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Supplementary Note 1: Cohorts baseline comparison

Supplementary Figure 1: Genetic principal component (PC) plot of all included samples, filled 

in the colors for the respective cohorts. Large diamonds represent cohort centroids and ellipses 

show 95% confidence intervals of the multivariate t-distributions of the respective cohorts.

The proportion of female study participants was between 45.3% (PopGen) and 57.8% (FoCus;

see Figure 1a).  The lowest  mean BMI was observed in the FoCus cohort (26.4 kg/m²),  the

highest in the SHIP cohort (28.3 kg/m²; Figure 1b), pairwise comparisons (Wilcoxon rank sum

test)  of  the  cohorts  showed  significant  values  (qHolm <.05),  except  for  KORA  vs.  PopGen

(qHolm=.0611) and KORA vs. SHIP-Trend (qHolm =.451). The highest average age was observed

in the PopGen and KORA cohorts (61.5 and 60.6 years, respectively), the lowest average age

was seen in the FoCus and SHIP-TREND cohorts (51.4 and 51.3 years, respectively; Figure 1,

Panel  c).  Here,  also all  pairwise comparisons were significant,  except  for  SHIP-TREND vs.

FoCus (qHolm =.4) On a community scale, between sample diversity (beta diversity) as calculated

by  genus-level  Bray-Curtis  dissimilarity  clearly  differed  between  cohorts  (all  pairwise

padonis<.001),  while  effect  sizes  generally  were  low,  with  pairwise  variance  between  cohorts

ranging from R²=0.076% between SHIP and SHIP-Trend and R²=5.85% between FoCus and

KORA,  median  pairwise  difference  being  2.49%.  The  three  highest  values  of  the  pairwise

comparisons are all  seen with  the FoCus cohort.  This  is  also  evident  when  looking  at  the

ordination  (Figure  1e),  where  the  centroid  of  the  FoCus  cohort  separates  from  the  other

centroids. Alpha diversities as assessed by Shannon genus-equivalent and the total number of



observed genera showed to be generally in the same range between cohorts, however clearly

significantly different, with  qHolm<10  in all comparisons, except for SHIP vs. SHIP-TREND in⁻⁵

both  diversity  indices  (qHolm=.057  and  qHolm=.25  for  observed  genera  and  Shannon  genus-

equivalent, respectively) and PopGen vs. SHIP and SHIP-TREND in Shannon genus-equivalent

(both qHolm=.93; Figure 1f). Though we see clear statistical differences in the overall comparison

between cohorts, we can observe highly similar patterns in most of the highly abundant and

prevalent  taxa  on  phylum  and  genus  level  that  met  the  inclusion  criteria  for  genome-wide

association analysis (Figure 1g), and it is only around the taxon median abundances in single

digit percentage range and below where larger between-cohort variations are seen. The PC plot

of all samples (Supplementary Figure 1) shows that PopGen and FoCus (Kiel area, Northern

Germany) as well as SHIP and SHIP-TREND (Greifswald area, North-Eastern Germany) are

almost perfectly superimposed in their respective genetic similarity,  respectively.  Additonally,

and as expected, the Northern and North-Eastern cohorts are more similar to another than the

indivduals from Southern Germany (KORA). The Southern German individuals deviate in their

group centroids, however the overlap in confidence intervals between all cohorts confirm the

previously found high genetic homogeneity across all included regional German cohorts.1



Supplementary Note 2: Benchmarking of beta diversity calculations on CPU and GPU

To assess speedup of beta diversity calculations implemented on GPU hardware, we set up a

benchmark. For all cohorts 10, 100 and 1000 SNPs with minor allele frequency of > 10% were

randomly drawn from chromosome 1. Calculations were performed using 1, 2, 5 and 10 CPU

threads on our local  HPC infrastructure,  always requesting complete nodes (Intel  Xeon E5-

2670,  8 CPU,  16 threads,  128Gb RAM) to ensure undisturbed performance measures.  For

GPU-based calculations, we performed the same set of calculations on a NVIDIA Tesla P100

with 16Gb RAM and a single CPU core for pre-processing of the data. Assessed calculation

times  only  include  the  actual  calculation  steps  and  do  not  included  data  loading  and

preprocessing, maximum runtime per job was set to 48 hours. Each calculation was run in 5

replicates to get confident estimates of average performance. 

For the two smaller cohorts (Focus and PopGen, n < 1000) all benchmarking jobs finished. For

the intermediate sized cohorts (SHIP and KORA, n ~ 2000) the jobs running on 10 parallel

CPUs  and  calculation  batches  of  1,000  SNPs  failed  due  to  exceeding  maximum available

memory of 128Gb. For the largest cohort with n = 3382 (SHIP-Trend), jobs with 1,000 variants

on a single CPU failed du to exceeding the time limit, for 5 and 10 CPUs, all jobs with batches of

100 and 1,000 variants failed  due to exceeding memory.  Only for  2 parallel  CPUs all  jobs

completed. All GPU-based calculations completed without failure.

Based  on  the  Focus  cohort,  the  results  show  the  expected  linear  dependence  between

calculation time and the number of variants analyzed (Supplementary Figure 2a). The number

of utilized CPU decreases calculation time, however CPU time does not scale linearly with CPU

time being 24.0% and 50.3% higher when using 5 and 10 CPUs, respectively, compared to a

single CPU (Supplementary Figure 2a and 2b).  Utilization of a GPU massively  surpasses

CPU speed, showing a 20 to 30-fold speedup compared to 1 and 10 CPUs in computation time,

respectively (Supplementary Figure 2b). This trend is visible and even more pronounced in the

other cohorts,  especially with increasing sample size, peaking in the largest cohort with n =

3382  (SHIP-Trend)  with  a  226-fold  speedup  of  computation  time  comparing  GPU with  10

parallel CPUs.

The  results  show,  that  while  an  increase  of  parallel  CPUs  decreases  total  time,  though

computational time increases for the single variant. The bottleneck in parallel computation is the

amount available RAM, as increased number of parallel processes increases memory usage

and may lead to failure, as seen in the multi-CPU calculations for the larger cohorts with n >



1000. GPUs are known for their good performance in multiplication of large matrices and it

shows in this application, with a single GPU massively surpassing CPU performance.

Supplementary Figure 2: Summary of CPU- and GPU-based calculations for beta-diversity 

analysis. (a) Relationship of elapsed time and the number of analyzed variants in the Focus 

cohort depending on the number of CPUs and GPUs used in parallel. (b) Relationship of 

computational time in the Focus cohort depending on the number of CPUs and GPUs used in 

parallel. (c) Relationship of calculation time and cohort size depending on the usage of a single 

CPU or GPU for analysis. Red lines in (c) show linear estimates of calculation time in depency 

of sample-size with grey shadings showing 95% confidence intervals of the estimates.

Average CPU/GPU time in seconds for 10 random variants on chromosome 1 based on 5 

replicates per calculation

Samples 1 CPU 2 CPU 5 CPU 10 CPU 1 GPU
PopGen 724 21.0 20.9 21.8 26.6 2.2
Focus 957 47.9 47.5 59.4 72.0 2.4
KORA 1915 491.9 474.6 559.8 565.2 4.7
SHIP 2029 586.2 567.3 662.5 670.0 5.1
SHIP-Trend 3382 2749.4 2644.3 3116.9 3091.9 11.6



Supplementary Note 3: Traits used for Mendelian Randomization

The traits used for Mendelian Randomization were selected to be binary with “log odds” as 

effect units. Excluding traits with sample size < 500 and from the categories “Behavioural” and 

“Education”. Additionally excluded were subtypes of ovarian and lung cancer, melanoma, 

neuroblastoma, extreme height, “Top 1% surival”, “Diabetic nephropathy” and “oligoclonal band 

status”.

Subcategories, traits and respective MR-Base IDs used in the Mendelian Randomization 

analysis:

Subcategory Trait MR-Base IDs

Anthropometric Extreme body mass index 85

Anthropometric Extreme waist-to-hip ratio 87

Anthropometric Obesity class 1 90

Anthropometric Obesity class 2 91

Anthropometric Obesity class 3 92

Anthropometric Overweight 93

Autoimmune / 

inflammatory

Asthma 44

Autoimmune / 

inflammatory

Celiac disease 1058, 1059, 1060, 276, 278

Autoimmune / 

inflammatory

Crohn's disease 10, 11, 12, 13, 14, 15, 30

Autoimmune / 

inflammatory

Eczema 996

Autoimmune / 

inflammatory

Gout 1054

Autoimmune / 

inflammatory

Inflammatory bowel disease 292, 293, 294, 295, 296, 31, 

819

Autoimmune / 

inflammatory

Multiple sclerosis 1024, 1025, 280, 286, 820, 821

Autoimmune / 

inflammatory

Rheumatoid arthritis 283, 831, 832, 833, 834



Autoimmune / 

inflammatory

Sarcoidosis 981

Autoimmune / 

inflammatory

Systemic lupus erythematosus 288, 815

Autoimmune / 

inflammatory

Ulcerative colitis 32, 968, 969, 970, 971, 972, 

973

Bone Paget's disease 975

Cancer Gallbladder cancer 1057

Cancer Ovarian cancer 1120

Cancer Pancreatic cancer 822

Cancer Prostate cancer 823

Cancer Prostate cancer (overall) 1174

Cancer Upper gastrointestinal cancers 825

Cardiovascular Coronary heart disease 6, 7, 8, 9

Diabetes Type 2 diabetes 1090, 23, 24, 25, 26, 976

Kidney Chronic kidney disease 1102, 17

Kidney IgA nephropathy 1081

Kidney Microalbuminuria 1097, 20

Paediatric disease Hirschsprung's disease 983

Psychiatric / neurological Alzheimer's disease 297, 298, 824

Psychiatric / neurological Amyotrophic lateral sclerosis 1085, 1086

Psychiatric / neurological Anorexia nervosa 45

Psychiatric / neurological Attention deficit hyperactivity 

disorder

799

Psychiatric / neurological Autism 802, 806

Psychiatric / neurological Bipolar disorder 800, 801, 808

Psychiatric / neurological Bulimia nervosa 990

Psychiatric / neurological Major depressive disorder 804, 805

Psychiatric / neurological Parkinson's disease 811, 812, 818

Psychiatric / neurological Schizophrenia 22, 810



Supplementary Note 4: Replication of previous loci from mGWAS analyses

We included a total of 179 independent loci  with previously identified associations from four

genome-wide association studies.2-5 Of these 40, 51 and 9 were identified to be associated with

taxon abundances by Wang et al., Turpin et al., and Bonder et al., respectively. Another 42 and

4 were associated with beta-diversity by Wang et al. and Rühlemann et al. The remaining 13

and 20 were found to be associated with GO2000 terms and MetaCyc pathways by Bonder et

al. The threshold for replication was adjusted to the total number of taxa involved in the taxon-

based test: pthresh = 0.05/(146 + 225) = 0.05/371 = 1.35 x 10 . We marked a locus as replicated,⁻⁴

if we found an association surpassing this threshold in a window of +/- 10kb surrounding the

variant, independent of the original trait the signal was associated with. Loci surpassing this

threshold were annotated with the protein coding gene overlapping or closest to the locus, with

a maximum distance of 100kb up- or downstream.

A total of 179 study-wise independent loci were included in the replication analysis, of which 88

(=49.16%) met the replication criteria. The highest replication rate was achieved for signals from

Bonder et al. in association with taxonomic groups (6 out of 9, 66.7%). The lowest replication

rate was found for GO2000 terms from the same study (5 out of 13, 38.5%). For for 73 of the 88

loci, a close-by gene wascould be identified. Among the replicated loci we found the SLC9A8

gene locus (chr20:48,429,250-48,508,779) encoding for NHE8, a sodium/hydrogen exchanger,

which has been  identified  as associated locus twice before  in  the German cohorts  [Wang,

Rühlemann].  SLC9A8  is  expressed  in  goblet  cells  in  the  intestine  has  been  shown  to  be

essential  for  mucosal  integrity.  Loss  of  expression  has  been  shown  to  be  connected  to

increased  bacterial  adhesion  and  inflammation  in  mice  after  DSS  treatment.  One  locus

replicated  from  Bonder  et  al.  overlapped  with  the  contactin  6  (CNTN6;   chr3:1,134,620-

1,445,278) gene, which is also the closest gene to one locus replicated from Wang et al. (~

50kb upstream). This locus showed the second lowest replication P-value (PMETA=9.98 x 10 ).⁻⁷

The  lowest  P-value  for  a  replicating  locus  was  found  in  the  ALDH1A3  gene  locus  on

chromosome 15 (rs8040493), first found by Wang et al. in association with beta diversity, now

showing association  with OTU97_11 belonging to the genus  Parabacteroides  (PMETA=8.47 x

10 ). ⁻⁷  A complete list of loci and their replication results is provided as Supplementary Table 6.



Supplementary Note 5: Gene set enrichment and tissue specificity analysis

Genes overlapping with genome-wide significant  risk loci  and closest  to loci  replicated from

previous  studies  were  subjected  to  gene  set  enrichment  analysis  using  the  GENE2FUNC

module of the FUMA GWAS webservice (https://fuma.ctglab.nl/gene2func). All parameters were

kept in their default state (Ensembl v92, GTEx v6) and “All genes” were selected as background

for enrichment analysis.

Supplementary Figure 3: Summary of the tissues-specificity and gene-set enrichment analysis

using one-sided hypergeometric test for enrichment. Shown are p-values adjusted for multiple

testing. All results can be found in Supplementary Table 7.

The genome-wide association analysis and replication of previously reported results identified a

total of 82 unique genes in loci with associations to microbial traits. These genes were subjected

to enrichment and tissues specificity analysis using the FUMA webservice (see Methods). The

tissue specificity analyses targeting 30 general tissues and 53 tissue types identified both an

enrichment of genes differentially expressed in stomach tissue. The analysis of general tissue

types  additionally  identifies  an  enrichment  of  genes  differentially  expressed  in  Colon  (both

directions) and genes up-regulated in esophagus. Gene-set enrichment identified a total of 103

gene sets to be significantly enriched (q < .05). The largest groups consisted of transcription

factor targets (n=33) and enrichments in loci from traits in the GWAS catalogue (n=27). As the

enrichment analysis included replications of previously identified loci associated with microbial

traits,  these  categories  show  to  be  highly  enriched.  Among  the  remaining  sets  we  find

connections to obesity (Obesity-related traits,  q=9.26 x 10 ;  ⁻⁷ Body-mass-index,  q=2.15 x 10 ²)⁻

and chronic inflammation (systemic lupus erythematosus  and  Chronic inflammatory diseases

(pleiotropy),  both  q=2.95 x 10 ³).  Enrichments in  set  from  ⁻ Gene Ontology (GO) Terms (GO

molecular  functions,  n=6;  GO  biological  processes,  n=5)  suggest  metabolic  interactions



between host  and microorganisms,  indicated  by the enrichment  of  different  terms involving

transport, e.g. “GO:Transporter Activity” (q=9.17 x 10 ) and “GO:⁻⁵ Transmembrane Transporter

Activity”  (q=1.36 x 10 ³)⁻ .  Additionally,  we find enrichments  possibly  suggesting  response to

dietary intake (GO:Response to lipids,  q=7.85 x 10 ³) and direct response to bacteria derived⁻

molecules (GO:Response to molecule of bacterial origin, q=3.73 x 10 ³). Further categories with⁻

enriched gene sets were Positional gene sets (n=4), Immunological signatures (n=1), canonical

pathways  (n=1),  curated  gene  sets  (n=7),  chemical  and  genetic  perturbation  (n=16)  and

microRNA targets (n=3). The complete lists can be found in Supplementary Table 7.



Supplementary Note 6: Participant consent and data sharing

All participant data are available at the respective responsible biobanks. Due to restrictions of
the consent  given  by  the  participants,  not  all  data  can  be  made available  publicly  without
controlled access:

PopGen and Focus (Biobank network P2N, UKSH Kiel)

The 16S rRNA gene sequencing data is deposited in the SRA: PRJNA673102

More information and data application: http://www.uksh.de/p2n/Information+for+Researchers.html 

KORA FF4 (Collaborative Health Research in the Region of Augsburg, Helmholtz Center Munich)

More information and data application: https://epi.helmholtz-muenchen.de/

Consent statement on data sharing (see also Supplementary Note 6.1; Page 3):

German:  “E7:  Ich  bin  damit  einverstanden,  dass  meine  krankheitsbezogenen  Daten  sowie  meine
genetischen und molekularen Daten, die im Rahmen von KORA generiert werden, in pseudonymisierter
Form in externe Forschungsdatenbanken im In- und Ausland, auch außerhalb der Europäischen Union
(z.B. USA), eingestellt werden. Der Zugang zu diesen Daten wird von einem Kontrollgremium verwaltet
und auf Antrag zur Bearbeitung wissenschaftlicher Fragestellungen gewährt. [...]”

English translation: “E7: I consent to the storage of my disease-related, as well as genetic and molecular
data collected in the KORA study in pseudonymized manner in external research databases in Germany
and abroad,  also  outside  of  the  European Union  (e.g.  the USA).  The  access  to  these  data  will  be
managed by a control panel and access will be granted in connection to scientific studies. […]”

SHIP and SHIP-TREND (Study of Health in Pomerania, Greifswald)

More information and data application (in German): 
https://www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php

An english translation of the website is currently in preparation. 

Contact for applicants and in case of needed assistance: transfer@uni-greifswald.de

Participant information on data sharing (see also Supplementary Note 6.2; Page 12):

German:  “Wer  darf  wofür  die  Studiendaten  verwenden?  Die  Studiendaten  werden  für
wissenschaftliche Untersuchungen verwendet. Die Darstellung der wissenschaftlichen Ergebnisse (zum
Beispiel  für  Vorträge  oder  schriftliche  Veröffentlichungen)  erfolgt  grundsätzlich  zusammengefasst  in
Gruppen (z.B. Raucher und Nichtraucher) und nicht in Bezug auf Ihre Person. Über die Herausgabe des
pseudonymisierten Datensatzes und der Biomaterialien zu Studienzwecken entscheidet ein Gremium von
Wissenschaftlern unserer Universität, der Vorstand des Forschungsverbundes Community Medicine. […]
Die Datenübertragung erfolgt qualitätsgesichert durch eine Transferstelle.”

English translation:  “Who can use the study data and for  what?  The study data  will  be used for
scientific research. The presentation of research results (e.g. for talks or research articles) will in principle
take place summarized into groups (e.g. smokers and non-smokers) and not relating to individuals.  A
committee of scientists of our university, the board of directors of the research association Community
Medicine, decides about sharing of pseudonymized datasets and biomaterials for research use. […] Data
sharing will exclusively take place in quality controlled modality by a transfer office.”

https://www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php
https://epi.helmholtz-muenchen.de/
http://www.uksh.de/p2n/Information+for+Researchers.html


Supplementary Note 6.1: Participant consent - KORA cohort







Supplementary Note 6.2: Participant information - SHIP/SHIP-TREND cohort















Supplementary Tables

Supplementary Table 1: Cohort level summaries of all taxa included in the mGWAS analysis, including
feature label used in the analysis, taxonomic/clustering level, amplicon nucleotide sequence of the V1-V2
region of the 16S rRNA gene, presence in cohort (%), mean/median abundance in all individuals in the
cohort; mean/median abundance of all individuals with the respective feature present.

Supplementary  Table  2:  The  top  10,000  variants  across  all  features  from  the  univariate  logistic
regression analysis corrected for age, sex, BMI and 10 genetic PCs for presence/absence patterns of
microbial features. All p-values are shown as raw uncorrected p-values derived from two-sided tests.

Supplementary Table 3: The top 10,000 variants across all features from the two-sided univariate linear
regression analysis corrected for age, sex, BMI and 10 genetic PCs of residual abundance of microbial
features. All p-values are shown as raw uncorrected p-values derived from two-sided tests.

Supplementary Table 4: The top 10,000 variants across all features from the non-parametric multivariate
analysis of Bray-Curtis and 97%-identity OTU based weighted UniFrac distance. All p-values are shown
as raw uncorrected p-values derived from two-sided tests.

Supplementary  Table  5: Results  of  all  univariate  analyses  connecting  ABO  hist-blood  groups  on
microbial features using Hurdle models with negative binomial distributions of the non-zero counts. All p-
values are shown as raw uncorrected p-values derived from two-sided tests.

Supplementary Table 6: Results of all Mendelian Randomization analyses of univariate traits. All SNPs
with  F-statistics  >  10  and  p<10-5  in  the  respective  genome-wide  association  meta-analysis  of
presence/absence (LR) and abundance (NB) patterns (exposures) were used as instrument variables and
tested for their effects on 41 binary traits (see Methods and Supplementary Material). Mean and minimum
F-statistics of included instruments are reported. Tests used for MR (Method) were Wald ratio (WR) in
case of a single instrument variable, and inverse-variance weighted (IVW) analysis in case of two and
more instrument variables (#SNPs). All tests were performed two-sided. Effect sizes (Beta) and standard
errors (SE) of the primary analyses are reported in the table.

Supplementary Table 7:  Replication of results from previous host-microbiome GWAS analyses in the
German Meta-analysis using logistic and linear regression (all test two-sided, p-values not corrected for
multiple testing).

Supplementary Table 8: Results of the gene-set and tissue enrichment analysis using the FUMA web
application.  All  p-values are derived from one-sided hypergeometric  test  for  enrichment.  Adjusted P-
values are corrected for multiple testing.
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