

Supplementary information

Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome

In the format provided by the authors and unedited

Supplemental material: Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome

Authors and affiliations:

Malte Christoph Rühlemann¹, Britt Marie Hermes^{2,3,4}, Corinna Bang¹, Shauni Doms^{2,3}, Lucas Moitinho-Silva^{1,5}, Louise Bruun Thingholm¹, Fabian Frost⁶, Frauke Degenhardt¹, Michael Wittig¹, Jan Kässens¹, Frank Ulrich Weiss⁶, Annette Peters^{7,8}, Klaus Neuhaus⁹, Uwe Völker¹⁰, Henry Völzke¹⁰, Georg Homuth¹⁰, Matthias Laudes¹¹, Wolfgang Lieb¹², Dirk Haller^{9,13}, Markus Maximilian Lerch⁶, John Baines^{2,3}, Andre Franke¹

Correspondence should be adressed to: Prof. Dr. Andre Franke, Insitute of Clinical Molectular Biology (IKMB), Kiel University, Rosalind-Franklin-Str. 12, 24106 Kiel, Germany. Email: a.franke@mucosa.de

¹ Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany

² Evolutionary Genomics, Max-Planck-Institute for Evolutionary Biology, Plön, Germany

³ Institute of Experimental Medicine, Kiel University, Kiel, Germany

⁴ Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany

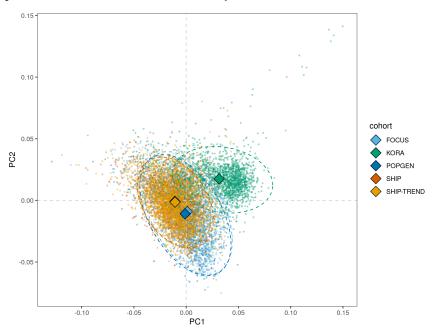
⁵ Department of Dermatology, Kiel University, Kiel, Germany

⁶ Department of Medicine A, University Medicine Greifswald, Greifswald, Germany

⁷ Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany

⁸ German Center for Diabetes Research (DZD), Neuherberg, Germany

⁹ ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany


Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany

¹¹ Department of Internal Medicine 1, Kiel University, Kiel, Germany

¹² Institute of Epidemiology, Kiel University, Kiel, Germany

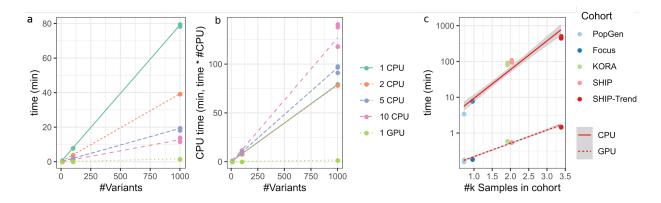
¹³ Chair of Nutrition and Immunology, Technical University of Munich, Freising, Germany

Supplementary Note 1: Cohorts baseline comparison

Supplementary Figure 1: Genetic principal component (PC) plot of all included samples, filled in the colors for the respective cohorts. Large diamonds represent cohort centroids and ellipses show 95% confidence intervals of the multivariate t-distributions of the respective cohorts.

The proportion of female study participants was between 45.3% (PopGen) and 57.8% (FoCus; see Figure 1a). The lowest mean BMI was observed in the FoCus cohort (26.4 kg/m²), the highest in the SHIP cohort (28.3 kg/m²; Figure 1b), pairwise comparisons (Wilcoxon rank sum test) of the cohorts showed significant values (q_{Holm} <.05), except for KORA vs. PopGen $(q_{\text{Holm}}=.0611)$ and KORA vs. SHIP-Trend $(q_{\text{Holm}}=.451)$. The highest average age was observed in the PopGen and KORA cohorts (61.5 and 60.6 years, respectively), the lowest average age was seen in the FoCus and SHIP-TREND cohorts (51.4 and 51.3 years, respectively; Figure 1, Panel c). Here, also all pairwise comparisons were significant, except for SHIP-TREND vs. FoCus (q_{Holm} =.4) On a community scale, between sample diversity (beta diversity) as calculated by genus-level Bray-Curtis dissimilarity clearly differed between cohorts (all pairwise p_{adonis}<.001), while effect sizes generally were low, with pairwise variance between cohorts ranging from R2=0.076% between SHIP and SHIP-Trend and R2=5.85% between FoCus and KORA, median pairwise difference being 2.49%. The three highest values of the pairwise comparisons are all seen with the FoCus cohort. This is also evident when looking at the ordination (Figure 1e), where the centroid of the FoCus cohort separates from the other centroids. Alpha diversities as assessed by Shannon genus-equivalent and the total number of observed genera showed to be generally in the same range between cohorts, however clearly significantly different, with q_{Holm} <10⁻⁵ in all comparisons, except for SHIP vs. SHIP-TREND in both diversity indices (q_{Holm} =.057 and q_{Holm} =.25 for observed genera and Shannon genusequivalent, respectively) and PopGen vs. SHIP and SHIP-TREND in Shannon genus-equivalent (both q_{Holm}=.93; Figure 1f). Though we see clear statistical differences in the overall comparison between cohorts, we can observe highly similar patterns in most of the highly abundant and prevalent taxa on phylum and genus level that met the inclusion criteria for genome-wide association analysis (Figure 1g), and it is only around the taxon median abundances in single digit percentage range and below where larger between-cohort variations are seen. The PC plot of all samples (Supplementary Figure 1) shows that PopGen and FoCus (Kiel area, Northern Germany) as well as SHIP and SHIP-TREND (Greifswald area, North-Eastern Germany) are almost perfectly superimposed in their respective genetic similarity, respectively. Additionally, and as expected, the Northern and North-Eastern cohorts are more similar to another than the indivduals from Southern Germany (KORA). The Southern German individuals deviate in their group centroids, however the overlap in confidence intervals between all cohorts confirm the previously found high genetic homogeneity across all included regional German cohorts.¹

Supplementary Note 2: Benchmarking of beta diversity calculations on CPU and GPU


To assess speedup of beta diversity calculations implemented on GPU hardware, we set up a benchmark. For all cohorts 10, 100 and 1000 SNPs with minor allele frequency of > 10% were randomly drawn from chromosome 1. Calculations were performed using 1, 2, 5 and 10 CPU threads on our local HPC infrastructure, always requesting complete nodes (Intel Xeon E5-2670, 8 CPU, 16 threads, 128Gb RAM) to ensure undisturbed performance measures. For GPU-based calculations, we performed the same set of calculations on a NVIDIA Tesla P100 with 16Gb RAM and a single CPU core for pre-processing of the data. Assessed calculation times only include the actual calculation steps and do not included data loading and preprocessing, maximum runtime per job was set to 48 hours. Each calculation was run in 5 replicates to get confident estimates of average performance.

For the two smaller cohorts (Focus and PopGen, n < 1000) all benchmarking jobs finished. For the intermediate sized cohorts (SHIP and KORA, $n \sim 2000$) the jobs running on 10 parallel CPUs and calculation batches of 1,000 SNPs failed due to exceeding maximum available memory of 128Gb. For the largest cohort with n = 3382 (SHIP-Trend), jobs with 1,000 variants on a single CPU failed du to exceeding the time limit, for 5 and 10 CPUs, all jobs with batches of 100 and 1,000 variants failed due to exceeding memory. Only for 2 parallel CPUs all jobs completed. All GPU-based calculations completed without failure.

Based on the Focus cohort, the results show the expected linear dependence between calculation time and the number of variants analyzed (**Supplementary Figure 2a**). The number of utilized CPU decreases calculation time, however CPU time does not scale linearly with CPU time being 24.0% and 50.3% higher when using 5 and 10 CPUs, respectively, compared to a single CPU (**Supplementary Figure 2a and 2b**). Utilization of a GPU massively surpasses CPU speed, showing a 20 to 30-fold speedup compared to 1 and 10 CPUs in computation time, respectively (**Supplementary Figure 2b**). This trend is visible and even more pronounced in the other cohorts, especially with increasing sample size, peaking in the largest cohort with n = 3382 (SHIP-Trend) with a 226-fold speedup of computation time comparing GPU with 10 parallel CPUs.

The results show, that while an increase of parallel CPUs decreases total time, though computational time increases for the single variant. The bottleneck in parallel computation is the amount available RAM, as increased number of parallel processes increases memory usage and may lead to failure, as seen in the multi-CPU calculations for the larger cohorts with n > 1

1000. GPUs are known for their good performance in multiplication of large matrices and it shows in this application, with a single GPU massively surpassing CPU performance.

Supplementary Figure 2: Summary of CPU- and GPU-based calculations for beta-diversity analysis. (a) Relationship of elapsed time and the number of analyzed variants in the Focus cohort depending on the number of CPUs and GPUs used in parallel. (b) Relationship of computational time in the Focus cohort depending on the number of CPUs and GPUs used in parallel. (c) Relationship of calculation time and cohort size depending on the usage of a single CPU or GPU for analysis. Red lines in (c) show linear estimates of calculation time in depency of sample-size with grey shadings showing 95% confidence intervals of the estimates.

Average CPU/GPU time in seconds for 10 random variants on chromosome 1 based on 5 replicates per calculation

	Samples	1 CPU	2 CPU	5 CPU	10 CPU	1 GPU
PopGen	724	21.0	20.9	21.8	26.6	2.2
Focus	957	47.9	47.5	59.4	72.0	2.4
KORA	1915	491.9	474.6	559.8	565.2	4.7
SHIP	2029	586.2	567.3	662.5	670.0	5.1
SHIP-Trend	3382	2749.4	2644.3	3116.9	3091.9	11.6

Supplementary Note 3: Traits used for Mendelian Randomization

The traits used for Mendelian Randomization were selected to be binary with "log odds" as effect units. Excluding traits with sample size < 500 and from the categories "Behavioural" and "Education". Additionally excluded were subtypes of ovarian and lung cancer, melanoma, neuroblastoma, extreme height, "Top 1% surival", "Diabetic nephropathy" and "oligoclonal band status".

Subcategories, traits and respective MR-Base IDs used in the Mendelian Randomization analysis:

Subcategory	Trait	MR-Base IDs
Anthropometric	Extreme body mass index	85
Anthropometric	Extreme waist-to-hip ratio	87
Anthropometric	Obesity class 1	90
Anthropometric	Obesity class 2	91
Anthropometric	Obesity class 3	92
Anthropometric	Overweight	93
Autoimmune / inflammatory	Asthma	44
Autoimmune / inflammatory	Celiac disease	1058, 1059, 1060, 276, 278
Autoimmune / inflammatory	Crohn's disease	10, 11, 12, 13, 14, 15, 30
Autoimmune / inflammatory	Eczema	996
Autoimmune / inflammatory	Gout	1054
Autoimmune / inflammatory	Inflammatory bowel disease	292, 293, 294, 295, 296, 31, 819
Autoimmune / inflammatory	Multiple sclerosis	1024, 1025, 280, 286, 820, 821
Autoimmune / inflammatory	Rheumatoid arthritis	283, 831, 832, 833, 834

Autoimmune / inflammatory	Sarcoidosis	981
Autoimmune / inflammatory	Systemic lupus erythematosus	288, 815
Autoimmune / inflammatory	Ulcerative colitis	32, 968, 969, 970, 971, 972, 973
Bone	Paget's disease	975
Cancer	Gallbladder cancer	1057
Cancer	Ovarian cancer	1120
Cancer	Pancreatic cancer	822
Cancer	Prostate cancer	823
Cancer	Prostate cancer (overall)	1174
Cancer	Upper gastrointestinal cancers	825
Cardiovascular	Coronary heart disease	6, 7, 8, 9
Diabetes	Type 2 diabetes	1090, 23, 24, 25, 26, 976
Kidney	Chronic kidney disease	1102, 17
Kidney	IgA nephropathy	1081
Kidney	Microalbuminuria	1097, 20
Paediatric disease	Hirschsprung's disease	983
Psychiatric / neurological	Alzheimer's disease	297, 298, 824
Psychiatric / neurological	Amyotrophic lateral sclerosis	1085, 1086
Psychiatric / neurological	Anorexia nervosa	45
Psychiatric / neurological	Attention deficit hyperactivity disorder	799
Psychiatric / neurological	Autism	802, 806
Psychiatric / neurological	Bipolar disorder	800, 801, 808
Psychiatric / neurological	Bulimia nervosa	990
Psychiatric / neurological	Major depressive disorder	804, 805
Psychiatric / neurological	Parkinson's disease	811, 812, 818
Psychiatric / neurological	Schizophrenia	22, 810

Supplementary Note 4: Replication of previous loci from mGWAS analyses

We included a total of 179 independent loci with previously identified associations from four genome-wide association studies. Of these 40, 51 and 9 were identified to be associated with taxon abundances by Wang et al., Turpin et al., and Bonder et al., respectively. Another 42 and 4 were associated with beta-diversity by Wang et al. and Rühlemann et al. The remaining 13 and 20 were found to be associated with GO2000 terms and MetaCyc pathways by Bonder et al. The threshold for replication was adjusted to the total number of taxa involved in the taxon-based test: $p_{thresh} = 0.05/(146 + 225) = 0.05/371 = 1.35 \times 10^{-4}$. We marked a locus as replicated, if we found an association surpassing this threshold in a window of +/- 10kb surrounding the variant, independent of the original trait the signal was associated with. Loci surpassing this threshold were annotated with the protein coding gene overlapping or closest to the locus, with a maximum distance of 100kb up- or downstream.

A total of 179 study-wise independent loci were included in the replication analysis, of which 88 (=49.16%) met the replication criteria. The highest replication rate was achieved for signals from Bonder et al. in association with taxonomic groups (6 out of 9, 66.7%). The lowest replication rate was found for GO2000 terms from the same study (5 out of 13, 38.5%). For for 73 of the 88 loci, a close-by gene wascould be identified. Among the replicated loci we found the SLC9A8 gene locus (chr20:48,429,250-48,508,779) encoding for NHE8, a sodium/hydrogen exchanger, which has been identified as associated locus twice before in the German cohorts [Wang, Rühlemann]. SLC9A8 is expressed in goblet cells in the intestine has been shown to be essential for mucosal integrity. Loss of expression has been shown to be connected to increased bacterial adhesion and inflammation in mice after DSS treatment. One locus replicated from Bonder et al. overlapped with the contactin 6 (CNTN6; chr3:1,134,620-1,445,278) gene, which is also the closest gene to one locus replicated from Wang et al. (~ 50kb upstream). This locus showed the second lowest replication P-value (P_{META}=9.98 x 10⁻⁷). The lowest P-value for a replicating locus was found in the ALDH1A3 gene locus on chromosome 15 (rs8040493), first found by Wang et al. in association with beta diversity, now showing association with OTU97 11 belonging to the genus Parabacteroides (PMETA=8.47 x 10⁻⁷). A complete list of loci and their replication results is provided as Supplementary Table 6.

Supplementary Note 5: Gene set enrichment and tissue specificity analysis

Genes overlapping with genome-wide significant risk loci and closest to loci replicated from previous studies were subjected to gene set enrichment analysis using the GENE2FUNC module of the FUMA GWAS webservice (https://fuma.ctglab.nl/gene2func). All parameters were kept in their default state (Ensembl v92, GTEx v6) and "All genes" were selected as background for enrichment analysis.

Supplementary Figure 3: Summary of the tissues-specificity and gene-set enrichment analysis using one-sided hypergeometric test for enrichment. Shown are *p*-values adjusted for multiple testing. All results can be found in Supplementary Table 7.

The genome-wide association analysis and replication of previously reported results identified a total of 82 unique genes in loci with associations to microbial traits. These genes were subjected to enrichment and tissues specificity analysis using the FUMA webservice (see **Methods**). The tissue specificity analyses targeting 30 general tissues and 53 tissue types identified both an enrichment of genes differentially expressed in stomach tissue. The analysis of general tissue types additionally identifies an enrichment of genes differentially expressed in Colon (both directions) and genes up-regulated in esophagus. Gene-set enrichment identified a total of 103 gene sets to be significantly enriched (q < .05). The largest groups consisted of transcription factor targets (n=33) and enrichments in loci from traits in the GWAS catalogue (n=27). As the enrichment analysis included replications of previously identified loci associated with microbial traits, these categories show to be highly enriched. Among the remaining sets we find connections to obesity (*Obesity-related traits*, q=9.26 x 10⁻⁷; *Body-mass-index*, q=2.15 x 10⁻²) and chronic inflammation (*systemic lupus erythematosus* and *Chronic inflammatory diseases* (*pleiotropy*), both q=2.95 x 10⁻³). Enrichments in set from *Gene Ontology* (*GO*) *Terms* (*GO* molecular functions, n=6; *GO* biological processes, n=5) suggest metabolic interactions

between host and microorganisms, indicated by the enrichment of different terms involving transport, e.g. "GO:*Transporter Activity*" (q=9.17 x 10⁻⁵) and "GO:*Transmembrane Transporter Activity*" (q=1.36 x 10⁻³). Additionally, we find enrichments possibly suggesting response to dietary intake (GO:*Response to lipids*, q=7.85 x 10⁻³) and direct response to bacteria derived molecules (GO:*Response to molecule of bacterial origin*, q=3.73 x 10⁻³). Further categories with enriched gene sets were Positional gene sets (n=4), Immunological signatures (n=1), canonical pathways (n=1), curated gene sets (n=7), chemical and genetic perturbation (n=16) and microRNA targets (n=3). The complete lists can be found in **Supplementary Table 7**.

Supplementary Note 6: Participant consent and data sharing

All participant data are available at the respective responsible biobanks. Due to restrictions of the consent given by the participants, not all data can be made available publicly without controlled access:

PopGen and Focus (Biobank network P2N, UKSH Kiel)

The 16S rRNA gene sequencing data is deposited in the SRA: PRJNA673102

More information and data application: http://www.uksh.de/p2n/Information+for+Researchers.html

KORA FF4 (Collaborative Health Research in the Region of Augsburg, Helmholtz Center Munich)

More information and data application: https://epi.helmholtz-muenchen.de/

Consent statement on data sharing (see also Supplementary Note 6.1; Page 3):

German: "E7: Ich bin damit einverstanden, dass meine krankheitsbezogenen Daten sowie meine genetischen und molekularen Daten, die im Rahmen von KORA generiert werden, in pseudonymisierter Form in externe Forschungsdatenbanken im In- und Ausland, auch außerhalb der Europäischen Union (z.B. USA), eingestellt werden. Der Zugang zu diesen Daten wird von einem Kontrollgremium verwaltet und auf Antrag zur Bearbeitung wissenschaftlicher Fragestellungen gewährt. [...]"

English translation: "E7: I consent to the storage of my disease-related, as well as genetic and molecular data collected in the KORA study in pseudonymized manner in external research databases in Germany and abroad, also outside of the European Union (e.g. the USA). The access to these data will be managed by a control panel and access will be granted in connection to scientific studies. [...]"

SHIP and SHIP-TREND (Study of Health in Pomerania, Greifswald)

More information and data application (in German): https://www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php

An english translation of the website is currently in preparation.

Contact for applicants and in case of needed assistance: transfer@uni-greifswald.de

Participant information on data sharing (see also Supplementary Note 6.2; Page 12):

German: "Wer darf wofür die Studiendaten verwenden? Die Studiendaten werden für wissenschaftliche Untersuchungen verwendet. Die Darstellung der wissenschaftlichen Ergebnisse (zum Beispiel für Vorträge oder schriftliche Veröffentlichungen) erfolgt grundsätzlich zusammengefasst in Gruppen (z.B. Raucher und Nichtraucher) und nicht in Bezug auf Ihre Person. Über die Herausgabe des pseudonymisierten Datensatzes und der Biomaterialien zu Studienzwecken entscheidet ein Gremium von Wissenschaftlern unserer Universität, der Vorstand des Forschungsverbundes Community Medicine. [...] Die Datenübertragung erfolgt gualitätsgesichert durch eine Transferstelle."

English translation: "Who can use the study data and for what? The study data will be used for scientific research. The presentation of research results (e.g. for talks or research articles) will in principle take place summarized into groups (e.g. smokers and non-smokers) and not relating to individuals. A committee of scientists of our university, the board of directors of the research association Community Medicine, decides about sharing of pseudonymized datasets and biomaterials for research use. [...] Data sharing will exclusively take place in quality controlled modality by a transfer office."

Supplementary Note 6.1: Participant consent - KORA cohort

HelmholtzZentrum münchen
Deutsches Forschungszentrum für Gesundheit und Umwelt

Erhebungsnummer

Einverständniserklärung KORA-Studie 2013/2014

E1: Ich bin bereit, am nachfolgenden Untersuchungsprogramm teilzunehmen.

- · Persönliches Interview zum Gesundheitszustand und zur Medikamenteneinnahme
- Selbstausfüllbogen
- · Blutdruckmessung am Oberarm
- EKG (Elektrokardiogramm) zur Diagnostik des Herzens
- Messung von Körpergröße und Gewicht, Umfang von Taille und Hüfte
- Bestimmung des Körperfettanteils mittels Bioelektrischer Impedanzanalyse
- Oraler Glukosetoleranztest (Zuckerbelastungstest), dessen Ergebnis Hinweise auf eine Vorstufe oder das Vorliegen von Diabetes mellitus gibt
- Sammlung von Bioproben (Blut, Urin, Stuhl, Speichel, Hautabstrich), um Aussagen zu Herz-, Nieren- und Stoffwechselerkrankungen und anderen Volkskrankheiten sowie zur genetischen Disposition treffen zu können
- Lungenfunktionsmessung, bei der die Leistungsfähigkeit der Lunge und der Atemwege geprüft wird, z.B. das Atemvolumen
- Untersuchung von Polyneuropathien, d.h. Erkrankungen des peripheren Nervensystems, die beispielsweise durch das Vorliegen eines Diabetes mellitus entstanden sein können
- Aktivitätsmessung mittels tragbarer Aktivitätsmessgeräte im Alltag
- Augenuntersuchung mittels einer Kamera zur Feststellung von altersbedingten Erkrankungen der Netzhaut
- Tests zur Feststellung von Gleichgewichtsstörungen: Es werden Augenbewegungstests durchgeführt
- Abfrage von Ernährungsgewohnheiten über ein Internetportal
- · Messung von Temperatur und Feuchtigkeit in der Wohnung
- Erfassung der persönlichen UV-Strahlungsdosis

E2: Ich teile den Namen und die Anschrift meines Hausarztes oder des Arztes, von dem ich überwiegend behandelt werde, und des Augenarztes mit. Auch gestatte ich, dass die Informationen aus meinen Krankenakten, die für diese Studie benötigt werden, von diesen Ärzten übermittelt und in pseudonymisierter Form wissenschaftlich verwendet werden dürfen. Ich entbinde meine behandelnden Ärzte von deren Schweigepflicht bzgl. dieser Aussagen.

HelmholtzZentrum münchen

E3: Ich bin einverstanden, dass meine Bioproben einschließlich DNA für die Erforschung der im Kasten auf Seite 4 in der Studieninformation angegebenen Fragestellungen genutzt wird.

E4: Ich bin einverstanden, dass meine Bioproben einschließlich DNA für die zukünftige Forschung im Rahmen von KORA genutzt wird, ohne dass ich vor Verwendung der Bioproben erneut befragt werde. Mir ist bewusst, dass die neuen Fragestellungen derzeit noch nicht bekannt sind.

E5: Ich bin einverstanden, dass zur weiteren Auswertung der erhobenen Daten und Proben und der Formulierung von Auswertezielen in- und ausländische staatliche Stellen, Stiftungen, Körperschaften, sonstige wissenschaftliche Einrichtungen und die Industrie beteiligt werden können, auch, um dadurch zusätzliche Mittel für die KORA-Gesundheitsforschung in der Region Augsburg zu erhalten.

E6: Ich bin einverstanden, dass meine Anschrift im KORA-Studienzentrum - getrennt von den Gesundheitsdaten - gespeichert werden darf. Ich kann eventuell zu einem späteren Zeitpunkt für eine vertiefende Auskunft oder die Teilnahme an einer weiteren KORA-Studie kontaktiert werden. Ich bin darüber unterrichtet, dass die Speicherung meiner Adresse auch dem Zweck dient, wissenschaftliche Daten zu meinem Wohnumfeld zu erzeugen.

Ich habe die Informationen über die wissenschaftliche KORA-Studie 2013/2014 der Region Augsburg zur Kenntnis genommen und bin bereit, diese Studie durch meine Teilnahme zu unterstützen. Ich gestatte den Mitarbeitern der Studie, die benötigten Daten zu erheben, Bioproben zu sammeln und die angegebenen medizinischen Untersuchungen durchzuführen.

Mit den Punkten E1 bis E6 erkläre ich mich einverstanden.				
☐ ja	☐ nein			
Ich kann mein Einverständnis jederzeit schriftlich ganz oder teilweise ohne Angabe von Gründen unter der angegebenen Adresse widerrufen.				
Augsburg, den	Unterschrift			

Einverständniserklärung für externe Forschungsdatenbanken (optional)

E7: Ich bin damit einverstanden, dass meine krankheitsbezogenen Daten sowie meine genetischen und molekularen Daten, die im Rahmen von KORA generiert werden, in pseudonymisierter Form in externe Forschungsdatenbanken im In- und Ausland, auch außerhalb der Europäischen Union (z.B. USA), eingestellt werden. Der Zugang zu diesen Daten wird von einem Kontrollgremium verwaltet und auf Antrag zur Bearbeitung wissenschaftlicher Fragestellungen gewährt. Solche Datenbanken haben das Ziel, möglichst vielen Forschern auf internationaler Ebene eine Nutzung der Daten zu ermöglichen, um zum bestmöglichen Erkenntnisgewinn und wissenschaftlichen Fortschritt zu Krankheitsursachen und deren biomedizinischen Grundlagen beizutragen.

Mit dem Punkt E7 er	kläre ich mich einverst	anden.
	a	□ nein
lch kann mein Einve der angegebenen Ac		riftlich ohne Angabe von Gründen unter
Augsburg, den		Unterschrift

Supplementary Note 6.2: Participant information - SHIP/SHIP-TREND cohort

Teilnehmerinformation Leben und Gesundheit in Vorpommern SHIP

Wer führt die SHIP-Studie durch?

Die Gesundheitsstudie SHIP ist ein epidemiologisches Forschungsvorhaben der Medizinischen Fakultät der Universität Greifswald. Die Studie wurde vom Forschungsverbund. Community Medicine" organisiert. Mit der Durchfülnung wurde das Institut für Community Medicine der Medizinischen Fakultät bertraut. Der verantwortliche Leiter des Forschungsvorhabens ist PD Dr. med. Henry Völzke.

Warum bitten wir Sie, an unserer Studie teilzunehmen?

In unserer Studie "Leben und Gesundheit in Vorpommern" (Study of Health in Poncerania, SHIP) beobachten wir den Gesundheitsbusstand der hiesigen Bevölkerung in Bezug auf häufige Risikofaktoren und Erkrankungen. Neben der Beschreibung der Häufigkeiten verfolgen wir das Ziel, die komplexen Zusanmenhänge zwischen diesen Risikofaktoren und Erkrankungen zu ergründen. Insbesondere interessieren wissenschaftlich subklinische Befünde. Dies sind Zustände, die noch keinen Krankheitswert haben und zumeist ohne Krankheitszeichen einhergehen, die aber ein mögliches Vorstadium von Erkrankungen darstellen können. Dabei zielen unsere Bentilungen nicht auf ein spezieltes Organ, wir beziehen vielmehr möglichst viele Organsysteme in unser- Untersuchungen ein.

Welche Nutzen haben Sie, wenn Sie an der Studie teilnehmen?

Mit der SHIP-Studie sollen wissenschaftliche Erkenntnisse gewonnen werden, um Krankheiten zukinftig möglichst zu vermeiden oder frühzertig erkennen zu können. Sie dient also primär dem wissenschaftlichen Erkenntnisgewinn, von dem die Bevölkerung unseres Landes niegesamt profitieren wird. Wie bereits in der ersten SHIP-Studie handelt es sich bei allen Untersuchungen (also auch bei der MRT-Untersuchung) um dägenositsehe Mäßnahmen, die mit dem Zied durchgeführt werden, den Gesundheitszustand einer großen Gruppe von Menschen zu beobachten (eine sogenamnte Kohorte), die über die Einwohmermeldefämter nach dem Zufallsprinzip ausgewählt wurden. Diese Kohorte möchten wir möglichst über viele Jahre beobachten, um auch die langfristigen Veränderungen im Gesundheitszustand der Bevölkerung erförschen zu können.

Es ist also nieht das Anliegen dieser Studie, möglichst viele kranke Menschen aus Vorpommern herauszufinden, um beispielsweise die medizinische Versorgungssituation in der Region zu verbessern, den niedergelassenen Ärzten die

Arbeit zu erleichtern oder gar zusätzliche Patienten für das Klinikum Greifiswald zu gewinnen Natürlich könnten Sie oder Ihre Angehörigen indirekt von den wissenschaftliehen Erkenntnissen der SHP-Studie profitieren, wem sich aus den Forschungsergebnissen von SHIP neue gesundheitliche Betreuungsangebote ergeben, die auch für Sie später im Krankheitsfall von Nutzen sein könnten. Außerdem werden Sie in der SHIP-Studie wesentlich umfangreicher untersucht als in den üblichen Vorsorgeuntersuchungen.

Aus der strikten Trennung vom Forschungsanliegen in der SHIP-Studie und dem medizinischen Betreuungsanliegen im Falle möglicherweise krankhafter Befunde ergibt sich auch, dass alle Unitersuchungen an der SHIP-Studie für Sie kostenffei sind. Alle sich möglicherweise aus krankhaften Befunden ergebenden weiterführenden diagnostischen und therapeutischen Maßnahmen müssten von Ihrer Krankenkasse getragen werden.

Welche Untersuchungen werden durchgeführt?

Im Folgenden möchten wir näher auf die Untersuchungsteile eingehen. Die Teilnahme am Kernprogramm ist die Voraussetzung für die Teilnahme an allen weitergehenden Untersuchungen ("Weitergehende Spezialuntersuchungen").

1. UNTERSUCHUNGEN DES KERNPROGRAMMS

Interview

Sie werden zu verschiedenen Lebensbereichen wie Familie und Beruf, zu Risikofaktoren und Erkrankungen befragt.

Laborbasisprogramm

Es werden bis zu 76 ml Blut entnommen. Die Venenpunktion kann Schmerzen verursachen, nach der Punktion können kleinere Blutergüsse über einige Tage bestehen bleiben. Aus dem Blut erfolgen Standarduntersuchungen verschiedener Charakteristika wie Blutbild, Fettwerte, Zucker und Schilddrüsenbormone. Der Urin wird für die Untersuchung von Stoffwechselprodukten, der Jodkonzentrationen und anderer Blomarker berönfigt. Aus Nasen- und Rachenabstrichen wird die Besiedlung mit ausgewählten Bakterien (Pneumokokken und Staphylokokken) ermittelt. Der Speichel wird für Hormonanalysen entnommen. In einer Stuhlprobe werden verschiedene Parameter (u.a. Verdauungserüng, Erbmaterial aus Darmbakterien und -zellen) erhoben. Wir möchten Sie bitten, die dem Briefumschlag beigefügten Röhrchen zu benutzen und Ihre Stuhlprobe zur Untersuchung mitzubrüngen.

Der wissenschaftliche Fortschritt ermöglicht immer tiefere Einblicke in die Zusammenhänge zwischen Labomarkern und Erkrankungen. Wir möchen auch nach Beendigung der Vor-Ort-Untersuchungen entsprechende Studien durchführen. Dazu möchen wir Teile Ihrer Bioproben (Blut, Urin, Speichel und Stuhl) in einer Biobank tiefgektüht für mindestens 20 Jahre, nach Möglickeit auf unbegrenzte Zeit lagen. Die gelagerten Bioproben sollen auch zu einem späteren Zeitpunkt genutzt werden können, um mit den dann zur Verfügung stehenden neuen Forschungstechnologien der Genetik, der Eiweißanslytik, der Analyse von Stoffwechselprodukten und mit weiteren Zukumfistenhonogien neue Erkenntnisse über Ursache, Verlauf, Behandlung und Prognosev von häufigen Erkrankungen wie Diabetes und anderen Stoffwechselpreuten und altergisch bedingten Erkrankung und Nervenerkrankungen, entzündlichen und allergisch bedingten Erkrankungen des Bauchnaumes und des Stütz- und Bewegungsapparates sowie die Verträglichkeit von Arzneinitteln zu gewinnen.

Medizinische Basisuntersuchungen

Größe, Gewicht und Körperumfang werden unter standardisierten Bedingungen gemessen. Mit dem EKG werden Herzrhythmus und die Erregungsleitung beurteilt. Es erfolgt eine kurze Messung Ihrer Handgreifkraft. Diese Messungen sind schmerzfrei und ohne bekannte Risiken. Der Handgreiftest wird nicht durchgeführt, sollten Sie entzündlich bedingte Schwellungen, Verletzungen oder Schmerzen an Hand oder Unteram aufweisen.

Wessungen der Atemgase

Aus Ihrer Ausatemluft werden die Konzentrationen ausgewählter Gase bestimmt. Sie atmen über ca. eine Minute in eine dafür bestimmte Vorrichtung. Die Untersuchung ist schmerzfrei und ohne bekannte Risiken.

Untersuchung des Augenhintergrundes

Mit Hilfe einer Spezialkamera werden die Gefäße des Augenhintergrundes fotografiert. Die Befundung der Bilder erfolgt einige Tage nach der Untersuchung ist mit keiner Belastung des Probanden verbunden, etwarige Risiken bestehen für den Teilnehmer nicht. Das Gerät arbeitet berührungslos, damit besteht auch keinerlei Verschmutzungs- oder Infektionsgefährdung. Die Augen werden nicht getropft, Ihr Schen ist nach der Untersuchung also zieht beiträchtigt.

Oraler Glukosetoleranztest

Mit Hilfe dieses Testes überprüfen wir, ob Sie ein erhöhtes Risiko für eine Zuckerkrankheit haben oder ob bereits ein unentdeckter Diabetes mellitus besteht. Sie bekommen eine Zuckerlösung verabreicht. Zwei Stunden danach wird eine

Blutentnahme durchgeführt. Sehr selten (<0,1%) können während des Tests oder danach Unterzuckerungserscheinungen (erkennber an Schwitzen, Zittern, Unruhe, Konzentrationsstörungen) auftreten. Diese können durch Traubenzucker, Obstsaft und belegte Brote rasch behoben werden. Es empfiehlt sich daher, dass Sie nach dem Test mindestens 30 Minuten im Untersuchungszentrum bleiben und in der Zeit ein ausreichendes Frühstück (z.B. 2 belegte Brote) zu sich nehmen. Sehr selten können nach Trinken der Zuckerlösung Magen-Darm-Beschwerden auftreten (Übelkeit, Durchfäll), die sich auch ohne Behandlung rasch bessern.

Wenn Sie vormittags einen Termin wahmehmen, dürfen Sie mindestens 8 Sunden lang vor dem Test nichts essen oder trinken (Ausnahme: Mineralwasser oder Leitungswasser)! Wenn Sie nach 12:00 Uhr einen Termin wahrmehmen, dürfen Sie mindestens 6 Stunden lang vor dem Test nichts essen oder trinken (Ausnahme: Mineralwasser oder Leitungswasser)! Ärztlich verordrete Medikannente sollten wie gewohnt eingenommen werden. Sie sollten unmittelbar vor der Untersuchung schwere körperliche Belastungen vermeiden und nicht rauchen.

Falls Sie Fieber (z.B. durch eine Erkältung) oder eine akute Magen-Darn-Infektion haben, schwanger sind, eine Allergie gegen Johannisbeeren (Johannisbeersaft ist Bestandteil der Trinklösung) haben oder einen mit Diät, Medikamenten oder Insulin behandelten Diabetes haben, wird der Test bei Men nichel durchgeführ.

Bioelektrische Impedanzanalyse

Mit der bioelektrischen Impedanzanalyse wird die Körperzusammensetzung (z.B. Anteile von Wasser und Fett) untersucht. Die Messungen werden im Rahmen des EKG durchgeführt, sind schmerzfrei und ohne bekannte Risiken. Da für die Impedanzanalyse geringfügige elektrische Ströme notwendig sind, werden Sie von der Untersuchung ausgeschlossen, falls Sie Herzschrittmacherträger sind.

Ultraschalluntersuchungen

Mittels Ultraschall werden verschiedene Organe untersucht. Bei der Schilddrürse interessieren die Größe und Knoten. An den Hälsgefäßen wird nach Verkal-kungen gesucht. Am Herz werden Wanddicken, Pumpfunktion und Herzklappen beurteilt. Im Bauch werden Leber, Gallenblase, Nieren und Bauchspeicheldrüse untersucht. An der Perse wird die Knochendichte ermittelt. Alle Ultraschalluntersuchungen sind schmerzfrei und ohne bekannte Risiken.

Zahnärztliche Untersuchungen

Hier werden Sie bezüglich Karies, Zahnfleischschwund und Zahnverlust untersucht. Die Sondierung der Zahntaschen kann etwas unangenehm sein, im Falle

stärkerer Entzündungen können leichtere örtliche Blutungen entstehen, die ohne weitere Behandlung in kurzer Zeit zum Stillstand kommen. Bei Patienten mit künstlichen Herzklappen (Herzpass) wird die Sondierung der Zahntaschen mirik durchegührt.

WEITERGEHENDE SPEZIALUNTERSUCHUNGEN

Nach diesem Kernprogramm von Untersuchungen bitten wir Sie, an weitergehenden Untersuchungen teilzunehmen. Alle Spezialuntersuchungen sollten innerhalb von 2 Wochen, spätestens innerhalb von 4 Wochen nach der Kernuntersuchung abgeseklossen sein.

Hautärztliche Untersuchungen

Die hautärztliche Untersuchung wird in der Greifswalder Universitätshautklinik in der Fleischmannstraße durchgeführt und umfasst neben einer allgemeinen dermatologischen Untersuchung eine Untersuchung auf schwarzen Hautkrebs (Melanomscreening) sowie Untersuchungen von Krampfadern. Die Untersuchungen dauern ea. 30 Minuten.

Internistische Untersuchungen

Die internistischen Untersuchungen in der Universitätsklinik für Innere Medizin, Friedrich-Loeffler-Str. 23a werden ca. 2 Stunden dauem und folgende Untersuchungen umfassen: Bodyplethysmografie

Hierbei handelt es sich um eine Untersuchung der Lungenfunktion in Ruhe. Die Untersuchung ist schmerzfrei und ohne bekannte Risiken.

Spiroergometrie

Es wird eine Fahrradbelastung unter EKG-, Blutdruck- und Atemkontrolle durchgeführt. In der Spiroergometrie können Einschränkungen der körperlichen Belastungsfähigkeit diagnostiziert und auf herz., Iungen- oder muskelbedingte Ursachen zurückegführ werden. Unter der körperlichen Belastung können insbesondere bei vorbestehenden Herzerkrankungen Angina pectoris (Herzenge), starke Blutdruckanstiege oder Herzhythmusstörungen ausgelöst werden. Aus diesem Grunde erfolgt die Untersuchung grundsätzlich unter den Bedingungen einer ärztlichen Rufbereitschaft. Patienten mit vorbestehenden instabilen Herz-Kreislauferkrankungen, zu hohen Ruheblutdruckwerten oder Luthnot in Ruhe oder bei leichterer Belastung nehmen nicht an der Untersuchung teil.

Messungen der endothelialen Dysfunktion

Bei dieser Untersuchung wird die Funktion einer Schlagader am Unterarm mit Hilfe eines Ultraschallgerätes untersucht. Zunächst wird das Gefäß unter Ru-

hebedingungen vermessen. Danach werden die Messungen wiederholt, nachdem mit einer Blutdruckmanschette die Durchblutung für 3 Minuten unterbrochen worden ist. Das Autblasen der Manschette wird in der Regel sehr gut toleriert, kann in einzelnen Fällen aber Schmerzen verursachen.

Bestimmung des Knöchel-Arm-Index

Nachdem der Blutdruck an den Armen ermittelt wurde, erfolgt eine Blutdruckensesung an den Füßen mit Hilfe von Ultraschall zur Untersuchung von Durchblutungsstörungen an der unteren Extremität. Die Untersuchung ist schmerzfrei und ohne bekannte Risiken.

Schlafuntersuchungen

Sie haben die Möglichkeit an einer stationären Schlafdiagnostik teilzunehmen, die in einem Greifswalder Hotel durchgeführt wird. Das Projekt zielt auf die Untersuchung von Zusammenhängen zwischen Schlafqualität und Herz-Kreislauf-Erkrankungen. Es werden während des Schlafes die Himströme (EEG) mittels sechs auf die Kopfhaut geklebter Elektroden, die Muskelaktivität am Kinn (EMG) mittels zweier Elektroden und die Augenbewegungen (EOG) mittels zweier Elektroden neben dem linken und rechten Auge gemessen. Sie werden während des Schlafes beobachtet, um auch Bewegungsstörungen erkennen zu können. Alle Messungen sind schmerzfrei. Die Elektroden sind am Morgen wieder sehr gut zu entfernen und sie können danach die Heimreise antreten bzw. Hier Arbeit nachgeben.

Ganzkörper-MRT-Untersuchung

Diese wird im Neubau des Universitätsklinikums Greifswald durchgeführt und en. 2 Stunden dauern. Mit dieser MRT-Untersuchung soll die Beschaffenheit besonders folgender Organe dargestellt werden: Kopf mit beteiligten Organen, Schilddrüse, Herz, Gefäle, Leber, Calle, Bauchspeicheldrüse und weibliche Brust. Außerdem soll das Muskel-Fett-Verhältnis beurteilt werden.

Während der Untersuchung liegen Sie auf einem gepolsterten Untersuchungstisch. Nachdem Ihr Körper mit Spulen abgedeckt wird, werden Sie in das Magnetfeld des röhrenförmigen Untersuchungsgerätes (Durchmesser ca. 60 cm) gefähren. Während der Untersuchung besteht direkter Sichtkontakt mit dem medizinischen Personal oder Sie werden durch Monitore vom Kontrollraum aus überwacht. Für die Untersuchung ist es wichtig, dass sie während der gesamten Zeit möglichst ruhig liegen bleiben. Sie können die Untersuchung jederzeit abbrechen.

Das Schalten der Magnetspulen verursacht ein sehr lautes, metallisches Klicken bzw. Klopfgeräusche. Aus diesem Grund tragen Sie während der gesamten MRT-Untersuchung Kopfhörer.

In einem ersten Untersuchungsmodul werden Ihr Kopf und Ihr Körper unter-sucht. Die Untersuchungsdauer beträgt ca. 70 Minuten. Für die optimale Dar-Sekretin ist sehr gut verträglich. Es kann zu einem vorübergehenden Anstieg der Serumkonzentration der Bauchspeicheldrüsenenzyme kommen. Selten stellung von Bauchspeicheldrüse und Gallenwegen würden wir Ihnen gern Sekretin verabreichen. Sekretin ist ein kurzwirksames Hormon, das die Abgabe fördert. Sekretin wird über einen venösen Zugang verabreicht. Sie werden von retin ablehnen oder sollte diese aus anderen Gründen nicht möglich sein, können wir den Rest der Ganzkörper-MRT-Untersuchung, der ohne Gabe von Sekretin durchgeführt wird, realisieren. von Verdauungssaft aus der Bauchspeicheldrüse in den Zwölffingerdarm beder Sekretingabe ausgeschlossen, falls bei Ihnen eine akute Bauchspeicheldrüsenentzündung bekannt oder im MRT vor der Sekretingabe nachweisbar ist. können Durchfall, Übelkeit und ein vermehrtes Magensaftvolumen, Schwindel, Harndrang oder allergische Reaktionen auftreten. Sollten sie die Gabe von Sek-

nuten. Die Brustuntersuchung erfolgt in Bauchlage und kann nur zwischen dem 8. und 15. Tag nach Beginn der letzten Regel durchgeführt werden. Dies ist der ringert. Bei Frauen, die sich bereits in der Menopause befinden, d.h. seit einem In einem zweiten Untersuchungsmodul werden bei Männern spezielle Herz-Kreislaufuntersuchungen durchgeführt, bei Frauen Untersuchungen der Brust. Die Untersuchungsdauer des zweiten Untersuchungsmoduls beträgt ca. 30 Mi-Zeitraum niedriger Hormonaktivität, was das Auftreten von Fehlbefunden ver-Jahr keine Regel mehr haben, kann die Untersuchung zu jedem Zeitpunkt er-

Gabe von Kontrastmittel

Für die Herz-Kreislauf- bzw. Brustuntersuchungen ist die Verwendung eines speziellen Kontrastmittels notwendig, das über eine Armvene injiziert wird und sehr gut verträglich ist. So können kleine Gefäße bzw. feinste Strukturen der Brustdrüse dargestellt werden. Das Kontrastmittel wird in ein Unterarmgefäß verabreicht. Sehr selten können allergische Nebenwirkungen auftreten. Die untersuchenden Ärzte verabreichen Ilmen in diesem Fall die entsprechenden Medikamente über die liegende Flexülen. Sollte bei Ilmen ein Allergie gegen Medikamente oder Kontrastmittel bzw. ein allergisch bedingtes Asthma vorliegen, werden wir Ilnen kein Kontrastmitttel verabreichen.

Sollten sie die Kontrastmittelgabe ablehnen oder sollte diese aus anderen Gründen nicht möglich sein, können wir zumindest den ersten Teil der Ganzkörper-MRT-Untersuchung durchführen, der auch ohne Kontrastmittel ausgewertet werden kann.

schlossen werden, dass die bei der MRT-Untersuchung benötigten Magnetfelder, besonders in der Frühschwangerschaft Schäden bei ungeborenen Kindern Es kann bei dem derzeitigen Stand des medizinischen Wissens nicht ausgebewirken können. Daher dürfen Schwangere und Frauen, die nicht sicher sind, ob sie schwanger sind, nicht an der MRT-Untersuchung teilnehmen.

Risiken und Nebenwirkungen

Die Untersuchung ist nach heutigem Stand des Wissens für den Menschen unschädlich und frei von biologischen Risiken. Auch sind keine Nebenwirkungen der Untersuchungen zu erwarten. Dennoch sollten Sie folgendes beachten: Aufgrund des sehr starken Magnetfeldes dürfen keine metallischen oder andere magnetisierbaren Gegenstände und Materialen in den Untersuchungsraum gebracht werden. Bitte legen Sie deshalb vor der Untersuchung folgende Gegenstände ab:

- Piercings / Schmuck / Haarspangen / Haargummis / Uhr / Brille Kleidung mit Reißverschlüssen
 - herausnehmbaren metallischen Zahnersatz
 - Bügel-BH's
- Hörgeräte / Scheckkarten / EC-Karten / Kreditkarten
- Lose Metallteile in der Kleidung (Geld, Büroklammern, Schlüssel, Handy usw.)

Relative Ausschlusskriterien

Im ersten Anschreiben wurden Sie darüber informiert, dass Sie aus medizini-Um sicher zu gehen, dass die MRT-Untersuchung für sie risikofrei abläuft, benötigen wir weitere Informationen von Ihnen. Füllen Sie dazu bitte den beischen Gründen eventuell nicht an der MRT-Untersuchung teilnehmen können. liegenden Fragebogen zur MRT-Teilnahme aus.

Können Sie einen Nachteil erleiden, wenn Sie an der Studie teilnehmen?

Die meisten Untersuchungen in SHIP sind nebenwirkungsfrei und haben keine unmittelbaren Risiken. Bei einigen Untersuchungen können in seltenen Fällen Nebenwirkungen auftreten, über die Sie im Abschnitt "Welche Untersuchungen werden durchgeführt?" aufgeklärt werden. Einige Untersuchungen sind in der Lage, auch gering ausgeprägte Veränderungen aufzuspüren. Viele dieser Veränderungen sind entweder gleich als harmlos einzustufen oder entpuppen sich bei weiterer Abklärung als unerheblich. Bei Vorliegen bestimmter Befunde (z.B. krebsverdächtiger Befunde) könnte die

weitere Abklärung sich als sinnvoll erweisen. Für diese Fälle steht ein Expertengremium (s.u. "Advisory Board") zur Verfügung.

Wir möchten Sie darauf hinweisen, dass die Kenntnisnahme von Befunden von (unter Umständen) persönlicher Bedeutung für Sie sein Könnte, zum Beispiel im Zusammenhang mit dem Abschluss einer Kranken- oder Lebensversicher umg. Aufgrund gesetzlicher Bestimmungen wird und darf das Institut für Community Medicine ohne Ihre persönliche Aufförderung und ohne Ihre gesonderte Zustimmung keine Ergebnisse der Untersuchungen aus dem SHIP-Projekt an Dritte (z.B. Versicherungen, Arbeitgeber) in personenbezogener Form (d.h. mit Namon und Adresse) übermitten.

Wie werden Sie über die Befunde informiert?

Befunde der klinischen Kernuntersuchungen und Spezialuntersuchungen

Bei den Untersuchungen des klinischen Kern- und Spezialprogramms werden Methoden eingesetzt, die in der Regel auch Bestandteil bekannter Vorsorgeuntersuchungen sind. Da der diagnostische Stellenwert dieser Methoden bereits bekannt ist, können wir Sie über alle Befunde informieren, die einer weiteren Abklärung oder Behandtlung bedürfen.

Bei den meisten Untersuchungen werden Ihnen Ihre Befunde in einem persönlichen Gespräch übermittelt. Die Ergebnisse der Blutuntersuchungen liegen
rest nach ein paar Tagen vor. Deshalb werden Ihnen diese auf einem Befundbogen übermittelt, auf dem die auffälligen Werte gekennzeichnet sind. Diesen
Befundbogen sollten Sie Ihrem Hausarzt vorlegen, damit er die Werte bei Ihrer
zukünftigen gesundheitlichen Betreuung mit berücksichtigen kann.

Befunde der MRT-Untersuchungen

Wir bitten Sie, die folgenden Besonderheiten in Bezug auf die Befunde der MRT-Untersuchungen zu verstehen, damit wir nicht ungerechtfertigte Erwartungen bei Ihnen wecken. Bei der MRT handelt es sich um ein bildgebendes Hochtechnholgieverfahren, das normalerweise im klinischen Alltag erst dam eingesetz wird, wenn bereits aus vorhergehenden Untersuchungen der dringende Verdacht auf eine ernsthafte Erkrankung besteht. Dabei wird das Gerät in einem für die Darstellung des betroffenen Organs erforderlichen Aufnahmemodus eingesetzt. Ähnlich wie bei der Anwendung eines Fotoapparates (Z.B. Portraatunfahme, Aufnahme schneller Objekte, Gegenlichtaufnahme etc.) sind hierfür seht unterschiedliche Einstellungen erforderlich.

In unserer Forschungsstudie dagegen soll bei Ihnen nicht ein bestimmtes Organ, sondern der gesamte Körper dargestellt werden (Ganzkörper-MRT). Im Gegensatz zu den Untersuchungen des klinischen Kern- und Spezialprogramms

ist allerdings der Vorhersagewert der MRT bei vielen Erkrankungen bislang noch unbekannt.

Bitte beachten Sie außerdem, dass Anzahl und Qualität der Bilder und Daten auf ein forschungsnotwendiges Minimum beschränkt werden. Deswegen kann es durchaus sein, dass mit der verwendeten Technik Befunde ermittelt werden, die keinen Krankheitswert haben (falsch positive Befunde). Andererseits ist nicht auszuschließen, dass mit dem Verfahren krankhafte Befunde übersehen werden (falsch negative Befunde).

Außerdem bitten wir Sie zu verstehen, dass die Kenntnisnahme von Befunden, die vom sogenammten "Normalbefund" abweichen, auch erhebliche Verunsicherungen, Ängste oder Sorgen auslösen, ja unter Urnständen sogar die Ursache von Krankheitsbeschwerden selbst sein kann. So erwarten wir beispielsweise, dass ein größerer Teil älterer Menschen deutliche MRT-Befunde an der Wirbelsäule haben werden, ohne dass sie bisher nennenswerte Beschwerden hatten, bzw. ohne dass Ilnen das bislang bewusst war. Andererseits lässt sich aber auch nicht ausschließen, dass solch ein Befund zu einem späteren Zeitpunkt doch ernsthafte körperliche Beschwerden verursachen kann (z.B. Bandseibenvorfall).

Da es zum gegenwärtigen Stand des medizinischen Wissens nicht möglich ist, aus MRT-Befunden der Wirbelsäule das Authreten krankhalter Beschwerden oder Komplikationen sicher vorherzusagen, überwiegen nach unserer Einschätzung die möglichen Nachteile, die durch die Information der Befunde entstehen könnten, deutlich den Nutzen einer möglichen Vorsorge.

Aus diesem Grund werden Ihnen ausschließlich abklärungsbedürftigeltherapierelevante Befunde schriftlich mitgeteilt. Sollten Sie eine schriftliche
Mitteilung über Ihre MRT-Untersuchung erhalten haben, bieten wir Ihrem
Hausarz/Ihrer Hausärztin die Möglichkeit, die zu dem schriftlichen Befund
gehörigen Bilder anzufordem, falls dies aus medizinischen Gründen für Ihre
gesundheitliche Versorgung erforderlich ist. Der Hausarz/die Hausärztin hat
diese Möglichkeit jedoch nur, nachdem Sie Ihre schriftliche Einwilligung dafür
erteilt haben.

Natürlich kann sich aus der MRT-Untersuchung auch der Verdacht auf eine wahrscheinlich schwerwiegende, möglicherweise lebensbedrohliche Erkrankung ergeben. Beispiele hierfür sind tumorverdächtige Befunde, frische Hirnblutungen oder eine hochgradig eingeschränkte Herzfunktion. In diesen Fällen wird eine Gruppe erfahrener Fachärzte des Klinikums (ein sogenanntes "Advisory Board") den MRT-Befund fachübergreifend bewerten und entscheiden, ob Sie informiert und welche weiterführenden diagnostischen Maßnahmen empschen Mestammen ernpschen Mestammen ernpschen Mestammen von Brechen Mestammen von Brechen Maßnahmen von Brechen Wagnahmen von Brechen Maßnahmen von Brechen Wagnahmen von

Befunde aus der Forschung mit Biomaterialien

Die gegenwärtig geplanten und zukünftig denkbaren Untersuchungen mit Ihren langfristig gelagerten Biomaterialien dienen grundsätzlich den Vorhaben der medizinischen Grundlagenforschung. Aufgrund des gegenwärtigen Standes der Forschung erwarten wir zurzeit nur Ergebnisse, die für die Beurteilung Ihres Gesundheitszustandes nicht von unmittelbarer Bedeutung sind. Deshalb werden wir Sie über die Ergebnisse der Untersuchungen mit Ihren Biomaterialien zum gegenwärtigen Zeitpunkt auch nicht informieren.

Wir hoffen aber sehr, dass der medizinische Erkenntnisfortschritt in Zukunft die Möglichkeit eröffnen wird, mit Ihren Biomateriailen auch neuartige Informationen über Ihren Gesundheitszustand zu gewinnen. Sollte dies möglich sein, können Sis nach Ernscheidung eines Expertengremiums unseres Forschungsverbundes "Community Medicine" über diese neuen Möglichkeiten informiert werden. Dies setzt aber voraus, dass dem Vorhaben eine Ethikkommission zugestimmt hat und dass Sie im Rahmen der jetzigen SHIP-Studie Ihre Zustimmung zur späteren Übermittlung von Befunden, die einer weiteren Abklärung oder Behandlung bedürfen, erteilt haben.

Kann ich die Kenntnisnahme von Befunden verweigern? (Habe ich ein Recht auf Nichtwissen?)

Sie können auch verlangen, dass wir Ihnen Befunde, die einer weiteren Abklärung oder Behandlung bedürfen, grundsitzlich nicht mittelien. In diesem Falle übermitteln wir Ihnen nur solche Befunde, bei denen eine Gefährdung Dritter (z.B. durch erhöhte Unfallgefahr) nicht ausgesehlossen werden kann.

Sind Sie als Teilnehmer der Studie versichert?

Wir haben für Sie für die Zeit Ihrer Teilnahme an der Studie eine Unfallversicherung abgeschlossen.

Wie sicher sind Ihre Daten?

Alle Mitarbeiter, die im Rahmen der Untersuchungen und Auswertungen der Daten der Studie "Leben und Gesundheit in Vorpommern" (Study of Health in Pomerania, SHIP) beschäftigt sind, werden zur Einhaltung der Bestimmungen des Landesdatenschutzgeserzes verpflichtet und unterliegen der Schweigedeich.

Es erfolgt in der Studie die räumlich und rechentechnisch getrennte Speicherung der personenbezogenen Daten (Name und Adresse) und der Daten, die bei den Befragungen und Untersuchungen erhoben werden. Alle während der Befragungen und Untersuchungen erhoberen Daten werden ohne Namen und Adresse gespeichert, sondern sind mit einer aus 6 Ziffem bestehenden Identifi-

kationsnummer kodiert (sogenannte Pseudonymisierung). Zugang zu den Personendaten haben nur die Kollegen der Einladungsstelle, alle wissenschaftli-Übern Analysen werden mit den pseudonymisierten Daten durchgeführt. Eine Übermittung von Daten von der Studienzentrale an andere wissenschaftliche Gruppen erfolgt ebenfalls pseudonymisiert. Bei Fragen und Problemen zum Datenschutz können Sie sich an den Datenschutzbeauftragten der Studie wenden (André Werner, Institut für Community Medicine, Walther-Rathenau-Str. 48, 17487 Greifswald). Für die Einhaltung der Datenschutzbestimmungen ist der wissenschaftliche Leiter der Studie ver-

Die Biobank wird durch das Greifswalder Institut für Klinische Chemie und Laboratoriumsmedizin verwaltet. Die Lagerung erfolgt qualitätsgesichert nach den gültigen gesetzlichen Bestimmungen.

Wer darf wofür die Studiendaten verwenden?

Die Studiendaten werden für wissenschaftliche Untersuchungen verwendet. Die Darstellung der wissenschaftlichen Ergebnisse (zum Beispiel für Vorträge oder schriftliche Veröffentlichungen) erfolgt grundsätzlich zusammengefasst in Gruppen (z.B. Raucher und Nichtraucher) und nicht in Bezug auf Ihre Person. Urber die Herausgabe des pseudonymisierten Datensatzes und der Biomaterialien zu Studienzwecken enrischeidet ein Gremium von Wissenschaftlern unserer Universität, der Vorstand des Forschungsverbundes Community Medicine. Eine Weitergabe Ihrer persönlichen Daten (also Name, Anschrift usw.) an Dritter er erfolgt grundsätzlich nicht. Die Datenübertragung erfolgt qualitätsgesichert

Bestimmte genetische Projekte (sogenannte genomweite Analysen), Urin- und Blutanalysen zu Stoffwechselprodukten (Metabolomics) und die MRT-Untersuchungen werden in Kooperation mit der Siemens AG durchgeführt. Die in diesen Unterprojekten gewonnenen Daten sollen der Siemens AG zu Forschungszwecken überlassen werden. Die Forschung verfolgt das Ziel, die komplexen Zusammenhänge zwischen genetischen Faktoren, Stoffwechselprodukten und MRT-Befunden zu untersuchen, um neue diagnostische Pfade zu finden. Die Daten werden in anonymisierter Form übergeben. Dazu werden die beterflenden Daten zusammen mit Informationen zu Alter und Geschliecht, iedoch ohne Identifikationsnummer weitergegeben.

Es ist uns untersagt, Ihre Daten außerhalb gesetzlicher Verpflichtungen ohne Ihr Einverständnis an weitere Organisationen oder Institutionen herauszugeben.

Sollen auch zukünftig Daten gesammelt werden?

Nach erfolgter Vor-Ort-Untersuchung möchten wir gem weitere Informationen über Ihren Gesundheitszustand sammeln. Dazu bitten wir Sie um Ihr Einverständnis, dass wir nach den Untersuchungen entsprechende Informationen von Ihrem Hausarzt und Ihrer Krankenkasse, von Registem (z.B. Herzinfarktregister) sowie -nach einer stationären Behandlung- vom Krankenhaus erhalten dürfen. Gem würden wir Sie auch in Folge zu weiteren Vor-Ort-Untersuchungen begrüßen wollen.

Wie lange werden die Daten gespeichert und können Sie sie löschen lassen?

Für die Untersuchung der komplexen Zusammenhänge zwischen Risikofaktoren und Erkrankungen ist die Beachtung des zeitlichen Verlaufs von großer Wichtigkeit. Daher ist unsere Studie als Langzeitstudie angelegt. Die Speicherung der Daten erfolgt mindestens 20 Jahre und soweit möglich auf unbegrenzte Zait

Sie können jederzeit Ihre Teilnahme schriftlich mit Wirkung für die Zukunft widerrufen, auch ohne Angabe von Gründen. Dann werden Name und Adresse aus der geschützten Personendatei gelöscht, ohne dass Ihnen dadurch Nachteile entstehen. Die bis zu diesem Zeitpunkt für wissenschaftliche Zwecke verwendeten pseudonymisierten Daten können nicht gelöscht werden.

Können Sie Ihre Daten für Ihre spätere medizinische Versorgung verwenden?

Grundsätzlich können Sie in Zukunft Rückfragen bzgl. der erhobenen Befunde an uns richten. Dafür ist es notwendig, dass die pseudonymisierten Daten entschlüsselt werden. Es besteht damit die Möglichkeit, dass Ihr behandelnder Arzt mit Ihrer Zustimmung auch nach vielen Jahren Ihre Befunde im Zusammenhang mit Ihrer Gesundheitsversorgung anfordern kann.

Supplementary Tables

Supplementary Table 1: Cohort level summaries of all taxa included in the mGWAS analysis, including feature label used in the analysis, taxonomic/clustering level, amplicon nucleotide sequence of the V1-V2 region of the 16S rRNA gene, presence in cohort (%), mean/median abundance in all individuals in the cohort; mean/median abundance of all individuals with the respective feature present.

Supplementary Table 2: The top 10,000 variants across all features from the univariate logistic regression analysis corrected for age, sex, BMI and 10 genetic PCs for presence/absence patterns of microbial features. All p-values are shown as raw uncorrected p-values derived from two-sided tests.

Supplementary Table 3: The top 10,000 variants across all features from the two-sided univariate linear regression analysis corrected for age, sex, BMI and 10 genetic PCs of residual abundance of microbial features. All p-values are shown as raw uncorrected p-values derived from two-sided tests.

Supplementary Table 4: The top 10,000 variants across all features from the non-parametric multivariate analysis of Bray-Curtis and 97%-identity OTU based weighted UniFrac distance. All p-values are shown as raw uncorrected p-values derived from two-sided tests.

Supplementary Table 5: Results of all univariate analyses connecting ABO hist-blood groups on microbial features using Hurdle models with negative binomial distributions of the non-zero counts. All p-values are shown as raw uncorrected p-values derived from two-sided tests.

Supplementary Table 6: Results of all Mendelian Randomization analyses of univariate traits. All SNPs with F-statistics > 10 and p<10-5 in the respective genome-wide association meta-analysis of presence/absence (LR) and abundance (NB) patterns (exposures) were used as instrument variables and tested for their effects on 41 binary traits (see Methods and Supplementary Material). Mean and minimum F-statistics of included instruments are reported. Tests used for MR (Method) were Wald ratio (WR) in case of a single instrument variable, and inverse-variance weighted (IVW) analysis in case of two and more instrument variables (#SNPs). All tests were performed two-sided. Effect sizes (Beta) and standard errors (SE) of the primary analyses are reported in the table.

Supplementary Table 7: Replication of results from previous host-microbiome GWAS analyses in the German Meta-analysis using logistic and linear regression (all test two-sided, p-values not corrected for multiple testing).

Supplementary Table 8: Results of the gene-set and tissue enrichment analysis using the FUMA web application. All p-values are derived from one-sided hypergeometric test for enrichment. Adjusted P-values are corrected for multiple testing.

Supplementary references

- 1. Steffens, M. *et al.* SNP-based Analysis of Genetic Substructure in the German Population. *Hum Hered.* **62**(1):20-9 (2006).
- 2. Wang, J. *et al.* Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. *Nat. Genet.* **48**, 1396–1406 (2016).
- 3. Turpin, W. *et al.* Association of host genome with intestinal microbial composition in a large healthy cohort. *Nat. Genet.* **48**, 1413–1417 (2016).
- Rühlemann, M. C. et al. Application of the distance-based F test in an mGWAS investigating β diversity of intestinal microbiota identifies variants in SLC9A8 (NHE8) and 3 other loci. Gut Microbes 9, 68–75 (2017).
- 5. Bonder, M. J. *et al.* The effect of host genetics on the gut microbiome. *Nat. Genet.* **48**, 1407–1412 (2016).