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ABSTRACT 

Context: Identification of patients with endocrine forms of hypertension (EHT) (primary 

hyperaldosteronism [PA], pheochromocytoma/paraganglioma [PPGL] and Cushing syndrome [CS]) 

provides the basis to implement individualized therapeutic strategies. Targeted metabolomics (TM) 

have revealed promising results in profiling cardiovascular diseases and endocrine conditions 

associated with hypertension. 

Objective: Use TM to identify distinct metabolic patterns between primary hypertension (PHT) and 

EHT and test its discriminating ability. 

Design: Retrospective analyses of PHT and EHT patients from a European multicentre study (ENSAT-

HT). TM was performed on stored blood samples using liquid chromatography mass spectrometry. 

To identify discriminating metabolites a “classical approach” (CA) (performing a series of univariate 

and multivariate analyses) and a “machine learning approach” (MLA) (using Random Forest) were 

used. 

Patients: The study included 282 adult patients (52% female; mean age 49 years) with proven PHT 

(n=59) and EHT (n=223 with 40 CS, 107 PA and 76 PPGL), respectively.  

Results: From 155 metabolites eligible for statistical analyses, 31 were identified discriminating 

between PHT and EHT using the CA and 27 using the MLA, of which 15 metabolites (C9, C16, C16:1, 

C18:1, C18:2, arginine, aspartate, glutamate, ornithine, spermidine, lysoPCaC16:0, lysoPCaC20:4, 

lysoPCaC24:0, PCaeC42:0, SM C18:1, SM C20:2) were found by both approaches. The ROC curve built 
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on the top 15 metabolites from the CA provided an area under the curve (AUC) of 0.86, which was 

similar to the performance of the 15 metabolites from MLA (AUC 0.83). 

Conclusions: TM identifies distinct metabolic pattern between PHT and EHT providing promising 

discriminating performance.  

Key words: targeted metabolomics, arterial hypertension, screening, Cushing syndrome, primary 

aldosteronism, pheochromocytoma 
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INTRODUCTION 

Arterial hypertension can be regarded as a global epidemic with an estimated worldwide prevalence 

varying from 25 to 50%, according to the region, population age and definition criteria used (1-4). 

Being one of the major cardiovascular risk factors, adequate management and control are relevant 

to reduce cardiovascular complications and related deaths. However, even though disease 

awareness has risen and distinct treatment options exist, the global control rate of arterial 

hypertension is still not satisfactory (5-7). To improve this situation, individualized approaches are 

required to target therapeutic strategies and to identify potential curative forms of hypertension to 

avoid the necessity of a lifetime treatment. 

Among secondary forms of hypertension, those caused by hormonal diseases are among the most 

challenging to diagnose and require specific expertise. The prevalence of endocrine forms of 

hypertension (EHT), with a focus on primary hyperaldosteronism (PA), hormonally active 

pheochromocytoma/paraganglioma (PPGL) and Cushing syndrome (CS) is difficult to estimate. The 

most common form of EHT is PA, with prevalence varying between 3.2 - 21.9% of screened 

populations while the other causes (PPGL, CS) are rarer with prevalence <1% (8-11). Even though the 

combined prevalence indicates a relatively common condition, screening for EHT is not routinely 

performed in primary care. As exemplified by PA, EHT remains largely unrecognized, even though 

the timely diagnosis and treatment have been proven to be cost-effective and of benefit for patients 

(12,13). 

In addition to the lack of awareness for EHT, another reason that hampers the implementation of 

wide-spread screening approaches is based on the lack of resources. Considering the current 

recommendations, 50% of patients with arterial hypertension would be eligible for screening 

(14,15), a number of patients that widely exceeds the available number of experts in this field. 

Therefore, it is important to focus on new strategies of pre-selecting patients for further referral to 

experts, for example by developing new pre-screening tools and methods. 
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In the current study, we aimed to investigate the potential use of targeted metabolomics in 

discriminating primary hypertension (PHT) from EHT. Metabolomic profiling is a relatively new 

strategy for the parallel and high-throughput identification and quantification of dozens to hundreds 

of low molecular weight molecules (metabolites). By definition, a targeted metabolomics approach 

is restricted to a lower number of previously identified metabolites with known chemical structures 

(16). Advantages of targeted metabolomics include the better inter-laboratory reproducibility of 

assays and, thus, the potential swift application in diagnostic algorithms (17). In fact, targeted 

metabolomics have been successfully used to investigate numerous disorders, and have provided 

promising results in profiling distinct cardiovascular diseases (18-24), as well as endocrine conditions 

associated with secondary hypertension including CS and PPGL (25,26). Therefore, we hypothesize 

that metabolite profiles of PHT and EHT might be useful tools in discriminating the two clinical 

entities and help in pre-selecting patients for further analysis.  

MATERIAL AND METHODS 

PATIENT SELECTION 

Patient data and suitable plasma specimen following overnight fasting were available from patients 

from 11 centers of the ENSAT-HT consortium (http://www.ensat-ht.eu). All centers followed a 

standardized operating procedure for blood withdrawal usage of heparinized (lithium) tubes and 

plasma storing at -80°C prior shipment and analysis. Patients, aged 18-75 years, were included if 

diagnosed with PHT or EHT, in specific PA (including aldosterone-producing adenoma and bilateral 

adrenal hyperplasia), hormonally active PPGL and CS (adrenal and pituitary). The diagnosis (PHT, PA, 

PPGL) was made according to the current guidelines for screening and management of the specific 

diseases (14,15,27-29). The diagnosis of PHT also required the exclusion of EHT and other secondary 

causes (renal disease, pharmacological cause and obstructive sleep-apnea syndrome) as well as the 

exclusion of patients with low-renin hypertension. Patients with unclear diagnosis, pregnancy, 

severe comorbidities (e.g. heart failure, chronic kidney disease, active malignancy) were also 
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excluded from the study. All patients provided written consent to participate in the study according 

to the protocol approved by the Ethics Committee of each participating center.  

 

TARGETED METABOLOMICS 

The targeted metabolomics approach was based on LC-ESI-MS/MS and FIA-ESI-MS/MS 

measurements by using the AbsoluteIDQTM p180 Kit (BIOCRATES Life Sciences AG, Innsbruck, 

Austria). The assay allows the simultaneous quantification of 188 metabolites out of 10 µL plasma. 

Details on accessible metabolites are given in the supplementary material (Supplemental Table 

1)(30). The assay procedures of the AbsoluteIDQTM p180 Kit, as well as the metabolite nomenclature, 

have been described in detail previously (31,32). The method of AbsoluteIDQTM p180 Kit has been 

proven to be in conformance with the EMEA-Guideline "Guideline on bioanalytical method 

validation (July 21st, 2011) (33), which implies proof of reproducibility within a given error range. 

Sample handling was performed by a Hamilton Microlab STARTM robot (Hamilton Bonaduz AG, 

Bonaduz, Switzerland) and an Ultravap nitrogen evaporator (Porvair Sciences, Leatherhead, U.K.), 

besides standard laboratory equipment. Mass spectrometric analyses were done on an API 4000 

triple quadrupole system (Sciex Deutschland GmbH, Darmstadt, Germany) equipped with a 1200 

Series HPLC (Agilent Technologies Deutschland GmbH, Böblingen, Germany) and an HTC PAL 

autosampler (CTC Analytics, Zwingen, Switzerland) controlled by the software Analyst 1.6.2. Data 

evaluation for quantification of metabolite concentrations and quality assessment was performed 

with the MultiQuant 3.0.1 (Sciex) and the MetIDQ™ software package. Metabolite concentrations 

were calculated using internal standards and reported in µM. We included all metabolite 

measurements with peaks above the limit of detection, defined as three times the values of the zero 

samples, as well as those below this threshold if the metabolite peak concentration was clearly 

detectable visually by the technician. To ensure the comparability of received data between batches, 
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each metabolite value was normalized by measurement of five aliquots of a pooled reference 

plasma (RP) with each batch as previously described (31,32). 

DATA ANALYSIS 

Metabolite data selection, missing data estimation, outlier detection 

Metabolites for which measurement values were valid in less than 3 of 5 RP, were excluded from 

normalization and further statistical analysis. We further excluded metabolites for which the 

coefficient of variance of RP was >25% within and between batches (exceptions included 8 

metabolites for which only the variance between batches, but not within, were only slightly above 

the predetermined cutoff prior normalization) and those metabolites for which values were not 

detectable in >40% of samples. From 188 metabolites, 155 passed these selection criteria. In 

addition to the 155 eligible metabolites, 18 pre-defined metabolite sums and ratios were eligible for 

further analyses. The complete list of metabolites is provided in the Supplemental Material (30). 

The missing values of the metabolites with <40% of undetectable data were estimated using the 

KNN method (34), considering each subgroup of clinical conditions separately. Using the heatmap 

analysis method we identified potential outliers among the studied patients, and those patients 

were excluded from the statistical analysis. The missing data estimation and outlier detection were 

performed using the MetaboAnalyst platform (35).  

Patient characteristics 

For baseline characteristics, a comparison was performed with the Pearson Chi-Square for 

categorical variables and t-test for normally and Mann Whitney U and Kruskal-Wallis test for non-

normally distributed numerical variables, according to Kolomogorov-Smirnov and Shapiro-Wilk test 

(age in the PPGL subgroup resulted non-normally distributed). The homogeneity of variances of the 

metabolites between analyzed groups was tested using the Levene’s test. Analyses were performed 

using the SPSS® Statistics v25.0 (IBM). 
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Metabolite differences between groups and their discrimination ability 

We followed two separate approaches to identify relevant metabolites discriminating the different 

groups of patients according to their clinical diagnosis and tested their ability to predict EHT (Figure 

1). These were phrased as “classical” and “machine-learning” approach. By separately performing 

distinct techniques we aim to evaluate the best prominent discriminating features. 

 

“Classical” approach (CA) 

In a first step, we investigated differences between PHT and each subtype of EHT (CS, PA, PPGL) 

separately and in a second step between PHT and EHT as a common group. We arbitrarily defined 

“metabolites of interest” as those metabolites, which were found to be significantly different in at 

least two of the applied statistical analyses as described previously (26). Prior to the analyses, 

metabolites values were transformed using the generalized logarithm (GLOG) method (36). To test 

the difference between groups we performed a series of univariate (Wilcoxon rank-sum test) and 

multivariate (partial least square discriminant analysis [PLS-DA] and orthogonal [ortho] PLS-DA, 

significant analysis of microarray/metabolites [SAM], empirical Bayesian analysis of 

microarray/metabolites [EBAM]) analyses, using the MetaboAnalyst platform (35). The metabolite 

difference was defined as statistically significant if the p-value was ≤0.05 after correction for 

multiple testing, according to the method specific for the test (i.e. false discovery rate method (FDR) 

for wilcoxon rank-sum test and EBAM and q-value for SAM). The results of PLSDA and orthoPLSDA 

were only considered if having good prediction results after internal model validation (10-fold cross-

validation for PLSDA and permutation for orthoPLSDA); in that case, the significant metabolites were 

selected according to the variable importance in projection (VIP) score for PLSDA and S-plot (in 

particular covariance value) for orthoPLS-DA after visual interpretation of the plot. We performed all 

these analyses considering all patients, as well as considering separately male and female patients 

and patients with age <50 and ≥50 years, due to the known difference of studied metabolites 

between sexes and age groups (37,38). Considering the unequal distribution of the patients 
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according to sex and age within the different groups, we subsequently performed a regression 

analysis for each identified “metabolite of interest” including sex (female versus male) and age (<50 

years versus ≥50 years). 

In addition, we performed the same analysis approach separately for selected metabolite ratios and 

metabolite sums as provided by the MetIDQ™ RatioExplorer. (BIOCRATES Life Sciences®). 

To test the ability to predict EHT, we selected the common “metabolites of interest” and 

“metabolite ratios of interest”, that were identified in the comparison of CS, PA and PPGL from PHT, 

respectively (panel 1), as well as the “metabolites/metabolite ratios of interest” identified from the 

EHT - PHT comparison (panel 2). For the latter, we selected the top 15 metabolites, according to the 

strength of their relation to the clinical entity from the regression analysis (see above). Using the 

selected metabolites we performed an additional binomial logistic regression analysis. For both 

panels, probabilities for the presence of EHT were calculated for each patient and the discriminating 

performance of both panel was evaluated by building a receiver operating characteristic (ROC) curve 

(39). The analysis was performed using the SPSS® Statistics v25.0 software.  

“Machine-Learning” approach (MLA) 

The metabolites and metabolite ratios datasets were used separately for classification of different 

disease combinations namely, PA-PHT, PPGL-PHT, CS-PHT, and EHT-PHT. A feature selection method, 

Information Gain (40), was used to identify the most significant features for a given phenotypic 

classification. It is an entropy-based filter method which ranks the features with high information in 

decreasing order (in the context of a target variable). The top features were empirically selected and 

employed for supervised model training. The same process was repeated for the metabolite ratios 

dataset. The feature selection and classification were performed for distinct subgroups such as using 

all samples, only male samples, only female samples, patient age ≥50 vs <50 years age samples to 

find the most discriminating metabolites and metabolite ratios (see above). 
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A random forest classifier was used for classification (41). The algorithm used 5-fold cross-

validation (5-CV) where the original dataset was randomly partitioned into 5 subsets and a 

single subset was retained as the validation data for testing the model, and the remaining 4 

subsets were used as training data. The CV process was repeated 5 times with each of the 5 

subsets used exactly once as the validation data. The results from the validation folds were then 

averaged to produce a single estimation (42). The classification results were analyzed for 

accuracy (ACC), area under ROC curve (AUC), F1 score, precision, recall (sensitivity), specificity, and 

confusion matrix. The classification was implemented using the Orange software (43). 

RESULTS 

Patient characteristics  

In total, 294 patients were included in the study. After the exclusion of outliers, 282 patients were 

available for further analysis. Their demographic and clinical data are summarized in Table 1 and 

Figure 2. Considering the different clinical entities there was a significant difference in the 

distribution of patients according to sex, with a particular predominance of female patients with CS 

(p<0.001) and male patients with PHT (p=0.001). The mean age of the patients was 49 years (95% CI 

47.5 – 50.6 years), with no significant difference between female (mean 49.8 years, 95% CI 47.8 – 

51.9 years) and male (mean 48.1 years, 95% CI 45.8 – 50.4 years) patients (p=0.66). However, the 

medians of age were significantly different across the clinical subgroups, even if considering EHT as a 

common group (p=0.009). Considering the distribution of the patients according to age cut-off of 50 

years, there was no significant difference between the PHT and EHT group. 
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Metabolite differences between groups – “Classical” Approach 

For each comparison performed, all the results of the single statistical tests performed are 

represented in the Supplemental Material, Table 2.1 (30).  

By comparing patients with PHT and CS, a total of 40 metabolites and 6 metabolite ratios of interest 

(i.e. with a significant difference in at least 2 statistical tests performed) could be identified 

(summarized in Supplemental Table 2.2) (30). After considering sex and age group (<50 / ≥50 years) 

in a regression model only 24 metabolites and 4 metabolite ratios of interest continued to have a 

significant association with the clinical diagnosis (Table 2 and Supplemental Table 2.2) (30). For the 

comparison between PHT and PA, 37 metabolites and 10 metabolite ratios of interest were 

identified, of which 35 metabolites and 7 metabolite ratios had a significant association with the 

clinical diagnosis after controlling for sex and age group (Table 2 and Supplemental Table 2.3) (30). 

Between PHT and PPGL, 29 metabolites and 9 metabolite ratios of interest were found, and 25 

metabolites and 8 metabolite ratios of interest had a persistent significant association with the 

clinical diagnosis after considering sex and age group (Table 2 and Supplemental Table 2.4) (30).  

Considering the results of the comparison of PHT with each EHT subgroup separately, four 

metabolites of interest (C18:1, C18:2, spermidine and ornithine) and three metabolite ratios of 

interest (citrulline/ornithine, ornithine/arginine, and spermidine/putrescine) were common in 

discriminating between PHT and CS, PA and PPGL, respectively (Figure 3).  

After performing the statistical analysis considering all endocrine hypertension diagnosis (CS, PA, 

PPGL) as a common group (EHT) in comparison with PHT, 38 metabolites of interest and 9 

metabolite ratios of interest were identified. After including sex and age group in the regression 

model, 31 metabolites and 7 metabolite ratio of interest had a significant association with the 

clinical diagnosis (Supplemental Table 2.5 and Supplemental Figures 4.1-4.2) (30). Arbitrarily, we 
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selected the top 15 metabolites for analysis of the diagnostic performance, according to the strength 

of their relation to the clinical diagnosis (Figure 4).  

Discrimination ability of the identified metabolites of interest. 

We tested the diagnostic performance of the four common metabolites of interest (Table 3, panel 

1a) and three metabolite ratios (Table 3, panel 1b) identified from the comparison between PHT 

with CS, PA and PPGL. Likewise, we investigated the performance of the top 15 metabolites (Table 3, 

panel 2a) and 7 metabolite ratios (Table 3, panel 2b) from the comparison of PHT and EHT for 

discriminating between PHT and EHT (Table 3 and Figure 3 [panel 1] and Figure 4 [panel 2]). All 

performed regression analyses were found to be statistically significant (p<0.001). Considering the 

ROC curve results, for each of the two panels, the performance was better for the single metabolites 

(Figure 3 and 4 above) compared to the metabolite ratios (Figure 3 and 4 lower below). The best 

performance was achieved by the metabolites from panel 2 (AUC 0.856, 95% CI 0.806 – 0.907).  

 

Metabolite differences between groups – “Machine-Learning” Approach 

A list of metabolites and metabolite ratios were found as important for identifying different forms of 

endocrine hypertension (CS, PA, PPGL) from PHT (Table 4). A total of 28 metabolites and 10 

metabolite ratios distinguished PHT from CS. For PHT-PA, again 28 metabolites and 12 ratios were 

seen as key identifiers and 36 metabolites and 15 ratios were seen important in identifying PHT-

PPGL. It was observed that 9 metabolites (C9, C18:1, C18:2, aspartate, ornithine, spermidine, lysoPC 

a C20:4, lysoPC a C24:0, SMC18:1) and 7 ratios (citrulline/arginine, citrulline/ornithine, 

ornithine/arginine, putrescine/ornithine, spermidine/putrescine, Total DMA/arginine, 

tyrosine/phenylalanine) were common in classification of CS, PA and PPGL from PHT. 

A further set of variables were used for classifying different subgroups of patients for PHT-EHT 

classification (Table 5, Supplemental Figures 4.1-4.2). From the most common classification variables 
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it was found that C18:2 and C18:1 were most prominently used metabolites while 

ornithine/arginine and spermidine/putrescine were seen as the most prominent metabolite 

ratios for classifying different patient groups such as using all patients, male subset, female subset, 

age ≥50 and <50 years.  

The diagnostic performance for PHT-EHT disease classification for metabolites and metabolite 

ratios was calculated using the confusion matrices (Figure 5). Following this approach, a total of 

208 EHT and 19 PHT patients were correctly classified, while 15 EHT were incorrectly classified 

as PHT and 40 PHT were misclassified as EHT when metabolites were used for classification 

(Figure 5, left panel). Similarly, in the right panel of Figure 5, 205 EHT and 13 PHT were 

correctly classified while 18 EHT and 46 PHT were misclassified when only metabolite ratios 

were used for classification. The percentage AUC was 83, recall (sensitivity) 80 and specificity 

45 for metabolites, and 74, 77 and 37 for metabolite ratios, respectively. The random forest 

classification accuracy when using metabolites and metabolite ratios were 80% and 77%, 

respectively. The other subgroup analyses results are available in the supplemental material 

(Supplemental Figure 3.3 a-d) (30). 

 

Common discriminators identified by the two approaches  

From the comparison between PHT and CS, 15 metabolites (C9, C18:1, C18:2, alanine, aspartate, 

ornithine, spermidine, lysoPC a C16:0, lysoPC a C16:1, lysoPC a C20:4, PC ae C36:1, PC ae C44:4, SM 

C16:1, SM C18:1, SM C20:2) were found in both approaches, representing 62.5% of metabolites 

identified by CA and 53.6% of metabolites identified by the MLA. Similarly, 17 metabolites (48.6% of 

identified metabolites from CA and 60.7% of metabolites identified by MLA) from the PHT-PA (C7-

DC, C9, C16, C16:1, C18:1, C18:2, arginine, aspartate, ornithine, threonine, spermidine, lysoPC a 

C16:0, PC aa C40:1, PC aa C42:0, PC aa C42:1, PC aa C42:4, PC ae C44:3), as well as 19 metabolites 

(79% and 52.8% of the metabolites identified by CA and MLA, respectively) from PHT-PPGL 
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comparison (C14:1, C14:2, C16:1, C18:1, C18:2, arginine, ornithine, spermidine, lysoPC a C18:2, 

lysoPC a C24:0, PC aa C32:2, PC aa C36:2, PC aa C38:6, PC aa C40:6, PC ae C34:2, PC ae C42:0, SM 

C18:0, SM C18:1, SM C24:1) could be identified using both approaches independently (Table 2 and 

4). In the comparison of PHT with each singular EHT (CS, PA, PPGL) four metabolites were repeatedly 

identified by CA (C18:1, C18:2, Ornithine, Spermidine), as well as by MLA. Using the MLA in addition 

to these four metabolites other four metabolites (C9, Aspartate, lysoPC a C24:0, SM C18:1) were 

repeatedly identified in each singular comparison (Table 2 and 4).  

Considering all subgroup analyses, 15 metabolites (C9, C16, C16:1, C18:1, C18:2, arginine, aspartate, 

glutamate, ornithine, spermidine, lysoPC a C16:0, lysoPC a C20:4, lysoPC a C24:0, PC ae C42:0, SM 

C18:1, SM C20:2) were discriminating between PHT and EHT using both approaches, representing 

66.7% of the top 15 metabolites from CA and 55.6% of the metabolites identified by MLA (Table 3 

and 5, Supplemental Table 2.5) (30). 

DISCUSSION  

In the present study, we provide evidence that targeted metabolomics could aid in the 

discrimination between PHT and EHT with promising sensitivity and specificity. Identified differences 

in metabolomic profiles remained significant independent of the applied statistical approaches 

including machine learning algorithms. This finding indicates that the analytical method of targeted 

metabolomics can provide phenotypic patterns of underlying disorders that translates into potential 

diagnostic utility.  

 

Of all patients with secondary hypertension, endocrine disorders are the most prevalent causes that 

furthermore carry a high cardiovascular risk burden in comparison to essential hypertension (44-47). 

The availability of targeted and personalized therapies that also include approaches that can result 

in complete cure of hypertension is contrasted by the low penetration of screening approaches in 
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larger patient cohorts. Among the reasons for this lack of widespread implementation is that 

screening procedures often require specialized skills in performance and interpretation of test 

results. A pre-screening tool as part of a diagnostic algorithm could be utilized before further 

endocrine testing for improved patient identification and contribute towards better disease 

outcomes. Based on the applied diagnostic and statistical analyses we found a good diagnostic 

performance with the area under curves of 0.86 and 0.83, respectively. Since the diagnostic 

performance of the currently recommended selection criteria for EHT screening - such as young age 

at diagnosis or high grade or resistant hypertension (14,15,29) - is not available, a direct comparison 

with current approaches is not possible. However, considering only the prevalence of PA, as the 

most common EHT of up to 23% in patients with uncontrolled hypertension, our pre-selection 

approach might be more selective in identifying EHT cases, with a specificity of up to 45% while 

maintaining a reasonably high sensitivity of 80% (Figure 5).  Considering the prevalence of arterial 

hypertension of 30% in the general population (48) and estimating that 10% of arterial 

hypertension patients are EHT cases (see introduction section) the positive and negative 

predictive value of our approach would be 4.3% and 98.6%, respectively. If confirmed in further 

studies using prospective cohorts and focused on the diagnostic performance and validation of 

the developed machine learning algorithms, targeted metabolomics could be suitable as a very 

good rule-out test for EHT. Therefore, by implementing the proposed algorithm in the routine 

work-up of patients with arterial hypertension, a single fasting blood sampling would allow to 

restrict further cumbersome tests (such as 24 hour urine collection, midnight cortisol 

measurements, functional testing) to those with a high probability of EHT. However, because of its 

design, this approach cannot exclude the presence of other secondary causes of arterial 

hypertension such as e.g. renovascular disease. 

Even though it was not the primary goal of this study, distinct metabolomic patterns in the 

comparison of PHT with the single entities of EHT (CS, PA, PPGL) were evident. Based on these data, 

it will be interesting in future studies to test the ability of metabolomics as diagnostic tool to identify 
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a specific EHT entity that would target further baseline or functional tests towards a specific disease. 

Ideally, this would also decrease the likelihood of pitfalls of undirected diagnostic approaches that 

are based on co-morbidities or medication (15,29,49).  

 

Beyond diagnostic usage, metabolic approaches can also provide insights into disease-related 

mechanisms. Distinct metabolic profiles between PHT and individual or combined EHT subgroups 

could be identified including differences in acylcarnitines, amino acids/biogenic amines and 

glycerophospholipids levels. In particular, higher levels of long-chain acylcarnitines (C16, C16:1, 

C18:1, C18:2) were a consistent finding distinguishing PHT and EHT. This is of particular interest 

considering the association of these metabolites with cardiovascular complications. In fact, in vitro 

studies have indicated deleterious effects of higher levels of long-chain acylcarnitines on cardiac 

tissue, influencing the cardiac electrophysiology and cell contractility (50). Similarly, in patient cohort 

studies, higher levels of long-chain acylcarnitines were found to be associated with heart failure 

(most pronounced in patients with preserved ejection fraction) and were identified as independent 

risk factors for cardiovascular mortality in patients with end-stage renal disease starting 

hemodialysis (51,52). Since patients with endocrine forms of hypertension have an increased risk of 

cardiovascular complications compared to matched PHT controls (44-47), it is tempting to speculate 

that those metabolic changes might relate to these clinical observations. Furthermore, higher levels 

of acylcarnitines have been described in patients with insulin resistance and diabetes mellitus 

(50,53), the latter being also related to all three EHT forms considered in our study (45,54,55). 

Considering the results of our ratio analyses, the CPT-I enzyme activity might play a relevant role in 

this context.  

Other observations common to the different statistical approaches were the distinct profiles of some 

amino acids/biogenic amines being higher (aspartate, glutamate, ornithine, spermidine) and lower 

(arginine) in the EHT patients. Arginine is the precursor of biogenic amines like spermidine and its 
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low level with concomitant higher levels of ornithine, a precursor in spermidine synthesis, and 

spermidine itself points toward activation of the biogenic amine synthesis in patients with EHT (56). 

Higher levels of biogenic amines have been associated with carcinogenesis, inflammation and heart 

failure (56-58), and in vitro studies describe its deleterious effect in ischemic cardiac cells (59). 

Furthermore, nitric oxide (NO) synthesis relies on arginine availability and therefore low arginine 

levels might cause reduced NO levels (60), which is associated with endothelial dysfunction, 

considered as an early step in the pathogenesis of atherosclerosis (61). These findings might 

contribute as well to the spectrum of the metabolic changes related to increased cardiovascular risk 

in patients with EHT (44-47). Besides, the higher levels of aspartate and glutamate might reflect the 

described effect of hypercortisolism (62,63), hyperaldosteronism (64,65) and catecholamine excess 

(66) on skeletal muscle, with increased protein turnover and degradation. It is of interest that higher 

glutamate levels have been associated with neuropsychological disorders such as major depression 

(67) being one of the hallmarks of patients with CS, but also commonly observed in patients with PA 

(63,68). Higher levels of lysophosphatidylcholins (lysoPC a C16:0, lysoPC a C20:4, lyspPC a 24:0) and 

sphingomyelin (SM C18:1) were observed in patients with EHT compared to PHT. Both 

lysophosphatydilcholin (69,70) and sphingomyelin (71) are associated with increased cardiovascular 

risk, pointing out another metabolic pattern possibly explaining the higher incidence of 

cardiovascular complication in this group of hypertensive patients. However, it remains unclear 

whether all these findings are associated with a common pathogenic mechanism or are related to 

EHT. 

 

The strength of the current investigation bases on the relatively high number of cases with EHT 

studied, which was only possible thanks to a concerted multi-centric approach. Furthermore, by 

using identical predetermined diagnostic criteria, very well characterized and uniformly investigated 

patient cohorts had been established for comparison. Another strength of this study is the well-
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defined and standardized process of sample collection and storage, which minimized the influence 

of various external factors such as food intake on metabolite levels and thus on the study results.  

Nevertheless, we are aware that the large number of investigated metabolites in relation to the 

number of patients, as well as the different distribution of patients according to age and sex and the 

retrospective study design, might have impacted on the results. It is further possible, that patient 

characteristics beyond age and sex as well as extrinsic factors such as smoking might have affected 

analytes and thereby the overall test performance. In addition, with the exception of an overnight 

fasting, the study protocol did not include other specific dietary restrictions. Notably, the 

targeted analytic approach and the strict selection criteria for relevant metabolites achieved similar 

results following different statistical approaches. While this should lend the study more robustness, 

it might have resulted in the oversight of other relevant metabolic changes. Furthermore, the main 

goal of this study was to identify common discriminating features while using different approaches 

and not to compare the two distinct analysis approaches (CA and MLA). Future studies will focus on 

further improving the MLA performance by exploring more algorithms and classifiers to enhance the 

performance ability of the MLA for targeted metabolomics, which could be implemented in the 

clinical routine. In addition, as described in the method section we had to deal with distinct 

distributions between clinical categories according to sex and age, as well as participating center 

(data not shown). Therefore, it was not possible for us to perform further internal validation 

analyses considering each possible scenario.  

The main goal of our study was to identify metabolomic differences, which might be used in future 

diagnostics. However, before implementation in diagnostic, routine confirmation of our results as 

well as optimization of the machine learning algorithms are necessary, taking also into account the 

problem of outliers (technical or biological) in “omic”-analyses, as has been outlined in the literature 

(72). The prospective studies (currently under way) will allow further refinement of the models 

before translating them into clinical practice. 
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Furthermore, we appreciate obstacles in the implementation of the utilized mass spectrometry 

based analysis in the diagnostic routine. While liquid chromatography mass spectrometry platforms 

are not widely available, they have been increasingly introduced into clinical routine and are likely to 

find further distribution in the future (73).  

Another challenging aspect concerns the physician’s exemption from the interpretation of the single 

measured value (metabolite) and the need to entrust the decision to a complex mathematical 

algorithm. A potential place of the proposed screening assay would be in a non-specialized general 

physician setting, where conventional endocrine diagnostics are avoided because of uncertainty in 

the interpretation of test results. In this setting, endocrine expertise would remain to be required 

with confirmation or ruling out of endocrine hypertension in pre-screened patients. 

In conclusion, we provide evidence that targeted metabolomics is a promising tool in discriminating 

patients with PHT and EHT to be used as a preselection tool for those individuals who would benefit 

from further referral for endocrine workup. Confirmation in a prospective cohort and analyses of the 

benefits in terms of morbidity and mortality as well as the cost-effectiveness of the procedure 

should be evaluated.  
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FIGURE LEGENDS 

Figure 1. Schematic workflow of the study design.  

Figure 2. Distribution of patients according to the clinical diagnosis and sex (a) and age group <50 

versus ≥50 years (b). On the left are represented all clinical subgroups separately (PHT, CS, PA, PPGL) 

and on the right the endocrine forms (CS, PA, PPGL) as a common group of endocrine hypertension 

(EHT).  

Figure 3. On the left side concentrations (after generalized logarithmic transformation) of the 

significant common metabolites of interest (above) and metabolite ratios (below) found in the 

comparison of PHT with CS, PA and PPGL respectively, after controlling for sex and age group. 

Medium value with 95% confidence interval (CI) of the after generalized logarithmic transformation 

is represented for each clinical diagnosis group. Except for Citrulline/Ornithine ratio, the values were 

lower in the PHT patients. On the right side respective ROC Curve for discrimination between PHT 

and EHT for panel 1 (metabolites [above] and metabolite ratio [below]) are depicted. The sensitivity 

(y-axis) and 1-Specificity (x-axis) for different cut-offs for the predicted probabilities of having EHT 

are represented. The area under the curve (AUC) with the 95% confidence interval (CI) is 

represented for each ROC curve. 

Figure 4. On the left side concentrations (after generalized logarithmic transformation) of the top 15 

significant common metabolites (above) and metabolite ratios (below) of interest found in the 

comparison of PHT with EHT as common group, after controlling for sex and age group. Medium 

value with 95% confidence interval (CI) of the metabolites (a) and metabolite ratio (b) concentration 

(after generalized logarithmic transformation) is represented for both groups. On the right side ROC 

Curve for discrimination between PHT and EHT for panel 2 (metabolites [upper panel] and 

metabolite ratio [lower panel]) are depicted. The sensitivity (y-axis) and 1-Specificity (x-axis) for 
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different cut-offs for the predicted probabilities of having EHT are represented. The area under the 

curve (AUC) with the 95% confidence interval (CI) is represented for each ROC curve. 

Figure 5. Discriminating potential of the features (metabolites in the left and metabolite sums/ratio 

in the right panel) identified by machine-learning approach and their diagnostic performance. On the 

top, the ROC curve is represented, in the middle the confusion matrices showing actual and 

predicted number of samples as result of classification using metabolites and metabolites 

sums/ratios for PHT-EHT disease combination using all samples. In the bottom the performances are 

represented (for details see the results section). The confusion matrices show the actual and 

predicted number of patients after 5-CV classification.  
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TABLES 

Table 1. 

diagnosis sex 
 

 
age percentiles 

 

 
female (147) male (135) 

total 
(282) p median 25th 75th p 

PHT 19 40 
 
59 

p<0.001§ 

47.0 33.3 65.3 

P=0.001§§ 

  12.9% 29.6% 
 

      

CS 36 4 
 
40 50.6 42.3 61.8 

  24.5% 3.0% 
 
       

PA 49 58 
 
107 46.7 40.7 54.2 

  33.3% 43.0% 
 

      

PPGL 43 33 
 
76 54.6 43.2 65.3 

  29.3% 24.4% 
 

      

 

§ considering CS, PA, and PPGL in the common group of EHT the different distribution remains 

significant (p=0.009); §§ Pairwise comparisons were performed with a Bonferroni correction for 

multiple comparisons. This post hoc analysis revealed statistically significant differences in median 

age between PHT-PPGL (p=0.002) and PA-PPGL (p=0.015) 

Abbreviations: PHT, primary hypertension; CS, Cushing syndrome; PA, primary hyperaldosteronism; 

PPGL, pheochromocytoma/paraganglioma 
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 Table 2. Significant metabolites/metabolite ratios of interest after controlling for sex and age (“classical approach”) 

Notes: List of metabolites and metabolite ratios of interest found in at least one of the considered comparison subgroups (all patients, male, female, age <50 

and ≥50 years) of PHT with CS, PA and PPGL, respectively, with significant association with clinical diagnosis after considering sex and age group in the analysis. 

The mark “x” indicates in which comparison group the metabolite/metabolite ratio has been identified (e.g. C3:1 was identified in the comparison of PHT and 

  PHT vs.   PHT vs.   PHT vs.   PHT vs. 

metabolite CS PA PPGL metabolite CS PA PPGL metabolite CS PA PPGL metabolite CS PA PPGL 

Acylcarnitines       Amino Acids       
Glycerophospho-
lipids (cont.)       Sphingolipids       

C3:1 x     Serine   x   PC aa C40:2   x   SM C16:1 x*     

C3-DC C4-OH   x x Threonine   x*   PC aa C40:6   x x* SM C18:0 x   x* 

C7-DC   x*   Biogenic Amines       PC aa C42:0   x*   SM C18:1 x*   x* 

C9 x* x*   Spermidine* x x* x* PC aa C42:1   x*   SM C20:2 x*     

C12:1     x Glycerophospho-lipids       PC aa C42:2   x   SM C24:1     x* 

C14:1     x* lysoPC a C14:0 x     PC aa C42:4   x*   metabolite ratio       

C14:2   x x* lysoPC a C16:0 x* x*   PC aa C42:5     x Citrulline / Ornithine x* x* x* 

C16   x*   lysoPC a C16:1 x*     PC ae C34:2     x* Citrulline / Arginine   x* x* 

C16:1   x* x* lysoPC a C17:0 x     PC ae C36:1 x*     CPT-I ratio   x*   

C18:1 x* x* x* lysoPC a C18:0   x   PC ae C36:3     x Met-SO / Methionine     x* 

C18:2 x* x* x* lysoPC a C18:2     x* PC ae C42:0   x x* Ornithine / Arginine x* x* x* 

Amino Acids       lysoPC a C20:4 x*     PC ae C42:1   x   Putrescine / Ornithine   x* x* 

Alanine x*     lysoPC a C24:0     x* PC ae C42:2 x x   Spermidine / Putrescine x* x* x* 

Arginine   x* x* PC aa C30:0     x PC ae C42:3   x   Total DMA / Arginine   x* x* 

Aspartate x* x*   PC aa C32:2   x x* PC ae C42:5   x   Tyrosine / Phenylalanine x*   x* 

Glutamate x x   PC aa C36:2     x* PC ae C44:3 x x*       

Ornithine x* x* x* PC aa C38:4     x PC ae C44:4 x* x       

Phenylalanine x x   PC aa C38:6     x* PC ae C44:5   x       

Proline x     PC aa C40:1   x*   PC ae C44:6   x       

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/advance-article/doi/10.1210/clinem
/dgaa954/6056647 by guest on 24 January 2021



Acc
ep

ted
 M

an
us

cri
pt

35 

CS, C9 in the comparison of PHT and CS as well as PHT and PA). With asterisk (*) are marked metabolites/metabolite ratios found using both approaches 

(classical and machine-learning).  

Abbreviations: a, acyl; aa, diacyl; ae, acyl-alkyl; CPT-I, carnitine palmitoyl transferase I; CS, cushing syndrome; Cx:y indicates the lipid chain composition where 

“x” is the number of carbons and “y” the number of double bonds. DMA, dimethylarginine; LysoPC, lysophosphatidylcholine; Met-SO, Methionine sulfoxide; PA, 

primary hyperaldosteronism; PC, phosphatidylcholine; PHT, primary hypertension; SM, sphingomyelin (see also Supplemental Table 1) (30); PPGL, 

pheochromocytoma/paraganglioma. 
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Table 3. Logistic regression predicting the likelihood of EHT based on the metabolites/metabolite 

ratios selected for panel 1 and panel 2. 

  B Exp(B) 95% C.I.for Exp(B) Sig. 

Panel 1a metabolite   lower upper  

 C18:1 0.79 2.203 0.963 5.042 0.061 

 C18:2 0.504 1.655 0.747 3.666 0.214 

 Ornithine 0.312 1.366 0.669 2.788 0.392 

 Spermidine 0.769 2.157 1.339 3.477 0.002 

 Constant 7.095 1205.524   0.027 

Panel 1b metabolite ratio      

 Citrulline / Ornithine 0.296 1.344 0.619 2.918 0.454 

 Ornithine / Arginine 1.196 3.306 1.674 6.529 0.001 

 Spermidine / Putrescine 0.631 1.88 1.192 2.967 0.007 

 Constant 2.238 9.378   <0.001 

Panel 2a metabolite      

 C3-DC (C4-OH) 0.733 2.082 0.883 4.908 0.094 

 C9* -0.967 0.38 0.172 0.839 0.017 

 C16* -0.807 0.446 0.109 1.824 0.261 

 C16:1* 2.292 9.891 1.636 59.807 0.013 

 C18:1* 0.083 1.087 0.267 4.416 0.908 

 C18:2* 0.198 1.219 0.487 3.052 0.672 

 Arginine* -1.174 0.309 0.118 0.81 0.017 

 Aspartate* 0.674 1.961 0.867 4.439 0.106 

 Glutamate 0.068 1.071 0.611 1.876 0.811 

 Ornithine* 0.572 1.772 0.695 4.517 0.231 
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 Spermidine* 0.698 2.009 1.15 3.51 0.014 

 lysoPC a C20:4* -0.089 0.915 0.358 2.337 0.853 

 PC aa C38:6 -0.731 0.481 0.065 3.594 0.476 

 PC aa C40:6 0.667 1.949 0.296 12.839 0.488 

 PC aa C42:1 0.927 2.527 0.889 7.178 0.082 

 Constant 16.52 14947591.2   0.021 
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Table 3. (cont.) Logistic regression predicting the likelihood of EHT based on the 
metabolites/metabolite ratios selected for panel 1 and panel 2. 
 

  B Exp(B) 95% C.I.for Exp(B) Sig. 

Panel 2b metabolite ratio   lower upper  

 Citrulline / Arginine* -16.119 9.99x10-08 1.42x10-

16 

70.154 0.121 

 Citrulline / Ornithine* 16.508 14770678.1 0.023 9.6091x1015 0.111 

 CPT-I ratio* 0.675 1.963 0.941 4.095 0.072 

 Ornithine / Arginine* 17.429 37084306.7 0.056 2.439x1016 0.092 

 Spermidine / Putrescine* 0.621 1.86 1.171 2.955 0.009 

 Total DMA / Arginine* -0.236 0.79 0.336 1.854 0.588 

 Tyrosine / Phenylalanine* -1.334 0.263 0.073 0.953 0.042 

 Constant 6.017 410.15   0.09 

 

Notes: “Bold” is represented the statistically significant values (p<0.05). With asterisk (*) are marked 

metabolites/metabolite ratios found using both approaches (classical [top 15 metabolites] and 

machine-learning approach). 

Abbreviations: B, B coefficient; Exp(B), odds ratio of the independent variable; C.I., confidence 

interval; sig., significant. For abbreviations/nomenclature of the variable please refer to Table 2. 
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Table 4. Metabolites/metabolite ratios identified using the «machine-learning» approach 

  PHT vs.   PHT vs.   PHT vs.   PHT vs. 

metabolite CS PA PPGL metabolite CS PA PPGL metabolite CS PA PPGL metabolite ratio CS PA PPGL 

Acylcarnitines    Biogenic Amines    Glycerophospholipids (cont.)    (C2+3)/C0   x 

C2 x  x alpha-AAA   x PC aa C42:4  x*  C2/C0   x 

C8 x  x Spermidine x* x* x* PC ae C32:1  x  Citrulline/Arginine x x* x* 

C7-DC x x*  Glycerophospholipids    PC ae C32:2  x  Citrulline/Ornithine x* x* x* 

C9 x* x* x lysoPC a C16:0 x* x*  PC ae C34:2   x* CPT-I ratio  x* x 

C10:1  x x lysoPC a C16:1 x*   PC ae C34:3 x  x Fischer ratio  x x 

C12 x   lysoPC a C18:0  x x PC ae C36:1 x*   Met-SO/Met x  x* 

C14:1   x* lysoPC a C18:2   x* PC ae C38:1  x  Ornithine/Arginine x* x* x* 

C14:2 x  x* lysoPC a C20:4 x* x x PC ae C40:3  x  Putrescine/Ornithine x x* x* 

C16  x*  lysoPC a C24:0 x x x* PC ae C42:0 x  x* Spermidine/Putrescine x* x* x* 

C16:1  x* x* PC aa C32:1  x  PC ae C44:3  x*  Total DMA/Arginine x x* x* 

C16:1-OH x  x PC aa C32:2   x* PC ae C44:4 x*   Tyrosine/Phenylalanine x* x x* 

C18:1 x* x* x* PC aa C34:2  x x Sphingolipids    metabolite sum    

C18:2 x* x* x* PC aa C34:4   x SM (OH) C16:1 x   AAA  x  

Amino Acids    PC aa C36:2   x* SM (OH) C24:1 x   BCAA  x  

Alanine x*   PC aa C36:3   x SM C16:1 x*   Essential AA  x  

Arginine  x* x* PC aa C36:4   x SM C18:0   x* Glucogenic AA x  x 

Aspartate x* x* x PC aa C38:6   x* SM C18:1 x* x x* Non essential AA   x 

Glutamine   x PC aa C40:1  x*  SM C20:2 x*   Total AA x  X 

Histidine   x PC aa C40:6   x* SM C24:1   x*     

Ornithine x* x* x* PC aa C42:0  x*  Monosaccharides        

Threonine  x*  PC aa C42:1 x x*  H1 x  x     

 

Notes: List of metabolites and metabolite ratios/sums found in at least one of the considered comparison subgroups (all patients, male, female, age <50 and 

≥50 years) of PHT with CS, PA and PPGL, respectively. The mark “x” indicates in which comparison group the metabolite/metabolite ratio has been identified. 
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With asterisk (*) are marked metabolites/metabolite ratios found using both approaches (classical and machine-learning). Sex and age were included as 

variables in the analyses: sex was a relevant variable in the comparison between PHT and CS (metabolites and metabolite ratios) as well as PHT vs PA and vs 

PPGL (metabolite ratios); age was a relevant variable in the comparison of PHT vs PA and vs PPGL (metabolites and metabolite ratios) and PHT vs CS 

(metabolite ratios).  

Abbreviations: a, acyl; aa, diacyl; ae, acyl-alkyl; alpha-AAA, alpha-Aminoadipic acid; CPT-I, carnitine palmitoyl transferase I; CS, Cushing syndrome; Cx:y 

indicates the lipid chain composition where “x” is the number of carbons and “y” the number of double bonds. DMA, dimethylarginine; H1, sum of Hexoses 

(including Glucose); LysoPC, lysophosphatidylcholine; Met-SO, Methionine sulfoxide; PA, primary hyperaldosteronism; PC, phosphatidylcholine; PHT, primary 

hypertension; SM, sphingomyelin (see also Supplemental Table 1) (30); PPGL, pheochromocytoma/paraganglioma. 

Abbreviations metabolite ratios and sums: AAA, sum of aromatic amino acids; BCAA, sum of branched chain amino acids; CPT-I ratio, ratio of long chain 

acylcarnitines to free carnitine ([C16+C18]/C0); Essential AA, sum of essential amino acids; Fischer ratio, ratio of BCAA to AAA; Glucogenic AA, sum of selected 

glucogenic amino acids (Ala, Gly, Ser); Met-SO/Met, fraction of sulfoxidized Met of unmodified Met pool; Non-essential AA, sum of the non-essential amino 

acids; Total AA, sum of all amino acids; Total DMA/Arg, fraction of dimethylated Arg of the unmodified Arg pool 
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Table 5. Sets of features including unique metabolites (a) / metabolite ratios (b), age and sex 

discriminating between EHT and PHT found in different subgroups of patients (all patients and 

subgroups according to sex and age group from the machine learning approach.  

a b 

features patient group features patient group 

 all M F ≥50 <50  all M F ≥50 <50 

C18:2* x x x x x 
Ornithine / 
Arginine* x x x x x 

C18:1* x x x x x 
Spermidine / 
Putrescine* x x x x x 

Spermidine* x x 
 

x x 
Citrulline / 
Arginine* x  x x  

Ornithine* x x x x 
 

CPT-I ratio* x x x  x 

lysoPC a C16:0** x x 
  

x 
Citrulline / 
Ornithine* x x x x  

C16:1* x 
    

Sex x    x 

C9* x x 
 

x 
 

Total DMA / 
Arginine* x  x  x 

PC aa C36:4 x 
    

Tyrosine / 
Phenylalanine* x  x  x 

SM C18:1** x 
  

x 
 

Glucogenic AA x  x   

lysoPC a C20:4* x x x 
  

Age  x    

C10:1 x 
    

Putrescine / 
Ornithine  x    

lysoPC a C17:0 x 
    

Fisher ratio   x   

SM C20:2** x 
    

C2 / C0   x   

PC ae C42:0** x 
  

x 
 

      

C2 x 
  

x 
 

      

PC aa C34:2 
 

x 
   

      

C16* 
 

x 
   

      

lysoPC a C24:0** 
  

x 
  

      

Aspartate* 
  

x 
  

      

Arginine* 
  

x 
  

      

lysoPC a C18:2 
  

x 
  

      

C16:1-OH 
   

x 
 

      

PC ae C34:2 
   

x 
 

      

Serine 
   

x 
 

      

C12:1 
   

x 
 

      

H1 
    

x       

Sex 
    

x       

PC aa C36:2 
    

x       

 

Note: The order in which the features were listed corresponds to the most common feature 

appearing in different classifications on top. The variables marked with an asterisk (*) were 
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observed as discriminating variables in both classical [top 15 metabolites] and machine learning 

approaches. 

With the double-asterisk (**) are marked those metabolites also identified in the classical 

approach not being selected in the top 15 (Supplemental Table 2.5 and Supplemental Figure 4.1-

4.2) (30). 

Apart from the common discriminating variables for PHT-EHT, in male and female subgroups, PC aa 

C34:2 and C16 were seen important variables in the male subset while lysoPC a C24:0, aspartate, 

arginine, and lysoPC a C18:2 appeared as discriminating variables in female subgroup. For age-

based subgroups, C16:1-OH, PC ae C34:2, serine, and C12:1 were seen as important variables for 

age ≥50 years and H1, sex and PC aa C36:2 for age <50 years subgroup. Similarly for metabolite 

ratios, it was observed that putrescine/ornithine and age were discriminating variables for 

males, however, the Fisher ratio and C2/C0 were seen as discriminating for females along with 

few other common variables. 

Abbreviations: F, female; M, male; ≥50, patients age 50 years or older; <50, patients younger than 

50 years. For abbreviations/nomenclature of the variable please refer to Tables 2 and 3.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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