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When addressing environmental health-related questions, most often, only
observational data are collected for ethical or practical reasons. However, the
lack of randomized exposure often prevents the comparison of similar groups
of exposed and unexposed units. This design barrier leads the environmen-
tal epidemiology field to mainly estimate associations between environmental
exposures and health outcomes. A recently developed causal inference pipeline
was developed to guide researchers interested in estimating the effects of plau-
sible hypothetical interventions for policy recommendations. This article illus-
trates how this multistaged pipeline can help environmental epidemiologists
reconstruct and analyze hypothetical randomized experiments by investigating
whether an air pollution reduction intervention decreases the risk of multiple
sclerosis relapses in Alsace region, France. The epidemiology literature reports
conflicted findings on the relationship between air pollution and multiple scle-
rosis. Some studies found significant associations, whereas others did not. Two
case-crossover studies reported significant associations between the risk of mul-
tiple sclerosis relapses and the exposure to air pollutants in the Alsace region.
We use the same study population as these epidemiological studies to illus-
trate how appealing this causal inference approach is to estimate the effects of
hypothetical, but plausible, environmental interventions.
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1 INTRODUCTION

The major reason for the confidence in randomized experiments is the objectivity of the decisions for exposure assignment
to compare treated and control units with similar pre-exposure covariates. Following the logic of the Rubin Causal Model,
the appealing features of randomized experiments can be transposed to observational studies to provide transparent
[Correction added on 29 January 2021 after first online publication: Correspondence details have been updated.]
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T A B L E 1 Multiple sclerosis patient characteristics

Total Cluster 1 Cluster 2

n = 353 n = 146 n = 207

Sex M F M F M F

n 98 255 38 108 60 147

(28%) (72%) (26%) (74%) (29%) (71%)

MS form (at last info.)

Relapsing-remitting (n) 80 216 27 73 53 143

(23%) (61%) (18%) (50%) (26%) (69%)

Secondary progressive (n) 18 39 11 35 7 4

(5%) (11%) (8%) (24%) (3%) (2%)

Relapses per patient (mean) 1 2 2 2 1 1

SD (2) (2) (2) (2) (2) (2)

Onset—inclusion gap (mean in years) 3 4 7 9 0.1 0.1

SD (6) (7) (8) (8) (0.5) (0.5)

Age at MS clinical onset (mean in years) 31 31 33 33 29 30

SD (11) (10) (9) (12) (10) (11)

Age at study inclusion (mean in years) 36 36 41 42 30 31

SD (11) (12) (8) (11) (9) (10)

Follow-up since inclusion (mean in years) 6 6 9 9 4 4

SD (4) (4) (1) (1) (3) (3)

Type 1—prevalent cases (n) 35 97 31 88 4 9

(10%) (27%) (21%) (60%) (2%) (4%)

Type 2—incident cases (n) 63 158 7 20 56 138

(18%) (45%) (5%) (14%) (27%) (67%)

cause and effect interpretations of statistical analyses.1,2 These ideas should be particularly appealing to environmental
epidemiology, a field for which randomized experiments are most often unethical or impractical. Bind and Rubin3 present,
with a simple illustration, a multistaged causal inference pipeline aiming at revealing results that could have been
obtained by an experiment with a plausible, randomly assigned, environmental intervention. A recent study partially fol-
lowed this pipeline: the authors constructed the nonrandomized data such that they mimic random weather variations
and estimated the effects of weather variations on violent crimes.4 However, the study examined weather variations that
cannot be interpreted as plausible interventions, thereby omitting the first, conceptual, stage of the pipeline, essential for
providing recommendations.

A few researchers have emphasized the importance of focusing on well-defined interventions in terms of potential
outcomes and on relying on the Rubin Causal Model to assess causality in air pollution epidemiology.3,5-9 For years, Rubin
has argued for a design stage10 and for a conceptual stage,2,11 which was formulated more explicitly recently by Bind and
Rubin. Here, our objective is to provide epidemiologists with a practical and thorough application of the causal pipeline
proposed by Bind and Rubin and simultaneously assess an important causal question with a complex data structure.

There is an increasing number of epidemiological studies focusing on the link between air pollution and neurological
outcomes, including multiple sclerosis (MS) relapses.12,13 MS is a demyelinating disease damaging nerve cells, giving
rise to the inability of the nervous system to communicate. MS patients occasionally experience relapses. Relapses are
characterized as episodes of neurological symptoms (eg, loss of vision, pain in body parts) that occur for at least 24 hours
and happen at least 30 days after any previous episode began.14 The causes of MS disease onset and the risk factors of
relapses occurrence are unclear but many research efforts are focusing on the influence of environmental factors on
MS.15,16 Several studies reported associations between air pollutants and MS17-23 and two studies failed to reject the null
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hypothesis,24,25 (see Web Table 1). However, study design and methodological limitations prevent a causal interpretation
for these associations.

Our illustration uses a study population already studied by Roux et al21 and Jeanjean et al,23 who observed
positive associations between air pollutants and MS relapses risk. Both concluded that further research presenting
causal relationships is needed before taking preventive environmental actions for MS patients. These studies rely on
a case-crossover strategy26 that examines whether the patient was exposed to some unusual air pollution patterns just
before or at MS relapse. Such designs are not optimal to provide causal results, as it answers the question: Were the lev-
els of air pollution higher prior to relapses? It implies that the researcher first considered the outcome, that is, relapse
occurrence, and then seeks for its environmental causes. This strategy contradicts the principle of classical experimental
designs where exposures are assigned randomly prior to measuring the outcome of interest, a method that is the “gold”
standard to obtain objective inference on the effects of an intervention.2 We will follow the steps of Bind and Rubin’s3

causal pipeline to examine the causal question: Does lowering air pollution levels reduce the risk of relapses? With this illus-
tration, we aim to engage environmental epidemiologists in: (1) discussing hypothetical interventions that could have
resulted in the observed data, (2) verifying the plausibility of the assumptions of the Rubin Causal Model, (3) choosing
an adequate data analysis strategy, and (4) interpreting the implications of their results in order to give recommendation
for further research or policies.

2 DATA

2.1 Multiple sclerosis patients data

The 353 patients in our study are part of the alSacEP network following MS diagnosed patients living in the Alsace region.
All patients records were managed with the standardized European Database for Multiple Sclerosis (EDMUS).27 We focus
on the period between 1 January 2000 and 31 December 2009. Two types (1 and 2) with two subtypes (A and B) of patients
can be distinguished in the study population (see Figure 1). For Type 1 patients, their relapse history is known from some
time post-MS onset, until the end of our study period (Type 1A), or until last patient information (Type 1B). For Type 2
patients, their relapse history is available from MS onset, until the end of our study period (Type 2A), or until last patient
information (Type 2B). In epidemiology, Type 1 patients are prevalent cases, that is, they were diagnosed with the disease
before the study period started. Type 2 patients are incident cases, that is, they are newly diagnosed during the study period.

The patients are subject to two forms of MS, the Relapsing-Remitting (RR) (NRR = 296) and the Secondary-Progressive
(SP) (NSP = 57) form. All the patients started their disease in a Relapsing-Remitting form: the relapses are followed by a
remission, that is, a time of recovery with few or no symptoms. But by the time of the study, for some, the disease shifted
to a Secondary-Progressive form: the symptoms of the relapses steadily become worse with no remission.28,29

Recorded relapses of 109 patients in the alSacEP network may present some doubtful dates, that is, uncertain or
completely unknown. Since the outcome of interest of this study is daily relapse occurrence, the analyses in this article
are restricted to patients with complete relapses history. Including the patients with inaccurate relapse recording would
add an additional source of uncertainty. To take the MS relapse definition14 into account, for each patient we exclude their
30-day period(s) post-MS onset and post-relapses from the data (see Appendix A for pre-analysis data exclusion details).
See Table 1 for the characteristics of the 353 patients included in our subsequent analyses.

2.2 Relapses in multiple sclerosis are age-, time-, and sex-dependent

Several studies have shown that relapses occurrence are age-, time-, and sex-dependent.30-32 Relapse rates decrease with
time and this decline increases in magnitude with age. Overall, women exhibit a higher relapse rate. We observed a similar
relapse rate pattern that is age-, time-, and sex-dependent in our study population (see Web Figure 1), thereby, age, disease
history, and sex should be accounted for in our analyses.

2.3 K-means clustering for patient grouping

The structure of our data implies different timings of disease history for the patients. Overall, Type 1 patients are older,
thus at a later stage of their disease progression, and have a longer follow-up period than Type 2 patients during the study
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F I G U R E 1 Multiple
sclerosis patient types with
respect to disease onset and
relapse records during the
study period of 2000-01-01 to
2009-10-01. Type 1—prevalent
cases: MS onset occurred before
the beginning of the study
(37%); Type 1A: the patient was
followed until the end of the
study, Type 1B: the patient’s last
information was before the end.
Type 2—incident cases: MS
onset occurred after the
beginning of the study (between
2000-01-01 and 2009-10-01)
(63%); Type 2A: the patient was
followed until the end of the
study, Type 2B: the patient’s last
information was before the end
[Color figure can be viewed at
wileyonlinelibrary.com]

period (see Table B1 in Appendix B). However, some Type 1 patients resemble Type 2 patients more (and vice versa) with
respect to the characteristics: age at study inclusion, disease stage (approximated by the date difference between MS onset
and study inclusion), and follow-up duration. For example, a Type 1 patient whose disease onset occurred a year before
the beginning of study period at a young age might resemble more Type 2 patients. Therefore, we redefined our patient
groups before analyzing our data to provide stratified results taking the timing of disease progression into account. We use
the K-means clustering algorithm of Hartigan and Wong33 provided by the kmeans R function34 to create two clusters
that are homogeneous with respect to age at study inclusion, disease stage, and follow-up duration (see Table 1). The
groups were homogeneous with respect to the characteristics with two clusters, but not with three or four. In Table 1,
we can observe that Cluster 1 patients data is at a later stage of their disease, that is they are older and with a longer
onset-study inclusion gap, as compared to Cluster 2 patients (Figure 2).

2.4 Environmental data

We have meteorological variables for the Alsace region, such as the daily temperature. Air pollution concentrations of
particulate matter of 10 μm or smaller in diameter (PM10), and ozone (O3) were estimated daily at the census block
level throughout the study period using the deterministic Atmospheric Dispersion Modeling System (ADMS)-Urban air
dispersion model,35 which included background pollution concentrations, emissions inventories, meteorological data,
land use, and surface roughness.

http://wileyonlinelibrary.com
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F I G U R E 2 Distributions of the patient characteristics for the cluster built with K-means (k = 2) [Color figure can be viewed at
wileyonlinelibrary.com]

3 METHODS

We now present the four stages of the causal pipeline3 that we use to construct plausible hypothetical randomized
experiments to study the air pollution-MS relapse relationship:

• Stage 1: Formulation of a plausible hypothetical intervention decreasing air pollution levels to examine whether it
reduces the relapse risk for MS patients.

• Stage 2: Design the hypothetical randomized experiment as if the environmental intervention had been implemented
randomly at the census block level.

• Stage 3: Statistical analysis to estimate the relapse risk of MS patients hypothetically randomized to the environmental
intervention and test the null hypothesis of no effect of the intervention.

• Stage 4: Interpretation of the estimates obtained from the analysis.

3.1 Stage 1: Conceptualization of a plausible intervention reducing air pollution levels

3.1.1 Causal question

We are interested in the causal question: Does a reduction in PM10 levels cause a decrease in relapse occurrence risk for
Alsacian MS patients? However, it is impractical and unethical to expose MS patients to clean air and PM10 in a random-
ized controlled experiment. Therefore, we conceptualize a hypothetical experiment designed to study the effects on MS
patients of the following political intervention that reduces the air pollution exposure: The Alsace region council decides,
at the census block-level, to randomly ban some cars to ride, during a few days to keep the average PM10 level below or equal
to 15 μg∕m3. To disentangle the effects of low vs high air pollution levels on the relapse occurrence, the goal is to com-
pare the units under the intervention to units under higher levels of air pollution: average PM10 level higher or equal to
25 μg∕m3. The intervention comparison thresholds are based on the 25th and upper 75th percentiles of the 5 days moving
average PM10 distribution.

The study population consists of N patients, in S census blocks, followed during T days, where i= 1, … , N,
s= 1, … , S, and t = 1, … , T. The objective is to construct a hypothetical experiment that mimics a controlled experi-
ment, in which air pollution exposure could be believed to be randomized. We define the daily census block exposure as
the 5 days air pollution moving average. We denote Ps, t the 5-day moving average of 24-h-mean PM10 in census block s,
at day t:

Ps,t =
1
5

5∑
l=1

PM10 s,t−l. (1)

http://wileyonlinelibrary.com
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We chose to calculate the air pollution moving average starting at lag-1 to make sure that the exposure was measured
prior to the outcome measured at lag-0. The 5-day moving average is motivated by the results from Jeanjean et al.,23 who
reported positive associations between MS relapse incidence and PM10 until lag-5.

The indicator of the intervention vs higher pollution levels for each census block s at day t is

Ws,t =

{
0 if Ps,t ≥ 25 μg∕m3,

1 if Ps,t ≤ 15 μg∕m3.
(2)

The experimental units are person days, that is, patient i in census block s at day t, with intervention indicator:
W i, s, t =W s, t. In this setting, each unit, has two binary potential outcomes: Y i, s, t(1), the relapse occurrence if W i, s, t = 1,
and Y i, s, t(0), otherwise:

Yi,s,t =

{
1 if a relapse occurred,
0 if no relapse occurred.

(3)

3.1.2 Assumptions

To draw causal inferences in a standard setting, the stable unit treatment value assumption (SUTVA) must hold.36 This
assumption incorporates the idea that units do not interfere with one another and that for each unit there is only one
single version of each exposure. In the setting of this article, one could argue that some MS patients are still mobile enough
to receive hidden versions of the intervention on a day t. But as shown by Jeanjean et al 23, the Alsace region only presents
major air pollution contrasts between the census blocks of the main city (Strasbourg) and the surrounding ones. Thus,
in this study, we make the assumption that MS patients living in Strasbourg spend most of their time in the city and the
patients living in the more rural parts of Alsace do not spend much time in the city.

Another key component of a causal analysis is the assignment mechanism determining which units receive
which treatments; in other words, which potential outcomes are observed and which are missing.36 This study is
observational because the functional form of the assignment mechanism is unknown as opposed to a randomized
experiment where the assignment mechanism has a known functional form that is controlled by the researcher.
Therefore, the researcher has to resort to a design stage to assess the plausibility of an unconfounded assignment
mechanism.

3.2 Stage 2: Design of a reconstructed hypothetical experiment

At the design stage, the aim is to obtain a balanced subset of the observed data for which the assignment to expo-
sure can be assumed to be unconfounded, that is, the exposure assignment is independent of the potential outcomes
given the pre-exposure covariates X: Pr(W|X, Y(0), Y(1))=Pr(W|X). Unconfoundedness implies that treated and control
groups of units can be fairly compared because they are similar with respect to preexposure covariates.36 Match-
ing has been a popular method to create treated and control groups that are balanced, that is, exchangeable with
respect to their covariates.37 By creating matched groups we limit the “counfounding” of the exposure-outcome
relationship.

As we said earlier, in the definition given by McDonald et al,14 MS relapses occur for at least 24 hours and start at least
30 days after any previous episode began. This definition leads to no observation of the data on days between t and t + 30,
if Y i, s, t = 1. Therefore, we introduce a clear data indicator, defined as

Ci,s,t =

{
1 if Yi,s,t−1∶t−30 = 0,
0 if Yi,s,t−1∶t−30 ≠ 0.

(4)

The days for which Y obs
i,s,t = (Yi,s,t(0)|Ci,s,t = 1) can be observed are referred to as control days, and the days for which

Y obs
i,s,t = (Yi,s,t(1)|Ci,s,t = 1) can be observed are referred to as treated days.
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3.2.1 Within-patient pair matching to obtain a balanced subset of the data

Our within-patient matching strategy aims to limit confounding by census block-specific and patient-specific variables.
We match our units, person days, within patient: patient i in census-block s at time t under W obs

s,t = 1 with pre-exposure
covariates Xi, s, t is matched to himself at t⋆, under W obs

s,t⋆ = 0 only if Xi,s,t⋆ is “similar” to Xi, s, t.
For each unit, the vector of covariates is given by Xi,s,t = (X (1)

i,s,t,X (2)
i,s,t,X (3)

i,s,t,X (4)
i,s,t), where X (1)

i,s,t indicates the number of
days elapsed since the MS onset, X (2)

i,s,t the season, X (3)
i,s,t the ozone concentration (in μg/m3) at day t − 6, and X (4)

i,s,t the maxi-
mum temperature (in ◦C) at day t − 6. A balanced number of days elapsed since the MS onset (X (1)

i,s,t) between treated and
control days assures that, within-patient, the disease outcomes will be fairly compared at similar points in time during
the analysis (stage 3); thereby limiting confounding related to aging and disease progression of the patients. Because of
our within-patient matching strategy, we do not have to match patient-specific covariates, such as sex, bodymass index,
or smoking status. Matching on X (2)

i,s,t,X (3)
i,s,t, and X (4)

i,s,t limits the environmental confounding at the census-block level.
To ensure covariate balance, we only allow a treated unit to be matched with a control unit if the componentwise

distances between their covariate vectors are less than some prespecified thresholds 𝛿1, … , 𝛿4. For any pair of covariate
vectors Xi, s, t and Xi,s,t⋆ , we define the difference between them as

Δ(Xi,s,t,Xi,s,t⋆ ) =
{

0 if |X (k)
i,s,t − X (k)

i,s,t⋆ | < 𝛿k for all k ∈ {1, 2, 3, 4},
+∞ otherwise

(5)

At this stage, the objective to create a balanced data subset for which the plausibility of the “unconfoundedness”
assumption is based on a diagnostic of our choice. We choose the thresholds according to the covariates prematching
distributions diagnostic plots (see Figure 3: the range and mean of the lag-6 ozone level (in μg/m3) are [1, 225] and 63
respectively, and the range and mean of the lag-6 maximum temperature (in ◦C) are [−10, 39] and 16 respectively). The
thresholds are: the absolute difference between the number of days elapsed since the MS onset is less than 𝛿1 = 2 years,
the seasons are identical, that is, 𝛿2 = 0, the absolute difference in lag-6 ozone level is less than 𝛿3 = 20 μg/m3, and the
absolute difference in lag-6 maximum temperature is less than 𝛿4 = 5◦C.

This constrained pair matching can be achieved by using a maximum bipartite matching38 on a graph such that: (1)
there is one node per unit, partitioned into treated nodes and control nodes; and (2) the edges are pairs of treated and
control nodes with covariates Xi, s, t and Xi,s,t⋆ ; and (3) an edge exists if and only if Δ(Xi,s,t,Xi,s,t⋆ ) < +∞. By construction,
using a maximum bipartite matching algorithm on this graph as implemented in the R package igraph produces the
largest set of matched pairs that satisfy the unit-specific proximity constraints set by our thresholds. The diagnostics for
balance show that, the within-patient pair matching algorithm described above was successful in constructing “similar”
control (polluted) and treated (clean) days (see the distributions of Xi, s, t in both groups in Figure 3). Given the available
covariates, our attempt to mimic the randomized intervention from the Alsace city council was successful at creating
comparable groups of polluted vs less polluted days.

3.3 Stage 3: Analysis of the hypothetical experiment

In this illustration, we follow a Fisherian analysis approach and perform hypothesis testing with a powerful test statistic
comparing relapse occurrence of units subject to an intervention for air pollution reduction to units subject to higher levels
of air pollution.39 We do not attempt to provide an estimate of (and uncertainty around) an estimand to avoid relying on
assumptions such as the additivity of the treatment effects, asymptotic arguments, or an imputation model, which may
be the case when drawing Neymanian or Bayesian inferences.

3.3.1 Sharp null hypothesis

The sharp null hypothesis, stating that for each unit the intervention (exposure) has no effect on “clear days” (ie, Ci = 1),
can be formally expressed as:

∀i, s, t H0 ∶ (Yi,s,t(0)|Ci,s,t = 1) = (Yi,s,t(1)|Ci,s,t = 1). (6)

The plausibility of this sharp null hypothesis can be assessed by using a randomization test.
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F I G U R E 3 Empirical distributions of the preexposure covariates before and after the design stage [Color figure can be viewed at
wileyonlinelibrary.com]

3.3.2 Choice of test statistic

To assess the null hypothesis of no effect of the intervention, we first compute the observed value of a test statistic. We
propose to use the 𝛽1 estimated by a logistic mixed effect model as detailed below. Brillinger et al40 were pioneers to use
the coefficient of a model for the statistic for the Fisher randomization test. At this stage, to achieve larger bias reductions,
frequentist regression models can be used to remove residual confounding that was not accounted for, during the design
stage.10,41 Because the outcome of interest is a binary response whose mean is conditional on the patient i, we consider a

http://wileyonlinelibrary.com
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logistic mixed effects model for Y i, s, t.42 The log odds of Y i, s, t depend on fixed and random effects via the following linear
predictor:

log
(

Pr(Yi,s,t = 1|Ci,s,t = 1, bi)
Pr(Yi,s,t = 0|Ci,s,t = 1, bi)

)
= Ws,t𝛽1 + Ai,s,t𝛽2 + bi, (7)

where Ai, s, t is the age of patient i at MS onset.
That is, the conditional mean of Y i, s, t is related to the linear predictor by a logit link function and has randomly varying

intercepts bi taking the natural heterogeneity of units’ propensity to have a relapse. We adjust for Ai, s, t, age at onset,
because it has been observed that the younger the patient at disease onset, the higher its relapse rate.32,43,44 In Equation (7),
the 𝛽1 coefficient corresponds to the change in log odds of a relapse when a patient is subject to the air pollution reduction
intervention vs higher pollution levels. We estimate 𝛽1 using the glmer function of the R package lme4.45

3.3.3 Randomization-based inference

Here, we choose not to rely on asymptotic arguments, but instead take a Fisherian perspective (ie, randomization-based
inference).39,46 Assuming H0, the goal is to approximate the null randomization distribution of 𝛽1, 𝛽null

1 by computing the
values of the test statistic for 1000 possible exposure assignments. Because the number of assignments is very large, we
calculate an approximate P-value, that is, the proportion of computed test statistics that are as large or larger than the
observed test statistic: 1

1,000

∑1,000
r=1 �|𝛽null

1,r |≥|𝛽obs
1 |, where �|𝛽null

1,r |≥|𝛽obs
1 | = 1 when |𝛽null

1,r | ≥ |𝛽obs
1 | and, 0 otherwise. A small P-value

shows that the observed test statistic is a rare event when the null hypothesis is true. When units have varying probabilities
of being treated, the analysis of experiments, even when hypothetical, should reflect their design.2,3,11,47 In our example,
patients living in the same census block have the same intervention exposure. We consider two hypothetical interven-
tion assignment mechanisms operating at the censusblocklevel: Every day t, in each census block s, the Alsace city council
decides to impose the air pollution reduction intervention using a (1) completely randomized and (2) temporally correlated
assignment mechanism. Therefore, we generated 1000 exposure assignments at every day t, in each census block s:

1. by tossing a coin with probability Pr(W s, t = 1)= 1/2, and
2. by generating W s, t with auto-correlation: Cor(W s, t, W s, t − 1)= 0.5, where 0.5 corresponds to the air pollution correlation

of adjacent days in the data.

3.4 Stage 4: Interpretations of the results

If the null hypothesis of no difference in MS relapses between the matched groups of treated and control units is rejected,
that difference warrants further scrutiny to assess whether it can be attributed to the different air pollution levels, assum-
ing the assignment “unconfoundness” assumption holds. We can then report that the relapse risk of MS patients was or
was not reduced by the introduction of the intervention to reduce air pollution levels in the Alsace region. It is important
to note that interpretation should be restricted to units that remain in the finite sample after matching (see their detailed
characteristics in Table 1 and Figure 3). The data do not provide direct information for “unmatched” units. Cautious-
ness regarding extrapolation to units with covariate values beyond values observed in the balanced subset of the data is
necessary. The results of our analyses and associated discussion are presented next.

4 RESULTS

Our balanced subset of the data was analyzed as a whole, and within patient Clusters 1 and 2 to assure we study patients
that are in similar phases of their disease history. Recall that Cluster 1 patients are older, thus at a later stage of their disease
progression, and have a longer follow-up period than Cluster 2 patients (see Table 1). Accordingly, we anticipate Cluster
1 patients to develop fewer relapses than Cluster 2 patients, regardless of their environmental exposure. In the matched
population, we estimated the log odds of a relapse after the patients are subject to a hypothetical intervention decreasing
the air pollution levels vs higher pollution levels. These estimates and their associated approximate Fisherian P-values,
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T A B L E 2 Primary results

Control days Treated days Estimate P-valueCR P-valueTC

O 185 942 160 186

B 89 410 89 410 −0.12 .341 .485

C1 O 118 350 99 677

B 57 969 57 969 −0.04 .842 .862

C2 O 67 592 60 509

B 31 441 31 441 −0.23 .227 .384

Note: Estimates and approximate Fisherian P-values calculated in the balanced data subset (B vs original (O)) for the overall
sample and stratified by patient clusters (C1 and C2). We consider the completely randomized (CR) and temporally
correlated (TC) assignment mechanisms.

based on 1000 draws of the permuted treatment assignment are presented in Table 2. We also present the secondary results
stratified by sex and MS form, determined by the last patient information (see Table C1 in Appendix C).

The sharp null hypothesis of no effect of the intervention lowering the levels of air pollution in the overall study
population is not rejected (P-valueCR = .341 and P-valueTC = .485, see Table 2). However, in the block of female patients
with a relapsing-remitting MS form there is an indication that the observed intervention effect could be a rare event under
the null hypothesis (P-valueCR = .038 and P-valueTC = .160, see Table C1 in Appendix C). To assess the significance of this
secondary result rigorously, another study primarily focusing on this subpopulation should be conducted.

5 DISCUSSION

We have illustrated Bind and Rubin’s3 causal inference pipeline with complex environmental health data. Standard epi-
demiological approaches analyze the observed data by directly regressing an observed outcome on an exposure and
confounding covariates. Instead, before analyzing the exposure-outcome (pollution-MS) relationship, we constructed
a balanced data set in such a way that it could have plausibly come from an intervention that we conceptualized.
The objective of such approach is to borrow the appealing insights of randomized control trials in observational
studies.

During the design stage, the outcome variable is ignored and only pre-exposure covariates are considered. The cho-
sen balanced data is a subsample of units that can be used to estimate the effects of an exposure in potentially susceptible
populations. This advantage is particularly interesting for epidemiological studies because it facilitates the study of non-
modifiable risk factors (eg, race, age, sex). Omitting the outcome data until the analysis avoids “model cherry-picking”
because the effect of the intervention is estimated once, only after the design stage is successful. Nonetheless, at the design
stage, we can only consider the observed preexposure variables but the assignment mechanism could depend on unob-
served preexposure variables. In such case, it is recommended to consider sensitivity analyses of how the Fisher P-value
would change had the assignment mechanism been plausibly different, as suggested by Rosenbaum48 and further dis-
cussed by Bind and Rubin.49 Subject-matter knowledge on air pollution exposure assessment should guide the plausible
range of “sensitivity”. P-values and the reason why they could deviate from the P-value calculated with the assumed
hypothetical assignment mechanism.

Results interpretation are more transparent than with standard approaches. The assumed assignment mechanism
and underlying assumptions have to be clearly stated to obtain meaningful P-values. Standard approaches usually make
strong assumptions (eg, linearity), whose discussions are often neglected. Solely adjusting for confounders by including
them in a regression function, without a design stage, can be unreliable, especially when the pre-exposure covariates
distributions of the treated and control units are not similar. Cochran and Rubin,41 Heckman et al,50 and Rubin51 have
shown that regression models can estimate biased treatment effects when the true relationship between the covariates
and the outcome is not modeled accurately. Nonetheless, the temporal structure of our study could question the plausi-
bility of the “no hidden version of the treatment” component of the SUTVA. One could argue that the small P-values we
reported are due to air pollution exposure that happened prior to t. Therefore, with the same analysis method, we ver-
ified (in the female patients block) that the null hypothesis of no effect of the intervention was not rejected for W s, t − 1
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(estimate=−0.16, P-value = .223) and W s, t − 2 (estimate=−0.03, P-value = .843), the intervention indicators summariz-
ing the 5-day moving average of 24-h-mean PM10 in census block s, at day t − 1 and t − 2 respectively (see Equations (1)
and (2) in the Methods). Concerning the interference component of the SUTVA, omitting the 30 days post-relapse reas-
sures the absence of person days interference impacting the observed outcome. Another question that could arise due to
the temporality in our data, is whether the assignment mechanism depends on historical information of covariates and
exposures. We assure it is not the case by verifying that the covariates and exposures are balanced post-matching until lag
10 (see Web Figure 2).

In contrast to other studies interested in the effect of air pollution exposures on health outcomes, this study does not
provide any estimation of an exposure-response curve. Instead, we chose to estimate the effect of a single intervention and
provide results that can directly contribute to policy recommendations. The agency in charge of monitoring the Alsace
region air quality, Atmo Grand Est, informs and warns the citizens, medias, and local governments on the air pollution
levels. For instance, during the Summer 2019 heat wave, the local government imposed a reduction of automobile speed
of 20 km/h on the highway. These interesting interventions are intended to prevent the harmful effects of high pollution
episodes. We believe that research that is intervention oriented, as conducted in this study, should help policy makers in
better tailoring their intervention policies to prevent adverse health effects of environmental exposures. Also, until now no
environmental epidemiologists analyzed the air pollution-MS relationship with causal inference methods, so a first step
to make advances in the field is to assess, by comparing low vs high air pollution exposure, such sharp null hypothesis,
that is, whether air pollution has any effect on the units of our study. If so, a natural next step would be to work with a data
set adequate for balancing covariates along different doses of the exposure such as suggested by Wu et al9 and estimate a
causal dose response to protect populations at risk.

The null hypothesis of no effect of air pollution reduction intervention is not rejected in the overall study population,
which differs from previous studies,17-23 and highlights the statistical conclusion differences between studies using causal
inference methods vs directly modeling the observed data (eg, using regressions). The secondary analyses indicate an
effect of the intervention that is worthy of attention in the subgroup of women with relapsing-remitting MS; such question
was not examined in previous studies. The effects of air pollution may be different between men and women.52,53 It has
to be reminded that this subgroup of women was not the primary focus of our study, this result has to be confirmed in a
study designed for this subgroup.

A limitation of our study is that we had to focus on the patients for whom we had a complete disease history and omit
the patients whose relapses were recorded on a doubtful date. Ideally, we should have imputed the dates of these relapses
by following a multiple imputation procedure for outcome data as suggested by Little and Rubin.54 However, the causes
of MS relapses, a rare outcome, remain unknown, which makes their timing nearly impossible to predict accurately. This
issue motivates why we decided to analyze a complete-case subset of MS patients. Furthermore, we considered only one
pollutant, PM10, which constitutes another limitation of our study. The environmental epidemiology literature suggests
that a pollutant mixtures may be more relevant to study. Our illustration could be extended: (1) to the estimation of an
exposure-response curve to protect populations at risk, (2) to the estimation of the effects of an intervention involving
multiple exposures on the risk of MS relapse, and (3) to study effects of air pollution decrease interventions on other
health outcomes, such as stroke or asthma exacerbation.55-57
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APPENDIX A. DATA PREPROCESSING STEPS

1. All the patients in the alSacEP network for whom data are available during study period: from 1 January 2000 to 31
December 2009.
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2. We removed the patients who recorded relapses only on doubtful dates. Patients who only have their disease onset
date unclear were kept because we are analyzing relapses post-onset for all patients.

3. For each patient, we observe their daily data as from 30 days post-MS onset until their last available information. Also,
we do not observe patient data 30 days post-relapse because according to McDonald et al’s14 definition, relapses are
only recorded when they occurred at least 30 days after the last relapse.

4. We observe days where the 5 days average PM10 level are smaller or equal to 15 μg∕m3, and bigger or equal to 25 μg∕m3.
5. For six patients, because their number of observed days is small (between 9 and 33 days), no match according to our

matching criteria has been found (Table A1).

T A B L E A1 Data preprocessing

Step Npatients

1 Original data 473

2 Complete disease history 364

3 30 days post-MS onset to day of last information 355

4 Dichotomization for binary exposure 353

5 Person days matching 347

APPENDIX B. SAMPLE CHARACTERISTICS BY TYPE

T A B L E B1 Multiple sclerosis patient characteristics (in years) by Type

Mean in years (SD) Type 1 (n = 132) Type 2 (n = 221)

Onset–Inclusion gap 9 0

(8) (0)

Age at MS clinical onset 29 32

(10) (11)

Age at study inclusion 39 32

(12) (11)

Follow-up since inclusion 9 4

(1) (3)

Note: Type 1—prevalent cases: MS onset occurred before the beginning of the study. Type 2—incident cases: MS onset occurred
after the beginning of the study (between 2000-01-01 and 2009-10-01).
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APPENDIX C. RESULTS

T A B L E C1 Secondary analysis

Control days (n) Treated days (n) Estimate P-valueCR P-valueTC

M O 51 118 42 977

B 24 643 24 643 0.17 .518 .602

RR O 38 406 32 087

B 18 403 18 403 0.23 .482 .541

SP O 12 712 10 890

B 6240 6240 0.00 1.000 1.000

F O 134 824 117 209

B 64 767 64 767 −0.20 .162 .325

RR O 105 713 93 504

B 50 615 50 615 −0.32 .038 .160

SP O 29 111 23 705

B 14 152 14 152 0.19 .517 .647

Cluster 1

Control days (n) Treated days (n) Estimate P-valueCR P-valueTC

M O 32 391 25 273

B 15 312 15 312 0.21 .515 .669

F O 85 959 74 404

B 42 657 42 657 −0.11 .529 .668

Cluster 2

Control days (n) Treated days (n) Estimate P-valueB, CR P-valueB, TC

M O 18 727 17 704

B 9331 9331 −0.09 .809 .785

F O 48 865 42 805

B 22 110 22 110 −0.31 .137 .318

Note: Estimates and approximate Fisherian P-values calculated in the balanced subset (B vs original (O)). The results are stratified by MS
form (RR and SP) within sex (M and F), and by sex within patient clusters (C1 and C2). We consider the completely randomized (CR)
and temporally correlated (TC) assignment mechanisms.




