.3 5.9
Teeth 092 0.8 0.3 0.87 1.2 0.5
Tongue 0.90 1.3 1.1 094 09 0.6
Oesophagus 0.68 1.8 1.3 0.67 43 1.5
Stomach 087 4.5 2.0 092 2.7 1.3
Small intestine 0.40 233 6.2 0.55 153 6.8
Large intestine 0.82 1.2 1.6 0.87 1.9 1.5
Salivary glands 0.87 04 0.9 0.91 0.9 0.6
Tonsils 092 03 0.4 082 04 0.6
Liver 0.85 5.0 4.1 0.86 4.1 3.7
Gallbladder 084 25 1.6 0.91 0.4 0.7
Pancreas 0.83 5.2 2.3 0.85 6.6 2.4
Heart 0.94 1.5 1.1 093 22 1.7
Kidneys 0.81 5.4 2.8 084 53 3.3
Ureters 0.61 0.6 1.1 073 0.7 0.8
Urinary bladder 094 0.5 1.1 095 0.6 0.8
Gonads 0.87 0.2 0.6 0.86 0.2 0.7
Prostate/uterus 0.90 0.5 0.8 090 04 0.9

(continued on next page)
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Table 6.1. (continued)

Male Female
Organs DI CD (mm) HD (mm) DI CD (mm) HD (mm)
Adrenals 0.46 1.0 2.0 0.83 0.6 0.9
Breasts 083 0.5 0.7 0.91 0.4 0.6
Brain 096 09 1.0 097 04 38
Pituitary glands 0.81 0.5 0.5 0.73 03 0.6
Spinal cord 0.86 0.9 0.5 0.84 04 0.5
Spleen 0.78 4.8 2.6 0.80 43 2.3
Thymus 0.88 0.2 0.8 0.77 2.0 1.3
Thyroid 0.77 2.0 1.1 0.88 0.6 0.6
Extrathoracic 0.76 0.5 1.3 0.76 0.5 1.1
Trachea 0.87 0.5 0.9 0.85 23 1.0
Lungs 090 3.0 3.8 0.90 1.6 2.7

blood content, despite the fact that these organs were mainly constructed using the
direct conversion method.

(81) The ODDs and CLDs of the MRCPs were also compared with those of the
Publication 110 (ICRP, 2009) phantoms, as shown in Annexes E and F. The ODDs
represent the organ depth below the body surface, which mainly influences external
dose calculation, and the CLDs represent the distance between the target and source
organs/tissues, which mainly influences internal dose calculation. The comparison
results showed that the ODDs and CLDs of the MRCPs were generally in good
agreement with those of the Publication 110 phantoms for most organs and tissues,
despite the fact that the MRCPs were adjusted for the inclusion of blood content.

(82) The results of the geometric similarity comparison indicate that, overall, the
MRCPs faithfully preserve the original shape and location of the organs and tissues
in the Publication 110 (ICRP, 2009) phantoms, and that, therefore, they can be
expected to provide similar dose values for penetrating radiation in both external
and internal exposures.

6.3. Compatibility with Monte Carlo codes
6.3.1. Monte Carlo codes

(83) Most of the major general-purpose Monte Carlo simulation codes such as
Geant4, MCNP6, PHITS, and FLUKA can now implement PM or TM geometries
directly. The Geant4 code implements both PM and TM geometries using the
G4TessellatedSolid class and G4Tet class, respectively (Agostinelli et al., 2003).
The MCNPG6 code, as a merger of the MCNPS and MCNPX versions, provides a
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new feature for implementation of unstructured mesh geometries, including TM
geometries. Note that since Version 1.1 beta of the MCNPG6 code, the unstructured
mesh geometry can support the transport of most particles available in the MCNP6
code (Goorley et al., 2013), whereas in the previous version (i.e. Version 1.0), only
the transport of neutrons and gamma rays was supported (Martz, 2014). The PHITS
code, since Version 2.82, provides a new feature for implementation of TM geome-
tries (Sato et al., 2013). The FLUKA code can implement the PM geometry via
FIluDAG (http://svalinn.github.io/DAGMC/index.html).

6.3.2. Computation time and memory usage

(84) Computation time was measured for the Geant4 (Version 10.02), MCNP6
(Version 2.0), and PHITS (Version 2.92) codes coupled with the female phantom of
the TM format. The estimation was performed on a single core of the Intel Xeon
CPU X5660 (2.80 GHz and 128 GB memory). First, the estimated initialisation times
for all Monte Carlo codes were found to be a few minutes, which is negligible
compared with the total computation time on the order of a day which is a typical
value for dose calculations (Furuta el al., 2017).

(85) Run time was also measured with a single core of the same server computer to
achieve 2% of relative error in effective dose for the left lateral irradiation geometry
of particle beams: photons and electrons (10 keV—10 GeV) and neutrons (10~ MeV—
20 MeV). For the Geant4 code, the physics library of G4EmLivermorePhysics was
used to transport photons and electrons. To transport neutrons, the physics
models and cross-sections of NeutronHPThermalScattering, NeutronHPElastic,
ParticleHPInelastic, Neutron-HPCapture, and NeutronHPFission were used. A sec-
ondary cut value of 1 pm was applied to photons and electrons. For the PHITS code,
the physics library of AcelibJ40 was used to transport photons, electrons, and neu-
trons. For the MCNP6 code, the physics libraries of MCPLIB84, EL03, and
ENDF70 were used to transport photons, electrons, and neutrons, respectively.
Considering that a secondary cut value of 1 um was used for the Geant4 calculations,
the equivalent energy cut values were used in the PHITS and MCNP6 codes. The
‘implicit capture’ variance reduction technique was turned off for both the PHITS
and MCNP6 codes.

(86) The Geant4 result showed that for photons, the measured run times were
within the range of 1-30 min for all of the considered energies. For electrons, the run
times were <1 h for energies >0.06 MeV, but for lower energies (<0.06), the run
times were much longer (i.e. 20-60h). These long run times are due to the fact
that these low-energy electrons cannot penetrate the dead layer of skin, and that
only the secondary photons, produced from electron interactions, contribute to skin
dose and, eventually, effective dose. For neutrons, the run times were within the
range of 2-30h for all of the considered energies.

(87) The run times of the PHITS code for photons and electrons were generally
much longer (i.e. three to 20 times longer) compared with the Geant4 code. Similarly,
the run times of the MCNP6 code were longer (i.e. six to 30 times longer) than those
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of the Geant4 code. For neutrons, the run times of the PHITS code were two to eight
times shorter than those of the Geant4 code, whereas those of the MCNP6 code were
three to four times longer than those of the Geant4 code.

(88) Memory usage was also measured for the three Monte Carlo codes. The
Geant4 code required ~10.6 GB, which is slightly less than that of the MCNP6
code (~13.7GB). The PHITS code, when compared with the Geant4 and MCNP6
codes, required much less memory (i.e. ~1.2 GB) due to the fact that the PHITS
code, in contrast to other codes, uses dynamic allocation for most of the memory
needed for implementing the MRCPs. In general, considering memory usage, all of
the above Monte Carlo codes can run the MRCPs in a personal computer equipped
with 64 GB at maximum.
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7. DOSIMETRIC IMPACT OF THE ADULT MESH-TYPE
REFERENCE PHANTOMS

(89) In order to investigate the impact of the improved representation of organs
and tissues in the adult MRCPs on DC calculations, DCs of organ dose and effective
dose and SAFs were calculated for some selected external and internal exposure
cases using the MRCPs. The calculated values were then compared with the values
provided in Publications 116 and 133 (ICRP, 2010, 2016), which were calculated
using the Publication 110 (ICRP, 2009) phantoms and the stylised models adopted
in the previous Publications (ICRP, 1994a, 2006, 2016).

(90) In Annex H, the DCs of the MRCPs for external exposure to photons, neu-
trons, electrons, and helium ions are compared with the Publication 116 (ICRP,
2010) values. For photons, with some exceptions at very low energies, the DCs of
the MRCPs were found to be very close to the Publication 116 values for both organ
dose and effective dose. For neutrons, the organ DCs of the MRCPs show some
differences from the Publication 116 values, but are very close to the values calculated
using the Publication 110 (ICRP, 2009) phantoms and the Geant4 code that was the
same code used in calculation of the MRCP DCs. This result indicates that the
differences from the Publication 116 values are not mainly due to the difference in
phantom geometry or material composition, but due to the difference in Monte
Carlo codes and cross-section data/physics models used in the calculations. Note
that for neutrons, the Publication 116 values were calculated using four Monte Carlo
codes (MCNPX, PHITS, FLUKA, and Geant4) and then the final reference values
of the DCs were taken as averaged values following an extensive smoothing process
(ICRP, 2010).

(91) In Annex H, for charged particles (i.e. electrons and alpha particles), the DCs
of the MRCPs for some organs (e.g. RBM, breasts, and skin) showed large differences
from the Publication 116 (ICRP, 2010) values, mainly due to improved representation
of the thin tissues (e.g. cortical bone and skin) in the MRCPs over the voxel-type
Publication 110 (ICRP, 2009) phantoms (see Section 2). Large differences were also
found in effective dose DCs for electrons (<1 MeV) and helium ions (<10 MeVu™");
these differences are mainly caused by differences in skin DCs due to consideration of
the 50-pum-thick skin target layer in the MRCPs. Note that in real situations of elec-
tron exposure, polyenergetic electrons are generally encountered, for which the dif-
ferences in effective doses are much less significant. For example, the differences in
effective dose between the MRCPs and the Publication 110 phantoms resulting from
the isotropic irradiation of beta radiations (14C, 86Re, *°P, QOSr/QOY, and 106Rh) are
less than two-fold, except for "*C for which the difference is approximately four-fold.
Note that "*C emits very-low-energy electrons (0.15 MeV maximum) and thus is gen-
erally not of concern for external exposures. In real situations of helium ion exposure,
short-range alpha exposures are mainly encountered, which are practically unimport-
ant for radiation protection purposes.

(92) In Annex I, the SAFs of the MRCPs for photons and electrons are compared
with the Publication 133 (ICRP, 2016) values for selected source organs/tissues
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(cortical bone, liver, lungs, and thyroid). For photons, with some exceptions, the
SAFs of the MRCPs were found to be very close to the Publication 133 values. One
exception was the RBM as a target, where the SAFs of the MRCPs were much
smaller than the Publication 133 values at low energies. These differences are
mainly due to the fact that in the MRCPs, the spongiosa is fully enclosed by the
cortical bone, whereas this is not the case for the Publication 110 (ICRP, 2009)
phantoms (see Fig. 6.5). In contrast, for the colon <« cortical bone case, the SAFs
of the MRCPs were found to be greater than the Publication 133 values, mainly due
to the difference in distribution of the cortical bone; that is, in the Publication 110
phantoms, the cortical bone does not fully enclose the spongiosa and is not distrib-
uted uniformly, especially in the ribs where the cortical bone is rarely distributed in
the regions that are very close to the colon.

(93) In Annex I, for electrons, the SAFs of the MRCPs were found to be very close
to the Publication 133 (ICRP, 2016) values for all of the self-irradiation cases.
However, large differences were found for most cross-fire irradiation cases, mainly
due to the different geometric formats of the phantoms [smooth surface of the
MRCPs vs stair-stepped surface of the Publication 110 (ICRP, 2009) phantoms].
The significance of these differences on effective dose will be dependent on the
biokinetics or chemical form of ingested or inhaled radionuclide.

(94) In Nguyen et al. (2015), the lens DCs of the MRCPs for external exposure to
photons and electrons were compared with the Publication 116 (ICRP, 2010) values
that were produced with both the Publication 110 (ICRP, 2009) voxel phantoms and
the mathematical eye model of Behrens et al. (2009). The comparison was compli-
cated because different phantoms were used for different cases in Publication 116.
For photons, the lens DCs of the MRCPs were similar to the Publication 116 values
for all of the irradiation geometries, except for the posterior—anterior geometry and
low energies (<0.1 MeV), in which cases the lens DCs of the MRCPs were smaller
than the Publication 116 values. These differences are not very important in practice,
and are mainly due to differences in head structure and composition between the
MRCPs and the mathematical head phantom (incorporating the eye model) used to
produce the Publication 116 values. For electrons, the lens DCs of the MRCPs were
generally found to be very close to the Publication 116 values at energies >2 MeV,
but at the lower energies (<2 MeV), relatively large differences were found. The
largest differences were found in the posterior—anterior geometry due to differences
in head structure and composition between the MRCPs and the Publication 110
phantoms used to produce the Publication 116 values. For the anterior—posterior
irradiation geometry, which is the most important irradiation geometry in radiation
protection, the differences were much smaller, and significant differences were only
observed at very low energies (<0.7 MeV) where primary electrons cannot reach the
lens and thus very-low-energy secondary photons are the only contribution to lens
dose. More detailed discussions on comparison of lens DCs can be found in Nguyen
et al. (2015).

(95) In Kim et al. (2017), the electron SAFs of the MRCPs for the alimentary and
respiratory tract systems were compared with the Publication 133 (ICRP, 2016)
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values that were calculated using the supplementary stylised models (ICRP, 199%4a,
2006, 2016). Generally, good agreement was observed for the oral mucosa, oesopha-
gus, and BB region. In contrast, for the stomach, small intestine, large intestine, ET
region, and bb region, relatively large differences were observed, mainly due to ana-
tomical differences of these organs as described by the MRCPs and the stylised
models. With some exceptions (stomach and bb region for the Al region as a
source), the MRCPs tend to overestimate SAFs when compared with the
Publication 133 values; the maximum difference was approximately 16 times for
the large intestine for the contents as a source. To use the MRCPs for SAF calcu-
lations, one should be aware that the masses of the target regions (i.e. stem cells) for
the stomach and intestines in the MRCPs do not exactly match those of the stylised
models in Publication 100 (ICRP, 2006).

(96) The electron cross-fires between respiratory tract segments in the lungs are
naturally realised in the MRCPs, which is one of the main advantages of using the
MRCPs over the isolated cylindrical stylised models in Publication 66 (1994a).
Fig. 7.1 shows, as an example, the SAF results for the secretory cells of the bron-
chioles (bbg.) as a target. Except for the Al source region where significant SAF
differences were found due to the different Al densities, it can be seen that an overall
trend is similar for all source regions. For energies <0.5MeV, the SAFs of the
MRCPs show good agreement with those of the stylised models; that is, the max-
imum differences were only 14% and 18% for the male and female, respectively. For
higher energies, on the other hand, significant differences can be found; that is, the
MRCPs produce higher SAFs than the stylised models, by up to 77% and 74% for
the male and female, respectively, mainly due to realisation of the cross-fires in the
MRCPs. More detailed discussions on comparison of the SAFs for the alimentary
and respiratory tract systems can be found in Kim et al. (2017).

(97) The male MRCP was used to calculate the SAFs for alpha particles and
electrons for the urinary bladder wall < urinary bladder content case, and then
the calculated values were compared with the values calculated using a stylised
model for the male (Eckerman and Veinot, 2018). Note that the values of the
MRCP were not compared with the values in Publication 133 (ICRP, 2016) because
these values were calculated for the entire wall of the urinary bladder, not for the
radiosensitive basal layer of the wall. The MRCP values were found to be slightly less
than the values of the stylised model, the differences being less than a few percent,
mainly due to the slight difference (~6%) in the target mass between the MRCP
urinary bladder model and the idealised spherical stylised model used in Eckerman
and Veniot (2018).
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Fig. 7.1. Specific absorbed fractions to the secretory cells of the bronchioles (bb..) as a
target for electron exposures within the male mesh-type reference computational phantom
(MRCP) (red circles), female MRCP (red squares), Publication 66 (ICRP, 1994a) stylised
male model (blue upward triangles), Publication 66 stylised female model (blue downward
triangles), Publication 133 (ICRP, 2016) male values (black solid line), and Publication 133
female values (black dashed line) (Kim et al., 2017).
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8. APPLICATION: CALCULATION OF DOSE COEFFICIENTS
FOR INDUSTRIAL RADIOGRAPHY SOURCES

(98) Accidents involving industrial radiography sources could result in very high
radiation doses to workers, causing serious injuries and even death (IAEA, 2011). In
addition, members of the public could be exposed accidentally if industrial radiog-
raphy sources are not properly controlled or regulated. According to the
International Atomic Energy Agency (IAEA, 1998), industrial radiography accounts
for approximately half of all reported accidents for nuclear-related industries in both
developed and developing countries. Radiation accidents could result in high radi-
ation doses inducing acute radiation syndrome (ARS), which can be classified into
haematopoietic (3—5 Gy), gastrointestinal (5-15 Gy), and cerebrovascular (>15 Gy)
syndromes (ICRP, 2007). In order to treat patients (i.e. exposed individuals) with
ARS effectively, it is necessary to perform medical triage accurately and quickly,
whereby those patients who will develop symptoms are identified separately from
those who do not require medical intervention (Gougelet et al., 2010). Individual
radiation doses can be estimated using various dosimetric techniques based on bio-
logical, physical, or computational approaches. However, all of the existing dosimet-
ric techniques have limitations, and thus none of them can be used as a stand-alone
tool in a satisfactory manner for most radiation accident scenarios (Ainsbury et al.,
2011). For example, biological and physical dosimetric techniques generally require
several days for sample collection and analysis. Moreover, these techniques are
impractical for use in a large-scale accident involving a multitude of exposed indi-
viduals (Gougelet et al., 2010; Rea et al., 2010; Swartz et al., 2014; Kulka et al.,
2017), and are generally limited to estimating the whole-body dose without informa-
tion on organ-/tissue-specific doses or their dose distribution (Ainsbury et al., 2011).
Note that knowledge of the whole-body dose may not be sufficient, especially in
partial-body or localised exposures (Ainsbury et al., 2011; Lu et al., 2017). Organ/
tissue doses or dose distributions can be estimated using computational dosimetric
techniques (e.g. Monte Carlo simulations with computational human phantoms) if
reliable information on the accident scenario is available, including the source geom-
etry and duration of exposure (Lu et al., 2017), which are often unclear immediately
following accidental irradiation situations (Clairand et al., 2006; Ainsbury et al.,
2011). Due to the fact that no single technique fully meets the criteria of an ideal
dosimeter for use in accidental situations, an integrated approach using multiple
dosimetric techniques is considered to be the best strategy (Ainsbury et al., 2011,
2017; Sullivan et al., 2013). Doses calculated with computational anthropomorphic
phantoms can be used as one of the dose estimators, particularly as an ‘initial, rapid
estimator’.

(99) For dose estimation of individuals exposed to such high doses, consideration
of the Reference Person may be insufficient, particularly when the body size of the
individual involved in the accident is significantly different from that of the phantom
representing the Reference Person. In such cases, the dose could be better approxi-
mated using DCs calculated with a non-reference computational phantom whose
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body size is close to that of the actual person. To demonstrate this approach,
non-reference adult male and female phantoms, representing the 10th and 90th per-
centiles of the Caucasian population, were developed in this publication. The 10th
percentile phantoms, which represent small people, were constructed by decreasing
the size of the MRCPs to the 10th percentile standing height and the 10th percentile
body mass (male 1.672m and 55.9 kg, female 1.549 m and 44.2 kg). Similarly, the
90th percentile phantoms, which represent large people, were constructed by increas-
ing the size of the MRCPs to the 90th percentile standing height and the 90th per-
centile body mass (male 1.858 m and 108.4 kg, female 1.717m and 94.1 kg). Fig. 8.1
shows the 10th and 90th percentile phantoms, along with the MRCPs. The height
and mass values were derived from PeopleSize 2008 Professional data (http://www.o-
penerg.com). The torso, arms, and legs were scaled considering the lean body mass
(Deurenberg et al., 1991; Pieterman et al., 2002). The head was scaled separately,
using PeopleSize 2008 Professional data and the US Army Anthropometric Survey
(ANSUR II) data (Gordon et al., 2014). More detailed information on scaling can be
found in Lee et al. (2019). The internal organs and tissues of the phantoms were
modified via the scaling/deforming procedures as described in Lee et al. (2019).

(100) In order to evaluate accidental exposures from industrial radiography
sources, DCs were calculated using the adult MRCPs as well as the 10th and 90th
percentile phantoms, implemented into the Geant4 code (Version 10.02) (Agostinelli
et al., 2003). The most commonly used industrial radiography sources (i.e. '**Ir,
137Cs/13"™MBa, and ®°Co) were simulated as point sources placed near each of the
MCRPs. '°Ir emits gamma rays with energies up to 0.820 MeV and a mean energy
of 0.377MeV, *’Cs emits 0.662MeV gamma rays, and °°Co emits 1.33 and
1.17MeV gamma rays. The point sources were assumed to be located at three dif-
ferent distances (0.005, 0.1, and 0.3m) in four directions (anterior, posterior, right
lateral, and left lateral) at five levels (ground, middle thigh, lower torso, middle torso,
and upper torso) (see Fig. 8.2). In addition, three longer distances (1, 1.5, and 3 m)
were modelled in the four directions at the lower torso level. The source distance
used in the calculations is the distance from the surface of the phantom, except for
the anterior and posterior directions at ground and middle thigh levels, for which the
distance is calculated from the centre of the imaginary segment tangent to the sur-
faces of the left and right legs at the given level.

(101) In order to consider the doses of those organs/tissues that might manifest
ARS, the doses for RBM, brain, lungs, small intestine, and large intestine were
calculated as organ-/tissue-averaged absorbed dose per source disintegration
(Gys™'Bq!). The RBM DCs were calculated using the fluence-to-absorbed-dose-
response functions reported in Annex D of Publication 116 (ICRP, 2010). In
addition, the DCs of effective dose (effective dose per source disintegration) were
calculated and could be used for the dosimetry of individuals who are exposed at
lower doses related to stochastic effects. Effective doses cannot be calculated using
non-reference phantoms (i.e. 10th and 90th percentile phantoms) and, therefore, in
this publication, the DCs of effective doses were only calculated using the MRCPs.
The statistical errors of the calculated values were <5% for all cases. A complete set
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Fig. 8.1. Computational phantoms for adult male (top) and adult female (bottom): 10th
percentile phantom (left), mesh-type reference computational phantom (middle), and 90th
percentile phantom (right).
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Front Back

Fig. 8.2. Source locations at three distances (0.005, 0.1, and 0.3m) at five levels (ground,
middle thigh, lower torso, middle torso, and upper torso) in four directions (anterior,
posterior, right lateral, and left lateral).

of the DCs calculated with the MRCPs and the 10th and 90th percentile phantoms is
given in Annex J.

(102) Furthermore, the influence of different postures during exposure was inves-
tigated by calculating DCs using a set of non-standing phantoms (walking, sitting,
bending, kneeling, and squatting postures) that were constructed by modifying the
MRCPs. For this purpose, the DCs were calculated for the lowest-energy source (i.e.
21r) located 1m from the phantom surface in the four directions at lower torso
level. The calculated DCs of the non-standing phantoms were then compared with
those of the standing MRCPs. The results of this limited investigation showed that
the influence of different postures on the DC is not very large (generally <30%). It
was, therefore, decided not to calculate the DCs of the non-standing phantoms.

(103) Note that the strength of industrial radiography sources is usually given as
‘apparent activity’ (also called ‘effective activity’), which is defined as the activity of
an unshielded point source that would give the same exposure rate at the same
distance (typically 1 m) compared with the actual source (Gomes et al., 2013). If
the source strength is given as real physical activity, not apparent activity, the
DCs listed in Annex J should be corrected to take the source self-shielding effect
into account. Therefore, Annex J also provides the source self-shielding factors for
different thicknesses of radioactive material and capsule wall.
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ANNEX A. LIST OF ORGAN IDENTIFICATION NUMBERS,
MEDIUM, DENSITY, AND MASS OF EACH ORGAN/TISSUE

Table A.1. List of organ identification (ID) number, medium, density, and mass of each
organ/tissue in tetrahedral mesh (TM) phantoms.

Density (gem ™) Mass (g)

Organ ID  Organ/tissue Medium Male Female Male Female
100 Adrenal, left 1 1.036 1.035 8.683 6.817
200 Adrenal, right 1 1.036 1.035 8.683 8.649
300 ET;, 0~8 um 2 1.031 1.031 0.022 0.009
301 ET;, 8~40 um 2 1.031 1.031 0.090 0.035
302 ET,, 40~50 um 2 1.031 1.031 0.028 0.011
303 ET,, 50 um~surface 2 1.031 1.031 11.291 4.375
400 ET,, —15~0 pm 52 1.000 1.000 0.141 0.104
401 ET,, 0~40 um 2 1.031 1.031 0.390 0.288
402 ET,, 40~50 pm 2 1.031 1.031 0.098 0.072
403 ET,, 50~55 um 2 1.031 1.031 0.049 0.036
404 ET,, 55~65um 2 1.031 1.031 0.098 0.072
405 ET,, 65 um~surface 2 1.031 1.031 28.808 14.180
500 Oral mucosa, tongue 3 1.050 1.050 0.086 0.066
501 Oral mucosa, mouth 3 1.050 1.050 0.024 0.016

floor
600 Oral mucosa, lips, 3 1.050 1.050 0.023 0.019

and cheeks
700 Trachea 2 1.031 1.031 10.364 8.201
800 BB,", —11~—6um 52 1.000 1.000 0.025 0.010
801 BB,", —6~0 um 2 1.031 1.031 0.031 0.013
802 BB,", 0~10 um 2 1.031 1.031 0.052 0.021
803 BB,", 10~35um 2 1.031 1.031 0.130 0.053
804 BB,", 35~40 um 2 1.031 1.031 0.026 0.011
805 BB,", 40~50 ym 2 1.031 1.031 0.052 0.021
806 BB,", 50~60 um 2 1.031 1.031 0.052 0.021
807 BB,", 60~70 ym 2 1.031 1.031 0.053 0.021
808 BB,", 70 um~surface 2 1.031 1.031 2.777 1.179
900 Blood in large 4 1.060 1.060 1.504 1.910

arteries, head
910 Blood in large veins, 4 1.060 1.060 6.943 3.009

head
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Density (gem ™) Mass (g)

Organ ID Organ/tissue Medium Male Female Male Female

1000 Blood in large 4 1.060 1.060 193.184 117.882
arteries, trunk

1010 Blood in large veins, 4 1.060 1.060 444.109 239.840
trunk

1100 Blood in large 4 1.060 1.060 32.474 46.314
arteries, arms

1110 Blood in large veins, 4 1.060 1.060 167.270 139.539
arms

1200 Blood in large 4 1.060 1.060 108.839 79.894
arteries, legs

1210 Blood in large veins, 4 1.060 1.060 389.677 355.612
legs

1300 Humeri, upper, 5 1.904 1.904 159.356 113.685
cortical

1400 Humeri, upper, 7 1.233 1.185 145.689 107.717
spongiosa

1500 Humeri, upper, 6 0.981 0.981 34.244 20.516
medullary cavity

1600 Humeri, lower, 5 1.904 1.904 106.561 103.292
cortical

1700 Humeri, lower, 8 1.109 1.117 50.890 50.264
spongiosa

1800 Humeri, lower, 6 0.981 0.981 37.397 20.493
medullary cavity

1900 Ulnae and radii, 5 1.904 1.904 273.498 156.708
cortical

2000 Ulnae and radii, 8 1.109 1.117 154.981 86.883
spongiosa

2100 Ulnae and radii, 6 0.981 0.981 22.996 34.068
medullary cavity

2200 Wrists and hand 5 1.904 1.904 181.529 105.132
bones, cortical

2300 Wrists and hand 8 1.109 1.117 118.927 69.360
bones, spongiosa

2400 Clavicles, cortical 5 1.904 1.904 48.252 32.825

2500 Clavicles, spongiosa 1.157 1.192 45.057 38.798

2600 Cranium, cortical 5 1.904 1.904 568.469 407.670

2700 Cranium, spongiosa 10 1.165 1.252 382.073 391.311
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Table A.1. (continued)

Density (gecm ™) Mass (g)

Organ ID Organ/tissue Medium Male Female Male Female

2800 Femora, upper, 5 1.904 1.904 253.548 244.126
cortical

2900 Femora, upper, 11 1.125 1.046 413.232 232.804
spongiosa

3000 Femora, upper, 6 0.981 0.981 26.045 39.516
medullary cavity

3100 Femora, lower, 5 1.904 1.904 307.761 240.929
cortical

3200 Femora, lower, 8 1.109 1.117 373.652 166.334
spongiosa

3300 Femora, lower, 6 0.981 0.981 82.179 56.762
medullary cavity

3400 Tibiae, fibulae, and 5 1.904 1.904 536.651 544.845
patellae, cortical

3500 Tibiae, fibulae, and 8 1.109 1.117 621.408 558.529
patellae, spongiosa

3600 Tibiae, fibulae, and 6 0.981 0.981 79.815 88.883
patellae, medullary
cavity

3700 Ankles and foot, 5 1.904 1.904 234.882 173.476
cortical

3800 Ankles and foot, 8 1.109 1.117 432.615 257.451
spongiosa

3900 Mandible, cortical 5 1.904 1.904 76.877 45.394

4000 Mandible, spongiosa 12 1.271 1.189 56.287 33.479

4100 Pelvis, cortical 5 1.904 1.904 402.595 262.460

4200 Pelvis, spongiosa 13 1.121 1.105 619.672 455.599

4300 Ribs, cortical 5 1.904 1.904 368.797 164.514

4400 Ribs, spongiosa 14 1.170 1.087 457.351 277.325

4500 Scapulae, cortical 5 1.904 1.904 223.333 121.664

4600 Scapulae, spongiosa 15 1.201 1.125 156.670 96.730

4700 Cervical spine, 5 1.904 1.904 103.943 71.596
cortical

4800 Cervical spine, 16 1.049 1.129 78.915 75.601
spongiosa

4900 Thoracic spine, 5 1.904 1.904 289.440 205.828
cortical
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Density (gem ™) Mass (g)

Organ ID Organ/tissue Medium Male Female Male Female

5000 Thoracic spine, 17 1.070 1.080 345.222 271915
spongiosa

5100 Lumbar spine, 5 1.904 1.904 188.047 156.175
cortical

5200 Lumbar spine, 18 1.108 1.165 291.584 264.976
spongiosa

5300 Sacrum, cortical 5 1.904 1.904 110.320 80.240

5400 Sacrum, spongiosa 19 1.033 1.052 192.224 154.840

5500 Sternum, cortical 5 1.904 1.904 9.991 1.685

5600 Sternum, spongiosa 20 1.041 1.073 61.420 51.347

5700 Cartilage, costal 21 1.099 1.099 56.331 41.959

5800 Cartilage, discs 21 1.099 1.099 82.063 69.351

6100 Brain 22 1.041 1.041 1517.390 1349.568

6200 Breast, left, adipose 23 0.953 0.952 7.769 153.663
tissue

6300 Breast, left, glandular 24 1.021 1.021 5.180 102.491
tissue

6400 Breast, right, adipose 23 0.953 0.952 7.769 153.663
tissue

6500 Breast, right, glandu- 24 1.021 1.021 5.180 102.491
lar tissue

6600 Eye lens, sensitive, 25 1.060 1.060 0.039 0.039
left

6601 Eye lens, insensitive, 25 1.060 1.060 0.189 0.189
left

6700 Cornea, left 26 1.100 1.087 1.113 1.100

6701 Aqueous, left 27 1.025 1.014 0.308 0.304

6702 Vitreous, left 28 1.031 1.019 6.122 6.051

6800 Eye lens, sensitive, 25 1.060 1.060 0.039 0.039
right

6801 Eye lens, insensitive, 25 1.060 1.060 0.189 0.189
right

6900 Cornea, right 26 1.100 1.087 1.113 1.100

6901 Aqueous, right 27 1.025 1.014 0.308 0.304

6902 Vitreous, right 28 1.031 1.019 6.122 6.051

7000 Gallbladder wall 2 1.031 1.031 10.364 8.201

7100 Gallbladder contents 29 1.030 1.030 58.000 48.000
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Table A.1. (continued)

Density (gecm ™) Mass (g)

Organ ID Organ/tissue Medium Male Female Male Female

7200 Stomach wall, 30 1.037 1.036 1.784 1.561
0~60 um

7201 Stomach wall, 30 1.037 1.036 1.193 1.044
60~100 um

7202 Stomach wall, 30 1.037 1.036 6.008 5.256
100~300 pm

7203 Stomach wall, 30 1.037 1.036 185.286 165.012
300 um~surface

7300 Stomach contents 33 1.040 1.040 250.000 230.000

7400 Small intestine wall, 31 1.037 1.036 14.547 12.341
0~130 um

7401 Small intestine wall, 31 1.037 1.036 2.264 1.922
130~150 pm

7402 Small intestine wall, 31 1.037 1.036 5.692 4.831
150~200 pm

7403 Small intestine wall, 31 1.037 1.036 840.096 736.674
200 pm~surface

7500 Small intestine con- 33 1.040 1.040 53.337 45.227
tents, —500~0 um

7501 Small intestine con- 33 1.040 1.040 296.663 234.773
tents, centre~
—500 pm

7600 Ascending colon wall, 32 1.037 1.036 3.071 4.451
0~280 um

7601 Ascending colon wall, 32 1.037 1.036 0.223 0.322
280~300 pm

7602 Ascending colon wall, 32 1.037 1.036 116.634 107.784
300 pm~surface

7700 Ascending colon 33 1.040 1.040 55.000 100.007
contents

7800 Transverse colon 32 1.037 1.036 3.993 3.680
wall, right,
0~280 um

7801 Transverse colon 32 1.037 1.036 0.289 0.266
wall, right,
280~300 pm

7802 Transverse colon 32 1.037 1.036 75.671 64.847
wall, right,

300 um~surface
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Table A.1. (continued)

Density (gem ™) Mass (g)

Organ ID  Organ/tissue Medium Male Female Male Female

7900 Transverse colon 33 1.040 1.040 95.000 59.995
contents, right

8000 Transverse colon 32 1.037 1.036 2.824 2.196
wall, left,
0~280 um

8001 Transverse colon 32 1.037 1.036 0.205 0.160
wall, left,
280~300 pm

8002 Transverse colon 32 1.037 1.036 76.924 66.428
wall, left,
300 pm~surface

8100 Transverse colon 33 1.040 1.040 40.000 30.005
contents, left

8200 Descending colon 32 1.037 1.036 2.779 3.021
wall, 0~280 pm

8201 Descending colon 32 1.037 1.036 0.203 0.220
wall, 280~300 um

8202 Descending colon 32 1.037 1.036 116.946 109.320
wall,
300 um~surface

8300 Descending colon 33 1.040 1.040 35.000 50.003
contents

8400 Sigmoid colon wall, 32 1.037 1.036 4.451 4.222
0~280 um

8401 Sigmoid colon wall, 32 1.037 1.036 0.324 0.306
280~300 pm

8402 Sigmoid colon wall, 32 1.037 1.036 48.527 51.761
300 um~surface

8500 Sigmoid colon 33 1.040 1.040 75.000 79.993
contents

8600 Rectum wall 32 1.037 1.036 39.976 31.268

8700 Heart wall 34 1.051 1.051 385.839 290.890

8800 Blood in heart 4 1.060 1.060 510.000 370.000
chamber

8900 Kidney, left, cortex 35 1.053 1.052 162.338 149.091

9000 Kidney, left, medulla 35 1.053 1.052 38.359 37.441

9100 Kidney, left, pelvis 35 1.053 1.052 7.652 7.494

9200 Kidney, right, cortex 35 1.053 1.052 166.542 125.147

(continued on next page)
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Table A.1. (continued)

Density (gecm ™) Mass (g)

Organ ID Organ/tissue Medium Male Female Male Female

9300 Kidney, right, 35 1.053 1.052 39.362 31.440
medulla

9400 Kidney, right, pelvis 35 1.053 1.052 7.892 6.292

9500 Liver 36 1.060 1.060 2360.000 1810.000

9700 Lung (AI), left 37 0.415 0413 545.877 427.256

9900 Lung (AI), right 37 0.415 0413 652.861 522.518

10,000 Lymphatic nodes, ET 38 1.032 1.032 15.949 12.695

10,100 Lymphatic nodes, 38 1.032 1.032 15.949 12.695
thoracic

10,200 Lymphatic nodes, 38 1.032 1.032 5.510 4.386
head

10,300 Lymphatic nodes, 38 1.032 1.032 130.204 103.641
trunk

10,400 Lymphatic nodes, 38 1.032 1.032 11.019 8.771
arms

10,500 Lymphatic nodes, 38 1.032 1.032 11.019 8.771
legs

10,600 Muscle, head 39 1.050 1.050 1200.827 445.022

10,700 Muscle, trunk 39 1.050 1.050 14,842.189 8324.959

10,800 Muscle, arms 39 1.050 1.050 2843.405 1479.792

10,900 Muscle, legs 39 1.050 1.050 10,890.182 7676.666

11,000 Oesophagus wall, 40 1.037 1.036 1.919 1.871
0~190 pm

11,001 Oesophagus wall, 40 1.037 1.036 0.103 0.101
190~200 pm

11,002 Oesophagus wall, 40 1.037 1.036 49.783 41.247
200 um~surface

11,003 Oesophagus contents 33 1.040 1.040 22.870 21.240

11,100 Ovary, left 41 1.051 6.318

11,200 Ovary, right 41 1.051 6.318

11,300 Pancreas 42 1.044 1.043 173.631 144.552

11,400 Pituitary gland 2 1.031 1.031 0.622 0.615

11,500 Prostate 43 1.031 17.618

11,600 RST, head 44 0.939 0.946 975.623 844.542

11,700 RST, trunk 44 0.939 0.946 11,176.900 11,513.345

11,800 RST, arms 44 0.939 0.946 1549.848 2171.553

11,900 RST, legs 44 0.939 0.946 4510.138 7795.947
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Table A.1. (continued)

Density (gem ™) Mass (g)

Organ ID Organ/tissue Medium Male Female Male Female

12,000 Salivary glands, left 2 1.031 1.031 44.045 35.880

12,100 Salivary glands, right 2 1.031 1.031 44.045 35.880

12,200 Skin, head, 45 1.089 1.088 259.230 155.582
insensitive

12,201 Skin, head, sensitive, 45 1.089 1.088 8.470 6.324
50~100 um

12,300 Skin, trunk, 45 1.089 1.088 1271.186 871.542
insensitive

12,301 Skin, trunk, sensitive, 45 1.089 1.088 38.418 32.368
50~100 um

12,400 Skin, arms, 45 1.089 1.088 575.693 380.919
msensitive

12,401 Skin, arms, sensitive, 45 1.089 1.088 18.843 15.599
50~100 pm

12,500 Skin, legs, insensitive 45 1.089 1.088 1259.931 924.670

12,501 Skin, legs, sensitive, 45 1.089 1.088 37.790 35.025
50~100 um

12,600 Spinal cord 2 1.031 1.031 37.952 19.098

12,700 Spleen 46 1.060 1.060 228.400 187.400

12,800 Teeth 47 2.688 2.690 50.727 40.562

12,801 Teeth, retention 33 1.040 1.040 0.043 0.036
region

12,900 Testis, left 41 1.041 18.617

13,000 Testis, right 41 1.041 18.617

13,100 Thymus 2 1.031 1.031 25.909 20.503

13,200 Thyroid 48 1.051 1.051 23.351 19.455

13,300 Tongue, upper (food) 3 1.050 1.050 20.993 20.995

13,301 Tongue, lower 3 1.050 1.050 54.552 40.415

13,400 Tonsils 2 1.031 1.031 3.109 3.075

13,500 Ureter, left 2 1.031 1.031 8.809 7.689

13,600 Ureter, right 2 1.031 1.031 7.773 7.689

13,700 Urinary bladder wall, 49 1.040 1.040 49.781 39.459
insensitive

13,701 Urinary bladder wall, 49 1.040 1.040 1.318 1.345

sensitive, 118/
1167~193/185" pm

(continued on next page)
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Table A.1. (continued)

Density (gecm ™) Mass (g)
Organ ID Organ/tissue Medium Male Female Male Female
13,800 Urinary bladder 50 1.040 1.040 200.000 200.000
contents
13,900 Uterus 43 1.021 81.993
14,000 Air inside body 51 0.001 0.001 0.140 0.036

ET, extrathoracic; Al, alveolar-interstitium; RST, residual soft tissue.

*Only the main bronchi (BB,) was defined in the TM phantoms. The other generations of the bronchi (BB)
and all generations of the bronchioles (bb) were modelled in constructive solid geometry format (see
Section 5.3).

"Male/female.

Table A.2. List of organ identification (ID) number, medium, density, and mass of each
organ/tissue in polygon mesh (PM) phantoms.

Density (gem™) Mass (g)
Organ ID Organ/tissue Medium Male Female  Male Female
100 Adrenal, left 1 1.036 1.035 8.683 6.817
200 Adrenal, right 1 1.036 1.035 8.683 8.649
300 ET;, 8 um 2 1.031 1.031 0.022 0.009
301 ET;, 40 pm 2 1.031 1.031 0.090 0.035
302 ET;, 50 pm 2 1.031 1.031 0.028 0.011
303 ET,, surface 2 1.031 1.031 11.291 4.375
400 ET,, O um 52 1.000 1.000 0.141 0.104
401 ET,, 40 um 2 1.031 1.031 0.390 0.288
402 ET,, 50 pm 2 1.031 1.031 0.098 0.072
403 ET,, 55um 2 1.031 1.031 0.049 0.036
404 ET,, 65pum 2 1.031 1.031 0.098 0.072
405 ET,, surface 2 1.031 1.031 28.808 14.180
500 Oral mucosa, tongue 3 1.050 1.050 0.086 0.066
501 Oral mucosa, mouth 3 1.050 1.050 0.023 0.016
floor
600 Oral mucosa, lipsand 3 1.050 1.050 0.023 0.019
cheeks
700 Trachea 2 1.031 1.031 10.364 8.201
800 BB,", =6 um 52 1.000 1.000 0.025 0.010
801 BB,", 0 um 2 1.031 1.031 0.031 0.013

(continued on next page)

77



Table A.2. (continued)

ICRP Publication 14X

Density (gecm ™) Mass (g)
Organ ID Organ/tissue Medium Male Female  Male Female
802 BB,", 10 um 2 1.031 1.031 0.052 0.021
803 BB,", 35um 2 1.031 1.031 0.130 0.053
804 BB,", 40 pm 2 1.031 1.031 0.026 0.011
805 BB,", 50 um 2 1.031 1.031 0.052 0.021
806 BB,", 60 pm 2 1.031 1.031 0.052 0.021
807 BB,", 70 um 2 1.031 1.031 0.053 0.021
808 BB, ", surface 2 1.031 1.031 2.777 1.179
900 Blood in large 4 1.060 1.060 336.000 246.000
arteries
910 Blood in large veins 1.060 1.060 1008.000 737.998
1300 Humeri, cortical 1.904  1.904 265.917 216.977
1400 Humeri, upper, 1.233 1.185 145.689 107.717
spongiosa
1500 Humeri, medullary 6 0.981  0.981 71.641 41.009
cavity
1700 Humeri, lower, 8 1.109 1.117 50.890 50.264
spongiosa
1900 Ulnae and radii, 5 1.904  1.904 273.498 156.708
cortical
2000 Ulnae and radii, 8 1.109 1.117 154.981 86.883
spongiosa
2100 Ulnae and radii, 6 0.981  0.981 22.996 34.068
medullary cavity
2200 Wrists and hand 5 1.904  1.904 181.529 105.132
bones, cortical
2300 Wrists and hand 8 1.109 1.117 118.927 69.360
bones, spongiosa
2400 Clavicles, cortical 5 1.904 1.904 48.252 32.825
2500 Clavicles, spongiosa 9 1.157 1.192 45.057 38.798
2600 Cranium, cortical 5 1.904 1.904 567.517 405.466
2600 Cranium, cortical, 5 1.904 1.904 0.953 2.204
surrounding
frontal sinus
2700 Cranium, spongiosa 10 1.165 1.252 382.073 391.311
2800 Femora, cortical 5 1.904  1.904 561.309 485.055
2900 Femora, upper, 11 1.125 1.046 413.232 232.804

spongiosa
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Table A.2. (continued)

Density (gecm ™) Mass (g)
Organ ID Organ/tissue Medium Male Female  Male Female

3000 Femora, medullary 6 0.981  0.981 108.224 96.278
cavity

3200 Femora, lower, 8 1.109  1.117 373.652 166.334
spongiosa

3400 Tibiae, fibulae, and 5 1.904  1.904 536.651 544.845
patellae, cortical

3500 Tibiae, fibulae, and 8 1.109  1.117 621.408 558.529
patellae, spongiosa

3600 Tibiae, fibulae, and 6 0.981  0.981 79.815 88.883
patellae, medullary
cavity

3700 Ankles and foot, 5 1.904  1.904 234.882 173.476
cortical

3800 Ankles and foot, 8 1.109  1.117 432.615 257.451
spongiosa

3900 Mandible, cortical 5 1.904 1.904 76.877 45.394

4000 Mandible, spongiosa 12 1.271 1.189 56.287 33.479

4100 Pelvis, cortical 5 1.904  1.904 402.595 262.460

4200 Pelvis, spongiosa 13 1.121 1.105 619.672 455.599

4300 Ribs, cortical 5 1.904  1.904 368.797 164.514

4400 Ribs, spongiosa 14 1.170  1.087 457.351 277.325

4500 Scapulae, cortical 5 1.904 1.904 223.333 121.664

4600 Scapulae, spongiosa 15 1.201 1.125 156.670 96.730

4700 Cervical spine, 5 1.904  1.904 103.943 71.596
cortical

4800 Cervical spine, 16 1.049 1.129 78.915 75.601
spongiosa

4900 Thoracic spine, 5 1.904  1.904 289.440 205.828
cortical

5000 Thoracic spine, 17 1.070  1.080 345.222 271.915
spongiosa

5100 Lumbar spine, 5 1.904  1.904 188.047 156.175
cortical

5200 Lumbar spine, 18 1.108 1.165 291.584 264.976
spongiosa

5300 Sacrum, cortical 5 1.904 1.904 110.320 80.240

5400 Sacrum, spongiosa 19 1.033 1.052 192.224 154.840

5500 Sternum, cortical 5 1.904 1.904 9.991 1.685

(continued on next page)
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Table A.2. (continued)

Density (gecm ™) Mass (g)
Organ ID Organ/tissue Medium Male Female  Male Female

5600 Sternum, spongiosa 20 1.041 1.073 61.420 51.347

5700 Cartilage, costal 21 1.099 1.099 56.331 41.959

5800 Cartilage, discs 21 1.099 1.099 82.063 69.351

6100 Brain 22 1.041 1.041 1517.390  1349.568

6200 Breast, left, adipose 23 0.953 0.952 7.769 153.663
tissue

6300 Breast, left, glandular 24 1.021 1.021 5.180 102.491
tissue

6400 Breast, right, adipose 23 0.953 0.952 7.769 153.663
tissue

6500 Breast, right, glandu- 24 1.021 1.021 5.180 102.491
lar tissue

6600 Eye lens, sensitive, 25 1.060 1.060 0.039 0.039
left

6601 Eye lens, insensitive, 25 1.060 1.060 0.189 0.189
left

6700 Cornea, left 26 1.100 1.087 1.113 1.100

6701 Aqueous, left 27 1.025 1.014 0.308 0.304

6702 Vitreous, left 28 1.031 1.019 6.122 6.051

6800 Eye lens, sensitive, 25 1.060 1.060 0.039 0.039
right

6801 Eye lens, insensitive, 25 1.060 1.060 0.189 0.189
right

6900 Cornea, right 26 1.100 1.087 1.113 1.100

6901 Aqueous, right 27 1.025 1.014 0.308 0.304

6902 Vitreous, right 28 1.031 1.019 6.122 6.051

7000 Gallbladder wall 2 1.031 1.031 10.364 8.201

7100 Gallbladder contents 29 1.030 1.030 58.000 48.000

7200 Stomach wall, 60 um 30 1.037 1.036 1.784 1.561

7201 Stomach wall, 100 um 30 1.037 1.036 1.193 1.044

7202 Stomach wall, 300 um 30 1.037 1.036 6.008 5.256

7203 Stomach wall, surface 30 1.037 1.036 185.286 165.012

7300 Stomach contents 33 1.040 1.040 250.000 230.000

7400 Small intestine wall, 31 1.037 1.036 14.547 12.341
130 pm

7401 Small intestine wall, 31 1.037 1.036 2.264 1.922
150 um

(continued on next page)
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Table A.2. (continued)

Density (gecm ™) Mass (g)
Organ ID Organ/tissue Medium Male Female Male Female

7402 Small intestine wall, 31 1.037 1.036 5.692 4.831
200 pm

7403 Small intestine wall, 31 1.037 1.036 840.096 736.674
surface

7500 Small intestine con- 33 1.040 1.040 53.337 45.227
tents, 0 um

7501 Small intestine con- 33 1.040 1.040 296.663 234.773
tents, —500 um

7600 Ascending colon wall, 32 1.037 1.036 3.071 4.451
280 um

7601 Ascending colon wall, 32 1.037 1.036 0.223 0.322
300 um

7602 Ascending colon wall, 32 1.037 1.036 116.634 107.784
surface

7700 Ascending colon 33 1.040 1.040 55.000 100.007
contents

7800 Transverse colon 32 1.037 1.036 3.993 3.680
wall, right, 280 um

7801 Transverse colon 32 1.037 1.036 0.289 0.266
wall, right, 300 um

7802 Transverse colon 32 1.037 1.036 75.671 64.847
wall, right, surface

7900 Transverse colon 33 1.040 1.040 95.000 59.995
contents, right

8000 Transverse colon 32 1.037 1.036 2.824 2.196
wall, left, 280 um

8001 Transverse colon 32 1.037 1.036 0.205 0.160
wall, left, 300 um

8002 Transverse colon 32 1.037 1.036 76.924 66.428
wall, left, surface

8100 Transverse colon 33 1.040 1.040 40.000 30.005
contents, left

8200 Descending colon 32 1.037 1.036 2.779 3.021
wall, 280 pum

8201 Descending colon 32 1.037 1.036 0.203 0.220
wall, 300 pm

8202 Descending colon 32 1.037 1.036 116.946 109.320

wall, surface
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Table A.2. (continued)

Density (gecm ™) Mass (g)
Organ ID Organ/tissue Medium Male Female  Male Female
8300 Descending colon 33 1.040 1.040 35.000 50.003
contents
8400 Sigmoid colon wall, 32 1.037 1.036 4.451 4.222
280 pm
8401 Sigmoid colon wall, 32 1.037 1.036 0.324 0.306
300 pm
8402 Sigmoid colon wall, 32 1.037 1.036 48.527 51.761
surface
8500 Sigmoid colon 33 1.040 1.040 75.000 79.993
contents
8600 Rectum wall 32 1.037 1.036 39.976 31.268
8700 Heart wall 34 1.051 1.051 385.839 290.890
8800 Blood in heart 4 1.060 1.060 510.000 370.000
chamber
8900 Kidney, left, cortex 35 1.053 1.052 162.338 149.091
9000 Kidney, left, medulla 35 1.053 1.052 38.359 37.441
9100 Kidney, left, pelvis 35 1.053 1.052 7.652 7.494
9200 Kidney, right, cortex 35 1.053 1.052 166.542 125.147
9300 Kidney, right, 35 1.053 1.052 39.362 31.440
medulla
9400 Kidney, right, pelvis 35 1.053 1.052 7.892 6.292
9500 Liver 36 1.060 1.060 2360.000  1810.000
9700 Lung (AI), left 37 0415 0413 545.877 427.256
9900 Lung (AI), right 37 0415 0413 652.861 522.518
10,000 Lymphatic nodes, ET 38 1.032 1.032 15.949 12.695
10,100 Lympbhatic nodes, 38 1.032 1.032 15.949 12.695
thoracic
10,200 Lymphatic nodes, 38 1.032 1.032 5.510 4.386
head
10,300 Lymphatic nodes, 38 1.032 1.032 130.204 103.641
trunk
10,400 Lymphatic nodes, 38 1.032 1.032 11.019 8.771
arms
10,500 Lymphatic nodes, 38 1.032 1.032 11.019 8.771
legs
10,600 Muscle 39 1.050 1.050 29,776.580 17,926.439

(continued on next page)
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Table A.2. (continued)

Density (gecm ™) Mass (g)

Organ ID Organ/tissue Medium Male Female  Male Female

11,000 Oesophagus wall, 40 1.037 1.036 1.919 1.871
190 pm

11,001 Oesophagus wall, 40 1.037 1.036 0.103 0.101
200 pm

11,002 Oesophagus wall, 40 1.037 1.036 49.783 41.247
surface

11,003 Oesophagus contents 33 1.040 1.040 22.870 21.240

11,100 Ovary, left 41 1.051 6.318

11,200 Ovary, right 41 1.051 6.318

11,300 Pancreas 42 1.044 1.043 173.631 144.552

11,400 Pituitary gland 2 1.031 1.031 0.622 0.615

11,500 Prostate 43 1.031 17.618

11,600 RST 44 0.939  0.946 18,212.525 22,325.388

12,000 Salivary glands, left 2 1.031 1.031 44.045 35.880

12,100 Salivary glands, right 2 1.031 1.031 44.045 35.880

12,200 Skin, insensitive, 45 1.089 1.088 103.981 89.399
surface

12,200 Skin, insensitive, 45 1.089 1.088 3262.067  2243.313
100 um

12,201 Skin, sensitive, S0 um 45 1.089 1.088 103.521 89.317

12,600 Spinal cord 2 1.031 1.031 37.952 19.098

12,700 Spleen 46 1.060 1.060 228.400 187.400

12,800 Teeth 47 2.688  2.690 50.727 40.562

12,801 Teeth, retention 33 1.040 1.040 0.043 0.036
region

12,900 Testis, left 41 1.041 18.617

13,000 Testis, right 41 1.041 18.617

13,100 Thymus 2 1.031 1.031 25.909 20.503

13,200 Thyroid 48 1.051 1.051 23.351 19.455

13,300 Tongue, upper (food) 3 1.050 1.050 20.993 20.995

13,301 Tongue, lower, 3 1.050 1.050 1.648 1.269
surface

13,301 Tongue, lower, 3 1.050 1.050 52.904 39.146
—200 um

13,400 Tonsils 2 1.031 1.031 3.109 3.075

13,500 Ureter, left 2 1.031 1.031 8.809 7.689

13,600 Ureter, right 2 1.031 1.031 7.773 7.689

(continued on next page)
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Table A.2. (continued)

Density (gecm ™) Mass (g)

Organ ID Organ/tissue Medium Male Female  Male Female

13,700 Urinary bladder wall 49 1.040 1.040 47.719 37.209

13,700 Urinary bladder wall, 49 1.040  1.040 1.318 1.345
118/116" pm

13,701 Urinary bladder wall, 49 1.040  1.040 2.062 2.250
193/185" um

13,800 Urinary bladder 50 1.040  1.040 200.000 200.000
contents

13,900 Uterus 43 1.021 81.993

14,000 ET,; contents, 0 um 51 0.001  0.001 0.008 0.000198
(air)

14,000 ET, contents, 51 0.001  0.001 0.029 0.014
—15um (air)

14,000 Trachea contents 51 0.001  0.001 0.015 0.011
(air)

14,000 BB, contents”, 51 0.001  0.001 0.016 0.004
—11 pum (air)

14,000 Air, remaining 51 0.001  0.001 0.072 0.007

ET, extrathoracic; Al, alveolar-interstitium; RST, residual soft tissue.

*Only the main bronchi (BB;) was defined in the PM phantoms. The other generations of the bronchi (BB)
and all generations of the bronchioles (bb) were modelled in constructive solid geometry format (see
Section 5.3).

"Male/female.
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ANNEX B. LIST OF MEDIA AND THEIR ELEMENTAL
COMPOSITIONS

Table B.1. List of media, their elemental compositions (percentage by mass), and their
densities for the adult male mesh-type reference phantom.

Medium Density
no. H C N O NaMg P S Cl K Ca Fe I (gem™)
1 Adrenal 104 22.8 2.8 63.0 0.1 0.2 0.3 0.2 0.2 1.036
2 ET, trachea, BB, bb, 10.5 25.1 2.7 60.7 0.1 0.2 0.3 0.2 0.2 1.031
gallbladder wall,
pituitary gland,
salivary glands,
spinal cord,
thymus, tonsils,
ureter
3 Oral mucosa, 10.2 142 3.4 71.1 0.1 02 03 0.1 04 1.050
tongue
4 Blood 10.2 11.0 3.3 74.5 0.1 0.1 0.2 0.3 0.2 0.1 1.060
5 Cortical bone 36 159 42 448 03 0.2 94 03 21.3 1.904
6 Medullary cavity 11.5 63.6 0.7 239 0.1 0.1 0.1 0.981
7 Humeri, upper, 8.1 354 28 41.0 0.2 0.1 3.7 0.2 0.1 0.1 8.3 1.233
spongiosa
8 Humeri, lower, ulnae 9.6 50.4 1.7 30.8 0.1 2.2 0.2 0.1 4.9 1.109
and radii, wrists
and hand bones,
femora, lower,
tibiae, fibulae and
patellae, ankles
and foot,
spongiosa
9 Clavicles, spongiosa 8.9 40.9 2.5 38.5 0.1 2.7 0.2 0.1 0.1 6.0 1.157
10 Cranium, spongiosa 8.8 39.5 2.6 39.5 0.1 0.1 2.8 0.2 0.1 0.1 6.2 1.165
11 Femora, upper, 9.3 441 23 365 0.1 0.1 22020.101 50 1.125
spongiosa
12 Mandible, spongiosa 7.7 33.2 3.0 42.0 0.2 0. 4.1 0.2 0.1 0.1 93 1.271
13 Pelvis, spongiosa 9.4 409 2.6 40.0 0.1 0.1 2.0 02 0.1 0.1 4.5 1.121
14 Ribs, spongiosa 8.8 34.6 3.1 444 0.1 0.1 26 02 0.1 0.1 58 0.1 1.170
15 Scapulae, spongiosa 8.4 37.3 2.7 404 0.1 0.1 33 0.2 0.1 0.1 7.3 1.201
16 Cervical spine, 10.3 41.6 2.8 42.8 0.1 0.6 0.2 0.2 0.1 1.2 0.1 1.049
spongiosa
17 Thoracic spine, 10.0 40.3 2.8 43.1 0.1 1.0 0.2 0.2 0.1 2.1 0.1 1.070
spongiosa
18 Lumbar spine, 9.5 38.0 3.0 43.6 0.1 1.6 0.2 0.2 0.1 3.6 0.1 1.108

spongiosa
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Medium Density
no. H C N O NaMg P S Cl K Ca Fe I (gem™)
19 Sacrum, spongiosa  10.5 42.6 2.7 42.6 0.1 0.3 0.2 0.2 0.1 0.6 0.1 1.033
20 Sternum, spongiosa 10.4 42.1 2.8 42.7 0.5 0.2 0.2 0.1 0.9 0.1 1.041
21 Cartilage 9.6 99 22 744 0.5 2.2 09 0.3 1.099
22 Brain 10.7 143 23 71.3 0.2 0.4 0.2 03 0.3 1.041
23 Breast, adipose 11.4 58.1 0.8 29.4 0.1 0.1 0.1 0.953
tissue
24 Breast, glandular 10.6 32.4 3.0 53.5 0.1 0.1 0.2 0.1 1.021
tissue
25 Eye lens 9.6 19.5 5.7 64.6 0.1 0.1 0.3 0.1 1.060
26 Cornea 10.1 12.5 3.7 73.2 0.1 0.1 0.2 0.1 1.100
27 Aqueous 112 04 0.1 88.3 1.025
28 Vitreous 11.2 04 0.1 88.3 1.031
29 Gallbladder contents 10.5 25.6 2.7 60.2 0.1 0.2 0.3 0.2 0.2 1.030
30 Stomach wall 10.5 11.4 2.5 75.0 0.1 0.1 0.1 0.2 0.1 1.037
31 Small intestine wall  10.5 11.4 2.5 75.0 0.1 0.1 0.1 0.2 0.1 1.037
32 Colon wall 10.5 11.4 2.5 75.0 0.1 0.1 0.1 0.2 0.1 1.037
33 Gastrointestinal 10.0 22.2 2.2 644 0.1 0.2 0.3 0.1 04 0.1 1.040
tract contents
34 Heart wall 10.4 13.5 29 72.2 0.1 0.2 0.2 02 03 1.051
35 Kidney 10.3 12.6 3.1 729 0.2 0.2 0.2 0.2 0.2 0.1 1.053
36 Liver 10.2 13.2 3.1 723 0.2 0.2 0.3 0.2 0.3 1.060
37 Lung 10.2 10.8 3.2 74.8 0.1 0.1 0.2 0.3 0.2 0.1 0.415
38 Lymphatic nodes 108 4.5 1.2 82.7 03 0.1 0.4 1.032
39 Muscle 10.2 142 3.4 71.1 0.1 0.2 03 0.1 04 1.050
40 Oesophagus 10.4 22.3 2.8 63.5 0.1 0.2 0.3 0.2 0.2 1.037
41 Gonads 10.6 9.9 2.1 76.5 0.2 0.1 0.2 0.2 0.2 1.041
42 Pancreas 10.5 158 2.4 704 0.2 0.2 0.1 0.2 0.2 1.044
43 Prostate 10.5 25.1 2.7 60.7 0.1 0.2 03 0.2 0.2 1.031
44 RST 11.2 51.7 1.1 355 0.1 0.1 0.2 0.1 0.939
45 Skin 10.0 19.9 4.2 65.0 0.2 0.1 0.2 0.3 0.1 1.089
46 Spleen 10.3 11.2 3.2 743 0.1 0.2 0.2 0.2 0.3 1.060
47 Teeth 23 9.5 29 426 0.7 13.5 28.5 2.688
48 Thyroid 104 11.8 2.5 745 0.2 0.1 0.1 0.2 0.1 0.1 1.051
49 Urinary bladder wall 10.5 9.6 2.6 76.1 0.2 0.2 0.2 03 0.3 1.040
50 Urine 10.7 0.3 1.0 87.3 0.4 0.1 0.2 1.040
51 Air inside body 80.0 20.0 0.001
52 Water 11.2 88.8 1.000

ET, extrathoracic; BB, bronchi; bb, bronchioles; RST, residual soft tissue.
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Table B.2. List of media, their elemental compositions (percentage by mass), and their
densities for the adult female mesh-type reference phantom.

Medium Density
no. H C N O NaMg P S Cl K Ca Fe I (gem™)
1 Adrenal 10.4 233 2.8 62.5 0.1 0.2 0.3 0.2 0.2 1.035
2 ET, trachea, BB, bb, 10.5 252 2.7 60.6 0.1 0.2 0.3 0.2 0.2 1.031
gallbladder wall,
pituitary gland,
salivary glands,
spinal cord,
thymus, tonsils,
ureter
3 Oral mucosa, 10.2 142 34 71.1 0.1 0.2 03 0.1 04 1.050
tongue
4 Blood 10.2 11.0 3.3 74.5 0.1 0.1 0.2 0.3 0.2 0.1 1.060
S Cortical bone 36 159 42 448 03 02 94 03 21.3 1.904
6 Medullary cavity 11.5 63.7 0.7 23.8 0.1 0.1 0.1 0.981
7 Humeri, upper, 8.6 39.2 2.6 39.0 0.1 0.1 3.1 0.2 0.1 0.1 6.9 1.185
spongiosa
8 Humeri, lower, ulnae 9.5 49.8 1.7 31.1 0.1 2.3 0.2 0.1 5.2 1.117
and radii, wrists
and hand bones,
femora, lower,
tibiae, fibulae and
patellae, ankles
and foot,
spongiosa
9 Clavicles, spongiosa 8.5 38.8 2.6 39.2 0.1 0.1 3.2 0.2 0.1 0.1 7.1 1.192
10 Cranium, spongiosa 7.9 34.5 29 41.3 0.2 0.1 39 0.2 0.1 0.1 838 1.252
11 Femora, upper, 10.4 50.1 1.9 342 0.1 0.9 0.2 0.1 0.1 2.0 1.046
spongiosa
12 Mandible, spongiosa 8.6 38.3 2.7 39.8 0.1 0.1 3.1 0.2 0.1 0.1 69 1.189
13 Pelvis, spongiosa 9.6 422 2.5 394 0.1 1.8 0.2 0.1 0.1 39 0.1 1.105
14 Ribs, spongiosa 9.8 394 29 43.1 0.1 1.3 02 02 0.1 2.8 0.1 1.087
15 Scapulae, spongiosa 9.3 42.6 2.4 382 0.1 22 0.2 0.1 0.1 438 1.125
16 Cervical spine, 9.2 37.1 3.0 43.6 0.1 2.0 0.2 0.2 0.1 4.4 0.1 1.129
spongiosa
17 Thoracic spine, 9.8 399 29 43.0 0.1 1.2 02 02 0.1 2.5 0.1 1.080
spongiosa
18 Lumbar spine, 8.8 352 3.1 440 0.1 0.1 2.6 0.2 0.1 0.1 5.7 1.165
spongiosa
19 Sacrum, spongiosa  10.2 41.6 2.8 42.6 0.1 0.7 0.2 0.2 0.1 1.4 0.1 1.052
20 Sternum, spongiosa 10.0 40.3 2.8 429 0.1 1.1 0.2 02 0.1 22 0.1 1.073
21 Cartilage 9.6 9.9 22 744 0.5 22 09 03 1.099
22 Brain 10.7 144 22 71.3 0.2 04 02 03 03 1.041
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Medium Density
no. H C N O NaMg P S Cl K Ca Fe I (gem™)
23 Breast, adipose 11.4 58.6 0.8 289 0.1 0.1 0.1 0.952
tissue
24 Breast, glandular 10.6 32.7 3.0 53.2 0.1 0.1 0.2 0.1 1.021
tissue
25 Eye lens 9.6 19.5 5.7 64.6 0.1 0.1 0.3 0.1 1.060
26 Cornea 10.1 12.6 3.7 73.1 0.1 0.1 0.2 0.1 1.087
27 Aqueous 11.2 0.3 0.1 88.4 1.014
28 Vitreous 11.2 03 0.1 83.4 1.019
29 Gallbladder contents 10.5 25.6 2.7 60.2 0.1 0.2 03 0.2 0.2 1.030
30 Stomach wall 10.6 11.4 2.4 75.0 0.1 0.1 0.1 0.2 0.1 1.036
31 Small intestine wall 10.5 11.4 2.5 75.0 0.1 0.1 0.1 0.2 0.1 1.036
32 Colon wall 10.5 11.4 2.5 75.0 0.1 0.1 0.1 0.2 0.1 1.036
33 Gastrointestinal 10.0 22.2 2.2 644 0.1 0.2 0.3 0.1 04 0.1 1.040
tract contents
34 Heart wall 104 13.5 2.9 722 0.1 0.2 0.2 0.2 0.3 1.051
35 Kidney 10.3 12.7 3.0 729 0.2 0.2 0.2 0.2 0.2 0.1 1.052
36 Liver 10.2 13.2 3.1 723 0.2 0.2 03 02 0.3 1.060
37 Lung 10.2 10.8 3.2 74.8 0.1 0.1 0.2 0.3 0.2 0.1 0.413
38 Lymphatic nodes 10.8 4.5 1.2 827 0.3 0.1 0.4 1.032
39 Muscle 10.2 142 34 71.1 0.1 0.2 03 0.1 04 1.050
40 Oesophagus 10.5 22.8 2.8 629 0.1 0.2 03 0.2 0.2 1.036
41 Gonads 10.5 9.5 2.5 765 0.2 0.2 0.2 0.2 0.2 1.051
42 Pancreas 10.5 159 24 703 0.2 0.2 0.1 0.2 0.2 1.043
43 Uterus 10.6 31.0 2.4 552 0.1 0.2 0.2 0.1 0.2 1.021
44 RST 11.2 545 1 329 0.1 0.1 0.1 0.1 0.946
45 Skin 10.0 19.9 4.2 65.0 0.2 0.1 0.2 0.3 0.1 1.088
46 Spleen 10.3 11.2 3.2 742 0.1 0.3 02 02 03 1.060
47 Teeth 23 95 29 426 0.7 13.5 28.5 2.690
48 Thyroid 104 11.8 2.5 74.5 0.2 0.1 0.1 0.2 0.1 0.1 1.051
49 Urinary bladder wall 10.5 9.6 2.6 76.1 0.2 0.2 0.2 0.3 0.3 1.040
50 Urine 10.7 0.3 1.0 87.3 0.4 0.1 0.2 1.040
51 Air inside body 80.0 20.0 0.001
52 Water 11.2 88.8 1.000

ET, extrathoracic; BB, bronchi; bb, bronchioles; RST, residual soft tissue.
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ANNEX C. LIST OF ANATOMICAL SOURCE REGIONS,
ACRONYMS, AND IDENTIFICATION NUMBERS

Table C.1. List of anatomical source regions, their acronyms, and corresponding identifica-

tion (ID) numbers in the tetrahedral mesh (TM) phantoms.

Source region Acronym ID number(s)
Oral cavity O-cavity 13300

Oral mucosa O-mucosa 500, 501, 600
Teeth surface Teeth-S 12801

Teeth volume Teeth-V 12800

Tongue Tongue 500, 13300, 13301
Tonsils Tonsils 13400
Oesophagus fast Oesophag-f 11003
Oesophagus slow Oesophag-s 11003
Oesophagus Oesophagus-w 11000, 11001, 11002
Stomach contents St-cont 7300

Stomach wall

Stomach mucosa

Small intestine contents
Small intestine villi
Small intestine wall
Small intestine mucosa
Right colon contents
Right colon wall

Right colon mucosa
Left colon contents
Left colon wall

Left colon mucosa
Rectosigmoid colon contents
Rectosigmoid colon wall
Rectosigmoid colon mucosa
ET, surface

ET, surface

ET, wall

ET, wall

St-wall
St-mucosa
SI-cont
SI-villi
SI-wall
SI-mucosa
RC-cont
RC-wall

RC-mucosa
LC-cont
LC-wall

LC-mucosa
RS-cont
RS-wall
RS-mucosa
ET1-sur
ET2-sur
ET1-wall
ET2-wall

7200, 7201, 7202, 7203
7200, 7201, 7202

7501

7500

7400, 7401, 7402, 7403
7400, 7401, 7402
7700, 7900

7600, 7601, 7602, 7800, 7801,
7802

7600, 7601, 7800, 7801
8100, 8300

8000, 8001, 8002, 8200, 8201,
8202

8000, 8001, 8200, 8201
8500

8400, 8401, 8402, 8600
8400, 8401

300

400

300, 301, 302, 303
401, 402, 403, 404, 405
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Table C.1. (continued)

ICRP Publication 14X

Source region Acronym ID number(s)
ET, bound region ET2-bnd 401, 402, 403
ET, sequestered region ET2-seq 404

ET lymph nodes LN-ET 10000
Bronchial — fast Bronchi-f 800
Bronchial — slow Bronchi-s 801

Bronchi bound region Bronchi-b 802, 803, 804, 805, 806
Bronchi sequestered region Bronchi-q 807
Bronchiolar — fast Brchiole-f 810
Bronchiolar — slow Brchiole-s 811
Bronchiolar bound region Brchiole-b 812, 813, 814
Bronchiolar sequestered region Brchiole-q 815
Alveolar-interstitium Al 9700, 9900
Thoracic lymph nodes LN-Th 10100

Right lung lobe RLung 9900

Left lung lobe LLung 9700

RLung + LLung Lungs 9700, 9900
Right adrenal gland RAdrenal 200

Left adrenal gland LAdrenal 100
RAdrenal + LAdrenal Adrenals 100, 200
Blood vessels of head HBlood 900, 910
Blood vessels of trunk TBlood 1000, 1010
Blood vessels of arms ABlood 1100, 1110
Blood vessels of legs LBlood 1200, 1210
Blood in heart Ht-cont 8800

Total blood Blood *

Cortical bone surface C-bone-S ¥

Cortical bone volume C-bone-V l

Trabecular bone surface T-bone-S i

Trabecular bone volume T-bone-V i

Cortical bone marrow C-marrow §

Trabecular bone marrow T-marrow f

Brain Brain 6100

Right breast adipose RBreast-a 6400

Right breast glandular RBreast-g 6500

Left breast adipose LBreast-a 6200

Left breast glandular LBreast-g 6300
RBreast-a + RBreast-g RBreast 6400, 6500
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Table C.1. (continued)

Source region Acronym ID number(s)

LBreast-a + LBreast-g LBreast 6200, 6300

RBreast-a + LBreast-a Breast-a 6200, 6400

RBreast-g + LBreast-g Breast-g 6300, 6500

Breast-a + Breast-g Breast 6200, 6300, 6400, 6500

Lens of eye Eye-lens 6600, 6601, 6800, 6801

Gallbladder GB-wall 7000

Gallbladder contents GB-cont 7100

Heart Ht-wall 8700

Right kidney cortex RKidney-C 9200

Right kidney medulla RKidney-M 9300

Right kidney pelvis RKidney-P 9400

Right kidney C+M+P RKidney 9200, 9300, 9400

Left kidney cortex LKidney-C 8900

Left kidney medulla LKidney-M 9000

Left kidney pelvis LKidney-P 9100

Left kidney C+M+P LKidney 8900, 9000, 9100

RKidney + LKidney Kidneys 8900, 9000, 9100, 9200, 9300,
9400

Liver Liver 9500

Systemic lymph nodes LN-Sys 10200, 10300, 10400, 10500

Muscle Muscle 10600, 10700, 10800, 10900

Right ovary ROvary 11200

Left ovary LOvary 11100

ROvary + LOvary Ovaries 11100, 11200

Pancreas Pancreas 11300

Pituitary gland P-gland 11400

Prostate Prostate 11500

Salivary glands S-glands 12000, 12100

Skin Skin 12200, 12201, 12300, 12301,
12400, 12401, 12500, 12501

Spinal cord Sp-cord 12600

Spleen Spleen 12700

Testes Testes 12900, 13000

Thymus Thymus 13100

Thyroid Thyroid 13200

Ureters Ureters 13500, 13600

Urinary bladder UB-wall 13700, 13701

(continued on next page)
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Table C.1. (continued)

Source region Acronym ID number(s)
Urinary bladder content UB-cont 13800
Uterus/cervix Uterus 13900
Adipose/residual tissue Adipose 11600, 11700, 11800, 11900
Total body tissues (total body T-body -
— contents of walled organs)
Soft tissue (T-body — mineral S-tissue Tt
bone)

ET, extrathoracic.

“Blood: 900, 910, 1000, 1010, 1100, 1110, 1200, 1210, 8800, plus blood included in the organs and tissues.
Cortical bone mineral: 1300, 1600, 1900, 2200, 2400, 2600, 2800, 3100, 3400, 3700, 3900, 4100, 4300, 4500,
4700, 4900, 5100, 5300, 5500.

fTrabecular bone mineral: mineral bone fraction of 1400, 1700, 2000, 2300, 2500, 2700, 2900, 3200, 3500,
3800, 4000, 4200, 4400, 4600, 4800, 5000, 5200, 5400, 5600.

SCortical bone marrow: 1500, 1800, 2100, 3000, 3300, 3600.

“Trabecular bone marrow: marrow fraction of 1400, 1700, 2000, 2300, 2500, 2700, 2900, 3200, 3500, 3800,
4000, 4200, 4400, 4600, 4300, 5000, 5200, 5400, 5600 (red and yellow marrow).

“Total body tissues: 100-7000, 7200-7203, 7400-7403, 7600-7602, 7800~7802, 8000-8002, 82008202,
8400-8402, 8600-11002, 11100-13701, 13900.

"Soft tissue: 1001210, 1500, 1800, 2100, 3000, 3300, 3600, 5700-7000, 7200-7203, 7400~7403, 7600-7602,
7800-7802, 8000-8002, 8200-8202, 8400-8402, 860011002, 11100-12700, 12900-13701, 13900, plus soft
tissue fraction of 1400, 1700, 2000, 2300, 2500, 2700, 2900, 3200, 3500, 3800, 4000, 4200, 4400, 4600, 4800,
5000, 5200, 5400, 5600.
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ANNEX D. LIST OF ANATOMICAL TARGET REGIONS,
ACRONYMS, AND IDENTIFICATION NUMBERS

Table D.1. List of target regions, their acronyms, and corresponding identification (ID) num-
bers in the tetrahedral mesh (TM) phantoms.

Target region Acronym ID number(s)
Red (active) marrow R-marrow *
Colon wall Colon 7600, 7601, 7602, 7800, 7801,

7802, 8000, 8001, 8002, 8200,
8201, 8202, 8400, 8401, 8402,

8600

Stem cells of colon Colon-stem 7601, 7801, 8001, 8201, 8401

RLung+ LLung Lungs 9700, 9900

Stomach wall St-wall 7200, 7201, 7202, 7203

Stem cells of stomach St-stem 7201

Breast-a + Breast-g Breast 6200, 6300, 6400, 6500

ROvary + LOvary Ovaries 11100, 11200

Testes Testes 12900, 13000

Urinary bladder wall UB-wall 13700, 13701

Urinary bladder basal cells UB-basal 13701

Oesophagus wall Oesophagus 11000, 11001, 11002

Oesophagus basal cells Oesophagus-bas 11001

Liver Liver 9500

Thyroid Thyroid 13200

50-um endosteal region Endost-BS T

Brain Brain 6100

Salivary glands S-glands 12000, 12100

Skin Skin 12200, 12201, 12300, 12301,
12400, 12401, 12500, 12501

Basal cells of skin Skin-bas 12201, 12301, 12401, 12501

RAdrenal + LAdrenal Adrenals 100, 200

ET region ET 300, 301, 302, 303, 401, 402, 403,
404, 405

Gallbladder wall GB-wall 7000

Heart wall Ht-wall 8700

RKidney + LKidney Kidneys 8900, 9000, 9100, 9200, 9300, 9400

Systemic lymph nodes LN-Sys 10200, 10300, 10400, 10500

Muscle Muscle 10600, 10700, 10800, 10900

(continued on next page)
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Table D.1. (continued)

ICRP Publication 14X

Target region Acronym ID number(s)
Oral mucosa O-mucosa 500, 501, 600
Pancreas Pancreas 11300
Prostate Prostate 11500
Small intestine wall SI-wall 7400, 7401, 7402, 7403
Stem cells of small intestine Sl-stem 7401
Spleen Spleen 12700
Thymus Thymus 13100
Uterus/cervix Uterus 13900
Tongue Tongue 500, 13300, 13301
Tonsils Tonsils 13400
Right colon wall (ascending + RC-wall 7600, 7601, 7602, 7800, 7801, 7802
right transverse)
Left colon wall (left LC-wall 8000, 8001, 8002, 8200, 8201, 8202
transverse + descending)
Rectosigmoid colon wall RS-wall 8400, 8401, 8402, 8600
(sigmoid + rectum)
Stem cells of right colon RC-stem 7601, 7801
(ascending + right transverse)
Stem cells of left colon (left LC-stem 8001, 8201
transverse + descending)
Stem cells of rectosigmoid colon RSig-stem 8401
(sigmoid + rectum)
Basal cells of anterior nasal ET1-bas 302
passages
Basal cells of posterior nasal ET2-bas 402
passages + pharynx
Extrathoracic lymph nodes LN-ET 10000
Bronchi basal cells Bronch-bas 804, 805
Bronchi secretory cells Bronch-sec 803, 804
Bronchiolar secretory cells Brchiol-sec 813
Alveolar-interstitium Al 9700, 9900
Thoracic lymph nodes LN-Th 10100
Right lung lobe RLung 9900
Left lung lobe LLung 9700
Right adrenal gland RAdrenal 200
Left adrenal gland LAdrenal 100
Right breast adipose RBreast-a 6400
Right breast glandular RBreast-g 6500
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Table D.1. (continued)

Target region Acronym ID number(s)
Left breast adipose LBreast-a 6200

Left breast glandular LBreast-g 6300

RBreast-a + RBreast-g RBreast 6400, 6500
LBreast-a + LBresat-g LBreast 6200, 6300
RBreast-a + LBreast-a Breast-a 6200, 6400
RBreast-g + LBreast-g Breast-g 6300, 6500
Entire lens of eye Lens-ent 6600, 6601, 6800, 6801
Sensitive lens of eye Lens-sen 6600, 6800
Right kidney cortex RKidney-C 9200

Right kidney medulla RKidney-M 9300

Right kidney pelvis RKidney-P 9400

Right kidney C+M+P RKidney 9200, 9300, 9400
Left kidney cortex LKidney-C 8900

Left kidney medulla LKidney-M 9000

Left kidney pelvis LKidney-P 9100

Left kidney C+M+P LKidney 8900, 9000, 9100
Right ovary ROvary 11200

Left ovary LOvary 11100

Pituitary gland P-gland 11400

Spinal cord Sp-cord 12600

Ureters Ureters 13500, 13600
Adipose/residual tissue Adipose 11600, 11700, 11800, 11900

"Red bone marrow fraction in organ IDs 1400, 2500, 2700, 2900, 4000, 4200, 4400, 4600, 4800, 5000, 5200,
5400, 5600.

"Endosteum fraction in organ IDs 1400, 1500, 1700, 1800, 2000, 2100, 2300, 2500, 2700, 2900, 3000, 3200,
3300, 3500, 3600, 3800, 4000, 4200, 4400, 4600, 4800, 5000, 5200, 5400, 5600.
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ANNEX E. ORGAN DEPTH DISTRIBUTIONS OF SELECTED
ORGANS/TISSUES

(E1) In Figs E.1-E.13, ODDs of the adult MRCPs and the Publication 110 (ICRP,
2009) phantoms are shown for selected organs and tissues (i.e. RBM, colon wall,

RBM
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Fig. E.1. Distribution of depths of 10 million randomly sampled points in the red bone
marrow (RBM) below the body surfaces at front, back, left, right, top, and bottom.
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lungs, stomach wall, breasts, gonads, urinary bladder wall, oesophagus, liver, thy-
roid, brain, salivary glands, and skin). For the ODD calculation, 10 million points
were sampled at random in the considered organ/tissue, and the distances from the
sampled points to the outer surface (e.g. front, back, left, etc.) of the phantoms were
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Fig. E.10. Distribution of depths of 10 million randomly sampled points in the thyroid
below the body surfaces at front, back, left, right, top, and bottom.
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Fig. E.11. Distribution of depths of 10 million randomly sampled points in the brain below
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Fig. E.12. Distribution of depths of 10 million randomly sampled points in the salivary
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Fig. E.13. Distribution of depths of 10 million randomly sampled points in the skin below
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calculated. The ODDs represent a depth of an organ/tissue below the outer surface
of the phantoms, significantly influencing dose calculation for external exposure.

E.1. Reference

ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP
39(2).
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ANNEX F. CHORD LENGTH DISTRIBUTIONS BETWEEN
SELECTED ORGAN PAIRS (SOURCE/TARGET TISSUES)

(F1) In Figs F.1-F.5, CLDs of the adult MRCPs and the Publication 110 (ICRP,
2009) phantoms are shown for selected organ/tissue pairs (i.e. source/target
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Fig. F.1. Distribution of distances between 10 million randomly sampled point pairs in the
cortical bone (source region) and the red bone marrow (RBM), colon wall, lungs, stomach
wall, breasts, gonads, urinary bladder wall, oesophagus, liver, thyroid, brain, and salivary
glands (target regions).
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Fig. F.2. Distribution of distances between 10 million randomly sampled point pairs in the
liver (source region) and the red bone marrow (RBM), colon wall, lungs, stomach wall,
breasts, gonads, urinary bladder wall, oesophagus, liver, thyroid, brain, and salivary glands
(target regions).
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Fig. F.3. Distribution of distances between 10 million randomly sampled point pairs in the
lungs (source region) and the red bone marrow (RBM), colon wall, lungs, stomach wall,
breasts, gonads, urinary bladder wall, oesophagus, liver, thyroid, brain, and salivary glands
(target regions).
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Fig. F.4. Distribution of distances between 10 million randomly sampled point pairs in the
thyroid (source region) and the red bone marrow (RBM), colon wall, lungs, stomach wall,

breasts, gonads, urinary bladder wall, oesophagus, liver, thyroid, brain, and salivary glands
(target regions).
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Fig. F.5. Distribution of distances between 10 million randomly sampled point pairs in the
urinary bladder contents (source region) and the red bone marrow (RBM), colon wall,
lungs, stomach wall, breasts, gonads, urinary bladder wall, oesophagus, liver, thyroid,
brain, and salivary glands (target regions).
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regions): source regions (cortical bone, liver, lungs, thyroid, and urinary bladder
contents); target regions (RBM, colon wall, lungs, stomach wall, breasts, gonads,
urinary bladder wall, oesophagus, liver, thyroid, brain, and salivary glands). For the
CLD calculation, 10 million point pairs were sampled at random in the target and
source regions considered, and distances of the point pairs were calculated. The
CLDs represent a distance between the target and source regions, significantly influ-
encing dose calculation for internal exposure.

F.1. Reference

ICRP, 2009. Adult reference computational phantoms. ICRP Publication 110. Ann. ICRP
39(2).
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ANNEX G. CROSS-SECTIONAL IMAGES

G.1. Images of the adult mesh-type reference computational phantom
for male
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Fig. G.1. Transverse (axial) images of the adult male mesh-type reference computational
phantom (continued on next page).
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Fig. G.1. (continued)
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Fig. G.2. Coronal and sagittal images of the adult male mesh-type reference computational
phantom.
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G.2. Images of the adult mesh-type reference computational phantom
for female
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Fig. G.3. Transverse (axial) images of the adult female mesh-type reference computational
phantom (continued on next page).
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Fig. G.3. (continued)
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Fig. G.4. Coronal and sagittal images of the adult female mesh-type reference computa-

tional phantom.
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ANNEX H. COMPARISON OF DOSE COEFFICIENTS FOR
EXTERNAL EXPOSURE

(H1) In order to investigate the impact of the improved morphology of the adult
MRCPs on the calculation of DCs for external exposures, the DCs for effective dose
in terms of effective dose per fluence (pSv cm?) were calculated using the MRCPs and
subsequently compared with the reference values given in Publication 116 (ICRP,
2010) that were produced with the Publication 110 (ICRP, 2009) phantoms. For these
calculations, a broad parallel beam of photons, neutrons, electrons, and helium ions
was assumed to be incident to the phantoms in the same irradiation geometries as
considered in Publication 116. Three Monte Carlo simulation codes — Geant4
(Version 10.02), PHITS (Version 2.92), and MCNP6 (Version 2.0) — were used in
the calculations. The Geant4 code was used for all of the energy points considered
for the comparison, while the PHITS and MCNP6 codes were only used for some
energy points for spot-check purposes. In order to facilitate the analysis, the effective
dose DCs were also calculated using the Publication 110 phantoms and the Geant4
code. For the Geant4 code, the physics libraries of G4EmLivermorePhysics and
FTFP_BERT_HP were used to transport all particles (Geant4 Physics Reference
Manual). In addition, the thermal neutron scattering treatment S(a, ) for hydrogen
(H) in light water at 300 K was applied for accurate transport of thermal neutrons.
A range of 1 pum for the secondary production cut was applied to all particles. For
both the PHITS and MCNP6 codes, the default physics models and cross-section
data were used to transport all particles, and the thermal neutron scattering treat-
ment was also applied. For the MCNP6 code, the default cut energies were used,
which were also applied to set cut energies for the PHITS code. Note that absorbed
doses to the skeletal target tissues (RBM and endosteum) were taken as the mass-
weighted average of the regional spongiosa and medullary cavity doses following the
same approach used in Publication 116.

H.1. Uncharged particles

(H2) Prior to comparison of the effective dose DCs, the organ DCs in terms of
organ-averaged absorbed dose per fluence (pGycm?) were compared with the
Publication 116 (ICRP, 2010) values for some selected organs (RBM, colon, lungs,
stomach, breasts, and skin). The selected organs have the highest tissue weighting
factor (0.12) except for the skin, which was selected in order to investigate the effect
of the 50-pum-thick skin target layer of the MRCPs in skin dose calculation.

(H3) Figs H.1 and H.2 present the calculated organ DCs for uncharged particles
(i.e. photons and neutrons, respectively) for the anterior—posterior irradiation
geometry, along with the Publication 116 (ICRP, 2010) values and DC values
calculated with the Publication 110 (ICRP, 2009) phantoms and the Geant4
code. For all of the calculated organ DCs shown in these figures, the statistical
error is <5%.
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Absorbed Dose per Fluence (pGy cm?)
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Fig. H.1. Absorbed dose per fluence (pGy cm?) to red bone marrow (RBM), colon, lungs,
stomach, breasts and skin in the anterior—posterior (AP) geometry for photon exposures
calculated with the adult mesh-type reference computational phantoms (MRCPs), along
with the Publication 116 (ICRP, 2010) values and the values calculated with the Publication
110 (ICRP, 2009) phantoms and the Geant4 code: adult male (AM) (upper) and adult
female (AF) (lower).
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Fig. H.2. Absorbed dose per fluence (pGy cm?) to red bone marrow (RBM), colon, lungs,
stomach, breasts, and skin in the anterior—posterior (AP) geometry for neutron exposures
calculated with the adult mesh-type reference computational phantoms (MRCPs), along
with the Publication 116 (ICRP, 2010) values and the values calculated with the Publication
110 (ICRP, 2009) phantoms and the Geant4 code: adult male (AM) (upper) and adult
female (AF) (lower).
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(H4) For photons, it can be seen that with some exceptions at the lowest energy
(0.01 MeV), the organ DCs of the MRCPs were very close to both the Publication
116 (ICRP, 2010) values and the DC values calculated using the Publication 110
(ICRP, 2009) phantoms and the Geant4 code. The differences were generally
<2%. For the 0.01-MeV photons, larger differences were found, and the results
show that the differences are mainly due to the difference in the geometry or material
composition of the phantoms. It can also be seen that the female values show rela-
tively less difference than the male values, which seems to be due to the fact that the
Publication 110 female phantom has higher voxel resolution (1.775x 1.775 x
4.8 mm®) than the male phantom (2.137 x 2.137 x 8§ mm°).

(H5) Relatively large differences can be seen in the skin DCs over the entire energy
range, mainly due to consideration of the 50-pm-thick skin target layer in the
MRCPs. Note that the 50-um-thick skin target layer is explicitly modelled and
used in the MRCPs, while the entire skin is used in the Publication 110 (ICRP,
2009) phantoms. For energies <0.03 MeV, the skin DCs of the MRCPs are greater
than the Publication 110 values (e.g. by a factor of ~2 at 0.01 MeV). This difference is
due to the fact that low-energy photons establish the maximum dose very close to
the 50-pm-thick skin target layer, and the dose decreases rapidly with depth within
the skin by attenuation. On the other hand, for energies in the 0.2-10-MeV range, the
skin DCs of the MRCPs are lower (e.g. by a factor of ~2 at 1 MeV). This reversal
phenomenon is due to the fact that the high-energy photon beam establishes a dose
build-up, resulting in the maximum dose much deeper than the 50-um-thick skin
target layer.

(H6) For neutrons, except for the skin DCs, the organ DCs of the MRCPs show
relatively large differences from the Publication 116 (ICRP, 2010) values, generally
<20%, but are very close to the DC values calculated using the Publication 110
(ICRP, 2009) phantoms and the Geant4 code, the differences being <5% for most
cases. These results indicate that for neutrons, the differences from the Publication
116 values are not mainly due to the difference in phantom geometry or material
composition, but due to the difference in the Monte Carlo codes or cross-section
data/physics models used in the calculations. Note that the DCs of the MRCPs were
calculated using the Geant4 code, but that the Publication 116 values were calculated
using four different codes (MCNPX, PHITS, FLUKA, and Geant4) for neutrons
and then the calculated values were averaged and went through a smoothing process
(ICRP, 2010). As expected, for the skin DCs, the DCs of the MRCPs tend to deviate
from both the Publication 116 values and the DCs calculated with the Publication 110
phantoms and the Geant4 code, mainly due to consideration of the 50-pum-thick skin
target layer in the MRCPs.

(H7) Figs H.3 and H.4 present the effective dose DCs for the anterior—posterior,
posterior—anterior, left lateral, right lateral, rotational, and isotropic irradiation
geometries calculated with the MRCPs, along with the Publication 116 (ICRP,
2010) values and DCs calculated with the Publication 110 (ICRP, 2009) phantoms
and Geant4 code. For all of the calculated effective dose DCs shown in these figures,
the statistical error is <0.5%. It can be seen that for photons and neutrons, the
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Fig. H.3. Effective dose per fluence (pSvem?) for photon exposures calculated with the
adult mesh-type reference computational phantoms (MRCPs), along with the Publication
116 (ICRP, 2010) values and the values calculated with the Publication 110 (ICRP, 2009)
phantoms and the Geant4 code. AP, anterior—posterior; PA, posterior—anterior; RL, right
lateral; LL, left lateral; ROT, rotational; ISO, isotropic.
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Fig. H.4. Effective dose per fluence (pSvem?) for neutron exposures calculated with the
adult mesh-type reference computational phantoms (MRCPs), along with the Publication
116 (ICRP, 2010) values and the values calculated with the Publication 110 (ICRP, 2009)
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lateral; LL, left lateral; ROT, rotational; ISO, isotropic.
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effective dose DCs of the MRCPs are very close to both the Publication 116 values
and the DC values calculated with the Publication 110 phantoms and the Geant4
code. For photons, with some exceptions at low energies (<0.03 MeV), the differ-
ences are <2%. This result indicates that the relatively large differences in the skin
DCs due to consideration of the 50-pm-thick skin target layer in the MRCPs do not
significantly affect the effective dose DCs for photons; this is because the doses of the
other organs/tissues are more important than that of the skin, which has a small
tissue weighting factor (wr=0.01). For neutrons, the differences from the
Publication 116 values are <10% for most cases, but the differences from the
values calculated with the Publication 110 phantoms and the Geant4 code are
much smaller (<2% for most cases). These slightly larger differences from the
Publication 116 values are mainly due to the different Monte Carlo codes or cross-
section data/physics models used in the calculations, rather than differences in phan-
tom geometry or material composition.

H.2. Charged particles

(HS8) Figs H.5 and H.6 present the calculated organ DCs for charged particles (i.e.
electrons and helium ions) in terms of organ-averaged absorbed dose per fluence
(pGy cm?), along with the Publication 116 (ICRP, 2010) values and DC values
calculated with the Publication 110 (ICRP, 2009) phantoms and Geant4 code for
selected organs (RBM, colon, lungs, stomach, breasts, and skin) in the isotropic
irradiation geometry. The statistical errors of the organ DCs presented in the figures
are all <5%.

(H9) For electrons, it can be seen that the organ DCs of the MRCPs for the colon,
lungs, and stomach are not much different from the Publication 116 (ICRP, 2010)
values, whereas there are large differences in the DCs for the RBM, breasts, and skin.
The differences in the DCs for the RBM and breasts are due to improvement in the
MRCPs; that is, the skin and cortical bone of the MRCPs are continuous and fully
cover the body and the spongiosa regions, respectively, whereas this is not the case in
the Publication 110 (ICRP, 2009) phantoms due to their finite voxel resolutions (see
Figs 6.4 and 6.5).

(H10) The skin DCs, when compared with the RBM and breast DCs, show larger
differences, mainly due to consideration of the 50-pum-thick skin target layer in the
MRCPs. For electron energies <0.08 MeV, the skin DCs of the MRCPs are much
lower than the Publication 116 (ICRP, 2010) values; this is due to the fact that for the
MRCPs, the low-energy electrons cannot penetrate the dead layer of the skin and,
therefore, only the bremsstrahlung photons contribute to the energy deposition in
the thin target layer. For higher energies up to 1 MeV, on the other hand, the skin
DCs of the MRCPs are greater (e.g. by a factor of ~13 at 0.1 MeV), which is due to
the fact that the electrons penetrate the dead layer and establish the maximum dose
within the thin target layer.
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Fig. H.5. Absorbed dose per fluence (pGy cm?) to red bone marrow (RBM), colon, lungs,
stomach, breasts, and skin in the isotropic (ISO) geometry for electron exposures
calculated with the adult mesh-type reference computational phantoms (MRCPs), along
with the Publication 116 (ICRP, 2010) values and the values calculated with the Publication
110 (ICRP, 2009) phantoms and the Geant4 code: adult male (AM) (upper) and adult
female (AF) (lower).
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Fig. H.6. Absorbed dose per fluence (pGy cm?) to red bone marrow (RBM), colon, lungs,
stomach, breasts, and skin in the isotropic (ISO) geometry for helium ion exposures calcu-
lated with the adult mesh-type reference computational phantoms (MRCPs), along with the
Publication 116 (ICRP, 2010) values and the values calculated with the Publication 110
(ICRP, 2009) phantoms and the Geant4 code: adult male (AM) (upper) and adult female
(AF) (lower).
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(H11) For helium ions, it can be seen that except for the skin, the organ DCs of the
MRCPs are generally not much different from the Publication 116 (ICRP, 2010)
values. Relatively large differences are shown at very low energies, mainly due to
the geometric difference between the MRCPs and the Publication 110 (ICRP, 2009)
phantoms. The skin DCs for helium ions show larger differences, which is again due
to consideration of the 50-pm-thick skin target layer in the MRCPs. For helium ions
<10MeVu~', except for 1 MeVu~', the skin DCs of the MRCPs are significantly
greater (e.g. by a factor of ~16 at 3 MeV u™'), which is due to the establishment of
the Bragg peak in the 50-um-thick target layer. For | MeVu~' (i.e. 4 MeV), the skin
DCs of the MRCPs are essentially zero, whereas the Publication 116 values show
some significant values. Note that the 4-MeV helium ions do not penetrate the dead
layer and deposit essentially their entire energy there, which is reflected in the results
of the MRCPs.

(H12) Figs H.7 and H.8 present the effective dose DCs for the anterior—posterior,
posterior—anterior, and isotropic irradiation geometries calculated with the MRCPs,
along with the Publication 116 (ICRP, 2010) values and DCs calculated with the
Publication 110 (ICRP, 2009) phantoms and Geant4 code. For all of the calculated
effective dose DCs shown in these figures, the statistical error is <0.5%. It can be
seen that for high-energy electrons and helium ions (i.e. >1MeV for electrons and
>10MeVu~" for helium ions), the effective dose DCs of the MRCPs are generally
close to both the Publication 116 values and the values calculated with the
Publication 110 phantoms and Geant4 code. For lower energies, on the other
hand, the effective dose DCs show large differences, mainly due to differences in
the skin DCs. For electrons, the effective dose DCs of the MRCPs for energies
<0.06 MeV are smaller than the Publication 116 values, but for higher energies up
to 1 MeV, the effective dose DCs are greater by up to a factor of ~12 (at 0.1 MeV).
For helium ions, for 1 MeV u™!, the effective dose DCs of the MRCPs are essentially
zero, which is due to the effect of the dead layer defined in the MRCPs, whereas the
Publication 116 values show some significant values. For higher energies up to
10 MeV, the effective dose DCs of the MRCPs are greater than the Publication
116 values by up to a factor of ~14 (at 3MeVu™)).

(H13) However, it is also true that the difference is overly exaggerated as only
monoenergetic electron beams are considered; in real exposure situations, polye-
nergetic electrons (e.g. beta spectra) are generally encountered, where the differ-
ences in effective doses are much less significant. For example, the difference in
effective dose between the MRCPs and the Publication 110 (ICRP, 2009) phantoms
resulting from the isotropic irradiation of the beta radiation sources (‘*C, '*°Re,
32p, 298r/°°Y, and '"°Rh) is less than approximately two-fold, except for '*C for
which the difference is approximately four-fold. Note that '*C emits very low-
energy electrons (maximum energy 0.15MeV) and thus is not generally of concern
for external exposures. In real situations of helium ion exposures, alpha exposures
are mostly encountered, but these are not considered to be important for radiation
protection purposes as they can be easily shielded by a thin piece of paper or
several centimetres of air.
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Fig. H.7. Effective dose per fluence (pSv cm?) for electron exposures calculated with the
adult mesh-type reference computational phantoms (MRCPs), along with the Publication
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ANNEX I. COMPARISON OF SPECIFIC ABSORBED
FRACTIONS

(I1) In order to investigate the impact of the improved internal morphology of the
adult MRCPs on the calculation of DCs for internal exposures, the SAFs for pho-
tons and electrons were calculated using the MRCPs for comparison with the values
in Publication 133 (ICRP, 2016). For the calculations, the cortical bone, liver, lungs,
and thyroid were selected as source organs/tissues. The Geant4 code (Version 10.02)
was used for all the energy points considered for the comparison, while the PHITS
(Version 2.92) and MCNP6 (Version 2.0) codes were only used for some energies for
spot-check purposes. The SAFs were also calculated using the Publication 110
(ICRP, 2009) phantoms and the Geant4 code to facilitate the analysis. For the
Geant4 code, the physics library of the G4EmLivermorePhysics was used to trans-
port photons and electrons with a range of 1 um for the secondary production cut
(Geant4 Physics Reference Manual). For both the PHITS and MCNP6 codes, the
default physics models and cross-section data were used to transport photons and
electrons. For the MCNP6 code, the default cut energies were used, which were also
applied to set cut energies for the PHITS code. Note that for photons, absorbed
doses to the RBM and endosteum were calculated based on the fluence-to-absorbed-
dose-response functions reported in Annex D of Publication 116 (ICRP, 2010) as
recommended in Section 4.4 of Publication 133.

(I2) The SAFs of the MRCPs were compared with the Publication 133 (2016)
values for six target organs/tissues which were selected considering the contribution
to effective dose. Figs I.1-1.8 present the SAFs of the MRCPs for the selected source
and target organs/tissues for photons and electrons, along with the Publication 133
values and the values calculated with the Publication 110 (ICRP, 2009) phantoms
and the Geant4 code. The statistical errors of the calculated values presented in the
figures are <5%.

(I3) For photons, it can be seen that the SAFs of the MRCPs are generally not
much different from the Publication 133 (ICRP, 2016) values. Large differences,
however, can be secen when the RBM is a target, where the SAFs of the MRCPs
are much smaller than the Publication 133 values at low energies. These differences
are mainly due to the fact that in the MRCPs, the spongiosa is fully enclosed by
cortical bone, whereas this is not the case in the voxel-type Publication 110 (ICRP,
2009) reference phantoms (see Fig. 6.5). Even for the cortical bone as a source and
the colon as a target, the SAFs show large differences, for which the values of the
MRCPs are greater by a factor of ~5 at 0.01 MeV for the male phantom, which is
again due to the difference in the distribution of cortical bone; that is, in the
Publication 110 phantoms, the cortical bone does not fully enclose the spongiosa
and is not distributed uniformly, especially in the ribs where the cortical bone is
rarely distributed in the regions that are very close to the colon.

(I4) For electrons, it can be seen that the SAFs of the MRCPs are close to the
Publication 133 (ICRP, 2016) values for self-irradiation cases (e.g. liver < liver),
whereas for cross-fire-irradiation cases (e.g. RBM <« liver), the SAFs show
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Fig. I.1. Specific absorbed fractions for cortical bone as a source and red bone marrow
(RBM), colon, alveolar-interstitium (AI), endosteum, brain, and muscle as a target for
photon exposures calculated with the adult mesh-type reference computational phantoms
MRCPs, along with the Publication 133 (ICRP, 2016) values and the values calculated with
the Publication 110 (ICRP, 2009) phantoms and the Geant4 code: adult male, AM (upper)
and adult female, AF (lower).
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Fig. 1.2. Specific absorbed fractions for liver as a source and liver, colon, alveolar-

interstitium (AI), stomach, gallbladder, and red bone marrow (RBM) as a target for

photon exposures calculated with the adult mesh-type reference computational phantoms

(MRCPs), along with the Publication 133 (ICRP, 2016) values and the values calculated
with the Publication 110 (ICRP, 2009) phantoms and the Geant4 code: adult male, AM

(upper) and adult female, AF (lower).
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Fig. I.3. Specific absorbed fractions for lungs as a source and alveolar-interstitium (Al),
red bone marrow (RBM), stomach, heart, liver, and spleen as a target for photon exposures
calculated with the adult mesh-type reference computational phantoms (MRCPs), along
with the Publication 133 (ICRP, 2016) values and the values calculated with the Publication
110 (ICRP, 2001) phantoms and the Geant4 code: adult male (AM) (upper) and adult
female (AF) (lower).
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Fig. I.4. Specific absorbed fractions for thyroid as a source and thyroid, red bone marrow
(RBM), oesophagus, thymus, extrathoracic (ET) region, and alveolar-interstitium (Al) as a
target for photon exposures calculated with the adult mesh-type reference computational
phantoms (MRCPs), along with the Publication 133 (ICRP, 2016) values and the values cal-
culated with the Publication 110 (ICRP, 2009) phantoms and the Geant4 code: adult male
(AM) (upper) and adult female (AF) (lower).
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Fig. 1.5. Specific absorbed fractions (SAFs) for cortical bone as a source and colon,
alveolar-interstitium (Al), brain, and muscle as a target for electron exposures calculated
with the adult mesh-type reference computational phantoms (MRCPs), along with the
Publication 133 (ICRP, 2016) values and the values calculated with the Publication 110
(ICRP, 2009) phantoms and the Geant4 code: adult male (AM) (upper) and adult female
(AF) (lower). Note that SAFs for the red bone marrow and endosteum as a target are not
given here because these values of Publication 133 were not calculated using the Publication
110 phantoms but using the absorbed fractions calculated using the micro-computed-tomo-
graphy imaging data for 38 cored samples of spongiosa provided by Hough et al. (2011).
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Fig. 1.6. Specific absorbed fractions for liver as a source and liver, colon, alveolar-
interstitium (AI), stomach, gallbladder, and red bone marrow (RBM) as a target for elec-
tron exposures calculated with the adult mesh-type reference computational phantoms
(MRCPs), along with the Publication 133 (ICRP, 2016) values and the values calculated
with the Publication 110 (ICRP, 2009) phantoms and the Geant4 code: adult male (AM)
(upper) and adult female (AF) (lower).
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Fig. 1.7. Specific absorbed fractions for lungs as a source and alveolar-interstitium (Al),
red bone marrow (RBM), stomach, heart, liver, and spleen as a target for electron expos-
ures calculated with the adult mesh-type reference computational phantoms (MRCPs),
along with the Publication 133 (ICRP, 2016) values and the values calculated with the
Publication 110 (ICRP, 2009) phantoms and the Geant4 code: adult male (AM) (upper) and
adult female (AF) (lower).
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Fig. 1.8. Specific absorbed fractions for thyroid as a source and thyroid, red bone marrow
(RBM), oesophagus, thymus, extrathoracic (ET) region, and alveolar-interstitium (Al) as a
target for electron exposures calculated with the adult mesh-type reference computational
phantoms (MRCPs), along with the Publication 133 (ICRP, 2016) values and the values cal-
culated with the Publication 110 (ICRP, 2009) phantoms and the Geant4 code: adult male
(AM) (upper) and adult female (AF) (lower).
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significant differences. For most of the cross-fire-irradiation cases, the SAFs of the
MRCPs are generally smaller than the Publication 133 values, mainly due to the fact
that the contact area between the adjacent source and target organs/tissues of the
MRCPs (smooth surfaces) is smaller than that of the Publication 110 (ICRP, 2009)
phantoms (stair-stepped surfaces, see Fig. 6.3). The differences were even larger when
the thyroid is a source and the oesophagus and the thymus are a target, mainly due to
the fact that the MRCPs overcome an anatomical limitation of the Publication 110
phantoms wherein the thyroid slightly contacts the oesophagus for both the male and
the female, and the thymus for the male (see Section 3.1). Larger differences can also
be seen for the RBM as a target, which is due to the fact that in the MRCPs, the
cortical bone fully encloses the spongiosa, whereas this is not the case in the
Publication 110 phantoms. Exceptionally, the SAFs of the MRCPs are generally
greater than the Publication 133 values for the colon < cortical bone case, which
is again due to the fact that in the Publication 110 phantoms, the cortical bone is not
distributed uniformly, especially in the ribs where the cortical bone is rarely distrib-
uted in the regions that are very close to the colon.
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ANNEX J. DOSE COEFFICIENTS FOR INDUSTRIAL
RADIOGRAPHY SOURCES

(J1) Tables J.1-J.15 list the DCs (Gys~'Bq~") of RBM, brain, lungs, small intes-
tine, and large intestine for the '*’Ir, '¥Cs/"*"™Ba, and “°Co point sources.
Table J.16 lists the DCs of effective dose (Svs~' Bq~') for the same sources. The
data are for point sources located at three source distances (0.005, 0.1, and 0.3 m) in
four directions (anterior, right lateral, posterior, and left lateral) at five levels
(ground, middle thigh, lower torso, middle torso, and upper torso) as described in
Section 8 (see Fig. 8.2). In addition, three longer distances (1, 1.5, and 3 m) were
calculated in the four directions at lower torso level. Table J.17 lists the source self-
shielding factors for different thicknesses of radioactive material (1, 2, 3, and 4 mm)
and capsule wall (1 and 2mm) for the three isotopes. As described in Section 8, the
factors can be used when the source strength is given as ‘physical activity’ rather than
‘apparent activity’.
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Table J.17. Source self-shielding factors.

Capsule wall thickness

I mm 2 mm
Radioactive material

thickness (diameter/height)  '**Ir  ¥7Cs/"*™Ba “°Co  '"?Ir  ¥Cs/P¥™Ba *°Co

I mm 0.840 0.963 0.972  0.803 0.941 0.953
2 mm 0.717 0.961 0.965 0.694 0.935 0.947
3 mm 0.627 0.957 0.958  0.606 0.931 0.938
4 mm 0.556 0.952 0.949  0.536 0.927 0.929
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ANNEX K. DESCRIPTION OF ELECTRONIC FILES

(K1) The compressed package of electronic files containing the detailed data on
the adult MRCPs can be found in a downloadable data file. The package is organised
in two folders: Phantom_data and MC_examples.

K.1. Data files in Phantom_data

(K2) This folder is subdivided into two folders, one for each of the two reference
phantoms (MRCP_AM, adult male; MRCP_AF, adult female). Each folder contains
the following files:

e Data files for the TM MRCPs; the file names are:

MRCP_AM.node
MRCP_AM.cle

MRCP_AF.node
MRCP_AF.ele

The data files consist of NODE- and ELE-format files. The NODE-format files
contain a list of node coordinates composing the TM phantoms. The NODE-
format files are represented by:

— First line:

<# of nodes> <dimension (=3)> <n/a (=0)> <n/a (=0)>
— Remaining lines list # of points:

<node ID> <x> <y> <z>

The ELE-format files contain a list of tetrahedrons composing the TM phan-
toms. Each tetrahedron is represented as four node IDs listed in the corre-
sponding NODE-format files and an organ ID number with respect to the
tetrahedron. The ELE-format files are represented by:

— First line:
<# of tetrahedrons> <dimension (= 3)> <# of attributes (= 1, for
organ ID)>

— Remaining lines list # of tetrahedrons:
<tetrahedraon ID> <node 1> <node 2> <node 3> <node 4>
<organ ID>
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e Data files for the PM MRCPs; the file names are:

MRCP_AM.obj
MRCP_AM.mtl

MRCP_AF.obj
MRCP_AF.mtl

These files consist of OBJ- and MTL-format files, which contain data on PM and
colours, respectively. They can be imported in various 3D commercial programs
such as 3ds Max (Autodesk, San Rafael, CA, USA), MAYA (Autodesk, USA),
Rapidform (INUS Technology Inc.), and Rhinoceros (Robert McNeel &
Associates).

e Lists of the media, elemental compositions, and densities; the file names are:

MRCP_AM_media.dat
MRCP_AF_media.dat

e The mass ratios of bone constituents in the bone sites; the file names are:

MRCP_AM_bone.dat
MRCP_AF_bone.dat

e The mass ratios of blood in various body tissues; the file names are:

MRCP_AM_blood.dat
MRCP_AF_blood.dat

e PDF files for phantom visualisation; the file names are:

MRCP_AM .pdf
MRCP_AF.pdf

The PDF files visualise the MRCPs in a 3D view, as shown in Fig. K.1. The PDF
files can be opened in Acrobat (Adobe Systems, San Jose, CA, USA), where one
can navigate the phantoms in detail (e.g. by rotating or enlarging each of the
organs,/tissues). Detailed instruction on these 3D PDF files can be found elsewhere
(https://helpx.adobe.com/acrobat/using/displaying-3d-models-pdfs.html).
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5 MRCP_AM pdf - Adobe Acrobat Pro =i X
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Fig. K.1. Three-dimensional view of the mesh-type male phantom visualised in the Adobe
Acrobat program importing the MRCP_AM.pdf file.

K.2. Data files in MC_examples

(K3) This folder contains the following three compressed files:

MRCP_GEANT4.zip
MRCP_MCNP6.zip
MRCP_PHITS.zip

The data files contain input examples for implementation of the TM phantoms in the
three Monte Carlo codes, i.e. Geant4 (Agostinelli et al., 2003), MCNP6 (Goorley
et al., 2013), and PHITS (Sato et al., 2013). Each of the compressed files includes
examples for internal and external exposures. The internal exposure source is defined
as a homogeneous liver source emitting 1-MeV photons. The external exposure
source is defined as a point 1-MeV photon source located 1 m in front of the phan-
tom. Detailed information on implementation is described in the ‘README.txt’ file
included in each compressed file.
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GLOSSARY
Absorbed dose, D

The absorbed dose is given by:

e

~dm

where de is the mean energy imparted by ionising radiation to matter of mass
dm. The SI unit of absorbed dose is J kg™", and its special name is gray (Gy).

Absorbed fraction, AF, ¢(rr < rs, Eg i)

Fraction of energy Eg; of the ith radiation of type R emitted within the source
region rg that is absorbed in the target region rt. These target regions may be
tissues (e.g. liver) or may be cell layers within organs (e.g. stem cells of the
stomach wall) (see definitions for “Target region’ and ‘Target tissue’).

Active (bone) marrow

Active marrow is haematopoietically active and gets its red colour from the
large number of erythrocytes (red blood cells) being produced. Active bone
marrow serves as a target region for radiogenic risk of leukaemia.

Activity

The number of nuclear transformations of a radioactive material during an
infinitesimal time interval, divided by its duration (s). The SI unit of activity is
s~! and its special name is becquerel (Bq).

Bone marrow [see also ‘Active (bone) marrow’ and ‘Inactive (bone) marrow’]

Bone marrow is a soft, highly cellular tissue that occupies the cylindrical cavities
of long bones and the cavities defined by the bone trabeculae of the axial and
appendicular skeleton. Total bone marrow consists of a sponge-like, reticular,
connective tissue framework called ‘stroma’, myeloid (blood-cell-forming)
tissue, fat cells (adipocytes), small accumulations of lymphatic tissue, and
numerous blood vessels and sinusoids. There are two types of bone marrow:
active (red) and inactive (yellow), where these adjectives refer to the marrow’s
potential for the production of blood cell elements (haematopoiesis).
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Charged-particle equilibrium

Charged-particle equilibrium in a volume of interest means that the energies,
numbers, and directions of the charged particles are constant throughout this
volume. This is equivalent to saying that the distribution of charged-particle
energy radiance does not vary within the volume. In particular, it follows that
the sums of the energies (excluding rest energies) of the charged particles enter-
ing and leaving the volume are equal.

Cortical (bone) marrow
The marrow contained in the medullary cavities in the shafts of the long bones.
Cross-section, ©

The cross-section of a target entity, for a particular interaction produced by
incident charged or uncharged particles of a given type and energy, is given by:

where N is the mean number of such interactions per target entity subjected to
the particle fluence, ®. The unit of cross-section is m”. A special unit often used
for cross-section is the barn, where 1 barn (b)=10">m?. A full description of
an interaction process requires, inter alia, knowledge of the distributions of
cross-sections in terms of energy and direction of all emergent particles from
the interaction. Such distributions, sometimes called ‘differential cross-sections’,
are obtained by differentiation of r with respect to energy and solid angle.

Dose coefficient, DC

A coefficient relates a dose quantity to a physical quantity, both for internal
and external radiation exposure. For external exposure, the physical quantity
‘fluence’ or ‘air kerma’ is chosen. In internal dosimetry, a DC is defined as
either the committed equivalent dose in tissue T per activity intake, s1(50), or
the committed effective dose per activity intake, ¢(50), where 50 is the dose
commitment period in years over which the dose is calculated. Note that else-
where, the term ‘dose per intake coefficient’ is sometimes used for DC.

Dose equivalent, H

The product of D and Q at a point in tissue, where D is the absorbed dose and
Q is the quality factor for the specific radiation at this point, thus:

H=DQ
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—1

The unit of dose equivalent is J kg™, and its special name is sievert (Sv).

Dose-response function

A particular function used in this publication to represent the absorbed dose in
a target region per particle fluence in that region, derived using models of the
microscopic structure of the target region geometry and the transport of the
secondary ionising radiations in those regions.

Effective dose, E

The tissue weighted sum of equivalent doses in all specified organs and tissues
of the body, given by the expression:

E= E wr E WRDT,R: E WTHT
T R T

where Hr is the equivalent dose in an organ or tissue T, Dr r is the mean
absorbed dose in an organ or tissue T from radiation of type R, and wr is the
tissue weighting factor. The sum is performed over organs and tissues con-
sidered to be sensitive to the induction of stochastic effects. The unit of effective
dose is J kg™', and its special name is sievert (Sv).

Endosteum (or endosteal layer)

A 50-pm-thick layer covering the surfaces of the bone trabeculae in regions of
trabecular spongiosa and those of the cortical surfaces of the medullary
cavities within the shafts of all long bones. It is assumed to be the target
tissue for radiogenic bone cancer. This target region replaces that previously
introduced in Publications 26 and 30 (ICRP, 1977, 1979) — the bone surfaces —
which had been defined as a single-cell layer, 10 um in thickness, covering
the surfaces of both the bone trabeculac and the Haversian canals of
cortical bone.

Equivalent dose, Ht
The equivalent dose in an organ or tissue T is given by:

Hr = ZWRDT,R
R

where Dt r is the mean absorbed dose from radiation of type R in the specified
organ or tissue T, and wg is the radiation weighting factor. The unit of equiva-
lent dose is J kg, and its special name is sievert (Sv).
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Fluence, ®

The quotient of dN by da, where dN is the number of particles incident on a
sphere of cross-sectional area da, thus:

_dN

b=
da

The unit of fluence is m 2.

Identification (ID) number
Number assigned unequivocally to each individually segmented organ/tissue.
Inactive (bone) marrow

In contrast to active marrow, inactive marrow is haematopoietically inactive,
i.e. does not directly support haematopoiesis. It gets its yellow colour from fat
cells which occupy most of the space of the yellow bone marrow framework.

Intake, /

Activity that enters the body through the respiratory tract or the gastrointes-
tinal tract or the skin.

— Acute intake

A single intake by inhalation or ingestion, taken to occur instantaneously.

— Chronic intake

Intake over a specified period of time.

LET
See ‘Linear energy transfer’.
Linear energy transfer/unrestricted linear energy transfer, L or LET

The quotient of dE by d/, where dE is the mean energy lost by the charged
particle due to electronic interactions in traversing a distance d/, thus:

dE

L=
d/

The unit of linear energy transfer is Jm™", often given in keV pm™"'.
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Mean absorbed dose in an organ or tissue, Dt

The mean absorbed dose in a specified organ or tissue T, is given by:

DT = — Ddm
mt

mr

where mr is the mass of the organ or tissue, and D is the absorbed dose in the
mass element dm. The unit of mean absorbed dose is Jkg™', and its special
name is gray (Gy). The mean absorbed dose in an organ is sometimes termed
‘organ dose’.

Mesh phantom

Computational anthropomorphic phantom whose anatomy is represented by
either the polygon mesh format or the tetrahedral mesh format.

Non-uniform rational B-spline, NURBS
NURBS represents three-dimensional surface geometry by mathematical
curves defined by four parameters: degree, control points, knots, and an evalu-
ation rule. NURBS-based models are widely used in computer-aided design,
manufacturing and engineering, and other three-dimensional modelling and
animation applications.

Organ absorbed dose or organ dose
Short phrase for ‘mean absorbed dose in an organ or tissue’.

Polygon mesh
Polygon mesh represents three-dimensional surface geometry composed of pol-
ygonal facets (such as triangles), and is one of the geometry formats of a mesh
phantom (see ‘Mesh phantom’).

Radiation weighting factor, wg
A dimensionless factor by which the organ or tissue absorbed dose is multiplied
to reflect the higher biological effectiveness of high-LET radiation compared

with low-LET radiation. It is used to derive the equivalent dose from the
absorbed dose averaged over a tissue or organ.
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Red (bone) marrow
See ‘Active (bone) marrow’.
Reference Male and Reference Female

Reference Male and Female are defined as either adults or children of ages 0, 1,
5, 10, and 15 years.

Reference Person

An idealised person for whom the equivalent doses to organs and tissues are
calculated by averaging the corresponding organ doses in Reference Male and
Reference Female. The equivalent doses of Reference Person are used for the
calculation of effective dose.

Reference Phantom

The computational phantom of the human body (male or female voxel
phantom based on medical imaging data), defined in Publication 110
(ICRP, 2009), with the anatomical and physiological characteristics of
Reference Male and Reference Female defined in Publication 89 (ICRP,
2002).

Reference value

Value of a quantity recommended by ICRP for use in dosimetric applications
or biokinetic models. Reference values are fixed and specified with no uncer-
tainty, independent of the fact that the basis of these values includes many
uncertainties.

Sievert (Sv)

The special name for the SI unit of equivalent dose, effective dose, and oper-
ational dose quantities. The unit is Jkg™".

Source

An entity for which radiological protection can be optimised as an integral
whole, such as the x-ray equipment in a hospital, or the release of radioactive
material from an installation. Sources of radiation, such as radiation gener-
ators and sealed radioactive materials, and, more generally, the cause of expos-
ure to radiation or to radionuclides.
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Source region, S;

An anatomical region within the reference phantom body which contains the
radionuclide following its intake. The region may be an organ, a tissue, the
contents of the gastrointestinal tract or urinary bladder, or the surfaces of
tissues as in the skeleton, the alimentary tract, and the respiratory tract.

Specific absorbed fraction, SAF

The fraction of energy of that emitted as a specified radiation type in a source
region, S, that is absorbed per mass of target tissue, T (kg™").

Spongiosa

Term referring to the combined tissues of the bone trabeculac and marrow
tissues (both active and inactive) located within cortical bone cortices across
regions of the axial and appendicular skeleton. Spongiosa is one of three bone
regions defined in the Publication 110 reference phantoms (ICRP, 2009), the
other two being cortical bone and medullary marrow of the long bone shafts.
As the relative proportions of trabecular bone, active marrow, and inactive
marrow vary with skeletal site, the homogeneous elemental composition and
mass density of spongiosa are not constant but vary with skeletal site [see
Annex B of Publication 110 (ICRP, 2009)].

Stem cell
Non-differentiated, pluripotent cell, capable of unlimited cell division.
Stochastic effects of radiation
Malignant disease and heritable effects for which the probability of an effect
occurring, but not its severity, is regarded as a function of dose without
threshold.

Target region, ry

A tissue region of the body in which a radiation absorbed dose or equivalent
dose is received.

Target tissue, T

Organ or tissue in the body for which tissue weighting factors are assigned in
the effective dose (ICRP, 1991, 2007). In many cases, each target tissue T
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corresponds to a single target region rr. In the case of the extrathoracic region,
lungs, colon, and lymphatic nodes, however, a fractional weighting of more
than one target region rr defines the target tissue T (ICRP, 1991, 2007).

Tetrahedral mesh
Tetrahedral mesh represents three-dimensional geometry composed of tetrahe-
drons, which is one of the geometry formats of a mesh phantom (see ‘Mesh
phantom’). Tetrahedral mesh can be generated by subdividing polygon mesh
(see ‘Polygon mesh’) with tetrahedrons.

Tissue reaction
Injury in populations of cells, characterised by a threshold dose and an increase
in the severity of the reaction as the dose is increased further. Also termed
‘deterministic effect’. In some cases, these effects are modifiable by postirradia-
tion procedures including biological response modifiers.

Tissue weighting factor, wr
The factor by which the equivalent dose in an organ or tissue T is weighted to

represent the relative contribution of that organ or tissue to overall radiation
detriment from stochastic effects (ICRP, 1991, 2007). It is defined such that:

Zw-rzl
T

Trabecular (bone) marrow
The marrow contained in the spongiosa regions of all bones.

Voxel phantom
Computational anthropomorphic phantom based on medical tomographic
images or photographic images of a cadaver in which the anatomy is described
by small three-dimensional volume elements (voxels) specifying the organ or
tissue to which they belong.

Yellow (bone) marrow

See ‘Inactive (bone) marrow’.
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