Supplementary Material: Assessing environmental epidemiology questions with a causal inference pipeline in practice: An investigation of the air pollution-multiple sclerosis relapses relationship.

Alice J. Sommer^{1,2,3}, Emmanuelle Leray⁴, Young Lee¹, and Marie-Abèle C. Bind^{1,*}

¹Department of Statistics, Harvard University, Faculty of Arts and Sciences, 02138 Cambridge, MA, USA ²Institute for Medical Information Processing, Biometry, and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-University München, 81377 Munich, Germany ³Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany ⁴University of Rennes, EHESP French School of Public Health, REPERES Pharmacoepidemiology and Health Services Research EA, 7449, F-35000 Rennes, France * Corresponding author: Marie-Abèle C. Bind, ma.bind@mail.harvard.edu

Web Figure 1: Annualized relapse rates per years at onset and patient's current age categories.

Authors	Outcome	Methods	Epidemiological
			findings
Oikenen et al. (2003) Finland	dichotomized monthly relapses count	mulitvariate logistic regression	PM associated with MS (relapse): Higher risk of MS relapse in months with high- est PM_{10} (average monthly concen- tration in highest quartile) than low- est PM_{10} (lowest quartile).
Gregory et al. (2008) Georgia USA	MS prevalence rates	mulitvariate linear re- gression	PM associated with MS (disease onset): Higher MS prevalence rates in counties with higher long-term ex- posure to PM_{10} .
Heydarpour et al.(2014) <i>Teheran</i> <i>Iran</i>	case (MS patient) - control (not)	t-test	Higher long-term exposure to PM_{10} for MS cases when com- pared to randomly se- lected controls.
Angelici et al. (2016) Lombardy region Italy	hospital admission count	poisson regression	MS-related hospital- ization increases on days preceded by one week with average PM_{10} levels in the highest quartile.
Bergamaschi et al. (2017) Pavia province Italy	inflammatory activity (brain MRI)	logistic regression	Higher PM_{10} levels during days before brain MRIs showing inflammatory activity in MS patients.
Jeanjean et al. (2017) Alsace region France	relapse occurrence	case-crossover study	Higher PM_{10} (0 ₃ , NO_2) levels during days before relapse occurence.
Palacios et al. (2017) USA (Nurses Health Study I and II)	MS onset	multivariable Cox proportional hazards models	No association be- tween average PM exposure and MS on- set risk.
Hong Chen et al. (2017) Ontario Canada	MS cases	multivariable Cox proportional hazards model	No association be- tween living near ma- jor roads and MS in- cidence.

Web Table 1: Literature summary	of the air	pollution-MS	relationship.
---------------------------------	------------	--------------	---------------

Web Figure 2: Temporal unconfoundedness verification.