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Abstract 56 

 In cross-platform analyses of 174 metabolites we identify 499 associations (p<4.9×10-10) 57 

characterized by pleiotropy, allelic heterogeneity, large and non-linear effects, and enrichment for 58 

nonsynonymous variation. We identify a signal at GLP2R (p.Asp470Asn) shared between higher 59 

citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 60 

diabetes, with beta-arrestin signalling as the underlying mechanism. Genetically-higher serine levels 61 

are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 62 

2, a rare degenerative retinal disease. Integration of genomic and small molecule data across 63 

platforms enables discovery of regulators of human metabolism and translation into clinical insights.  64 

  65 



3 
 

Introduction 66 

 Metabolites are small molecules that reflect biological processes and are widely measured in 67 

clinical medicine as diagnostic, prognostic or treatment response biomarkers1. Blood levels of 68 

metabolites are highly heritable with twin studies reporting a median explained variance in plasma 69 

levels of 6.9% and a maximum of 50% depending on the metabolite2,3. Several earlier studies have 70 

started to characterise the genetic architecture of metabolite variation in the general population2–10, 71 

but been limited in size and scope by focussing on metabolites assessed using a single method. 72 

Integration of genetic association results for metabolites measured on different platforms can help 73 

maximise the power for a given metabolite and provide a more refined understanding of genetic 74 

influences on blood metabolite levels and human physiology.  75 

 To identify genomic regions regulating metabolite levels and systematically study their 76 

relevance for disease, we conducted a cross-platform meta-analysis of genetic effects on levels of 77 

174 blood metabolites measured in large-scale population-based studies. We included metabolites 78 

covered by the targeted Biocrates AbsoluteIDQ™ p180 platform and measured in the Fenland Study. 79 

We integrated unpublished data for any of these metabolites that were covered by the Nightingale 80 

(1H-NMR, INTERVAL Study) or Metabolon (Discovery HD4™, EPIC-Norfolk and Interval Studies) 81 

platforms, or had previously been reported2,4,5. The focus on this targeted set of ‘platform-specific’ 82 

metabolites enabled us to clearly map metabolites across platforms and maximise the sample size 83 

for each of the 174 metabolites for this proof of concept cross-platform genome-wide association 84 

study (mGWAS). To facilitate rapid sharing of our results, we developed a webserver 85 

(https://omicscience.org/apps/crossplatform/) that allows flexible interrogation of our results. 86 

Results 87 

Associations with blood metabolites at 144 genomic regions 88 

 Genome-wide meta-analyses were conducted for 174 metabolites from 7 biochemical classes 89 

(i.e. amino acids, biogenic amines, acylcarnitines, lyso-phosphatidylcholines, phosphatidylcholines, 90 

sphingomyelins and hexose) commonly measured using the Biocrates p180 kit in up to 86,507 91 

individuals, contributing over 3.7 million individual-metabolite data points (70% from unpublished 92 

studies; Fig. 1). For each of the 174 metabolites, this was the largest GWAS to date, with at least a 93 

doubling of sample size (Fig. 1A). Sample sizes ranged from 8,569 to 86,507 individuals for 94 

metabolites depending on the platform used in each contributing study. Using GWAS analyses we 95 

estimated the association of up to 10.2 million single nucleotide variants with a minor allele 96 

frequency (MAF) >0.5%, including 6.1 million with MAF ≥ 5%.  97 
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 We identified 499 variant-metabolite associations (362 unreported) from 144 loci (94 98 

unreported) at a metabolome-adjusted genome-wide significance threshold of p<4.9×10-10 99 

(correcting the usual GWAS-threshold, p<5x10-8, for 102 principal components explaining 95% of the 100 

variance in metabolite levels using principal component analysis; Fig. 1). The vast majority of these 101 

associations were consistent across studies and measurement platforms [median I2: 26.8 102 

(interquartile range: 0 – 70.1) for 465 associations with at least two contributing studies] 103 

(Supplementary Tab. S1-2). To identify possible sources of heterogeneity, we investigated the 104 

influence of differences by cohort, measurement platform, metabolite class, and association 105 

strength in a joint meta-regression model (Supplementary Tab. S3). This showed that heterogeneity 106 

was mainly due to the overall strength of the signal, i.e. associations with higher z-scores showed 107 

greater heterogeneity (p<1.05x10-9). However, the majority of these statistically heterogeneous 108 

associations were directionally consistent and nominally significant across and within each stratum 109 

for 146 of 170 associations with a z-score > 10, demonstrating the feasibility of pooling association 110 

estimates across metabolomics platforms for the purpose of genetic discovery. Genetic variants at 111 

the NLRP12 locus, e.g. rs4632248, were a notable exception with large estimates of heterogeneity 112 

(I2>90%). The NLRP12 locus is known to affect the monocyte count11 and has been shown to have 113 

pleiotropic effects on the plasma proteome in the INTERVAL study12. Monocytes, or at least a 114 

subpopulation subsumed under this cell count measure, release a wide variety of biomolecules upon 115 

activation or may die during the sample handling process and hence releasing intracellular 116 

biomolecules, such as taurine13, into the plasma. In brief, one specific source of heterogeneity in 117 

mGWAS associations might relate to sample handling differences across studies.   118 

This highlights the utility of our genetic cross-platform approach to maximise power for a given 119 

metabolite, substantially extending previous efforts for any given metabolite14. Previously reported 120 

associations from platform-specific studies were also found to generally be consistent in our cross-121 

platform meta-analysis (Supplementary Tab. S2; https://omicscience.org/apps/crossplatform/). 122 

Insights in the genetic architecture of metabolite levels 123 

 We identified a median of 2 (range: 1-67, Fig. 2A) associated metabolites for each locus and a 124 

median of 3 (range: 1-20, Fig. 2B) locus associations for each metabolite, reflecting pleiotropy and 125 

the extensive contribution of genetic loci to circulating metabolite levels. The number of associations 126 

was proportional to the estimated heritability and the sample size of the meta-analysis for a given 127 

metabolite (Fig. 2C).  128 

 We applied a multi-trait statistical colocalisation method15 and identified between 1-30 129 

(median: 2) metabolites that did not meet the discovery p-value threshold, but showed high 130 
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posterior probability (>75%) of a shared genetic signal for 49 out of the 144 loci (Supplemental Fig. 131 

S1). Two distinct variants (rs2414577 and rs261334) nearby LIPC showed the largest gain in 132 

additionally associated metabolites, in line with previous reports of extensive pleiotropy and allelic 133 

heterogeneity at this locus9. We note that a low posterior probability for the alignment of multiple 134 

metabolites at other loci might be explained by the presence of multiple causal variants shared 135 

across multiple metabolites.  136 

 To systematically classify pleiotropic variants taking into account the correlation structure 137 

among metabolites we derived a data-driven metabolic network and performed community 138 

detection (see Methods and Supplemental Fig. S2). A total of 129 (60.5%) of 214 variants 139 

(associated with at least two metabolites at p<5x10-8) were associated with metabolites from at 140 

least two of the 14 communities (range: 2 – 11; Supplemental Fig. S2), i.e. showed evidence for 141 

‘horizontal’ or broad pleiotropy. The most extreme variants included those near FADS1 (e.g. 142 

rs17455) associated with 61 metabolites across 11 communities at p<5x10-8. In contrast, rs2638315 143 

(likely tagging a missense variant rs2657879 at GLS2) was associated with nine metabolites within a 144 

single community and would therefore be considered as ‘vertical pleiotropic’ for a well-defined 145 

group of correlated metabolites (Supplemental Fig. S2). 146 

 Similar to what is routinely observed in GWAS literature, effect size estimates increased with 147 

decreasing minor allele frequency (MAF) (Fig. 3A). However, there were 26 associations (Tab. 1) for 148 

common lead variants with per-allele differences in metabolites levels greater than 0.25 standard 149 

deviations (SD), a per-allele effect size that is >3-fold larger than the strongest common variants 150 

associated with SDs of body mass index at the FTO locus. 151 

 Variants identified in this study explained up to 23% of the variance (median: 1.4%; interquartile 152 

range: 0.5% - 2.8%) and up to 99.8% of the chip-based heritability (median 9.2%; interquartile range: 153 

4.7% - 17.1%) for the 141 metabolites with at least one genetic association (Fig. 2D). The 26 common 154 

variants with large effect sizes (>0.25 SD per allele) were identified for metabolites with higher 155 

heritability (Fig. 2D) and accounted for up to 74% of the heritability explained in those metabolites. 156 

 GWAS analyses generally assume a linear relationship between genotypes and phenotypes, i.e. 157 

an additive dose-response model. The identification of several metabolite-associated variants with 158 

large effect sizes and availability of individual-level data in the Fenland cohort allowed us to test 159 

whether the metabolite-associated variants showed evidence of deviation from a linear model. Of 160 

499 associations tested, 9 showed evidence of departure from a linear association (Fig. 2E-M). 161 

Modelling actual genotypes rather than assuming ‘additive’ linear associations in these instances 162 

explained a median of 7.4% more (range: 1.4-15.2%) of the heritability in metabolite levels (Fig. 2N). 163 
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Associations better described by an autosomal recessive or dominant model of inheritance might be 164 

the most likely explanation for this. Variant rs3916, for example, which showed a more than additive 165 

positive effect on butyrylcarnitine, is in perfect LD with a missense variant within ACADS (rs1799958, 166 

MAF=26%), which encodes for short-chain acyl-CoA dehydrogenase (SCAD). SCAD deficiency is an 167 

autosomal recessive disease diagnosed by elevated butyrylcarnitine concentrations in blood and 168 

homozygeous carrier status for established pathogenic variants16. 169 

 In 61 of the 499 associations the lead association signal was a nonsynonymous variant, a 40-fold 170 

enrichment compared to what would be expected by chance given the annotation of ascertained 171 

genetic variants (two-tailed binomial test, p=5×10-30, Fig. 3D). For a further 59 associations, the lead 172 

variant was in high LD with a nonsynonymous variant (r2>0.8). Lead variants that were 173 

nonsynonymous, or variants in high LD with a nonsynonymous variant, generally had lower MAF, 174 

larger effect sizes, and smaller 99%-credible sets (Supplemental Tab. S4) than variants that were not 175 

in these categories (Fig 3B-D).  176 

 We identified 22 loci harbouring two (n=21) or three (n=1) independent signals, i.e. different 177 

plasma metabolites were associated with distinct genetic variants within the same genomic region 178 

(Supplementary Tab. S2). For six regions, our two different annotations approaches assigned only 179 

one causal gene (see below and Methods), including ACADM, GLDC, ARG1, MARCH8, SLC7A2, and 180 

LIPC (Supplementary Tab. S2). We found evidence that allelic heterogeneity, i.e. conditionally 181 

independent variants at a locus for a specific metabolite, explains the association pattern at 3 of 182 

those loci (ACADM, ARG1, and LIPC; Supplementary Tab. S5). We identified another 16 loci 183 

harbouring at least one (range: 2–6) additional conditionally independent variant(s) in exact 184 

conditional analyses (see Methods, Supplementary Tab. S5).  185 

Effector genes, tissues, pathways  186 

 We used two complementary strategies to prioritize likely causal genes for the observed 187 

associations: (1) a hypothesis-free genetic approach based on physical distance, genomic annotation 188 

and integration of expression quantitative trait loci (eQTLs) to prioritize genes in a systematic and 189 

standardised way (see Methods), and (2) a biological knowledge-based approach integrating existing 190 

knowledge about specific metabolites or related pathways to identify biologically plausible 191 

candidate genes from the 20 genes closest to the lead variant (Fig. 4A). Using the hypothesis-free 192 

genetic approach, we identified 249 unique likely causal genes for the 499 associations, with at least 193 

one gene per association and some genes prioritized as likely causal for multiple metabolite 194 

associations. The knowledge-based approach identified 130 biologically plausible genes for 349 out 195 

of 499 associations. We asked whether the hypothesis-free genetic approach identified biologically 196 
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plausible genes (prioritized by strategy 2) more often than expected by chance. Amongst 9,980 197 

possible gene-metabolite pairs (20 genes x 499 associations), 420 (4.2%) were biologically plausible, 198 

condensed to 350 gene(s)-metabolite assignments after accounting for overlapping annotations. Of 199 

the latter, 126 pairs (36%) were identical to genetically-prioritized gene-metabolite pairs, 200 

representing a significant enrichment of biologically plausible genes among those prioritised by the 201 

hypothesis-free algorithm (~8-fold more than expected by chance; two-tailed binomial test, 202 

p=2.3×10-80; Fig. 4B). Among the consistently assigned genes between both approaches, assignment 203 

of the nearest gene (124 times out of 126, Χ2-test, p<2.5x10-45) was the strongest shared factor, as 204 

might be expected, followed by being (or in LD with) a missense variant (R2>0.8, 30 times out of 126, 205 

Χ2-test, p<1.3x10-07) and only a minor contribution of eQTL data (20 times out of 126, Χ2-test, 206 

p<0.001). Over 70% of genetically prioritized genes were enzymes or transporters (Fig. 4C). 207 

Inconsistencies between the approaches might be explained by non-consideration of information on 208 

biological pathways in the hypothesis-free genetic approach, as well as variants acting more distal to 209 

the biological determinants of plasma metabolite levels not being considered in the knowledge-210 

based approach. The missense variant rs1260326 within GCKR, for example, colocalised with 49 211 

metabolites across diverse biochemical classes (Supplemental Fig. S1) and likely confers its effects 212 

on glucose metabolism through impaired inhibition of glucokinase by glucokinase regulatory protein 213 

and might hence be considered as putative causal candidate by the knowledge-driven approach for 214 

plasma glucose only. However, impairments in glucose metabolism result in numerous downstream 215 

consequences including more distal metabolic branches such as amino acid and lipid metabolism.  216 

 In addition to being enriched in genes previously implicated in the biology of these metabolites, 217 

the genetically prioritized genes were also enriched in genes known for mutations to cause rare 218 

inborn errors of metabolism (IEMs), i.e. monogenic defects in the metabolism of small molecules 219 

with very specific metabolite changes (Fig. 4B). 220 

 Integrating GWAS statistics across cohorts and platforms allowed us to identify three genes that 221 

have never been associated with any metabolite level so far. At the CERS6 locus, rs4143279 222 

associates with levels of sphingomyelin (d18:1/16:0) (p = 4.2x10-10). CERS6 encodes a ceramide 223 

synthase facilitating formation of ceramide, a precursor of sphingomyelins17. At the ASNS locus, 224 

rs17345286 associates with levels of asparagine (p = 4.7x10-20). The lead variant is in high LD (R2=1) 225 

with a missense mutation in ASNS (rs1049674, p.Val210Glu). ASNS encodes an asparagine 226 

synthase18. Finally, at the SLC43A1 locus, rs2649667 associates with levels of phenylalanine (p = 227 

3.6x10-13). SLC43A1 encodes a liver-enriched transporter of large neutral amino acids, including 228 

phenylalanine19. 229 

A shared functional variant in GLP2R is linked to type 2 diabetes 230 
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 Because several of the metabolites captured in this GWAS have been associated with incident 231 

type 2 diabetes (T2D), we sought to investigate whether the association between metabolite-232 

associated loci and diabetes could provide insights into underlying pathophysiologic mechanisms. 233 

We observed a significant enrichment of T2D-associations among our metabolite variants (p-234 

value=2.8x10-7, Fig. 5) using a meta-analysis of 80,983 T2D cases and 842,909 controls (see 235 

Methods).  236 

 Amongst the T2D- and metabolite-associated loci was a missense p.Asp470Asn (rs17681684) 237 

variant in the GLP2R gene encoding the receptor for glucagon-like peptide 2, a 33 amino acid 238 

peptide hormone encoded by the proglucagon gene (GCG) that stimulates the growth of intestinal 239 

tissue. Common variants at GLP2R are associated with an increased risk of T2D20. The previously 240 

reported lead variant for T2D (rs78761021) is in high LD (r²>0.87) with our lead citrulline association 241 

signal at GLP2R (rs17681684), which was associated with a 4% higher T2D risk (per-allele odds ratio, 242 

1.04; 95%-confidence interval, 1.02, 1.05; p=1.1×10-08), comparable to previous reports20. 243 

Considering eleven phenotypes related to glucose homeostasis and metabolic health21–23, the A-244 

allele of rs17681684 was significantly associated with insulin disposition index (beta=-0.067, 245 

p<0.002)22, corrected insulin response (beta=-0.061, p<0.004)22, glycated haemoglobin 1c (HbA1c) 246 

(beta=0.006, p<0.0003)21, and body mass index (beta=0.010, p<5.3x10-9), in addition to the 247 

previously reported positive association with fasting glucose-dependent insulinotropic peptide (GIP) 248 

and the suggestive inverse association with post-glucose load GLP-1 (beta=-0.035, p<4.6x10-4)24. 249 

While sample sizes and hence significance levels for insulin traits were not sufficient to support 250 

formal colocalisation analysis, we still obtained a high posterior probability (PP>75%) for a shared 251 

genetic signal across plasma citrulline, T2D risk, body mass index, and fasting levels of GIP (Fig. 5B). 252 

The GLP2R p.Asp470Asn variant was the only of 6 independent genome-wide significant citrulline-253 

raising loci that was associated with a higher risk of T2D, which indicates that the association does 254 

not reflect a general effect of blood citrulline levels on T2D risk but rather a locus-specific association 255 

at GLP2R (Fig. 5C). Plasma citrulline levels have been shown to reflect the volume of intestinal cells 256 

and are a marker of GLP2R target engagement in the treatment of short-bowel syndrome with 257 

glucagon-like peptide 2 analogues25. Taken together, this suggests that genetically higher GLP2R-258 

signalling, indicated by the higher citrulline levels among GLP2R 470Asn carriers, may lead to 259 

chronically elevated GIP (though increased enteroendocrine mass and number of GIP-secreting K-260 

cells), which has been shown to downregulate GIP receptors on pancreatic beta cells26, thereby 261 

contributing to the observed reduction in the insulin secretory response and increase in T2D risk. 262 

 G-protein coupled receptors like GLP2R may signal via G-protein-dependent cyclic adenosine 263 

monophosphate (cAMP) production or via G-protein-independent beta-arrestin mediated 264 
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signalling27. To investigate if the GLP2R p.Asp470Asn variant affects signalling via either of these 265 

pathways, we expressed the GLP2R p.Asp470Asn variant in different in vitro models (see Methods). 266 

We show that the variant allele is significantly associated with reduced recruitment of beta-arrestin 267 

to GLP2R upon glucagon-like peptide 2 stimulation, but not with cAMP signalling, which suggests a 268 

potential role for impaired beta-arrestin recruitment to GLP2R in the pathophysiology of T2D (Fig. 269 

5E-G).  270 

Serine levels are causally related to a rare eye disease 271 

 A recent GWAS of macular telangiectasia type 2 (MacTel), a rare neurovascular degenerative 272 

retinal disease, identified three genome-wide susceptibility loci (PHGDH, CPS1, and TMEM161B–273 

LINC00461) of which the same variants at PHGDH and CPS1 were associated with levels of the amino 274 

acids serine and glycine in this GWAS28. More recently, it was shown that low serine availability is 275 

linked to both MacTel as well as hereditary sensory and autonomic neuropathy type 1 through 276 

elevated levels of atypical deoxyshingolipids29. Whether genetic predisposition to low serine and 277 

glycine levels affects MacTel more generally or has predictive utility has not been investigated. To 278 

test this and to explore the specificity of associations between genetic influences on metabolite 279 

levels and the risk of MacTel, we generated genetic scores using the sentinel variants for each of the 280 

141 metabolites with at least one significantly associated locus identified in this GWAS and tested 281 

their associations with the risk of MacTel. Genetic scores for serine and glycine were the only scores 282 

associated with risk for MacTel after removal of the known highly pleiotropic GCKR variant (Fig. 6A). 283 

A one SD increase in the genetic score for serine was associated with a 95% lower risk of MacTel 284 

(odds ratio (95%-confidence interval), 0.05 (0.03-0.08); p=9.5×10-30; Fig. 6A). Each of five serine 285 

associated variants was individually associated with lower MacTel risk, with a clear dose-response 286 

relationship and no evidence of heterogeneity (Fig. 6B). The association was unchanged when 287 

removing the GCKR locus. To disentangle the effect of these two highly correlated metabolites on 288 

MacTel risk, we used multivariable Mendelian randomization analysis, which allowed us to test for a 289 

causal effect of both measures simultaneously. In this analysis, the effect of serine (odds ratio: 0.10, 290 

p<2.9x10-9) remained strong, while the effect of glycine (odds ratio: 0.50, p<0.01) was attenuated 291 

(Extended Data 2). These results provide genetic evidence that the link between glycine and MacTel 292 

is via serine through glycine conversion. This hypothesis is supported by the evidence of a log-linear 293 

relationship between associations with serine and risk of MacTel among glycine-associated variants 294 

(Fig. 6B). These findings provide strong evidence that pathways indexed by genetically higher serine 295 

levels are strongly and causally associated with protection against MacTel. 296 

 Given the large observed effect size, we estimated whether using serine and glycine-associated 297 

loci might improve the prediction of this rare disease. Adding genetically predicted glycine and 298 
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serine levels, based on newly discovered metabolite instruments from the present study and 299 

previous MacTel variants linked to glycine and serine metabolism, substantially improved prediction 300 

of MacTel based on an area under the receiver operating characteristic curve from 0.65 (CI 95%: 301 

0.626-0.682) to 0.73 (0.702-0.753) (Fig. 6).  302 

From rare to common, the role of inborn errors of metabolism 303 

 In his seminal 1902 work on alkaptonuria30, also known as dark or black urine disease, Archibald 304 

Garrod was the first to hypothesise that inborn errors of metabolism (IEMs) are “extreme examples 305 

of variations of chemical behaviour which are probably everywhere present in minor degrees”. 306 

Previous studies have shown enrichment of metabolite quantitative trait loci (mQTLs) in genes 307 

known to cause IEMs31. Whether or not common variants at IEM-causing loci translate into clinically 308 

manifest disease remains unknown. The identification of several metabolite-associated variants at 309 

IEM-linked genes in this GWAS meta-analysis allows an investigation of the health consequences of 310 

genetically determined differences in metabolism for more frequently occurring variants, 311 

representing potentially milder forms of the metabolic and other clinical symptoms of IEMs, and 312 

providing new candidate genes for rare extreme metabolic disorders that currently lack a genetic 313 

basis (Fig. 7A). We identified 153 locus-metabolite associations for which 53 unique IEM-associated 314 

genes were prioritized as likely causal using either the hypothesis-free genetic approach or the 315 

knowledge-based approach on the basis of the Orphanet database32. In 89% of these associations 316 

(136 of 153) the metabolite associated with a given GWAS locus perfectly matched, or was closely 317 

related to, the metabolite affected in patients with the corresponding IEM (Fig. 7B).  318 

 To test whether IEM-mirroring lead variants from our metabolite GWAS may increase the risk of 319 

common manifestations of diseases seen in patients with the corresponding IEM (Fig. 7A) we 320 

obtained a list of electronic health record diagnosis codes (International Statistical Classification of 321 

Diseases and Related Health Problems 10th Revision [ICD-10]) and mapped those based on 322 

symptoms seen in both, IEM patients and patients with common, complex disease manifestations 323 

(see Methods). We identified 93 ICD-10 codes with at least 500 cases within the UK Biobank study 324 

that aligned with the symptoms or presentations seen in patients with IEMs mapping to mQTLs in 325 

the present study. We obtained the association statistics of 85 unique metabolite-associated lead 326 

variants at the 136 locus-metabolite associations with these 93 clinical diagnoses and observed 36 327 

associations that met statistical significance (false discovery rate < 5%, Supplemental Table S6 and 328 

Fig. 7B). For 15 out of those we obtained strong evidence of a shared genetic metabolite-phenotype 329 

signal using colocalisation analyses (posterior probability of a shared signal >80%; Fig. 7D and 330 

Supplemental Fig. S3). These instances linked common genetic variants in or near APOE, PCSK9, LPL, 331 

and LDLR associated with sphingomyelins (SM 16:0, SM 18:0, and SM-OH 24:1) with atherosclerotic 332 
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heart disease diagnosis codes (I21, I25), mirroring what is observed in rare familial forms of 333 

dyslipidaemia in which these sphingomyelins are elevated and the risk of ischemic heart disease is 334 

greatly increased33,34. These results provide further evidence that common variation at IEM genes 335 

can lead to clinical phenotypes and diseases that correspond to those that patients with rare 336 

mutations in those same genes are severely affected by. Further studies with detailed follow-up for 337 

specific outcomes may provide greater power and help clarify the medical consequences of genetic 338 

differences in metabolism caused by metabolite altering variants in the general population. 339 

Discussion 340 

 This large-scale genome-wide meta-analysis has integrated genetic associations for 174 341 

metabolites across different measurement platforms, an approach that has resulted in a three-fold 342 

increase in our knowledge of genetic loci regulating levels of these metabolites. We assign likely 343 

causal genes for many of the identified associations using a dual approach that combined automated 344 

database mining with manual curation. 345 

 Previous platform-specific genetic studies of blood metabolites have been substantially smaller 346 

in size due to being restricted to a single platform and/ or study2–10. We build on these earlier studies 347 

to identify and demonstrate enrichment of rare and low-frequency coding variants in enzyme and 348 

transporter genes with large effects and reveal the importance of non-linear associations at several 349 

loci.  350 

 Our results not only provide detailed insight into the genetic determinants of human 351 

metabolism but consider their relevance for disease aetiology and prediction. We explore both 352 

locus-specific and polygenic score effects and provide tangible examples with clear translational 353 

potential. We discovered a strong link between GLP2R, citrulline metabolism and T2D, and 354 

demonstrate that the p.Asp470Asn variant underlying the citrulline and T2D associations leads to 355 

significantly reduced recruitment of beta-arrestin to GLP2R in various cellular models, providing an 356 

explanation for a possible pathological mechanism of a variant previously predicted to be benign24. 357 

 The finding that a standard deviation increase in serine levels via a genetic score is associated 358 

with 95% lower risk of MacTel shows that genetic differences resulting in very specific metabolic 359 

consequences can have profound effects on health. Our results suggest that inclusion of genetic 360 

scores for metabolite levels can improve identification of high risk individuals. Serine and glycine 361 

supplementation and/ or pharmacologic modulation of serine metabolism may help to reduce 362 

development or alter the prognosis of this rare, severe eye disease, specifically if targeted to people 363 

genetically with a genetic susceptibility to low serine levels. It is important to note, that randomized 364 
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control trials are needed testing this hypothesis before any recommendations on supplementations 365 

could be made.   366 

 We finally show specific examples where common genetic variation in IEM-related genes is 367 

associated with phenotypes that are also caused by rare highly penetrant mutations. These results 368 

suggest that rare variants in metabolite regulating genes newly identified in our study may be 369 

valuable candidate genes in patients without a genetic diagnosis but severe alterations in the 370 

corresponding or related metabolites. Hence these results provide a new starting point for further 371 

investigations into the relationships between human metabolism and common and rare disorders.   372 

  373 
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FIGURE LEGENDS 510 
 511 
Figure 1A Sample size by contributing study and technique. Metabolites with similar numbers have 512 
been collapsed and exact numbers are given in the Extended Data Table 1. B A three-dimensional 513 
Manhattan plot displaying chromosomal position (x-axis) of significant associations (p <4.9×10-10 514 
accounting for multiple testing, z-axis) across all metabolites (y-axis). Colours indicate metabolite 515 
groups. P-values were obtained from a meta-analysis of genome-wide summary statistics from linear 516 
regression models using genetic variants as exposures and metabolite levels as outcome run within 517 
each contributing study. C A top view of the 3D-Manhattan plot. Dots indicate significantly 518 
associated loci. Colours indicate novelty of metabolite – locus associations. Loci with indication for 519 
pleiotropy have been annotated.  520 
 521 
Figure 2A Distribution of pleiotropy, i.e. number of associated metabolites, among loci identified in 522 
the present study. B Distribution of polygenicity of metabolites, i.e. number of identified loci for 523 
each metabolite under investigation. C Scatterplot comparing the estimated heritability of each 524 
metabolite against the number of associated loci. Size of the dots indicates samples sizes. D 525 
Heritability estimates for single metabolites. Colours indicate the proportion of heritability 526 
attributed to single nucleotide polymorphisms (SNPs) with large effect sizes (β>0.25 per allele). E – 527 
M SNP – metabolite association with indication of non-additive effects. Beta is an estimate from the 528 
departure of linearity. Point estimates and 95%-confidence intervals were obtained from linear 529 
regression models run among up to 8,714 participants in the Fenland cohort. N Barplot showing the 530 
increase in heritability and explained variance for each SNP – metabolite pair when including non-531 
additive effects. 532 
 533 
Figure 3A Scatterplot comparing the minor allele frequencies (MAF) of associated variants with 534 
effect estimates from linear regression models (N loci=499). Colours indicate possible functional 535 
consequences of each variant: maroon – nonsynonymous variant; blue – in strong LD (r2>0.8) with a 536 
nonsynonymous variant and grey otherwise. B-D Distribution of effect sizes (B), allele frequencies 537 
(C), and width of credible sets (D) based on the type of single nucleotide polymorphism (SNP) (0 – 538 
non-coding or synonymous, 1 – in strong LD with nonsynonymous, 2 - nonsynonymous) identified as 539 
metabolite quantitative trait loci (N=499). Data are represented as boxplots where the middle line is 540 
the median, the lower and upper hinges correspond to the first and third quartiles, the upper 541 
whisker extends from the hinge to the largest value no further than 1.5 × IQR from the hinge (where 542 
IQR is the inter-quartile range) and the lower whisker extends from the hinge to the smallest value 543 
at most 1.5 × IQR of the hinge, while data beyond the end of the whiskers are outlying points that 544 
are plotted individually. E Distribution of functional annotations of metabolite associated variants 545 
(red), trait-associated variants (blue – continuous, purple – diseases) obtained from the GWAS 546 
catalogue, and all SNPs included in the present genome-wide association studies. The inlet for exonic 547 
variants distinguishes between synonymous (syn) and nonsynonymous variants (nsyn). 548 
 549 
Figure 4A Comparison between the hypothesis-free genetically prioritized versus biologically 550 
plausible approaches used in the present study to assign candidate genes to metabolite associated 551 
single nucleotide polymorphisms. The Venn-diagram displays the overlap between both approaches. 552 
B Enrichment of genetically prioritized genes among biologically plausible or genes linked to inborn 553 
errors of metabolism (IEM). Enrichment was tested using a two-sided binomial test. C Proportion of 554 
genetically prioritized genes encoding for either enzymes or transporters. 555 
 556 
Figure 5A Enrichment of associations with type 2 diabetes (T2D: 80,983 cases, 842,909 controls) 557 
among metabolite-associated SNPs. Blue dots indicate metabolite-SNPs and grey dots indicate a 558 
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random selection of matched control SNPs. B Regional association plots for plasma citrulline, type 2 559 
diabetes, body mass index, and fasting levels of glucose-dependent insulinotropic peptide (GIP) 560 
focussing on the GLPR2 gene. Variants are coloured based on linkage disequilibrium with the lead 561 
variant (rs17681684) for plasma citrulline. *Summary statistics for GIP were obtained from the more 562 
densely genotyped study included in Almgren et al.24 (to increase coverage of genetic variants for 563 
multi-trait colocalisation). C Individual association summary statistics for all citrulline associated 564 
SNPs (coded by the citrulline increasing allele) for T2D and an inverse-variance weighted (IVW) 565 
estimate pooling all effects. D Schematic sketch for the location of the missense variant induces 566 
amino acid substitution in the glucagon-like peptide-2 receptor (GLP2R). E GLP-2 dose response 567 
curves in cAMP assay for GLP2R wild-type and mutant receptors. The dose response curves of cAMP 568 
stimulation by GLP-2 in CHO K1 cells transiently transfected with either GLP2R wild-type or mutant 569 
constructs. Data were normalised to the wild-type maximal and minimal response, with 100% being 570 
GLP-2 maximal stimulation of the wild-type GLP2R, and 0% being wild-type GLP2R cells with buffer 571 
only. Mean ± standard errors are presented (n=4).F-G Summary of wild-type and mutant GLP2R 572 
beta-arrestin 1 and beta-arrestin 2 responses. Area under the curve (AUC) summary data of 573 
individuals wells and geometric mean/SD from n=3-4 independent experiments (1 to 3 wells per 574 
experiment) displayed for beta-arrestin 1 recruitment (E) and beta-arrestin 2 recruitment (F). AUCs 575 
were calculated using the 5 minutes prior to ligand addition as the baseline value. Mean ± standard 576 
errors are presented. Normal distribution of log10-transformed data was determined by the 577 
D'Agostino & Pearson normality test. For statistical analysis, experiments were summarized by 578 
means of log10-transformed results across technical replicates and analysed using one-way ANOVA 579 
with Bonferroni correction for post-hoc tests. 580 
 581 
Figure 6A Results from genetic scores for each metabolite on risk for macular telangiectasia type 2 582 
(MacTel). The dotted line indicates the level of significance after correction for multiple testing. The 583 
inlet shows the same results but after dropping the pleiotropic variants in GCKR and FADS1-2. B 584 
Effect estimates of serine-associated genetic variants on the risk for MacTel. C Comparison of effect 585 
sizes for lead variants associated with plasma serine levels and the risk for MacTel. D Receiver 586 
operating characteristic curves (ROC) comparing the discriminative performance for MacTel using a) 587 
sex, the first genetic principal component, and two MacTel variants (rs73171800 and rs9820286) not 588 
associated with metabolite levels, and b) additionally including genetically predicted serine and 589 
glycine at individual levels as described in the methods. The area under the curve (AUC) is given in 590 
the legend. 591 
 592 
Figure 7A Scheme of the workflow to link common variation in genes causing inborn errors of 593 
metabolism (IEM) to complex diseases. 7B Flowchart for the systematic identification of metabolite-594 
associated variants to genes and diseases related to inborn errors of metabolism (IEM). C P-values 595 
from phenome-wide association studies among UK Biobank using variants mapping to genes 596 
knowing to cause IEMs and binary outcomes classified with the ICD-10 code. Colours indicate 597 
disease classes. The dotted line indicates the significance threshold controlling the false discovery 598 
rate at 5%. D Posterior probabilities (PPs) from statistical colocalisation analysis for each significant 599 
triplet consisting of a metabolite, a variant, and a ICD-10 code among UK Biobank. The dotted line 600 
indicates high likelihood (>80%) for one of the four hypothesis tested: H0 – no signal; H1 – signal 601 
unique to the metabolite; H2 – signal unique to the trait; H3 – two distinct causal variants in the 602 
same locus and H4 – presence of a shared causal variant between a metabolite and a given trait. 603 
  604 
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TABLES 605 
 606 
Table 1 Genomic loci with effect sizes larger than 0.25 units in standard deviation of metabolite 607 
levels per allele. 608 

rsID Position* Metabolite EA/OA EAF N MA p-value Beta** SE Candidate genes Expl. var. (%) 

rs13538 2:73868328 Acetylornithine A/G 0.78 30692 1.99E-1984 0.85 0.010 NAT8, ACTG2 18.4 
rs3916 12:121177272 Butyrylcarnitine C/G 0.26 30694 1.67E-2010 0.81 0.010 ACADS, 16.9 
rs12587599 14:104575130 Asparagine T/C 0.14 23606 8.98E-294 0.49 0.013 ASPG, ADSSL1 8.2 
rs3970551 22:18906839 Proline G/A 0.11 23618 1.10E-224 0.48 0.015 PRODH 5.0 
rs174547 11:61570783 lysoPC a C20:4 T/C 0.67 16829 4.42E-398 0.47 0.015 FADS1, DAGLA 9.9 
rs174545 11:61569306 PC aa C38:4 C/G 0.67 16828 1.37E-361 0.45 0.015 FADS1, 9.2 
rs715 2:211543055 Glycine C/T 0.31 80000 3.00E-1632 0.44 0.006 CPS1, IDH1 12.9 
rs174564 11:61588305 PC ae C42:3 A/G 0.66 9363 5.72E-183 0.44 0.015 FADS1, DAGLA 8.9 
rs174547 11:61570783 PC aa C36:4 T/C 0.67 16830 3.25e-313 0.43 0.015 FADS1, DAGLA 8.6 
rs1171617 10:61467182 Carnitine T/G 0.77 31001 2.06E-444 0.43 0.011 SLC16A9, 7.0 
rs102275 11:61557803 PC ae C40:5 T/C 0.67 16839 8.23E-202 0.43 0.015 C11orf10, DAGLA 8.7 
rs7157785 14:64235556 PC aa C28:1 T/G 0.16 16833 4.60E-136 0.35 0.019 SGPP1,SYNE2 3.3 
rs174547 11:61570783 PC ae C36:5 T/C 0.67 16828 2.48E-185 0.33 0.015 FADS1, DAGLA 5.1 
rs102275 11:61557803 PC aa C38:5 T/C 0.67 16836 8.31E-198 0.33 0.015 C11orf10, DAGLA 5.0 
rs174564 11:61588305 PC ae C42:2 A/G 0.66 9363 7.04E-99 0.32 0.015 FADS1, DAGLA 4.8 
rs174564 11:61588305 lysoPC a C26:1 A/G 0.66 9363 1.38E-91 0.32 0.016 FADS1, DAGLA 4.6 
rs7157785 14:64235556 SM (OH) C14:1 T/G 0.16 16833 1.65E-96 0.29 0.019 SGPP1 2.2 
rs174546 11:61569830 PC aa C24:0 C/T 0.67 13184 4.16E-89 0.29 0.016 FADS1, DAGLA 3.6 
rs174546 11:61569830 PC ae C38:5 C/T 0.67 16839 8.98E-146 0.29 0.015 FADS1, DAGLA 3.9 
rs7552404 1:76135946 Octanoylcarnitine A/G 0.69 31969 2.30E-260 0.28 0.010 ACADM 2.8 
rs1171615 10:61469090 Propionylcarnitine T/C 0.77 32590 7.09E-185 0.27 0.011 SLC16A9 3.1 
rs1171617 10:61467182 Acetylcarnitine T/G 0.77 31008 1.92E-156 0.27 0.011 SLC16A9 3.3 
rs2286963 2:211060050 Nonaylcarnitine G/T 0.36 13925 5.46E-159 0.26 0.016 ACADL 3.2 
rs12210538 6:110760008 Octadecandienylcarnitine A/G 0.77 30227 1.69E-144 0.26 0.011 SLC22A16 1.0 
rs102275 11:61557803 PC aa C36:5 T/C 0.66 16835 2.09E-120 0.25 0.015 C11orf10, DAGLA 3.0 
rs174550 11:61571478 PC ae C36:3 C/T 0.33 16830 2.05E-105 0.25 0.015 FADS1, DAGLA 2.7 
EA = effect allele; OA = other allele; MA = meta-analysis; SE = standard error; *Chromosome:Position based on Genome 609 
Reference Consortium Human Build 37; **based on a meta-analysis of linear regression models with genetic variants as 610 
exposure and metabolite levels as outcome run across cohorts for which individual-level data was available (more 611 
information is provided in Supplementary Tab. S2). 612 
  613 
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Methods 615 

Study design and participating cohorts 616 

 We performed genome-wide meta-analyses of the levels of 174 metabolites from 7 biochemical 617 

categories (amino acids, biogenic amines, acylcarnitines, phosphatidylcholines, 618 

lysophosphatidylcholines, sphingomyelins, and sum of hexoses) captured by the Biocrates p180 kit 619 

measured using mass spectrometry (MS). As described in more detail below, a total of 174 620 

metabolites were successfully measured in up to 9,363 plasma samples from genotyped participants 621 

of the Fenland study35. 622 

 To maximise sample size and power, we meta-analysed genome-wide association (GWAS) 623 

results from the Fenland cohort with those run in the EPIC-Norfolk 36 and INTERVAL 37 studies, in 624 

which metabolites were profiled using MS (Metabolon Discovery HD4 platform) or protein nuclear 625 

magnetic resonance (1H-NMR) spectrometry 38,39 (Supplementary Tab. 1). Ten of the 174 Biocrates 626 

metabolites were covered across all platforms, while 38 were available on the Biocrates and 627 

Metabolon platforms and 126 were unique to Biocrates (Fig. 1). We integrated publicly available 628 

summary statistics from genome-wide meta-analyses of the same metabolites measured using MS 629 

(with Biocrates or Metabolon platforms) or 1H-NMR spectrometry (Supplementary Tab. 1). 630 

Metabolites were matched across platforms by comparing metabolite names and biochemical 631 

formulas. Mapping across different Metabolon platforms was done based on retention time/index 632 

(RI), mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data). 633 

Scientists at Metabolon Inc. independently reviewed and confirmed metabolite matches. 634 

 A summary of the characteristics of participating cohorts is given in Supplemental Table S1 and 635 

in the Supplemental Methods.  636 

Metabolomics measurements 637 

 The levels of 174 metabolites were measured in the Fenland study by the AbsoluteIDQ® 638 

Biocrates p180 Kit (Biocrates Life Sciences AG, Innsbruck, Austria) as reported elsewhere in 639 

detail39,40.  640 

 The levels of up to 38 metabolites were measured in EPIC-Norfolk and INTERVAL using the 641 

Metabolon HD4 Discovery platform. Measurements were carried out using MS/MS instruments and 642 

more details can be found in the Supplemental Methods.  643 

 The serum levels of 230 metabolites were measured in the INTERVAL study using 1H-NMR 644 

spectroscopy38,41. Among those, 10 metabolites (creatinine, alanine, glutamine, glycine, histidine, 645 

isoleucine, leucine, valine, phenylalanine, and tyrosine) overlapped with what is captured by the 646 



21 
 

Biocrates p180 Kit and were used in the present study. Further details of the 1H-NMR spectroscopy, 647 

quantification data analysis and identification of the metabolites have been described previously38,42. 648 

Participants with >30% of metabolite measures missing and duplicated individuals were removed. 649 

Metabolite data more than 10 SD from the mean was also removed. 650 

GWAS and meta-analysis 651 

 In Fenland and EPIC-Norfolk, metabolite levels were natural log-transformed, winsorised to 652 

five standard deviations and then standardised to a mean of 0 and a standard deviation of 1. 653 

Genotypes were measured using Affymetrix Axiom or Affymetrix SNP5.0 genotyping arrays and 654 

further genotypes were imputed using 1000 Genomes Phase 3 as a reference (Supplemental Tab. S1 655 

and Methods). GWAS were run in BOLT-LMM v2.2 or SNPTEST v2.4.1 (Fenland, N=9,736, EPIC-656 

Norfolk, N=5,841) adjusting for age, sex, and the top four genetic principal components when 657 

SNPTEST was used. A similar workflow was used for metabolite data from the INTERVAL cohort (1H-658 

NMR: N=40,818, Metabolon HD4: N=8,455). 659 

 For each metabolite, we performed a meta-analysis of z-scores (betas divided by standard 660 

errors) as a measure of association, signals and loci (see below), using METAL software. 661 

Heterogeneity between studies for each association was estimated by Cochran’s Q-test. For each 662 

metabolite, we also performed a meta-analysis of beta and standard errors for the subset of studies 663 

(Fenland and, when available, EPIC-Norfolk and/or INTERVAL) where we had access to individual 664 

level data and standardised phenotype preparation to estimate effect sizes. Quality filters 665 

implemented after meta-analysis included exclusion of SNPs not captured by at least 50% of the 666 

participating studies and 50% of the maximum sample size for that metabolite and variants with a 667 

minor allele frequency below 0.5%. As a result, meta-analyses assessed the associations of up to 668 

13.1 million common or low-frequency autosomal SNPs. Chromosome and base pair positions are 669 

determined referring to GRCh37 annotation. To define associations between genetic variants and 670 

metabolites, we corrected the conventional threshold of genome wide significance for 102 tests (i.e. 671 

p<4.9x10-10), corresponding to the number of principal components explaining 95% of the variance 672 

of the 174 metabolites in the Fenland cohort, as previously described43. 673 

Signal selection 674 

 For each metabolite, we ranked associated SNPs (p <4.9x10-10) by z-score to select trait-sentinel 675 

SNPs and defined an “association” region as the region extending 1 Mb to each side of the trait-676 

sentinel SNP. During forward selection of trait-sentinel SNPs and loci for each trait, adjacent and 677 

partially overlapping association regions were merged by extending region boundaries to a further 1 678 
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Mb. We defined overall lead-sentinel SNP and loci for any metabolite using a similar approach. Trait-679 

sentinel SNPs were sorted by z-score for the forward selection of lead-sentinel SNPs and a “locus” 680 

was defined as the region extending 1 Mb each side of the lead-sentinel SNP. Regions larger than 2 681 

Mb defined in the trait-sentinel association region definition were carried over in the definition of 682 

lead-sentinel SNP loci. As a result, all lead-sentinel SNPs were >1Mb apart from each other and had 683 

very low or no linkage disequilibrium (R2 < 0.05). 684 

 For a given locus, independent signals across metabolites were determined based on linkage 685 

disequilibrium (LD)-clumping of SNPs that reached the Bonferroni corrected p-value. SNPs with the 686 

smallest p-values and an R2 less than 0.05 were identified as independent signals. LD patterns were 687 

estimated with SNP genotype data imputed using the haplotype reference consortium (HRC) 688 

reference panel, with additional variants from the combined UK10K plus 1000 Genomes Phase 3 689 

reference panel in the EPIC-Norfolk study (n = 19,254 after removing ancestry outliers and related 690 

individuals).  691 

 Throughout the manuscript, the term “locus” indicates a genomic region (≥1 Mb each side) of a 692 

lead-sentinel SNP harbouring one or more trait-sentinel SNPs; “signal” indicates a group of trait-693 

sentinel SNPs in LD with each other but not with other trait-sentinel SNPs in the locus (R2 < 0.05); 694 

“association” indicates trait-sentinel SNP to metabolite associations defined by a trait-lead SNP and 695 

its surrounding region (≥1 Mb each side). 696 

 We tested at each locus for conditional independent variants using exact stepwise conditional 697 

analysis in the largest Fenland sample (n = 8,714) using SNPTEST v2.5 restricting to loci with evidence 698 

for a genome-wide signal in this data set (p<5x10-8, see Supplemental Methods).  699 

Investigation of heterogeneity 700 

 We used a meta-regression model to identify factors associated with larger I² values across all 701 

499 identified SNP-metabolite associations. To this end, a vector of heterogeneity estimates, I², from 702 

the meta-analysis was obtained as outcome and the following explanatory variables were 703 

considered: strength of effect (absolute Z-score of the SNP – metabolite association), biochemical 704 

class, dummy variables indicating the study of origin (related to the measurement platform), and the 705 

number of contributing studies as an estimate of sample size. A significant effect of any of those 706 

terms in a linear regression model was taken to indicate a source of heterogeneity across SNP-707 

metabolite associations and hence identified systematic factors contributing to any observed cross-708 

platform heterogeneity. 709 

Statistical fine-mapping 710 
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 We used statistical fine mapping to determine 99%-credible intervals for all independently 711 

associated SNPs using the R package ‘corrcoverage’ using the subset of GWAS results for which we 712 

had access to individual level data and incorporating results from conditional analysis to account ffor 713 

multiple independent signals at a locus.  714 

Muli-trait colocalisation across metabolites 715 

 We used hypothesis prioritisation in multi-trait colocalisation (HyPrColoc)15 at each of the 716 

identified 144 loci 1) to identify metabolites sharing a common causal variant over and above what 717 

could be identified in the meta-analysis to increase statistical power, and 2) to identify loci with 718 

evidence of multiple causal variants with distinct associated metabolite clusters. HyPrColoc provides 719 

for each cluster three different types of output: 1) a posterior probability (PP) that all traits in the 720 

cluster share a common genetic signal, 2) a regional association probability, i.e. that all the 721 

metabolites share an association with one or more variants in the region, and 3) the proportion of 722 

the PP explained by the candidate variant. We considered a highly likely alignment of a genetic signal 723 

across various traits if the PP > 75% or the regional association probability > 80% and the PP > 50%. 724 

The second criterion takes into account that metabolites may share multiple causal variants at the 725 

same locus. We used the same set of summary statistics as described for statistical fine-mapping. 726 

We further filtered metabolites with no evidence of a likely genetic signal (p>10-5) in a region before 727 

performing HyPrColoc, which improved clustering across traits by minimizing noise. We used the 728 

same workflow to test for the alignment of a genetic signal at the GLPR2 locus using summary 729 

statistics from T2D (see below), a meta-analysis for body mass index across GIANT and UK Biobank, 730 

plasma GIP, and plasma citrulline. 731 

Testing for non-linear effects 732 

 We tested each of the 499 identified SNP (j) – metabolite (i) pairs for the deviation from an 733 

additive linear model by introducing a dummy variable encoding heterozygous carriers (D), i.e. D = 1 734 

if heterozygous and 0 otherwise, in the following regression model: 735 ݁ݐ݈݅݋ܾܽݐ݁ܯ௜	~	ߚଵ ଶߚ	+ ∗ ܵܰ ௝ܲ ଷߚ	+ ∗ ܦ	 ݎ݁݀݊ݑ݋݂݊݋ܥ⋯+ …+ 	߳  736 

A significant estimate ߚଷindicates departure from linearity. In a more formal framework this test 737 

allows to test for either a dominant negative or positive model of inheritance depending on the 738 

coding of the effect allele. We implemented this test in STATA version 14 using individual level data 739 

from the Fenland cohort. 740 

Metabolic network and community detection 741 
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 We used Gaussian graphical modelling (GGMs) to construct a metabolic network across all 174 742 

metabolites in a data-driven manner2 as implemented in the R package GeneNet. The final network 743 

comprised 167 metabolites and 554 significant (p<3.3x10-6) edges. We preformed community 744 

detection using the Girvan-Newman algorithm as implemented in the R package igraph and 745 

obtained 14 distinct communities including those covering metabolites of distinct biochemical 746 

species as well as subdividing larger metabolite classes (Supplemental Fig. S2). 747 

Hypothesis-free (genetic) assignment of causal genes 748 

 To assign likely causal genes to lead SNPs at each locus we generated a scoring system. We 749 

identified the nearest gene for each variant by querying HaploReg44. Next we integrated expression 750 

quantitative trait loci (eQTL) studies (GTEx v6p) to identify genes whose expression levels are 751 

associated with metabolite levels using TWAS/FUSION (Transcriptome-wide association study / 752 

Functional summary-based imputation)45. In doing so, we assigned to each variant-metabolite 753 

association one or more associated genes using the variant as common anchor. We further assigned 754 

higher impact for a causal gene if either the metabolite variant itself or a proxy in high linkage 755 

disequilibrium (R2>0.8) was a missense variant for a known gene again using the HaploReg database 756 

to obtain relevant information. Based on those three criteria we ranked all possible candidate genes 757 

and kept those with the highest score as putative causal gene. 758 

Knowledge-based (biological) assignment of causal genes 759 

 Metabolite traits are unique among genetically evaluated phenotypes in that the functional 760 

characterization of the relevant genes has often already been carried out using classic biochemical 761 

techniques. The objective for the knowledge-based assignment strategy was to find the 762 

experimental evidence that has previously linked one of the genes proximal to the GWAS lead 763 

variant to the relevant metabolite. For many loci and metabolites this ‘retrospective’ analysis has 764 

already been carried out 31,46.For these cases, previous causal gene assignments were generally 765 

adopted. For novel loci, we employed a dual strategy that combined automated database mining 766 

with manual curation. In the automated phase, seven approaches were employed to identify 767 

potential causal genes among the 20 protein-coding genes closest to each lead variant, as described 768 

in detail below, using the shortest distance determined from the lead SNP to each gene’s 769 

transcription start site (TSS) or transcription end site (TES), with a distance value of 0 assigned if the 770 

SNP fell between the TSS and TES.   771 

These 7 approaches were as follows: 772 

1) HMDB metabolite names47 were compared to each entrez gene name;  773 
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2) Metabolite names were compared to the name and synonyms of the protein encoded by each 774 

gene48 775 

3) HMDB metabolite names and their parent terms (class) were compared to the names for the 776 

protein encoded by each gene (UniProt). 777 

4) Metabolite names were compared to rare diseases linked to each gene in OMIM32 after 778 

removing the following non-specific substrings from disease names: uria, emia, deficiency, disease, 779 

transient, neonatal, hyper, hypo, defect, syndrome, familial, autosomal, dominant, recessive, benign, 780 

infantile, hereditary, congenital, early-onset, idiopathic; 781 

5) HMDB metabolite names and their parent terms were compared to all GO biological processes 782 

associated with each gene after removing the following non-specific substrings from the name of the 783 

biological process: metabolic process, metabolism, catabolic process, response to, positive 784 

regulation of, negative regulation of, regulation of. For this analysis only gene sets containing fewer 785 

than 500 gene annotations were retained. 786 

6) KEGG maps49 containing the metabolite as defined in HMDB were compared to KEGG maps 787 

containing each gene, as defined in KEGG. For this analysis the large “metabolic process” map was 788 

omitted. 789 

7) Each proximal gene was compared to the list of known interacting genes as defined in HMDB. 790 

For each text-matching based approach, a fuzzy text similarity metric (pair coefficient) as encoded in 791 

the ruby gem “fuzzy_match” was used with a score greater than 0.5 considered as a match. 792 

In the next step, all automated hits at each locus were manually reviewed for plausibility. In 793 

addition, other genes at each locus were reviewed if the Entrez gene or UniProt description of the 794 

gene suggested it could potentially be related to the metabolite. If existing experimental evidence 795 

could be found linking one of the 20 closest genes to the metabolite, that gene was selected as the 796 

biologically most likely causal gene. If no clear experimental evidence existed for any of the 20 797 

closest protein coding genes, no causal gene was manually selected. In a few cases multiple genes at 798 

a locus had existing experimental evidence. This frequently occurs in the case of paralogs with 799 

similar molecule functions. In these cases, all such genes were flagged as likely causal genes. 800 

Enrichment of type 2 diabetes associations among metabolite associated lead variants 801 

 We examined whether the set of independent lead metabolite associated variants (N=168) 802 

were enriched for associations with T2D. We plotted observed versus expected -log10(p-values) for 803 

the 168 lead variants in a QQ-plot, using association statistics from a T2D meta-analysis including 804 

80,983 cases and 842,909 non-cases from the DIAMANTE study 50 (55,005 T2D cases, 400,308 non-805 
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cases), UK Biobank51 (24,758 T2D cases, 424575 non-cases, application number 44448) and the EPIC-806 

Norfolk study (additional T2D cases not included in DIAMANTE study: 1,220 T2D cases and 18,026 807 

non-cases). This QQ-plot was compared to those for 1000 sets of variants, where variants in each set 808 

were matched to the index metabolite variants in terms of MAF, the number of variants in LD 809 

(R2>0.5), gene density and distance to nearest gene (for all parameters +/- 50% of the index variant 810 

value), but otherwise randomly sampled from across the autosome excluding the HLA region. MAF 811 

and LD parameters for individual variants were determined from the EPIC-Norfolk study (using the 812 

combined HRC, UK10K and 1000G imputation as previously described) and gene information was 813 

derived from GENCODE v19 annotation52. A one-tailed Wilcoxon rank sum test was used to compare 814 

the distribution of association –log10 p-values for the metabolite associated variants with that for 815 

the randomly sampled, matched, variants. 816 

Functional characterisation of D470N mutant GLP2R 817 

 To investigate the functional differences between wild-type (WT) GLP2R and the D470N 818 

mutant GLP2R we generated D470N GLP2R mutant constructs using site-directed mutagenesis and 819 

characterised canonical GLP2R signalling pathways via cAMP as well as alternative signalling 820 

pathways via β-arrestin and P-ERK. 821 

 Human GLP2R cDNA within the pcDNA3.1+ vector was purchased, and Gibson cloning was 822 

completed to insert an internal ribosome entry site (IRES) and venus gene downstream of the GLP2R 823 

sequence. Following this, QuikChange Lightning site directed mutagenesis was used to perform a 824 

single base change from GAC (encoding aspartic acid) to AAC (encoding asparagine) at amino acid 825 

position 470 (Supplemental Fig. 4A-B). Successful mutagenesis was confirmed by DNA Sanger 826 

sequencing (Supplemental Fig. 4C), and the successful products were scaled up for use in functional 827 

assays. The WT and mutant GLP2R constructs within the pcDNA3.1+ vector were used to assess 828 

signalling by cAMP and P-ERK. To determine β-arrestin recruitment using NanoBiT® technology, an 829 

alternative vector was required for lower expression of GLP2R, and fusion of GLP2R to the Large BiT 830 

subunit of NanoBiT®. For this, GLP2R was cloned into the pBiT1.1_C[TK/LgBiT] vector using 831 

restriction cloning and ligation. DNA Sanger sequencing was then used for confirmation of successful 832 

cloning.  833 

After generation of WT and D470N GLP2R containing constructs, these were used to assess 834 

differences in WT and mutant GLP2R signalling. The initial signalling pathway to be assessed was Gαs 835 

signalling via cAMP. CHO K1 cells were transiently transfected with WT or mutant GLP2R constructs, 836 

then after 16-24 hours were treated with a dose response of GLP-2. cAMP levels were measured 837 

following 30 minutes of GLP-2 treatment, in an end-point lysis HitHunter® cAMP assay. The presence 838 
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of IRES-Venus within the GLP2R expressing vectors allowed transfection efficiency to be determined 839 

for each construct. Transfection efficiency was approximately 60-70%, with no differences between 840 

the WT and mutant constructs. Comparison of the GLP-2 dose-response in WT and mutant GLP2R 841 

expressing cells revealed no significant differences in signalling, with an almost overlapping dose 842 

response curve (Fig. 5E).  843 

Both β-arrestin 1 and β-arrestin 2 recruitment were assessed using a Nano-Glo® live cell 844 

assay in transiently transfected HEK293 cells. Briefly, the recruitment of β-arrestin to GLP2R brings 845 

the large and small BiT subunit of NanoBiT® together, resulting in increased luciferase activity. The 846 

top concentrations from the GLP-2 dose response in the cAMP assay (1–100 nmol/l GLP-2) were 847 

chosen for stimulation of the GLP2R and observation of β-arrestin recruitment. Both β-arrestin 1 and 848 

β-arrestin 2 were recruited to the WT GLP2R upon GLP-2 stimulation, in a dose-dependent manner 849 

(Supplemental Fig. 5a, c). The maximal luciferase activity for both β-arrestin 1 and β-arrestin 2 850 

recruitment to the mutant GLP2R was significantly decreased when compared to the WT GLP2R, 851 

indicating the extent of β-arrestin recruitment was markedly decreased (Supplemental Fig. 5b, d). 852 

The example traces indicate that neither β-arrestin 1 or β-arrestin 2 were recruited to the mutant 853 

GLP2R upon stimulation with 1 nmol/l GLP-2, however the same concentration of GLP-2 induced β-854 

arrestin recruitment to the WT GLP2R. Overall there was a significant decrease in β-arrestin 1 and β-855 

arrestin 2 recruitment to the D470N GLP2R mutant (Figure 5F-G). 856 

Genetic score and Mendelian randomization analysis for MacTel  857 

 For each metabolite a genetic score was calculated using all variants meeting genome-wide 858 

significance and their beta-estimates as weights obtained from the meta-analysis of studies for 859 

which individual level data was available. We used fixed-effect meta-analysis to test for the effect of 860 

the genetic score on MacTel risk using the summary statistics from the most recent GWAS. A 861 

conservative Bonferroni-correction for the number of tested scores was used to declare significance 862 

(p<3.5x10-4). Sensitivity analyses were performed where the pleiotropic GCKR variant was removed.     863 

 To test for causality between circulating levels of glycine and serine for MacTel we 864 

performed two types of Mendelian randomization (MR) analysis. In a two-sample univariable MR53 865 

we tested for an individual effect of serine (n=4 SNPs) or glycine (n=15 SNPs) on the risk of MacTel 866 

using independent non-pleiotropic (i.e. the variant in GCKR) genome-wide SNPs as instruments. To 867 

this end, we used the inverse variance weighted method to pool SNP ratio estimates using random 868 

effects as implemented in the R package MendelianRandomization. SNP effects on the risk for 869 

MacTel were obtained from28. To disentangle the individual effect of those two highly correlated 870 

metabolites at the same time we used a multivariable MR model54 including all SNPs related to 871 
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serine or glycine (n=15 SNPs). Beta estimates and standard errors for both metabolites and all SNPs 872 

were obtained from the summary statistics and mutually used as exposure variables in multivariable 873 

MR. Effect estimates were again pooled using a random effect model as implemented in the R 874 

package MendelianRandomization. This procedure allowed us to obtain causal estimates for both 875 

metabolites while accounting for the effect on each other. Estimates can be interpreted as increase 876 

in risk for MacTel per 1 SD increase in metabolite levels while holding the other metabolite constant.   877 

 To estimate a potential clinical usefulness of the identified variants we constructed two 878 

genetic risk scores for MacTel using a) sex, the first genetic principal component, and the SNPs 879 

rs73171800 and rs9820286 which were identified by the MacTel GWAS study28 but not found to be 880 

related to either glycine or serine in our study and b) all the previous but additionally including 881 

genetically predicted serine and glycine at individual levels, via genetic scores, to the model. An 882 

interaction between serine and sex was included28. To assess the predictive ability of both models, 883 

receiver operating characteristic curves were computed based on prediction values in 1,733 controls 884 

and 476 MacTel cases. 885 

Identification of genes related to inborn errors of metabolism 886 

 Biologically or genetically assigned candidate genes were annotated for IEM association 887 

using the Orphanet database32. Using a binomial two-tailed test, enrichment of metabolic loci was 888 

assessed by comparing the annotated list with the full list of 784 IEM genes in Orphanet against a 889 

backdrop of 19,817 protein-coding genes55. IEM-annotated loci for which the associated metabolite 890 

matched or was closely biochemically related to the IEM corresponding metabolite(s) based on 891 

IEMBase56 were considered further for analysis.  892 

 We hypothesised that IEM-annotated loci with metabolite-specific consequences could also 893 

have phenotypic consequences similar to the IEM. To test this, we first obtained terms describing 894 

each IEM and translated them into IEM-related ICD-10 codes using the Human Phenotype Ontology 895 

and previously-generated mappings57,58. We obtained association statistics from the 85 IEM SNPs for 896 

phenotypic associations with corresponding ICD-codes among UK Biobank restricting to diseases 897 

with at least 500 cases (N=93, Fig. 7B, http://www.nealelab.is/uk-biobank). We tested locus-disease 898 

pairs meeting statistical significance (controlling the false discovery rate at 5% to account for 899 

multiple testing) for a common genetic signal with the corresponding locus-metabolite association 900 

using statistical colocalisation. We report only those examples with strong evidence for a shared 901 

genetic signal (see below).  902 

Colocalisation analyses 903 
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 We used statistical colocalisation59 to test for a shared genetic signal between a metabolite and 904 

a disease of interest. We obtained posterior probabilities (PP) of: H0 – no signal; H1 – signal unique 905 

to the metabolite; H2 – signal unique to the trait; H3 – two distinct causal variants in the same locus 906 

and H4 – presence of a shared causal variant between a metabolite and a given trait. PPs above 80% 907 

were considered highly likely. We used p-values and MAFs obtained from the summary statistics 908 

with default priors to perform colocalisation using the R package coloc. 909 

DATA AVAILABILITY 910 

All genome-wide summary statistics will be made available through an interactive webserver upon 911 

publication of the manuscript. 912 

CODE AVAILABILITY 913 

Each use of software programs has been clearly indicated and information on the options that were 914 

used is provided in the Methods section. Source code to call programs is available upon request.  915 
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499 locus-metabolite associations

304 variants
323 likely-causal genes

B
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91 variants
53 likely-causal genes

IEM-specific
136 locus-metabolite associations

93 ICD-10 codes in UKBB*
85 variants
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100 loci not related to an IEM gene
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Significant associations (FDR<0.05)
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15 variants
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5 variants

4 likely-causal genes
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