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SUMMARY
DNA replication during cell division leads to dilution of histone modifications and can thus affect chromatin-
mediated gene regulation, raising the question of how the cell-cycle shapes the histone modification land-
scape, particularly during embryogenesis. We tackled this problem by manipulating the cell cycle during
early Xenopus laevis embryogenesis and analyzing in vivo histone H4K20 methylation kinetics. The global
distribution of un-, mono-, di-, and tri-methylated histone H4K20 was measured by mass spectrometry in
normal and cell-cycle-arrested embryos over time. Using multi-start maximum likelihood optimization and
quantitativemodel selection, we found that three specific biologicalmethylation rate constantswere required
to explain the measured H4K20 methylation state kinetics. While demethylation is essential for regulating
H4K20 methylation kinetics in non-cycling cells, demethylation is very likely dispensable in rapidly dividing
cells of early embryos, suggesting that cell-cycle-mediated dilution of H4K20 methylation is an essential reg-
ulatory component for shaping its epigenetic landscape during early development.
A record of this paper’s transparent peer review process is included in the Supplemental Information.
INTRODUCTION

All cells in our body contain the samegenetic information encoded

in the DNA. However, we are constituted out of many different cell

types all performing their own specialized functions. Chromatin,

mainly composed of DNA and histone octamers (two copies of

histone H2A, H2B, H3, and H4 each), is an instructive DNA scaf-

fold that aids extracting cell-specific information for gene expres-

sion. Histone tails are subject to various post-translational modifi-

cations, such as methylation, acetylation, phosphorylation, and

ubiquitination (Bannister and Kouzarides, 2011), which play a

fundamental role in altering chromatin accessibility. Dynamic

regulation of gene expression is central for executing cell internal

programs (proliferation, differentiation, etc.) and reacting to cell

external signals with an appropriate response. Particularly during

development, where cells continuously divide and differentiate, a

fast and economical control of gene expression is required. His-

tone modifications are believed to regulate the progression

throughout development (Jambhekar et al., 2020). InXenopus lae-

vis, a model organism for developmental biology, stage-specific

histone modifications have been observed during the transit
Cell Systems 11, 653–662, Dece
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from pluripotent to differentiated states, a process called epige-

nome maturation (Schneider et al., 2011). However, cells divide

rapidly during early development. With each cell cycle newly

formed, largely unmodified histones are incorporated into the

DNA leading to an overall dilution of most histone modifications

(Jasencakova et al., 2010). How is the histone modification land-

scape shaped by the cell cycle in vivo?

Histone methylation is known to play important roles in many

biological processes (Greer and Shi, 2012), and its deregulation

is linked to cancer and aging in humans (Fraga et al., 2005; Klut-

stein et al., 2016). The methylation of lysine 20 on histone H4

(H4K20) is one of the most frequent lysine methylation sites

observed in HeLa cells, mouse embryonic fibroblasts and several

other cell types (Evertts et al., 2013; Leroy et al., 2013; Pesavento

et al., 2008; Schotta et al., 2008). It is evolutionarily conserved from

Schizosaccharomyces pombe to humans (Lachner et al., 2004)

and is known to have a strong cell-cycle dependence. H4K20 oc-

curs in four different states, un-, mono-, di-, and tri-methylation.

Each methylation state plays a different functional role ranging

from DNA-damage repair and chromatin condensation observed

in fission yeast Schizosaccharomyces pombe (Sanders et al.,
mber 16, 2020 ª 2020 The Authors. Published by Elsevier Inc. 653
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2004), over transcriptional regulation shown in human T cells (Bar-

ski et al., 2007) and Xenopus embryos (Nicetto et al., 2013),mitotic

progression found in Drosophila melanogaster (Sakaguchi and

Steward, 2007), to cell-cycle control (Schotta et al., 2008), and

silencing of repetitive DNA and transposons observed in mouse

models (Schottaetal., 2004) andXenopusembryos (vanKruijsber-

gen et al., 2017). H4K20me is regulated by three methyltrans-

ferases: KMT5A (also known as PR-Set7) for mono-methylation,

first identified in Drosophila (Fang et al., 2002; Nishioka et al.,

2002; Xiao et al., 2005), and SUV4-20H1 and SUV4-20H2 for

both di- and tri-methylation, first identified in mammalian cells

(Schotta et al., 2004). Whether there is a specificity of SUV4-

20H1/2 for di- or tri-methylation is still debated (Schotta et al.,

2008). The level of mono-methyltransferase KMT5A is cell-cycle

dependent, and its degradation in G1 phase leads to a decline of

H4K20me1 in lateG1asobserved inhumancell lines andXenopus

egg extracts (Abbas et al., 2010; Centore et al., 2010; Zee et al.,

2012). H4K20me1 reaches its lowest level in S phase while

increasing in G2 phase and peaking during mitosis. Both

H4K20me2 and H4K20me3 levels have also been found to be

cell-cycle dependent in HeLa cells though in a less dramatic

fashion (Pesavento et al., 2008). The cell-cycle-dependent pres-

ence of H4K20 methyltransferases allows H4K20me2 and

H4K20me3 tobe reestablishedonlyaftermitosis in thenextcell cy-

cle (Jørgensen et al., 2013). For demethylation, unspecific en-

zymes such as PHF8 have been observed in human cell lines

(Feng et al., 2010), but their functional importance has recently

been questioned (Alabert et al., 2020; Jørgensen et al., 2013; Re-

verón-Gómez et al., 2018). It has even been suggested that the

loss of histone mark H3K27me3 in mammalian cells may occur

only by dilution during chromatin replication rather than by active

removal (Jadhavetal., 2020). Finally, homologsofallH4K20-modi-

fying enzymes are present in the Xenopus genome (Bowes

et al., 2010).

To address the role of the cell cycle for epigenome maturation

in Xenopus development, we have measured histone modifica-

tion proportions in sibling embryo populations, which either pro-

liferate or are arrested at the G1/S transition. Using quantitative

mass spectrometry data for H4K20 we compared over 200

model hypotheses describing H4K20me kinetics in the cycling

and cell-cycle-arrested population. With only a few assump-

tions, our computational model is able to explain H4K20me ki-

netics, retrieves correct cell-cycle durations and known cell-cy-

cle dependencies of H4K20me. Furthermore, our approach

allows us to estimate cell numbers over time and reveals the

importance of three specific biological methylation rate con-

stants and a shared biological demethylation rate constant,

which is essential to establish the observed histone modification

profile in the cell-cycle arrested but not required in the cycling

population of Xenopus embryos.

RESULTS

Cell-Cycle Arrest Changes H4K20me Patterns during
Xenopus Embryogenesis
After in vitro fertilization of a Xenopus oocyte, cells rapidly divide in

a state of transcriptional quiescence up to 5.5 h post fertilization

(hpf) (Heasman, 2006). Only then a regular zygotic cell cycle con-

taining G1 and G2 phases is initiated (Newport and Kirschner,
654 Cell Systems 11, 653–662, December 16, 2020
1982). To identify how H4K20 methylation (H4K20me) is shaped

by cell-cycle, we compared a population of normal Xenopus em-

bryos (fromnowon called ‘‘mock’’) with a cell-cycle-arrested pop-

ulation. For this, half of the embryos were continuously incubated

with hydroxyurea/aphidicolin (from now on called ‘‘HUA’’) from

gastrulation onward (11 hpf). This treatment arrests cells at the

G1/S boundary and is compatible with embryonic development

(Harris and Hartenstein, 1991). HUA treatment applied before 11

hpf is lethal (Harris and Hartenstein, 1991; Pokrovsky et al.,

2020). Correct and robust establishment of the cell-cycle arrest

by HUA in the Xenopus embryos has been shown by Pokrovsky

et al. (2020). Mass spectrometry measurements of H4K20me

states, averaging over all cells in the embryos and all histones in

the cells, were conducted at 14.75, 19.75, 27.5, and 40 hpf corre-

sponding to late gastrula (NF13), neurula (NF18), tailbud (NF25),

and tadpole (NF32) stages, respectively (Figure 1A). H4K20me

proportions of mock and HUA showed significant differences

across three biological replicates in all four H4K20me states (Fig-

ure 1B). In HUA-treated embryos, methylation accumulates in

the di- and tri-methylation states in comparison to mock. Upon

DNA replication, newly synthesized and unmodified histones are

incorporated in mock, while in HUA, only little DNA replication

takes place and hence only little incorporation of newly synthe-

sized and unmodified histones occurs. All three biological repli-

cates result in highly reproducible H4K20me proportions across

all four developmental stages suggesting a high accuracy and

quality of the mass spectrometry measurements.

Specific Methylation Rate Constants Are Necessary to
Explain H4K20me in Mock Embryogenesis While
Demethylation Is Not Essential
To identify how H4K20me kinetics are shaped by cell cycle, we

defined models for untreated embryos (mock) and fitted them to

the data (see STAR Methods). Mock models are composed of

four H4K20me states corresponding to un- (me0), mono- (me1),

di- (me2), and tri-methylated (me3)H4K20, allowing for successive

methylation and demethylation with biological rate constants mi

and di, i ˛ {1,2,3}, respectively (see Figure 2A and STARMethods

for a detailed model description). For mock, where the cells un-

dergo cell division, newly synthesized and unmethylated histones

are incorporated into replicating DNA leading to a continuous dilu-

tion of methylated H4K20. Considering methylation proportions

(defined as the frequency of a particular methylation state divided

by the sum of all methylation states as measured by mass spec-

trometry), cell-cycle results in an overall increase of unmethylated

H4K20mediatedbyanoutflowofH4K20mestateswithpopulation

growth rateg(t) = ln(2)/c(t),wherec(t) is theaveragecell-cycledura-

tion c across all cells as a function of experiment time t (see Fig-

ure 2A and STAR Methods). Having measured average

H4K20me proportions across whole Xenopus embryos, our cell-

cycle function accordingly models average cell-cycle durations

acrossall cells constituting theXenopus embryos at the respective

developmental stages. By considering average H4K20me propor-

tions across asynchronous cell populations (Boterenbrood et al.,

1983), we assume H4K20me dilution to occur continuously. The

most general model is parameterized with six biological rate con-

stants,whereabiological rateconstant isdefinedas theproportion

ofH4K20 inaparticularmethylation statebeingmethylated/deme-

thylated per hour (h�1). Although no actual enzymatic rate
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Figure 1. H4K20 Methylation Kinetics during Xenopus Embryogenesis Are Altered upon HUA-Induced Cell-Cycle Arrest

(A) Xenopus eggs are fertilized in vitro at time point 0. For the next 5 hpf, the embryonic cell-cycle consists of S and M phases only. At 5.5 hpf, G1 and G2 phases

appear. At 11 hpf, half of the embryos are incubated with hydroxyurea/aphidicolin (HUA), arresting cells at the G1/S boundary. Mass spectrometrymeasurements

of H4K20 methylation (H4K20me) are performed at 14.75, 19.75, 27.5, and 40 hpf in embryos with dividing (mock) or non-dividing cells (HUA). HUA incubated

embryos are viable and visually remarkably similar to mock embryos (scale bar 1 mm).

(B) H4K20me kinetics differ significantly between mock (gray) and HUA treated (green) embryo populations (two-sample t test for all three biological replicates of

mock and HUA for each time point resulted in p values < 0.05 for 15 out of 16 time points). In HUAH4K20 un- andmono-methylation is decreased while H4K20 di-

and tri-methylation (see inset) is increased.
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constants are derived we will refer to the biological rate constants

as rate constants from here on. The most general model contains

three rate constants for methylationm1, m2, andm3 and three rate

constants for demethylation d1, d2, and d3 (Figure 2B, rightmost

model). However, we also considered models with less parame-

ters: rate constants shared between two or more reactions are

termed ‘‘shared methylation/demethylation rate constants’’ (Fig-

ure 2B, gray) and rate constants specific to one reaction are

termed ‘‘specific methylation/demethylation rate constants’’ (Fig-

ure 2B, colored). Intrigued by the question whether demethylation

is important for methylation kinetics at all (as its existence was

recentlychallengedat least for histoneH3 lysine27 tri-methylation;

Reverón-Gómez et al., 2018), we also considered 5 models

without demethylation. In total, the 30 models we consider

comprise between 1 and 6 rate constants (Figure 2B; STAR

Methods). In addition to the rate constants, we inferred another 4

model parameters: 3 initial H4K20me proportions at 5.5 hpf (de-

noted as me00, me10, me20, me30 with me00 = 1 � me10 �
me20 �me30), and one noise parameter s, determining the width

of the Laplacian noise distribution (STAR Methods). As we were

interested in H4K20me kinetics under the influence of the cell cy-

cle, we started our mockmodel at 5.5 hpf (Figure 1A), when a reg-

ular zygotic cell-cyclewithG1/G2 phases is initiated (Newport and

Kirschner, 1982). Since cell cycle hasbeenshown to vary substan-
tially with embryonic age, we considered 6 different cell-cycle

functions c(t) to model cell cycle over the experiment time t: con-

stant, linearly increasing, or gradually plateauing (using a scaled

Hill functionwithHill coefficient 1 and offset) (Figure 2C). The num-

ber of model parameters for the cell-cycle functions varied from 1

(for the constant cell-cycle function) to 3 parameters (for the grad-

ually plateauing cell-cycle function) (STAR Methods). We per-

formedmulti-startmaximum likelihoodoptimizationandmodel se-

lection on 180 models (30 models times 6 different cell-cycle

functions). Including prior biological knowledge about the short

cell-cycle at 5.5 hpf of ~30 min (Anderson et al., 2017; Gelens

et al., 2015), we found that only one of the six tested cell-cycle

functions was able to predict a biologically meaningful average

cell-cycle duration of around 8 h: a constrained scaledHill function

withHill coefficient1andoffset0.5, c(t) =0.5+b(t/(b+ t)) (TableS1).

All models with other cell-cycle functions estimated average cell-

cycle durations of at least 70 h. Using a constrained scaled Hill

function, we found 12 models that outperformed other models

with a BIC (Bayesian information criterion) difference of DBIC >

10, which is considered to be an appropriate threshold for model

rejection (Kass and Raftery, 1995) (Figure 2D). The two best

models (with DBIC = 0) show specificity in tri-methylation and

shared rate constants for mono- and di-methylation. Overall, the

best models with and without demethylation showed specificity
Cell Systems 11, 653–662, December 16, 2020 655
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in either all three methylation rate constants or only in the tri-

methylation rate constant. Varying numbers of demethylation

rate constants were possible, ranging from 0 to 3. Fits to these

12 top models were able to capture the kinetics underlying

H4K20me during mock embryogenesis (Figure 2E). Together, we

found that either three specific methylation rate constants or one

specific tri-methylation rate constant were necessary to explain

the data from untreated embryos and that active demethylation

was not required.

Validation of Mock Model by Comparing Cell-Cycle
Durations to Experimental Data
We validated one of the best-performing models by comparing it

to the average cell-cycle durations experimentally measured in

Xenopus neural progenitors at various developmental stages

(Graham and Morgan, 1966; Sabherwal et al., 2014; Thuret

et al., 2015). We are aware that this comparison is drawn between

the average cell-cycle durations of heterogeneous cell popula-

tions of Xenopus embryos and potentially more homogeneous

cell populations of neural progenitors. However, to the best of

our knowledge, this is the only available data onaverage cell-cycle

durations during early Xenopus embryogenesis, which we could

use for comparison. The cell-cycle durations from themockmodel

with three specific methylation rate constants but no demethyla-

tion (Figure 2F, inset) showed good agreement with measured

cell-cycle durations (Figure 2F). Using thismodel,we can also pre-

dict the absolute number of cells within a normally developing em-

bryo, which is experimentally challenging. For the same model

(Figure 2G, inset), the number of cells was predicted to rise expo-

nentially from roughly 20,000 cells after 10 h to 300,000 cells after

40 h (Figure 2G and STAR Methods). Similar results are obtained

for the other best-performing mock models. Additionally, we pre-

dicted the effect of morpholino knockdowns of the di- and tri-

methyltransferases SUV4-20H1/2 (KD) on H4K20me kinetics

with the samemodel (Figure 2H).We found that a complete reduc-
Figure 2. Demethylation Is Not Necessary to Explain Data of Cycling M

(A) Model of cycling mock population composed of four H4K20 states: un- (me0),

mono-, di-, and tri-methylation rate constants and d1, d2, and d3 represent the dem

division, parametrized with population growth rate g(t), which is dependent on th

(B) All possible parameter combinations result in 5 models without demethylatio

methylation or demethylation step are indicated in color, rate constants shared b

rate constants ranges between 1 for the simplest model with no demethylation an

each methylation and demethylation rate constant is specific.

(C) Only a constrained scaled Hill function with Hill coefficient 1 and offset 0.5 giv

black box). All other cell-cycle functions c(t) predicted average cell-cycle durations

non-cycling cells.

(D) The 12 best-performing models are ordered by increasing BIC. All models with

m3) or a specific tri-methylation rate constant. However, if present, demethylati

performing models without demethylation perform similarly well as the best-perfo

cycle duration <c(t)> is in a biologically realistic range of around 8 h.

(E) All 12 best-performing models fit the data. The model with three specific met

(F) Model prediction of the cell-cycle duration (median, 25th and 75th percentiles

methylation rate constants but with no demethylation (inset)) agrees with experim

(G) The model with three specific methylation rate constants but with no demethyl

10 h to 300,000 cells after 40 h (using the median, 25th and 75th percentiles of th

methylation rate constants but with no demethylation (inset)) in a developing Xen

(H) Themodel with three specificmethylation rate constants but with no demethyla

the di- and tri-methyltransferases SUV4-20H1/2 (KD) assuming a reduction to 10%

H4K20me kinetics predictions corresponding to 0%, 5%, and 15% of the original

100% of the original di-and tri-methylation rate constants.

See also Table S1.
tion of the di- and tri-methylation rate constants did not match the

data perfectly. However, under the assumption that either the

knockdown efficacy is not 100%or that there exist other enzymes

performing di- and/or tri-methylation leading to a leaky reduction

of the original di- and tri-methylation rate constants to 10%, the

model is able to capture the perturbation.

SpecificMethylation Rate Constants and Demethylation
Are Necessary to Model H4K20me in HUA
Embryogenesis
In contrast tomock,methylatedH4K20 is not diluted in the cell-cy-

cle-arrested HUA embryo population. We thusmodeled HUAwith

the same set of reactions, however, without a cell-cycle function

g(t) = 0 (Figure 3A). Similarly, to the mock model we performed

multi-start maximum likelihood optimization and model selection

on 30 HUA models with and without demethylation. We found

that the five best-performing models (with DBIC < 10) all required

three specific methylation rate constants and demethylation (Fig-

ure 3B). The number of demethylation rate constants varied be-

tween 0 and 3 (Figure 3B). The single best-performing HUAmodel

without demethylation (rightmost model in Figure 3B) was sub-

stantially outperformed by the HUA models with demethylation

(DBIC = 13), suggesting that demethylation was essential to

explain the HUA data. The model fits of the five best HUA models

were able to capture the kinetics underlyingH4K20meduringHUA

embryogenesis (Figure 3C). Together, we found that three specific

methylation rate constants were necessary to explain the HUA

data and that demethylation was essential.

Joint Model Is Able to Retrieve Cell-Cycle Dependence
of H4K20me and Finds Demethylation to Be Essential in
HUA but Not Necessary in Mock
Themodels performing best inmock andHUA required three spe-

cific methylation rate constants and were indecisive about deme-

thylation ranging from no demethylation over one shared to three
ock Cells

mono- (me1), di- (me2), and tri-methylation (me3). m1, m2, andm3 represent the

ethylation rate constants. An overall dilution of methylation happens due to cell

e cell-cycle function c(t).

n and 25 models with demethylation. Rate constants specific to a particular

etween methylation or demethylation steps are shown in gray. The number of

d shared methylation rate constant and 6 for the most complex model, where

es an average cell-cycle duration in the expected range of 8 h (marked by the

of at least 70 h, which is biologically notmeaningful and reflects a population of

DBIC < 10 require either three specific methylation rate constants (m1, m2, and

on may take on any of the 5 possible rate constant combinations. The best-

rming models with demethylation (DBIC = 0 and 1). The estimated average cell-

hylation rate constants but with no demethylation is shown in black.

of MCMC samples of the cell-cycle parameter of the model with three specific

ental measurements of different papers.

ation (inset) predicts an increase of cell numbers from roughly 20,000 cells after

e MCMC samples of the cell-cycle parameter of the model with three specific

opus embryo.

tion is able to predict the effects onH4K20me uponmorpholino knockdowns of

of the original di- and tri-methylation rate constants. The dotted lines are the

di- and tri-methylation rate constants. The solid line shows the previous fit with

Cell Systems 11, 653–662, December 16, 2020 657
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Figure 3. Demethylation Is Essential to Explain Data of Cell-Cycle-Arrested HUA Cells

(A) Model of cell-cycle-arrested HUA population. In contrast to the mock model (Figure 2A), the HUA cells do not divide ( g(t) = 0), and no dilution of methylated

H4K20 is required.

(B) The 5 best-performing HUA models with DBIC < 10 all require 3 specific methylation rate constants (m1, m2, and m3) and demethylation. However, de-

methylation may take on any of the 5 possible rate constant combinations. The single best-performing HUA model without demethylation (right) is outperformed

by the HUA models with demethylation (DBIC = 13).

(C) Model fits of top 5 HUA models with demethylation overlap strongly and show the ability to explain the HUA data. The best-performing model is highlighted

in black.

See also Table S1.
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specific demethylation rate constants (Figures 2D and 3B). To

determine which rates are substantially different between the

two Xenopus populations we considered these findings and

devised a joint model considering mock and HUA data simulta-

neously. For the most general hypothesis (Figure 4A), we allowed

for threemock-and threeHUA-specificmethylation rateconstants

(visualized bya half gray and half green dot form1,m2, orm3 in Fig-

ure 4B). We also allowed for joint methylation rate constants

sharedbetween specificmockandHUAmethylation steps (visual-

ized as an orange dot for m1, m2, or m3 in Figure 4B) reducing the

number of parameters. As demethylation was not necessary to

explain themockdataandonedemethylation rateconstantshared

between methylation steps was sufficient for HUA, we here

restricted demethylation to the simplest case of at most one

shared demethylation rate constant dmock and dHUA (Figure 4A).

We allowed for mock- and HUA-specific demethylation rate con-

stants (visualizedagainbyahalf grayandhalf greendot ford inFig-

ure 4B) or a joint demethylation rate constant for mock and HUA

(visualized as an orange dot for d in Figure 4B). Furthermore, as

a constrained scaled Hill function with Hill coefficient 1 and offset

0.5was theonly function that led tobiologicallymeaningful cell-cy-

cle durations (see above and Figures 2C and 2F), we did not

consider different cell-cycle functions thereby reducing the set of

possiblemodels to8 jointmodelswithoutdemethylation (Figure4B

left), 16 jointmodelswith demethylation and 23 8modelswith de-

methylation in eithermockorHUA (Figure4B right). To identify joint

models that are able to explain our measured data, we again fitted
658 Cell Systems 11, 653–662, December 16, 2020
themodels usingmulti-start maximum likelihood optimization and

model selection.

All 6 best-performing joint models (DBIC < 10) required mock-

and HUA-specific mono- and di-methylation rate constants (Fig-

ure 4C). However, theywere not conclusive about tri-methylation

and, if present, demethylation rate constants (Figure 4C). Spec-

ificity in one ormore rate constants highlights that the differences

in H4K20me proportions of mock and HUA are not explicable by

the missing cell cycle alone but that the overall H4K20me ki-

netics are cell-cycle dependent. The model structure of the

best-performing joint model (model I) is shown in Figure 4D. Joint

models with demethylation in HUA only (models I and V in Fig-

ure 4C) performed just as well as joint models with demethylation

in both HUA andmock (models II, III, IV, and VI in Figure 4C) while

joint models without demethylation (DBIC = 17 and 20) and joint

models with demethylation inmock only (DBIC = 21 and 26) were

substantially outperformed. This suggested that demethylation

was essential for HUA only, in accordance with the results

from the separate models (Figures 2D and 3B).

The top 6 joint models (models I–VI in Figure 4C) showed good

overall agreement with mock and HUA data (Figure 4E) and

strongly consistent rate constants (Figure 4F). We determined

the marginal distributions for all rate constants by Markov chain

Monte Carlo (MCMC) sampling, where the credibility ranges are

the 25th and 75th percentiles of the marginal distributions (see

STAR Methods). We found strong discrepancies between mono-

and di-methylation rate constants for mock and HUA, decreasing



A

B

C D

E

F

(legend on next page)

ll
OPEN ACCESSReport

Cell Systems 11, 653–662, December 16, 2020 659



ll
OPEN ACCESS Report
10-fold and 2-fold, respectively (Figure 4F). The mock-specific

mono- and di-methylation rate constants of the top 6 joint models

had overlapping credibility ranges suggesting that for mock, a

shared rate constant for mono- and di-methylation would suffice

(Figure 4F). Similarly, mock- and HUA-specific tri-methylation

rate constants show overlapping credibility ranges suggesting

that a joint tri-methylation rate constant would suffice. In joint

models with demethylation (models III and VI) we found the

mock-specific demethylation rate constants to take on very small

values while the HUA-specific demethylation rate constants were

small but substantially larger: for model VI the median mock-spe-

cific demethylation rate constant was estimated to be 2.0 10�4

(with 0.5–8.3 10�4 credibility range), while theHUA-specificdeme-

thylation rate constantwas estimated tobe5.9 10�3 (4.9–7.0 10�3)

(Figure 4F).

DISCUSSION

The joint demethylation rate constants (in models II and IV) were

estimated to similar values as HUA-specific demethylation rate

constants (the joint demethylation rate constant for model II and

the HUA-specific demethylation rate constant for model VI were

both estimated to be 5.9 10�3 [4.9–7.0 10�3]). This suggests

that joint demethylation rate constants are overshadowed by the

HUA model, strengthening the hypothesis that demethylation is

not necessary in mock but essential in HUA. We would like to

note that we here consider bulk H4K20me mass spectrometry

data. However, demethylation might act highly localized and spe-

cific on only a few promoter nucleosomes with very important

functions. Biologically, this could mean that while demethylases

are present during embryogenesis, their effect in cycling cells is

minute due to an overall dilution by unmodified histones. Only

when cells stop to cycle (as modeled with the HUA treatment in

our approach) demethylation kicks in and stabilizes post-transla-

tional modifications specifically, thereby potentially driving differ-

entiation. To verify this experimentally, a knockdown of the H4K20

demethylases in HUA-treated embryos would be required where

we hypothesize severe phenotypes due to the cell’s incapability

of reversing methylation. In contrast, such a knockdown should

show little to no effect in untreated embryos aswe hypothesize lit-

tle to no active demethylation here. However, known H4K20 de-
Figure 4. Joint Computational Modeling Allows Direct Comparisons be

tion Is Overshadowed by HUA

(A) Joint model allows for three methylation and one demethylation rate constants

(B) We fit 16 models with demethylation and 8 models each for without demethyla

constants. The joint rate constants of mock and HUA are shown in orange, the rate

HUA-specific values are indicated in gray/green, the rate constants only present in

The model structure of the most complex of models is shown in (A). The number

(C) The best-performing models on the combined dataset are ordered according

rate constants but are indecisive about tri- methylation and demethylation. Joint m

HUA perform equally well. Joint models where demethylation is not present in eithe

all considerably best-performing models are given (I–VI).

(D) Model structure of the simplest best-performing joint model with demethylati

(E) All best-performing joint models are able to explain both the mock and HUA d

highlighted.

(F) The violin plots of the marginal distributions of all best-performing joint models

rate constants. HUA-specific mono- and di-methylation rate constants are consid

strongly overlapping marginal distributions. Demethylation seems to be dominat

specific demethylation rate is allowed.

See also Table S1.
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methyltransferases e.g., PHF8, ROSBIN, and PHF2 are not spe-

cific to H4K20, and no global inhibitors of H4K20 demethylation

are yet known. Hence, an experimental validation of our model

predictions is currently not feasible due to technical limitations

and therefore beyond the scope of this work.

Our findings can be interpreted in light of the current knowledge

on methyltransferases. Themono-methyltransferase KMT5A (also

known as PR-Set7) was found to be cell-cycle dependent, getting

degradedby the proteasome inG1phase (Abbas et al., 2010;Cen-

tore et al., 2010). In the absence of KMT5A, mono-methylation

might be compensated by SUV4-20H1/2 but with lower activity

(Southall et al., 2014; Yang et al., 2008). HUA treatment blocks

the cell-cycle at the G1/S boundary, suggesting that none to little

KMT5A is present in HUA to mono-methylate H4K20. This is re-

flected by a 10-fold decrease in the HUA-specific mono-methyl-

ation rate constant in all best-performing joint models (Figure 4F).

AsHUA-specificmono-methylation rateconstantswerenecessary

to explain thedata (seeFigure4C), the jointmodel is able to retrieve

this knowncell-cycle dependence ofH4K20me.H4K20me2 is also

regulated in a cell-cycle dependent manner, however, peaking in

G1 phase (Pesavento et al., 2008). In contrast, all best-performing

joint models estimate the HUA-specific di-methylation rate con-

stants to be decreased 2-fold in comparison to the mock-specific

di-methylation (Figure 4F). We hypothesize this unexpected

decrease of HUA-specific di-methylation to be due to either

compensatory effects of SUV4-20H1/2, when the enzymes addi-

tionally mono-methylate H4K20, or so far unknown effects.

The separate model for mock identified either only tri-methyl-

ation or all three methylation steps to be specific (Figure 2D). The

joint model reflects the same specificities regarding methylation

in mock. Even though the joint model allows for specificity in all

three methylation steps, the credibility ranges of mock-specific

mono- and di-methylation rate constants in the joint models over-

lap (Figure 4F left). This suggests that a shared rate constant for

mock mono- and di-methylation would suffice resulting in a

mock model with specificity in tri-methylation only. However, in

the joint models the HUA-specific mono- and di-methylation rate

constants have non-overlapping credibility ranges with respect

to the mock-specific rate constants (10-fold and 2-fold decrease)

nor to each other. Under the assumption that the mock and HUA

models are based on the samemodel structure, allowing for three
tween Mock and HUA Rate Constants and Reveals that Demethyla-

for both mock and HUA as suggested by the best models for mock and HUA.

tion in mock and/or HUA to the joint data to infer mock- and HUA-specific rate

constants present in both the mock and HUAmodels but taking onmock- and

themock or HUAmodel are shown in gray and green half-circles, respectively.

of rate constants ranges between 3 and 8.

to their BIC value. All models require HUA-specific mono- and di-methylation

odels where demethylation is present in either only HUA or in both mock and

r only HUA or in bothmock andHUA perform considerably worse. Model IDs of

on in only HUA (model I).

ata. The estimated initial conditions vary between the models. Joint model I is

show high consistency between the estimated methylation and demethylation

erably decreased. Tri-methylation rate constants betweenmock and HUA have

ed by the HUA population and is negligible in the mock population if a mock-
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specific methylation rate constants in the joint model was thus

necessary (Figure 4F) to resolve these differences.

All three joint models with specificity in tri-methylation (models

IV, V, and VI) result in slightly lower BIC values (Figure 4C), which is

likely due to an increased penalization term for an additional esti-

mated parameter and not due to a decreased likelihood. The esti-

mated tri-methylation rate constants are small (on the order of

10�3) and the credibility ranges for mock- and HUA-specific tri-

methylation overlap in all three joint models suggesting that a joint

tri-methylation rate constant would suffice. When we interpret dif-

ferences in HUA and mock rates as indications for cell-cycle

dependent rates, we find no evidence for cell-cycle dependence

for H4K20 tri-methylation. To clarify if the corresponding enzymes

are indeed homogeneously expressed is up to further research.
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Hass, H., Loos, C., Raimúndez-Álvarez, E., Timmer, J., Hasenauer, J., and

Kreutz, C. (2019). Benchmark problems for dynamic modeling of intracellular

processes. Bioinformatics 35, 3073–3082.

Heasman, J. (2006). Patterning the early Xenopus embryo. Development 133,

1205–1217.

Jadhav, U., Manieri, E., Nalapareddy, K., Madha, S., Chakrabarti, S.,

Wucherpfennig, K., Barefoot, M., and Shivdasani, R.A. (2020). Replicational

dilution of H3K27me3 in mammalian cells and the role of poised promoters.

Mol. Cell 78, 141–151.e5.

Jambhekar, A., Dhall, A., and Shi, Y. (2020). Author Correction: roles and regu-

lation of histone methylation in animal development. Nat. Rev. Mol. Cell Biol.

21, 59.

Jasencakova, Z., Scharf, A.N.D., Ask, K., Corpet, A., Imhof, A., Almouzni, G.,

and Groth, A. (2010). Replication stress interferes with histone recycling and

predeposition marking of new histones. Mol. Cell 37, 736–743.

Jørgensen, S., Schotta, G., and Sørensen, C.S. (2013). Histone H4 lysine 20

methylation: key player in epigenetic regulation of genomic integrity. Nucleic

Acids Res 41, 2797–2806.

Kass, R.E., and Raftery, A.E. (1995). Bayes factors. J. Am. Stat. Assoc. 90,

773–795.

Klutstein, M., Nejman, D., Greenfield, R., and Cedar, H. (2016). DNA methyl-

ation in cancer and aging. Cancer Res. 76, 3446–3450.

Lachner, M., Sengupta, R., Schotta, G., and Jenuwein, T. (2004). Trilogies of

histone lysine methylation as epigenetic landmarks of the eukaryotic genome.

Cold Spring Harbor Symp. Quant. Biol. 69, 209–218.

Leroy, G., Dimaggio, P.A., Chan, E.Y., Zee, B.M., Blanco, M.A., Bryant, B.,

Flaniken, I.Z., Liu, S., Kang, Y., Trojer, P., and Garcia, B.A. (2013). A quantita-

tive atlas of histone modification signatures from human cancer cells.

Epigenet. Chromatin 6, 20.

Liebler, D.C., and Zimmerman, L.J. (2013). Targeted Quantitation of Proteins

by Mass Spectrometry. Biochemistry 52, 3797–3806.

MacLean, B., Tomazela, D.M., Shulman, N., Chambers, M., Finney, G.L.,

Frewen, B., Kern, R., Tabb, D.L., Liebler, D.C., and MacCoss, M.J. (2010).

Skyline: an open source document editor for creating and analyzing targeted

proteomics experiments. Bioinformatics 26, 966–968.

Maier, C., Loos, C., and Hasenauer, J. (2017). Robust parameter estimation for

dynamical systems from outlier-corrupted data. Bioinformatics 33, 718–725.

Newport, J., and Kirschner, M. (1982). A major developmental transition in

early Xenopus embryos: I. characterization and timing of cellular changes at

the midblastula stage. Cell 30, 675–686.

Nicetto, D., Hahn, M., Jung, J., Schneider, T.D., Straub, T., David, R., Schotta,

G., and Rupp, R.A.W. (2013). Suv4-20h histone methyltransferases promote

neuroectodermal differentiation by silencing the pluripotency-associated

Oct-25 gene. PLoS Genet. 9, e1003188.

Nishioka, K., Rice, J.C., Sarma, K., Erdjument-Bromage, H., Werner, J., Wang,

Y., Chuikov, S., Valenzuela, P., Tempst, P., Steward, R., et al. (2002). PR-Set7

is a nucleosome-specific methyltransferase that modifies lysine 20 of histone

H4 and is associated with silent chromatin. Mol. Cell 9, 1201–1213.

Pesavento, J.J., Yang, H., Kelleher, N.L., and Mizzen, C.A. (2008). Certain and

progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol.

Cell. Biol. 28, 468–486.

Pokrovsky, D., Forne, I., Straub, T., Imhof, A., and Rupp, R. (2020). Mitotic ac-

tivity shapes stage-specific histone modification profiles during Xenopus

embryogenesis. bioRxiv https://www.biorxiv.org/content/10.1101/2020.08.

04.200550v1?rss=1.
662 Cell Systems 11, 653–662, December 16, 2020
Rappsilber, J., Mann, M., and Ishihama, Y. (2007). Protocol for micro-purifica-

tion, enrichment, pre-fractionation and storage of peptides for proteomics us-

ing StageTips. Nat. Protoc. 2, 1896–1906.
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Marr (carsten.marr@helmholtz-muenchen.de).

Materials Availability
This study did not generate new materials.

Data and Code Availability
d H4K20 methylation proportions have been deposited at https://github.com/marrlab/HistonesXenopus and are publicly avail-

able at https://doi.org/10.5281/zenodo.4046502.

d Original MATLAB code is publicly available at https://github.com/marrlab/HistonesXenopus and https://doi.org/10.5281/

zenodo.4046502.

d The scripts used to generate the figures reported in this paper are available at https://github.com/marrlab/HistonesXenopus

and https://doi.org/10.5281/zenodo.4046502.

d Any additional information required to reproduce this work is available from the Lead Contact.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal work has been conducted in accordancewith Deutsches Tierschutzgesetz; Xenopus experiments were approved by theGov-

ernment of Oberbayern.

Embryos Handling and HUA Treatment
Xenopus laevis eggs were collected, in vitro fertilized and handled by standard methods (Sive et al., 2000). The staging was done

according to Nieukoop and Faber (Faber andNieuwkoop, 1994).When embryos reached the desired stage (NF10.5), they were sepa-

rated into two groups and incubated continuously into either HUA or mock solutions in parallel. HUA solution: 20mM Hydroxyurea

(USBiological, H9120) and 150mM Aphidicolin (BioViotica, BVT-0307) in 0.1x MBS solution (Harris and Hartenstein, 1991). Mock so-

lution: 2% DMSO (dissolvent for Aphidicolin) in 0.1x MBS solution. The embryos were collected at the four developmental stages

(NF13, NF18, NF25 and NF32) for the mass spectrometry analysis.

Nuclear Histone Extraction
Around 50 to 200 embryos developed to desired stages (NF13, NF18, NF25 NF32). They were harvested and histone proteins were

purified by acid extraction from nuclei (Pokrovsky et al., 2020; Schneider et al., 2011). Each developmental stage is represented by

three biological replicates. Each biological replicate derived from a different mating pair.

Mass Spectrometry Sample Preparation
The pellet from the nuclear histone extraction was dissolved in an appropriate amount of L€ammli Buffer to reach 1.37 106 nuclei/ml in

each sample. 15mL were loaded on an 8-16% gradient SDS-PAGE gel (SERVA Lot V140115-1) and stained with Coomassie Blue to
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visualize the histone bands. Histone bands were excised and propionylated (as described in (Villar-Garea et al., 2012)). As an internal

and inter-sample control, a library consisting of heavy-labelled peptides mimicking H4K20 methylation states which contain a heavy

Arginine (R10 peptides) was used (product of JPT company). R10 peptides weremixed in the library with the equimolar concentration

and the mix was added to each analyzed sample before in-gel trypsin digestion. Digested peptides were sequentially desalted using

C18 Stagetips (3M Empore) and porous carbon material (TipTop Carbon, Glygen) as described in (Rappsilber et al., 2007) and resus-

pended in 15ml of 0.1% FA.

Mass Spectrometry Analysis
To identify and measure the proportion of the histone modifications a parallel reaction monitoring method (PRM) was used

(Liebler and Zimmerman, 2013). The mass spectrometer was operated in the scheduled PRM mode to identify and quantify

specific fragment ions of N-terminal peptides histone proteins. In this mode, the mass spectrometer automatically switched

between one survey scan and 9 MS/MS acquisitions of the m/z values described in the inclusion list containing the precur-

sor ions, modifications and fragmentation conditions. Survey full scan MS spectra (from m/z 270–730) were acquired with

resolution 60,000 at m/z 400 (AGC target of 3x10^6). PRM spectra were acquired with resolution 30,000 to a target value of

2 105, maximum IT 60 ms, isolation window 0.7 m/z and fragmented at 27% or 30% normalized collision energy. Typical

mass spectrometric conditions were: spray voltage, 1.5 kV; no sheath and auxiliary gas flow; heated capillary tempera-

ture, 250�C.

Histone Modifications Quantification
Data analysis was performed with Skyline (version 3.7) (MacLean et al., 2010) by using doubly and triply charged peptide masses for

extracted ion chromatograms (XICs). Selection of respective peaks was identified based on the retention time and fragmentation

spectra of the spiked in heavy-labelled peptides. Integrated peak values (Total Area MS1) were exported as csv file for further cal-

culations. Total area MS1 from endogenous peptides was normalized to the respective area of heavy-labelled peptides. The sum of

all normalized total area MS1 values of the same isotopically modified peptide in one sample resembled the amount of total peptide.

The proportions of the different K20 methylation states were calculated and displayed as percentages of the overall K20 peptide

amount.

METHOD DETAILS

Models
HUA and Mock Models

We consider the proportions of un- (me0), mono- (me1), di- (me2) and tri-methylated (me3) H4K20 within a Xenopus embryo popu-

lation, defined as

meX =
meXMSP3
i = 0meiMS

;

where meXMS is the H4K20 methylation as measured by mass spectrometry and X ˛ {0,1,2,3}. We assume successive methylation

and demethylation of H4K20 (van Nuland and Gozani, 2016) resulting in three possible methylation rate constants for mono-, di-, and

tri-methylation with rate constants m1, m2, m3, respectively, and three possible demethylation rates with rate constants d1, d2, d3

(Figures 2A and 3A). However, reactions might share rate constants. The simplest model (Figure 2B left) comprises one shared

methylation rate constant for mono-, di- and tri-methylation We successively added model-specific rate constants to this simplest

model (Figure 2B). Models allowing for two specific methylation rate constants are identical to a model allowing for three specific

methylation rate constants. Hence, we do not consider models with two specific methylation rate constants separately. This results

in 23-3 = 5 models for methylation - three methylation rate constants with either a shared or specific rate constant minus the three

cases where we assume only two of the three rate constants to be specific. We have the same for demethylation resulting overall in

(23-3) 3 (23-3) = 25 possible HUA models.

Joint Models

The joint model considers both mock and HUA data sets. We based the joint model on our previous findings assuming three specific

methylation rate constants and at most one demethylation rate constant for both mock (Figure 2D) and HUA (Figure 3B) as well as a

scaled Hill function with Hill coefficient 1 and offset 0.5 as cell-cycle function. In general, the joint model would allow for (23-3)4 = 625

distinct models. By constraining both the HUA andmockmodel to allow for three methylation and one demethylation rate constants,

we are able to reduce the number of possible models to 16. The simplest joint model is comprised of 3 rate constants which are

shared for mock and the HUA reactions (Figure 4B left). We successively added model complexity by allowing for HUA-specific

rate constants, totaling to 16 models for the joint model with demethylation in mock and HUA and 8 models for the joint model

with demethylation present in either one or none (Figure 4B).

For all models we describe the temporal changes in these proportions by systems of ordinary differential equations (ODEs) using

mass action kinetics (see below).
e2 Cell Systems 11, 653–662.e1–e8, December 16, 2020
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HUA Model

We first derive the system of ODEs for the absolute numbers of H4K20me states, given by mẽ0, mẽ1, mẽ2, and mẽ3, for the model

with the largest number of rate constants (Figure 3A):

m _ee0= �m1 3mee0+d1 3mee1
m _ee1= m1 3mee0� ðm2 +d1Þ3mee1+d2 3mee2
m _ee2= m2 3mee1� ðm3 +d2Þ3mee2+d3 3mee3
m _ee3= m3 3mee2� d3 3mee3

_N= 0;

where N is the total number of histone tails. As the HUA model assumes no cell-cycle, the number of histones over time is constant

and its derivative is zero. The proportions me0, me1, me2 and me3 are given by meX = m~eX
N , for X ˛ {0, 1, 2, 3} (Alabert et al., 2020)

and the corresponding ODEs are given by

_meX =
_~meX

N
�

~meX3 _N

N2

simplifying to

_meX =
_~meX

N

in the HUA model. The full ODE system for the proportions is given by

_me0= �m1 3me0+d1 3me1
_me1= m1 3me0� ðm2 +d1Þ3me1+d2 3me2
_me2= m2 3me1� ðm3 +d2Þ3me2+d3 3me3
_me3= m3 3me2� d3 3me3
_N= 0:

Mock Model - Constant Cell-Cycle Duration

According to the HUAmodel, we first formulate the ODE system of the absolute numbers of methylation states, mẽ0, mẽ1, mẽ2, and
mẽ3. During DNA replication newly synthesized and unmodified histones are incorporated, leading to a constant increase in unme-

thylated H4K20 with a population growth rate g(t)=ln(2)/c(t), where c(t) is the cell-cycle function that allows cell-cycle durations to

change with time. In the simplest case, we assume the cell-cycle duration to be constant over time, denoted by a:

cðtÞ = a:

Then the full ODE system of the absolute numbers of methylation states is given by

m _ee0= �m1 3mee0+d1 3mee1+ lnð2Þ
a

3 ðmee0+mee1+mee2+mee3Þ
m _ee1= m1 3mee0� ðm2 +d1Þ3mee1+d2 3mee2
m _ee2= m2 3mee1� ðm3 +d2Þ3mee2+d3 3mee3
m _ee3= m3 3mee2� d3 3mee3

_N=
lnð2Þ
a

3N;

where N is the total number of histone tails, NðtÞ= N03e
lnð2Þ
a 3t and Nðt0Þ= N0 the number of histone tails at the beginning of the

model. Then the ODE system of the methylation proportions is given by
Cell Systems 11, 653–662.e1–e8, December 16, 2020 e3
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_me0=
�m1 3mee0+d1 3mee1+ lnð2Þ

a
3 ðmee0+mee1+mee2+mee3Þ

N
�
mee03 lnð2Þ

a
3N

N2

= �m1 3me0+d1 3me1+
lnð2Þ
a

3 ðme0+me1+me2+me3Þ �me03
lnð2Þ
a

= �m1 3me0+d1 3me1+
lnð2Þ
a

3 ðme1+me2+me3Þ

_me1= m1 3me0�
�
m2 +d1 +

lnð2Þ
a

�
3me1+d2 3me2

_me2= m2 3me1�
�
m3 +d2 +

lnð2Þ
a

�
3me2+d3 3me3

_me3= m3 3me2�
�
d3 +

lnð2Þ
a

�
3me3

_N=
lnð2Þ
a

3N;

leading to a constant increase of the unmethylated H4K20 proportion and a constant decrease of the methylated H4K20me

proportions.

Mock Model - Linearly Increasing Cell-Cycle

In the case of a linear cell-cycle function

cðtÞ = a+b3 t

we first derive the ODE system for the absolute numbers of H4K20 methylation mẽ0, mẽ1, mẽ2, and mẽ3:

m _ee0= �m1 3mee0+d1 3mee1+ lnð2Þ
a+b3 t

3 ðmee0+mee1+mee2+mee3Þ
m _ee1= m1 3mee0� ðm2 +d1Þ3mee1+d2 3mee2
m _ee2= m2 3mee1� ðm3 +d2Þ3mee2+d3 3mee3
m _ee3= m3 3mee2� d3 3mee3

_N=
lnð2Þ

a+b3 t
3N;

with N the total number of histone tails. Accordingly, the relative H4K20me proportions me0, me1, me2 and me3 are given by

meX = m~eX
N , for X ˛ {0, 1, 2, 3} (Alabert et al., 2020) and the corresponding ODEs are given by the chain rule:

_meX =
_~meX

N
�

~meX3 _N

N2
:

When plugging in the equations for the absolute H4K20 methylation states into the above equation, we receive the following ODE

system for the proportional H4K20 methylation states:

_me0=
�m1 3mee0+d1 3mee1+ lnð2Þ

a+b3 t
3 ðmee0+mee1+mee2+mee3Þ

N
�
mee03 lnð2Þ

a+b3 t
3N

N2

= �m1 3me0+d1 3me1+
lnð2Þ

a+b3 t
3 ðme0+me1+me2+me3Þ �me03

lnð2Þ
a+b3 t

= �m1 3me0+d1 3me1+
lnð2Þ

a+b3 t
3 ðme1+me2+me3Þ

_me1= m1 3me0�
�
m2 +d1 +

lnð2Þ
a+b3 t

�
3me1+d2 3me2
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_me2= m2 3me1�
�
m3 +d2 +

lnð2Þ
a+b3 t

�
3me2+d3 3me3

_me3= m3 3me2�
�
d3 +

lnð2Þ
a+b3 t

�
3me3

_N=
lnð2Þ

a+b3 t
3N:

To constrain the system to biologically meaningful cell-cycle durations we included prior knowledge from literature: at 5.5 hpf the

cell-cycle in Xenopus has been found to be ~0.5 h (Heasman, 2006). Hence, we assumed a second linearly increasing cell-cycle

function

cðtÞ = 0:5+b3 t:

Mock Model - Scaled Hill function

Similarly, we derive the ODE system of the methylation proportions me0, me1, me2 and me3 for the cell-cycle function cðtÞ = a+

b3 t
h+ t, a scaled Hill function with Hill coefficient 1 and offset:

_me0=

�m1 3mee0+d1 3mee1+ lnð2Þ
a+

b3 t

h+ t

3 ðmee0+mee1+mee2+mee3Þ
N

�

mee03 lnð2Þ
a+

b3 t

h+ t

3N

N2

= �m1 3me0+d1 3me1+
lnð2Þ

a+
b3 t

h+ t

3 ðme0+me1+me2+me3Þ �me03
lnð2Þ

a+
b3 t

h+ t

= �m1 3me0+d1 3me1+
lnð2Þ

a+
b3 t

h+ t

3 ðme1+me2+me3Þ

_me1= m1 3me0�

0
B@m2 +d1 +

lnð2Þ
a+

b3 t

h+ t

1
CA3me1+d2 3me2

_me2= m2 3me1�

0
B@m3 +d2 +

lnð2Þ
a+

b3 t

h+ t

1
CA3me2+d3 3me3

_me3= m3 3me2�

0
B@d3 +

lnð2Þ
a+

b3 t

h+ t

1
CA3me3

_N=
lnð2Þ

a+
b3 t

h+ t

3N:

Similar to the mock model with linearly increasing cell-cycle function we tested three different scaled Hill functions with Hill coef-

ficient 1 and offset as cell-cycle functions:

cðtÞ = a+
b3 t

h+ t
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cðtÞ = 0:5+
b3 t

h+ t
cðtÞ = 0:5+
b3 t

b+ t
:

We again reduced the number of model parameters in the second equation by inserting prior knowledge about the cell-cycle dura-

tion at the start of the model (see Mock Model - Linearly Increasing Cell-Cycle Duration). Additionally, we reduced the number of

model parameters further by assuming the scaling b and the dissociation constant h to be identical in the third equation. In compar-

ison to the former two cell-cycle functions, the third equation constrains the parameter space more strictly. E.g. for upper and lower

boundaries of 100 and 0.0001 for parameters a, b and h the first equation will allow for cell-cycle durations up to 100+1003 (42-5.5)/

(0.0001+42-5.5)z 200 hours while the third equation only allows for cell-cycle durations for up to 0.5+1003 (42-5.5)/(100+42-5.5)z
27 hours. Additionally, we tested whether inferring the Hill coefficient with the other parameters rather than fixing it to 1 would lead to

similar or improved results. Hill functions with Hill coefficient > 1 first increase slowly before a rapid increase and a gradual plateau

follows. This does not reflect the biologically observed cell-cycle dynamics. Hill coefficients % 1 lead to a fast initial increase which

could reflect known cell-cycle dynamics.We ran the optimization for the best performingmockmodel without demethylation this time

inferring the Hill coefficient with the other parameters (lower and upper boundaries of 0.001 and 1, respectively). We found the in-

ferred Hill coefficient to be 0.5.While the BIC values for bothmodels are comparable (-23 and -21 for themodels with Hill coefficient =

1 and inferred Hill coefficient, respectively) the average cell-cycle durations differ (8 h and 15 h, respectively) (Table S1). By choosing

a Hill coefficient = 1, we receive biologically meaningful average cell-cycle durations while reducing the number of inferred param-

eters by 1 and maintaining the same goodness of fit. Hence, all analyses were performed using the scaled Hill function with Hill co-

efficient 1 and offset 0.5.

Noise Models
As experimental data is generally noise corrupted, we evaluated all models with an underlying Laplacian noise model. Maier et. al.

(Maier et al., 2017) have shown that Laplacian noise models may outperform Gaussian ones due to their increased robustness

against outliers (Maier et al., 2017). All model parameters are comprised in the parameter vector q and the experimental measurement

i at time point k is denoted by yi
k . The log-likelihood for the Laplacian noise model is given by

logLðqÞ = �
X
i;k

�
logð2sÞ + logðyikÞ � logðyiðtk; qÞÞ

s

�
:

By performing maximum likelihood estimation we obtain the optimal model parameters.

OPTIMIZATION AND PARAMETER ESTIMATION

Themodel parameters include the initial proportions,me10,me20 andme30.Without loss of generality, we fix relative initial proportion

me00rel=0.1 to obtain structural identifiability, where the relative initial proportions are given by

meX0 =
meX0relP3
i= 0mei0

;

with X ˛ {0, 1, 2, 3} and meX0rel the relative initial proportions. We additionally infer one noise parameter, the model-specific

rate constants of (de-)methylation and potentially up to three constants (mock models) describing the cell-cycle function. We

tested whether the fixation of the relative initial proportion me00rel influences the robustness of the optimization by fixing

me00rel=0.01 and me00rel=1 for the best performing mock model without demethylation. We found that the optimized

rate constant parameter sets are robust to the initializations of the relative initial proportion of unmethylated H4K20 (see

Table S1). For numerical reasons we optimized the parameters in a log10 scale (Hass et al., 2019). The lower and upper

bounds for the rate constants, initial states, noise parameter and cell-cycle parameters were initiated in log10 scale at

-10 to 2, -4 to 2, -2 to 0 and -10 to 10, respectively. We performed multi-start local optimization of the negative log-likeli-

hood using the parameter estimation toolbox PESTO (Stapor et al., 2018) and simulated the models with AMICI (Fröhlich

et al., 2017). We performed at least 100 local optimization runs per model, initialized by latin-hyper cube-sampled starts.

For the models not converging upon these initializations (where by ‘not converging’ we mean that the likelihood value of

the second best run differs more than 0.1) we decreased the width between upper and lower bounds to increase the prob-

ability of convergence. For this, we assured that the optimization bounds were wide enough such that the optimal values

are not in the bounds for the rate constants and the cell-cycle parameters. As the initial states are unidentifiable we ignored

optimal values which ran into these boundaries as long as other optimal values were found within. For models where this

was not the case we expanded the boundaries of the rate constants and initial states up to -20 to 10 and -10 to 10,
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respectively, as we assumed any smaller or larger values to be biologically non-informative. For the initially non-converged

joint models we also increased the number of starts to 800. Models not having converged upon manually adjusting the

boundaries and running for 800 starts were determined to not converge. All mock and HUA models converged. We deter-

mined 5 out of the 40 joint models to not converge (Table S1). The given likelihood values of these joint models are lower

bounds of the true optimal likelihood values obtainable upon convergence. As the likelihood values of all 5 non-converged

joint models still resulted in considerably lower BIC values in comparison to the other tested models we can safely report

them as best performing models for the respective demethylation hypothesis. As the BIC values between the demethylation

hypotheses allowing and not allowing for demethylation in HUA differ considerably we assume the comparison between

different demethylation hypotheses to be valid and the resulting conclusions to be justified.

Model Selection
We use the Bayesian Information Criterion (BIC) (Schwarz, 1978) for model comparisons:

BIC = lnðnÞ3 k� 23 logL;

where n is the number of data points, k is the number of estimated parameters or the overall model complexity and logL is the log-

likelihood value for the maximum likelihood estimate of the model parameters. The BIC rewards high likelihood values and penalizes

model complexity. Hence, low BIC values are preferable. In comparison to other model selection methods such as the Akaike Infor-

mation Criterion (AIC) the BIC penalizes additional model complexity more strongly. We consider a DBIC>10 between two models to

be enough evidence to reject the model with the higher BIC (Kass and Raftery, 1995).

Parameter Uncertainty
To receive the uncertainties for the estimated model parameters we performed Markov Chain Monte Carlo (MCMC) sampling of the

posterior distribution

pðqjDÞfLðqÞpðqÞ;
with uniform prior p(q) defined over the optimization boundaries, likelihood function L(q) and data D. We sampled the posterior for

all six best performing jointmodels and themockmodel with three specificmethylation rate constants and no demethylation (PESTO-

internal function getParameterSamples). We employed parallel tempering with five parallel chains initiated at the five most optimal

parameter estimates per model obtained during optimization and performed 106 iterations. Upon performing a Geweke test (first

10% versus last 50% of the final MCMC chains), we discarded the first 10% of the samples as burn-in phase and thinned the chains

keeping only every 100th sample. The marginal posterior distributions are plotted via violin plots (plotting function violin, Hoffman, H.

(2015). violin.m - Simple violin plot using matlab default kernel density estimation. (https://de.mathworks.com/matlabcentral/

fileexchange/45134-violin-plot), MATLAB Central File Exchange. Retrieved November 13, 2019.)).

Validation - Cell-Cycle Durations
We used the median and the 25th and 75th percentiles of the MCMC chain determined during the parameter uncertainty analysis for

the cell-cycle parameter b, and evaluated the median and the 25th and 75th percentiles of the cell-cycle function according to

cðtÞ = 0:5+
b3 t

b+ t
;

for t ˛ [0,40], where the cell-cycle duration of 0.5 hours at 5.5 hpf (start of model) is taken from (Anderson et al., 2017; Gelens

et al., 2015).

Prediction of Number of Cells
Using the median and the 25th and 75th percentiles of the cell-cycle parameter b (as determined in the validation analysis), we deter-

mined the theoretical number of cells a Xenopus embryo is on average composed of between 5.5 hpf and 45.5 hpf according to dN/

dt = ln(2)/(0.5+b*t/(b+t))*N, where

vNðtÞ
vt

=
lnð2Þ

0:5+
b3 t

b+ t

3N

NðtÞ=N03 eð23 lnð2ÞÞ=ð23b+ 1Þ2 3ð23b2 3 lnð23b3 t+b+ tÞ+ 23b3 t+ t�23b2 3 lnðbÞÞ;
where N(t) is the number of cells at time t, N0 the initial number of cells and 0.5+b*t/(b+t) the cell-cycle function (constrained scaled

Hill function with Hill coefficient 1 and offset 0.5). At the start of the model (at 5.5 hpf) we take the initial number of cells N0 to be 4096

(Heasman, 2006).
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Implementation
The toolboxes used for the analysis of the manuscript for ODE simulation (AMICI (Fröhlich et al., 2017)) and parameter estimation

(PESTO (Stapor et al., 2018)) are available under https://github.com/ICB-DCM. The MATLAB code corresponding to this manuscript

is available via https://github.com/marrlab/HistonesXenopus. The analysis was performed with MATLAB 2017a.

QUANTIFICATION AND STATISTICAL ANALYSIS

For comparing H4K20me data for mock and HUA (Figure 1B), a two-sample t-test at the 0.05 significance level was used for all three

biological replicates of mock and HUA for each time point. In Figures 2F and 2G, the model predictions are given for the median, 25th

and 75th percentiles of theMCMC samples of the cell-cycle parameter of themodel with three specificmethylation rate constants but

no demethylation. Stated values of specific (de-)methylation rate constants are given by the median and the credibility ranges from

the 25th to the 75th percentiles. All statistics and analyses were performed with MATLAB 2017a.
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