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ABSTRACT

RNA function crucially depends on its structure.
Thermodynamic models currently used for sec-
ondary structure prediction rely on computing the
partition function of folding ensembles, and can thus
estimate minimum free-energy structures and en-
semble populations. These models sometimes fail in
identifying native structures unless complemented
by auxiliary experimental data. Here, we build a set
of models that combine thermodynamic parameters,
chemical probing data (DMS and SHAPE) and co-
evolutionary data (direct coupling analysis) through
a network that outputs perturbations to the ensem-
ble free energy. Perturbations are trained to increase
the ensemble populations of a representative set of
known native RNA structures. In the chemical prob-
ing nodes of the network, a convolutional window
combines neighboring reactivities, enlightening their
structural information content and the contribution
of local conformational ensembles. Regularization is
used to limit overfitting and improve transferability.
The most transferable model is selected through a
cross-validation strategy that estimates the perfor-
mance of models on systems on which they are not
trained. With the selected model we obtain increased
ensemble populations for native structures and more
accurate predictions in an independent validation
set. The flexibility of the approach allows the model
to be easily retrained and adapted to incorporate ar-
bitrary experimental information.

INTRODUCTION

Ribonucleic acids (RNA) transcripts, and in particular
non-coding RNAs, play a fundamental role in cellular
metabolism being involved in protein synthesis (1), catal-
ysis (2) and regulation of gene expression (3). RNAs often
adopt dynamic interconverting conformations, to regulate
their functional activity. Their function is however largely

dependent on a specific active conformation (4), making
RNA structure determination fundamental to identify the
role of transcripts and the relationships between mutations
and diseases (5). The nearest-neighbor models based on
thermodynamic parameters (6,7) allow the stability of a
given RNA secondary structure to be predicted with high
reliability, and dynamic programming algorithms (8,9) can
be used to quickly identify the most stable structure or the
entire partition function for a given RNA sequence. How-
ever, the coexistence of a large number of structures in a
narrow energetic range (10) often makes the interpretation
of the results difficult. Whereas there are important cases
where multiple structures are indeed expected to coexist in
vivo and might be necessary for function (11,12), the correct
identification of the dominant structure(s) is crucial to elu-
cidate RNA function and mechanism of action. In order to
compensate for the inaccuracy of thermodynamic models,
it is becoming common to complement them with chemical
probing data (13) providing nucleotide-resolution informa-
tion that can be used to infer pairing propensities (e.g. re-
active nucleotides are usually unpaired). Particularly inter-
esting is selective 2

′
hydroxyl acylation analyzed via primer

extension (SHAPE) (14,15), as it can also probe RNA struc-
ture in vivo (16). In a separate direction, novel methodolo-
gies based on direct coupling analysis (DCA) have been de-
veloped to optimally exploit co-evolutionary information in
protein structure prediction (17) and found their way in the
RNA world as well (18,19). Whereas the use of chemical
probing data and of multiple sequence alignments in RNA
structure prediction is becoming more and more common,
these two types of information have been rarely combined
(20).

In this paper, we propose a model to optimally inte-
grate RNA thermodynamic models, chemical probing ex-
periments and DCA co-evolutionary information into a ro-
bust structure prediction protocol. A machine learning pro-
cedure is then used to select the appropriate model and opti-
mize the model parameters based on available experimental
structures. Regularization hyperparameters are used to tune
the complexity of the model thus controlling overfitting and
enhancing transferability. The resulting model leads to sec-
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Table 1. RNA molecules included in the dataset

Molecule PDB lseq S1–S4

yeast Phe-tRNA 1EHZ 76 VTTT
D5,6 Yeast ai5g G-II Intron 1KXK 70 TTTT
Ribonuclease P RNA 1NBS 150 TTTT
Adenine riboswitch 1Y26 71 VTTV
TPP riboswtich 2GDI 78 TTVT
SAM-I riboswitch 2GIS 94 TTVT
Lysine riboswitch 3DIG 174 TTVV
O. I. G-II Intron 3IGI 388 TVTV
c-di-GMP riboswitch 3IRW 90 TTTT
M-box riboswitch 3PDR 161 VVTT
THF riboswitch 3SD3 89 VVTT
Fluoride riboswitch 3VRS 52 VTTT
SAM-I/IV riboswitch 4L81 96 TVVV
Lariat capping ribozyme 4P8Z 188 TTTT
ydaO riboswitch 4QLM 108 TTTT
ZMP riboswitch 4XW7 64 VVVV
50S ribosomal 4YBB CB 120 TVVV
5-HTP RNA aptamer 5KPY 71 TTTT

For each molecule we indicate the PDB ID of the corresponding annotated
structure, the number of nucleotides (lseq), and, for each random dataset
splitting that we used (S1–S4), a mark to denote whether the molecule data
are used for training (T) or validation (V). For PDB 4YBB, chain CB was
used as a reference.

ondary structure prediction that surpasses available meth-
ods when used on a validation set not seen in the training
phase. The parameters can be straightforwardly re-trained
on new available data.

MATERIALS AND METHODS

The architecture of the model is summarized in Figure 1.

Secondary structure annotation

The secondary structures that we use for training and vali-
dation were obtained by annotating crystallographic struc-
tures with x3dna-dssr (21). Differently from previous
work, we include all the computed cis-Watson–Crick con-
tacts as reference base pairs, with exception of pseudoknots
that are forbidden in predictions made with RNAfold.
All of the reference structures are published in the PDB
database and have a resolution better than 4 Å so that they
can be assumed to be of similar quality, although crystal
packing effects or other artefacts might in principle be dif-
ferent. The list of PDB files used in this work is reported in
Table 1.

Thermodynamic model

As a starting point we use the nearest neighbor thermody-
namic model (6,7) as implemented using dynamic program-
ming (8) in the ViennaRNA package (9). Given a sequence
�seq the model estimates the free energy associated to any

possible secondary structure �s by means of a sum over con-
secutive base pairs, with parameters based on the identity
of each involved nucleobase. We denote this free energy as
F0 (�s| �seq). We used here the thermodynamic parameters de-
rived in (7) as implemented in the ViennaRNA package,

but the method could be retrained starting with alterna-
tive parameters. The probability P0 (�s| �seq) of a structure
�s to be observed is thus P0 (�s| �seq) = e− 1

RT F0(�s| �seq)/Z0 ( �seq)
where Z0 is the partition function, R is the gas con-
stant and T the temperature, here set to 300K. Impor-
tantly, the implemented algorithm is capable of finding not
only the most stable structure associated to a sequence
(arg min�s F0 (�s| �seq)) but also the full partition function Z0
and the probability of each base pair to be formed in a poly-
nomial time frame (22).

Experimental data

Chemical probing data. Reactivities for systems 1KXK,
2GIS, 3IRW, 3SD3, 3VRS and 4XW7 were collected for
this work. Single stranded DNA templates containing the
T7 promoter region and the 3

′
and 5

′
SHAPE cassettes

(23) were ordered from Eurofins Genomics. RNAs were
transcribed using in-house prepared T7 polymerase. Briefly,
complementary T7 promoter DNA was mixed with the
desired DNA template and snap cooled (95◦C for 5 min,
followed by incubation on ice for 10 min) to ensure an-
nealing of the T7 complementary promoter with template
DNA. The mixture was supplemented with rNTPs, 20×
transcription buffer (TRIS pH 8, 100 mM Spermidine,
200 mM dithiothreitol), poly(ethylene glycol) 8000, vari-
ous concentrations of MgCl2 (final concentration ranging
from 10 to 40 mM) and T7 (10 mg/ml). The RNAs were
purified under denaturing conditions using polyacrylamide
gel electrophoresis. RNA was excised from the gel and ex-
tracted using the crush and soak method (24). Following
crush and soak, the RNAs were precipitated using ethanol
and sodium acetate, and resuspended in RNAse-free water.
SHAPE modification followed by reverse transcription (us-
ing 5′ FAM-labeled primers) was carried out as previously
described (23). Following reverse transcription, RNAs were
precipitated using ethanol and sodium acetate, redissolved
in HiDi formamide and cDNA fragments separated us-
ing capillary electrophoresis (ABI 3130 Sequencer). Raw
reads corresponding to cDNA fragments were obtained us-
ing QuSHAPE (25) and are reported in Supporting Data.
Reads in each of the control and modifier channels were
first normalized independently by dividing them by the sum
of reads in the corresponding channel. Reactivities were
then estimated by subtracting the normalized reads in the
control channel from the normalized reads in the modifier
channel, with negative values replaced with zeros. This nor-
malization is a simplified version of the one proposed in
Ref. (26) and does not contain position dependent correc-
tions. Reactivities to different chemical probes, namely 1M7
for systems 1EHZ, 1NBS, 1Y26, 2GDI, 3DIG, 3IGI, 3PDR,
4L81, 4YBB CB and 5KPY, NMIA for 1NBS, and DMS for
4P8Z and 4QLM, were taken from the literature (27–30) and
were normalized using the procedure discussed above, ex-
cept where noted.

DCA data. Direct couplings for all the systems were cal-
culated using the same code and parameters reported in
Ref. (31), but alignment was performed with ClustalW (32)
to avoid including indirectly known structural information.

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/2/4/lqaa090/5983421 by G

SF Forschungszentrum
 user on 15 February 2021



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 4 3

Figure 1. Graphical scheme of the machine learning procedure. (A) Models that integrate RNAfold, chemical probing experiments and DCA scores into
prediction of structure populations are trained. One among all the proposed models is selected based on a transferability criterion and validated against
data that is not seen during training. Available reference structures are used as target for training and validation. (B) Sequence, reactivity profile and
DCA data are included through additional terms in the RNAfold model free energy. The network is split into two channels: a single-layered channel for
reactivity input (left side) and a double-layered channel for DCA couplings (right side). Along the reactivity channel, a convolutional layer operates a
linear combination on the sliding window including the reactivity Ri of a nucleotide and the reactivities {Ri + k} of its neighbors, with weights {ak} and
bias b. The output consists in a pairing penalty �i for the i-th nucleotide. In the DCA channel, the first layer transforms the input DCA coupling Jij via a
non-linear (sigmoid) activation function, with weight A and bias B. The transformed DCA input is then mapped to a pairing penalty �ij for the specific ij
pair via a second layer, implementing a linear activation function with weight C and bias D. Penalties for both individual nucleotides and for specific pairs
are applied as perturbations to the RNAfold free-energy model.

For systems where the RNA primary sequences used in
Ref. (31) were different from those reported in the PDB or
used in chemical probing experiments, DCA calculations
were performed again. Couplings Jij were computed as the
Frobenius norm of the couplings between positions i and
j, as detailed in Ref. (31). All the used alignments and cou-
plings are reported in Supporting Data.

Penalties

We integrate chemical probing reactivities Ri and di-
rect couplings Jij into the model by mapping them into
single-point penalties �i and pairwise penalties �ij to
pairing propensity of, respectively, individual nucleotides
and specific nucleotide pairs. The free energy estimate

F
(
�s| �seq; �R, �J

)
obtained in this way is a modification of

the original one by two additional terms: F
(
�s| �seq; �R, �J

)
=

F0 (�s| �seq) + RT
lseq∑
i=1

λi ( �R) · (1 − si ) + RT
lseq∑

j>i+2
λi j ( �J) · si j

where si is the pairing status of the i-th nucleotide in the
structure �s (si = 1 if nucleotide i is paired, si = 0 otherwise)
and sij is the pairing status of the specific couple of nu-
cleotides i and j. We implement both kinds of penalties in
the folding algorithm using the soft constraints functions
from RNAlib vrna sc add up and vrna sc add bp,
respectively. We notice that penalties on individual nu-
cleotides are used in several methods developed to account
for chemical probing experiments (33,34) though the way
these penalties are computed can differ. Also notice that
the most used model to include SHAPE data in secondary
structure prediction (15) uses slightly different penalties

that are associated to consecutive rather than to individual
base pairs.

Neural network

An important ingredient in our procedure is the way exper-
imental data (reactivities and direct couplings) are mapped
into single and pairwise penalties, respectively.

The penalties associated with individual nucleotides are
mapped from reactivities via a single-layered convolutional

network λi

(
�R
)

=
p∑

k=−p
ak · Ri+k + b that includes reactiv-

ities {Ri − p, . . . , Ri − 1} of the p neighbor nucleotides in
the 3

′
direction and reactivities {Ri + 1, . . . , Ri + p} of the p

neighbor nucleotides in the 5
′

direction. Hence, the hyper-
parameter p determines the size of the convolutional win-
dow, namely 2p + 1. The parameters ak of the linear activa-
tion function control the relative weights of neighbors, and
b is the bias.

The penalties on specific nucleotide pairs are mapped
from direct couplings via a double-layered network �ij(Jij)
= C · �(A · Jij + B) + D. The activation function of the
output layer is linear with parameters C and D, whereas we
apply a sigmoid activation σ (x) = 1

1+e−x at the innermost
layer, with weight A and bias B.

The model has thus 2p + 6 free parameters: {ak, b} for
the penalties associated to the chemical probing data and
{A, B, C, D} for those associated to the DCA data.

Training

The modifications to the model free energy affect the
whole ensemble of structures for a given sequence,
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resulting in modified populations P
(
�s| �seq, �R, �J

)
=

e− 1
RT F(�s| �seq; �R, �J)/Z

(
�seq, �R, �J

)
. Our aim is to increase the

population of the native structure, under the assump-
tion that the native structure is the one obtained by
X-ray crystallography. We thus consider a set of given
sequence-structure pairs { �seq, ŝ} (one for each system
in the training set), where ŝ denotes the pairing state
in an available crystallographic structure, and for each
system we train the model to minimize the cost function

C ({ak, b}, {A, B, C, D}) = −RT ln P
(

ŝ| �seq, �R, �J
)

. Its

minimization, in the training procedure, is equivalent to
maximizing the population of the target structures.

For each system we decompose the cost function into two

terms, namely F
(
�s| �seq; �R, �J

)
and −RT ln Z

(
�seq, �R, �J

)

that we can compute using, respectively, the functions
vrna eval structure and vrna pf from RNAlib.
The derivatives of the cost function with respect to
model paramaters, that are required for cost minimiza-
tion, are proportional to pairing probabilities of indi-
vidual nucleotides pi and of specific nucleotide pairs pij.
These derivatives are then used to back propagate deriva-
tives from the output layer to the input nodes. Base-
pair probabilities in the penalty-driven ensembles pi j =∑

{�s} P
(
�s| �seq, �R, �J

)
si j , can be straightforwardly com-

puted using the function vrna bpp from RNAlib.

Regularization

In order to reduce the risk of overfitting we include l
−2 regularization in the training procedure. Direct cou-
plings (2D data) and reactivity profiles (1D data) dif-
fer in the amount of structural information they con-
tain. For this reason, instead of adding to the cost
function a standard single regularization term on all
parameters, we add two representational regularization
terms (35), each with an independent coefficient, di-
rectly on the penalties mapped from each type of

data, C ({ak, b}, {A, B, C, D}) = −RT ln P
(

ŝ| �seq, �R, �J
)

+
αS

∑
i λ2

i + αD
∑

i j λ2
i j . This procedure keeps the penalties

that we add to the model free energy from becoming too
large, and thus helps preventing the occurrence of overfit-
ting during the minimization of the cost function. The intro-
duction of regularization terms must be taken into account
in the cost function derivatives by addition of correspond-
ing derivative terms that are easily computed.

Minimization

The inclusion of regularization terms in the cost function
brings in two hyperparameters, �S and �D, in addition to p,
the hyperparameter that determines the width of the con-
volutional window. The collection of models that we train
is thus defined by the triplet of hyperparameters {p, �S,
�D}. We then explore all the hyperparameter combinations
within the ranges p ∈ [0, 1, 2, 3] and �S, �D ∈ [∞, 1.0, 10−1,
10−2, 10−3, 10−4, 0.0] for a total of 4 × 7 × 7 = 196 mod-
els. For each model, we minimize the corresponding cost

function using the sequential quadratic programming algo-
rithm as implemented in the scipy.optimize optimiza-
tion package (36). The minimization problem is non-convex
whenever �D is finite, so we expect the cost function land-
scape to be rough, with multiple local minima. The result of
the minimization will thus depend on the initial set of model
parameters. For each minimization we try multiple initial
values for the model parameters, extracting them from a
random uniform distribution, and we select those that yield
the minimum cost function. For each minimization we in-
clude in the set of starting parameters also three specific sets
of starting points:

1. parameter values from the optimized {p − 1, �S, �D}
model, with the new a−p and ap set to 0.0; if p = 0, we
ignore this starting point.

2. parameter values from the optimized {p − 1, �S, �D}
model, with the new a−p and ap set to 0.0; if p = 0, we
ignore this starting point.

3. parameter values from the optimized {p, 10 · �S, �D}
model; if �S = 0.0, we use values from the optimized {p,
10−4, �D} model; if �S = 1, we use values from the op-
timized {p, ∞, �D} model; if �S = ∞, we ignore this
starting point.

4. parameter values from the optimized {p, �S, 10 · �D}
model; if �D = 0.0, we use values from the optimized
{p, �S, 10−4} model; if �D = 1, we use values from the
optimized {p, �S, ∞} model; if �D = ∞, we ignore this
starting point.

This ensures that models with higher complexity
(i.e. higher p or lower �S or �D) will, by construction, fit the
data better than models with lower complexity. In this way
the performance of the models, as evaluated on the training
set, is by construction a monotonically decreasing function
of �D and �S, and a monotonically increasing function of
p.

Leave-one-out

Among the models optimized in the training procedure, we
select the one that yields the best performance without over-
fitting the training data, in order to ensure the transferabil-
ity of its structure and optimal parameters. As a test for
transferability, we use a leave-one-out cross-validation. This
procedure consists in iteratively leaving each of the 12 sys-
tems at a time out of the training set, and using the opti-
mal parameters resulting from optimization on the reduced
training set to compute the population of the native struc-
ture for the left-out system. The population of native struc-
tures, averaged on the left-out systems, is used to rank all of
the tested models. We consider the model with the highest
score as the most capable of yielding an increase in popu-
lation of native structures for systems on which it was not
trained.

Validation

The resulting model is then validated on a set of 6 systems
that were not used in the parameter or hyperparameter opti-
mization. For these systems we compute the ensemble pop-
ulation of the native structure. In addition, we compute the
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similarity between the most stable structure in the predicted
ensemble (minimum free energy (MFE) structure) and the
native structure using the Matthews correlation coefficient,
that optimally balances sensitivity and precision.

RESULTS

Chemical probing experiments provide reactivities per nu-
cleotide (one-dimensional information, Ri) that are mapped
via a single-layered convolutional network to penalties to
be associated to the pairing propensity of individual nu-
cleotides (�i). Similarly, direct-coupling analysis provides
predicted contact scores (2D information, Jij) that are
mapped through a non-linear function into penalties to
be associated with specific nucleotide-nucleotide pairs (�ij).
The resulting penalties are integrated in the folding algo-
rithm RNAfold from the Vienna package (9), which allows
the full partition function of the system to be computed,
including the population of any suboptimal structure. The
parameters of the mapping functions are trained in order
to maximise the population of the secondary structures as
annotated in a set of high-resolution X-ray diffraction ex-
periments. The differentiability of the RNAfold model with
respect to the applied penalties is crucial, since it allows the
thermodynamic model to be used during the training pro-
cedure. Reference structures are obtained from the struc-
tural database (37). Reference chemical probing data are
partly taken from the RNA mapping database (27,28) and
from Refs. (29,30), and partly reported for the first time in
this paper. Reference direct couplings are partly taken from
Ref. (31) and partly obtained in this paper, using RNA fami-
lies deposited on RFAM (38). The model complexity is con-
trolled via three hyperparameters, which are chosen using a
cross-validation procedure, and the obtained model is eval-
uated on an independent dataset not seen during the train-
ing procedure. A more detailed explanation can be found
in ‘Materials and Methods’ section, and the architecture of
the model is summarized in Figure 1.

Model training

We randomly choose a training set of 12 systems, leaving
6 others out for later validation. Since crystal structures,
chemical probing data and DCA data for different systems
might be of different quality, the specific choice of the split-
ting might affect the overall training and validation results.
We thus generate four independent random splittings, re-
ported in Table 1. In the following we refer to splitting S3,
that leads to the worst performance in the cross-validation
test and to the best performance in the external valida-
tion. Results for all the splittings are reported in Support-
ing Information. Importantly, the external validation test
is passed for all the splittings, indicating that our proce-
dure is capable to detect overfitting with all of the tested
datasets. The model complexity is controlled by means of
three handles: a regularization parameter acting on the 1D
penalties derived from reactivities (0 ≤ �S ≤ ∞), a regular-
ization parameter acting on the two-dimensional penalties
derived from DCA (0 ≤ �D ≤ ∞) and an integer controlling
the size of the window used for the convolutional network (p

≤ 3). When the performance of the model is evaluated on
the training set, the model that better fits the data are the
most complex one, with no regularization term (�S = �D =
0) and the largest tested window (p = 3) (Figure 2A). The
geometric average of the populations of native structures in-
creases by ≈11 times with respect to that of the thermody-
namic model alone. Training the model using only chemi-
cal probing data (�D = ∞), or only DCA data (�S = ∞),
results in an increase of native population by ≈ five times
and ≈ three times respectively, within the randomized set
S3 (Table 1).

Model selection

In order to make the parametrization transferable, we per-
form a leave-one-out cross-validation (CV) procedure (see
‘Materials and Methods’ section) where one of the 12 sys-
tems at a time is left out of the training procedure and the
increase in the native population for the left-out system is
used to estimate transferability. Overall, the average perfor-
mance of the model on the left-out system shows a non-
trivial dependence on the hyperparameters (Figure 2B). All
the models yield a performance in the cross-validation test
equal or better than the thermodynamic model alone, but
the best performance is obtained when choosing �S = 0.001,
�D = 0.001 and p = 0. We select this model as the one
that yields the best balance between performance and trans-
ferability. Results obtained by using different randomiza-
tions of the training set are reported in Supporting Infor-
mation. Whereas the precise set of optimal hyperparameters
depends on the specific training set, sets of hyperparameters
that perform well on a specific set tend to perform well for
all of the tested training sets.

Validation on an independent dataset

Finally, we evaluate the performance of the selected model
on a dataset of six systems that were not seen during train-
ing. This additional test is done in the spirit of nested cross-
validation (39) in order to properly evaluate the transfer-
ability of the procedure.

For the six test systems (splitting S3 of Table 1), the intro-
duced procedure leads to a boost of the population of the
native structure by ≈ 19 times, on average (Figure 3A, right
side of the vertical line), when using the selected model {�S
= 0.001, �D = 0.001, p = 0}. A side effect of targeting the
population of native structures for model optimization and
selection is the increase in the similarity between the pre-
dicted MFE and the experimental structures. This similar-
ity can be quantified using the Matthews Correlation Co-
efficient (MCC) (40), that is routinely used to benchmark
RNA structure prediction (41). Its average on the validation
set is increased from 0.68 to 0.89 (Figure 3D, right side).
Specific changes in the predicted secondary structures are
reported in detail in Figure 4, where reference secondary
structures are compared with MFE predictions made with
unmodified RNAfold and with the selected model. In par-
ticular, for 2GDI (Figure 4A–C) our model recovers the cor-
rect structure of the 3-way junction loop (4-5:41–47:72–75);
for 2GIS (Figure 4D–F) it recovers the correct structures of
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Figure 2. Population of native structure as function of hyperparameters. Population is indicated in the color scale. The optimized population of native
structures, when averaged on the training set (A), is by construction a monotonically increasing function of the integer p controlling the window size of
the convolutional network in the reactivity channel, and a monotonically decreasing function of the regularization coefficients �S and �D. When averaged
on the leave-one-out iterations of the cross-validation (CV) procedure (B), the dependency of the optimized population of native structures on these
hyperparameters becomes non-trivial, as it results from a combination of model complexity (controlled by p) and regularization (controlled by �S and �D
independently). The CV procedure serves as criterion for model selection, resulting in the selection of hyperparameters {p = 0, �S = 0.001, �D = 0.001}.

the hairpin loop (23–29) and the internal loop (17–21:31–
38); for 3DIG (Figure 4D–I) the correct bulge loop (84–
85:109–111) is recovered; for 4YBB (Figure 4J–L) the bulge
loops (30–31:51–54) and (17–18:65–67), the internal loops
(23–28:56–60) and (71–79:97–105), the 3-way junction (10–
16:68–70:106–110) and the hairpin loop (86–90); for 4L81
(Figure 4M–O) the 4-way junction (5–10:21–22:51–53:66–
67) is correctly predicted; for 4XW7 (Figure 4P–R) we have
no change in MFE prediction with respect to unmodified
RNAfold. Considering all of the tested splittings of the
dataset, the average MCC of MFE structure predictions is
increased from 0.72 ± 0.22 to 0.90 ± 0.10, implying both an
increased average and a decreased variance (details in Sup-
porting Data).

As can be seen from Figure 4, some of the structures in
the dataset contain pseudoknots. This kind of pairing is for-
bidden in RNAfold structure predictions, thus we do not
include it in the estimation of MCC. Nontheless, data from
both chemical probing and coevolution analysis in princi-
ple contain information about pseudoknots, and it is pos-
sible to examine how reactivities and DCA scores of pseu-
doknotted nucleotides are mapped into pairing penalties in
our optimal model. We notice that the average value of pair-
wise DCA penalties applied to pseudoknot pairs 〈�ij〉PK =
−0.087 is comparable to the average of those applied to base
pairs 〈�ij〉BP = −0.094, so that they have almost the same ef-
fect in favoring pairing (free-energy term �ijsij < 0 for sij =
1). The difference between the two values is negligible when
compared with the average DCA penalty applied to un-
paired nucleotides 〈�ij〉UP = 0.447. Reactivity-driven single-
point penalties favor unpaired states on average (free-energy
term −�isi > 0 for si = 1), but the effect on pseudoknotted
nucleotides 〈�i〉PK = −0.142 and on base-paired nucleotides
〈�i〉BP = −0.125 is approximatley half of that on unpaired
nucleotides 〈�i〉UP = −0.284. Even though in our optimal
model the pairing of pseudoknotted nucleotides is boosted

with almost the same intensity of base-paired nucleotides,
eventually small values are predicted for the corresponding
pairing probabilites (see Supporting Data). This is due to
the fact that the thermodynamic model only allows struc-
tures with nested pairs.

It is also possible to test the scenarios where only DCA
data or only chemical probing data are available. In scenar-
ios where only DCA information is used (�S = ∞), the best
performance in CV is obtained using the model with �D =
0.0001 (10 × increase in population, average MCC = 0.83,
Figure 3B and D). This model is thus transferable to the val-
idation set yielding a significant increase in both the popu-
lation of the native structures and in MFE structure accu-
racy. In the case of chemical probing-only information (�D
= ∞), the best performance in CV is obtained using the
model with hyperparameters �S = 0.01 and p = 0 (3 × in-
crease in population, average MCC = 0.71, Figure 3C and
D). Interestingly, whereas reactivity-only models perform
systematically better in training than DCA-only models,
their performance in CV is systematically lower, suggesting
a lower transferability to unseen data, and thus a larger risk
for reactivity-driven penalties to be overfitted. This might
be related to the high heterogeneity of the chemical prob-
ing data used here, that makes it difficult to fit transferable
parameters.

Our procedure to compute pairing penalties from
SHAPE reactivities can be compared with the one intro-
duced by Deigan et. al. (15). Since the Deigan’s method
requires SHAPE data normalized with a different proce-
dure, we use normalized reactivities reported in ref. (28).
Remarkably, our procedure leads to significantly better re-
sults both for molecules that are included in the train-
ing set (e.g. 4P8Z, 1EHZ, 5KPY, 1Y26, 4QLM in Fig-
ure 3C), and for most of the RNAs included in the vali-
dation set (4YBB CB and 4L81 in the right side of Figure
3C).
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Figure 3. Comparison of results obtained with unmodified RNAfold and with selected models, respectively: populations of native structures with (A) the
best performing model; (B) the best performing model with DCA data only; (C) the best performing model with chemical probing data only. (D) Matthews
correlation coefficients between predicted MFE structures and reference native structures, as obtained with selected (best, DCA-only, chemical probing-
only) models and with unmodified RNAfold. Hyperparameters are noted in the figure. Native structure populations obtained with unmodified RNAfold
(black cross), with our trained model (magenta star on the training set, red star on the validation set) and in the leave-one-out procedure (blue circle,
for each molecule the model is trained on all the other molecules in the training set) are reported. Populations obtained by mapping SHAPE reactivities
into penalties with the method in Ref. (15) are reported for comparison (green plus), only for molecules studied in previous work and in panel (C) where
chemical probing data only are used. The populations of native structures that we obtain with the trained model are almost always increased for molecules
both in the training (left side of the vertical line) and in the validation set (right side), with overfitting occurring in a few cases, where populations lower
than obtained with unmodified RNAfold are yielded.

Interpretation of parameters

In principle, different randomizations of the training set
yield different hyperparameters and parameters for the
functions implemented in the selected model. Here we con-
tinue focusing on splitting S3. The selected model is defined
by hyperparameters {�S = 0.001, �D = 0.001, p = 0}. Re-
sults for different splittings are similar and are reported in
Supporting Data.

DCA channel. DCA couplings are mapped into pairing
penalties through a double-layered neural network, result-
ing in a non-linear function reported in Figure 5A. Pair-
ing penalties are found to decrease with increasing DCA
coupling value, consistent with the interpretation that large
couplings should correspond to co-evolutionarily related
and thus likely paired nucleobases (18). A more detailed in-
terpretation of these pairing penalties is possible if we re-
strict to models taking only DCA couplings as input (�S

= ∞). The corresponding non-linear function is reported
in Figure 5B. The overall shape is consistent with that ob-
tained fitting all the data (Figure 5A), but the zero of this
function can be straightforwardly interpreted as the thresh-
old for penalizing or favoring base pairing. The resulting
value is Jthreshold = 0.49 consistent with the typical thresh-
olds obtained in (31) with a different optimization criterion,
based on the accuracy of contact predictions, and fitted on
a larger dataset, thus confirming the transferability of the
non-linear function reported here.

Reactivity channel. Chemical probing reactivities are
mapped into penalties affecting the population of indi-
vidual nucleotide pairing states through a single convolu-
tional layer with a linear activation function. When evalu-
ated on the training set, the best performance is obtained
with models including up to the maximum tested number
of nearest neighbors (p = 3). In these models, for each nu-
cleotide, the network input vector includes reactivities from
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A Reference B RNAfold (0.76) C Trained model (0.91)

D Reference E RNAfold (0.59) F Trained model (0.95)

G Reference H RNAfold (0.87) I Trained model (0.91)

J Reference K RNAfold (0.31) L Trained model (0.95)

M Reference N RNAfold (0.87) O Trained model (0.98)

P Reference
Q RNAfold (0.65) R Trained model (0.65)

Figure 4. MFE structure predictions. For each system in the validation set, reference native structure is compared with predicted MFEs. For panel de-
scription, see main text. Correctly predicted base pairs (true positives) and unpaired nucleotides (true negatives) are reported in dark green and lime green,
respectively. Wrongly predicted base pairs (false positives) and unpaired nucleotides (false negatives) are reported in orange and red, respectively. MCC
between prediction and reference is reported in parenthesis. All the relevant improvements in the prediction of these structures are reported in detail in
‘Results’ section. All secondary structure diagrams are drawn with forna (48).
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Figure 5. Properties of the optimized neural network. For the DCA channel, the optimized function mapping DCA couplings Jij into pairing penalties
�ij, for both (A) the selected model and (B) the best performing model with restriction to only DCA input. When trained on the whole training set (red)
the activation function is consistent with the average on the leave-one-out training subsets (orange). Error bars are computed as standard deviations and
are significantly lower in the region of DCA couplings around zero, as couplings lying in that region are more frequent. The trained function maps high
(respectively, low) DCA coupling values to penalties favoring (respectively, disfavoring) the corresponding pairings, thus affecting the population of the
structures including the specific pair. When restricting to (B) models including only DCA input, the threshold value of the coupling Jthreshold between
disfavored and favored pairing corresponds to the zero of the activation function, as indicated by the dashed line. For the chemical mapping channel, (C)
optimal values of model parameters are shown for the selected model (black) with hyperparameters {�S = 0.001, �D = 0.001, p = 0}, and for the sub-
optimal models with p > 0. All the training results (cross) lie within the leave-one-out errors (dots with error bars), indicating robustness of the minimization
procedure against cross-validation. Coefficients {a−k, . . . , a+k}, k > 0 weighting reactivities up to the k-th nearest-neighbors of a nucleotide, report the
minor contributions of the local reactivity pattern in addition to the nucleotide’s own reactivity.

the third nearest-neighbor upstream to its third nearest-
neighbor downstream along the sequence. The activation
coefficients {ak, k = −3, . . . , +3} weight the contribution
of each nucleotide in the neighbor window. Despite the per-
formance improvement on the training set, transferability
to data not seen during the training phase is best preserved
in the model that retains only the contribution from the a0
term, confirming that the reactivity of a nucleotide is max-
imally affected by its pairing state. We notice that SHAPE
reactivity has been correlated with sugar flexibility (42–44),
and is only indirectly related to the pairing state of a nu-
cleotide. Nevertheless, reactivity information can be used to
systematically improve predictions at the base-pairing level.
In particular, a0 < 0 (see Figure 5C, black) so that the pair-
ing of a highly reactive nucleotide is unfavored and vice-
versa for nucleotides with low reactivity. On the other hand,
the best (suboptimal) neighbor-including models (i.e. with
p > 0) still yield comparable results with respect to the se-
lected one and significant improvements as well with respect

to thermodynamic model alone. Figure 5C reports the sets
of optimal parameters with p > 0. We notice that at each
increment of p, when two new parameters ap and a−p are in-
troduced, all the shared subsets {ap − 1, . . . , a−p + 1} overlap
significantly and a number of features are shared as well.
First, for all the optimal choices of p > 0, the sum of the
weights

∑p
i=−p ai is negative, so that the pairing of a nu-

cleotide in a highly reactive region is unfavored, and vice
versa for regions of low reactivity. The largest contribution
still arises from the a0 term, but it is slightly lower in abso-
lute value, to compensate for neighbor corrections. For each
pair (downstream and upstream) of k-th nearest-neighbors,
the combination of the a0 and a+k (a−k) contributions can
be interpreted as a forward (backward) finite-difference op-
erator estimating the k-th order derivative of the reactivity
with respect to the position in the sequence. These contri-
butions map local downward trends of the reactivity profile
into pairing penalties, thus providing a sort of normaliza-
tion for the reactivity of the central nucleotide with respect
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to that of its neighbors. As the order of the derivatives in-
crease from the first, weights become lower such that the
corresponding corrections progressively decrease in impor-
tance. It is interesting to notice that the finer these correc-
tions are, the more the corresponding parameters tend to be
overfitted to the training set.

DISCUSSION

In this work we build a network that can be used to predict
RNA structure taking as an input RNA sequence, chemical
probing reactivities, and DCA scores. Whereas reactivities
and DCA scores are processed through standard linear or
non-linear units, RNA sequence enters through a thermo-
dynamic model. A crucial ingredient that we introduce here
are the derivatives of the result of the thermodynamic model
with respect to the pairing penalties, that allow the network
to be trained using gradient-based machine learning tech-
niques.

We built up a total of 196 models to map simultane-
ously reactivities and DCA scores into free-energy terms
coupling, respectively, the pairing state of individual nu-
cleotides and that of specific pairs of nucleotides. Each
model is defined by tunable hyperparameters controlling
the width of the windows used to process reactivities and
the strength of the regularization terms applied to chem-
ical probing and DCA data. The dataset is a priori split
randomly into a training set and a validation set (12 and
6 systems, respectively). Training, model selection and val-
idation are repeated for different random splittings of the
dataset, in order to decrease the chance of introducing a bias
toward specific structures or features, and ensuring the ro-
bustness of the procedure. The whole procedure, from train-
ing to model selection, is automatic so that new parame-
ters could be straightforwardly obtained using new chemi-
cal probing and DCA data and new crystallographic struc-
tures, allowing for a continuous refinement of the proposed
structure prediction protocol. Training one model required
20 minimizations that were performed in parallel on nodes
containing 2 E5-2683 CPU each, using 20 cores. Each min-
imization took ∼30 min, though the exact time depends on
the value of p and on the system size. 4 × 7 × 7 = 196
minimizations were done to scan the hyperparameter space.
Twelve separate models needed to be trained for the leave-
one-out. Notably, the dependence between the minimiza-
tions (see ‘Materials and Methods’ section) can be taken
into account (see scripts in Supporting Data) allowing them
to be largely run in parallel. In practice, if 288 nodes are si-
multaneously available, the full minimization for 12 systems
can be run in ∼8 h. In the dataset we used, some reactivities
are taken from available experimental data. Other reactiv-
ities are measured here for the first time so as to increase
the number of systems for which both co-evolutionary data
and reactivities are available. DCA scores are based on
ClustalW alignments (32) so that they are not manually cu-
rated with prior structural information. We notice however
that classification of sequences in RFAM is performed in-
cluding structural information, when available. In addition,
co-evolutionary information might be difficult to extract for
poorly conserved long non-coding RNAs. All the reactivity
profiles and DCA score matrices are reported in Support-

ing Data Section S2. All the results obtained with different
randomization of the validation set are reported in Support-
ing Data so that different sets of parameters can be easily
tested.

The model selected via CV is defined by hyperpa-
rameters {p = 0, �S = 0.001, �D = 0.001}. The
best performance/transferability trade-off is thus obtained
when not incorporating reactivities from neighboring nu-
cleotides in the pairing state of a nucleotide. This model
is systematically capable of predicting a higher population
for the native structure. The model that is selected using
only chemical probing data yields better results in popula-
tion than what obtained with Deigan’s method (15), which
is accounted for best state-of-the-art method (45) among
those based on SHAPE reactivities only. Results obtained
with our selected model confirm that the reactivity of a nu-
cleotide is a good indicator of its own pairing state (45). We
also observe that the reactivity of neighbors correlate too
with the pairing state of a nucleotide (see Supporting Data).
However, the pairing state of neighboring nucleotides is im-
plicitly taken into account in the RNAfold model, that in-
cludes energetic contributions for consecutive base pairs,
implying that the explicit inclusion might not be required.
More precisely, the need for a larger number of parame-
ters to be trained when increasing the p hyperparameter
might not be compensated by a sufficient improvement in
the prediction performance. Interestingly, in a previous ver-
sion of this work based on a smaller dataset and on dif-
ferent thermodynamic parameters (46) the most transfer-
able model identified had p = 2 (see https://arxiv.org/abs/
2004.00351v1). In perspective, the model can be extended
to include additional features of the chemical probing ex-
periments that may be related to non-canonical interactions
and three-dimensional structure.

Although our selected model is trained to maximize the
population of the individual reference structure as obtained
by crystallization experiments, it can still report alternative
structures. Whereas we did not investigate this issue here, al-
ternative low-population states might be highly relevant for
function. Compatibly with that, the absolute population of
the native structure remains significantly low (from ≈10−8

to ≈10−7), but is still one of the highest in the ensemble. In
particular, the individual structure with highest population
(minimum free-energy structure) with our method is closer
to the reference crystallographic structure than the one pre-
dicted by thermodynamic parameters alone on systems not
seen during training.

Importantly, all the data and the used scripts are available
and can be used to fit the model over larger datasets. In or-
der to avoid overfitting, we suggest to repeat the leave-one-
out procedure to select the most transferable model, when-
ever new independent data is added to the dataset. Scripts
for training and model selection are reported in Support-
ing Data. In principle the model can be straighforwardly
extended to include any chemical probing data that puta-
tively correlates with base pairing state (13) or other types of
experimental information that correlate with base-pairing
probabilities (47). Training on a larger set of reference struc-
tures and using more types of experimental data will make
the model more robust and open the way to the reliable
structure determination of non-coding RNAs.
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DATA AVAILABILITY

All the data are available at the GitHub repository https://
github.com/bussilab/shape-dca-data, together with supple-
mentary information and the full code necessary to repro-
duce and extend the results.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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