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15 Abstract

16 Apple replant disease (ARD) occurs when apple is repeatedly planted at the same site, leading to 

17 growth reductions and losses in fruit yield and quality. Up to now the etiology is poorly 

18 understood, but soil (micro)biota are known to be involved. Since endophytes often colonize 

19 plants via the rhizosphere this study aimed at comparing the bacterial endophytic root 

20 microbiome in plants growing in ARD affected and unaffected soils from three different sites 

21 based on greenhouse biotests using a molecular barcoding approach. The initial endophytic 

22 microbiome of the starting material (in vitro propagated plants of the apple rootstock M26) did 

23 not significantly affect the overall richness and diversity of the endophytic community in plants 

24 after 8 weeks of growth in the respective soils, but some genera of the initial microbiome 

25 managed to establish in apple roots. Proteobacteria were the dominant phylum in all samples. 
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26 No differences in diversity or number of amplicon sequence variants (ASVs) between plants 

27 grown in ARD soil and unaffected soil was observed. However, several ASVs of high abundance 

28 uniquely found in plants grown in ARD affected soils were Streptomyces. In soil from all three 

29 sites these Streptomyces were negatively correlated to plant growth parameters. Future 

30 inoculation experiments using selected Streptomyces isolates have to prove if bacteria from this 

31 genus are opportunists or part of the ARD complex. For the first time, the bacterial endophytic 

32 community of apple roots grown in ARD affected soils was characterized which will help to 

33 understand the etiology of ARD and develop countermeasures.

34
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47 Introduction

48 Apple replant disease (ARD) is a complex phenomenon which affects apple tree nurseries and 

49 orchards worldwide, causing growth reductions and losses in fruit yield and quality (Mazzola und 

50 Manici, 2012; Manici et al., 2013; Winkelmann et al., 2019). ARD occurs when apple or a closely 

51 related species is repeatedly planted at the same site and is described as a “harmfully disturbed 

52 physiological and morphological reaction of apple plants to soils that faced alterations in their 

53 (micro-)biome due to previous apple cultures” (Winkelmann et al., 2019). This disease is species-

54 specific and can persist for decades (Savory, 1966). Since disinfection of the soil leads to better 

55 growth, it is generally accepted, that biotic factors are the primary cause (Mai and Abawi, 1981; 

56 Yim et al., 2013; Mahnkopp et al., 2018). Next to fungi belonging to the genera Fusarium, 

57 Cylindrocarpon and Rhizoctonia, a number of other taxa including oomycetes, such as Pythium 

58 and Phytophthora, nematodes like Pratylenchus and various bacterial species such as members 

59 of the genera Pseudomonas and Bacillus as well as Actinobacteria have been reported to 

60 contribute to ARD (Čatská et al, 1982; Manici et al., 2017; Otto and Winkler, 1993; Mazzola, 1998; 

61 Tewoldemedhin et al., 2011; Utkhede and Li, 1988). However, despite decades of research the 

62 etiology of ARD is still poorly known.

63 Based on molecular barcoding approaches in the last decade, many studies confirmed not only 

64 changes in the abundance of specific pathogens in ARD affected soils, but significant shifts in the 

65 overall structure of the microbiome of the bulk soil and the rhizosphere (Winkelmann et al., 

66 2019). These microbiome shifts are also affecting major functional properties including the 

67 potential to degrade aromatic compounds and for biocontrol (Radl et al., 2019). 
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68 However, despite their close interaction with host cells, surprisingly there is still a lack of 

69 knowledge of how microbes colonizing the root interior (root endophytes) are affected by ARD. 

70 The interior of roots can be colonized mostly by rhizosphere microbiota e.g. through cracks 

71 formed during lateral root emergence and at root tips (Bulgarelli et al. 2013; Hardoim et al., 2008). 

72 Positive effects of endophytes on plants include direct or indirect provision of nutrients (Gaiero 

73 et al. 2013; White et al., 2019), production of plant hormones such as auxin, cytokinins or 

74 gibberellins (Hardoim et al., 2015; Santoyo et al., 2016), increased tolerance against abiotic stress 

75 (Hardoim et al., 2015) and biocontrol due to competitive mechanisms or production of 

76 antimicrobial substances (Haas and Keel, 2003). Yet there are also endophytes known for their 

77 negative effects on plant health. Some of these facultative pathogens can shift their lifestyle 

78 depending on several factors such as host and endophyte development stage, plant defense 

79 reactions or environmental conditions (Schulz and Boyle 2005). Rosenblueth and Martínez (2006) 

80 put forward the hypothesis of an equilibrium between endophytes and plants that under certain 

81 conditions gets unbalanced to the detriment of one of the partners. 

82 Only a few studies have investigated the role of endophytes in ARD focusing on potential fungal 

83 root pathogens. Manici et al. (2013) found the root endophytic Cylindrocarpon-like fungi 

84 (Ilyonectria spp. and Thelonectria sp.) and Pythium spp. to be main causal agents of growth 

85 reduction in the rootstock M9 growing in ARD affected soil. Cylindrocarpon spp. was also 

86 identified next to Rhizoctonia sp. as a pathogenic root endophyte by Kelderer et al. (2012) in row 

87 (ARD affected) and inter-row (control) planted apple trees. In addition, Fusarium solani and 

88 Fusarium oxysporum were most abundant in roots but not considered pathogenic. Popp et al. 

89 (2019) isolated several fungal endophytes from ARD affected apple roots and re-inoculated them 
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90 in a soil free biotest. Cadophora, Calonectria, Dactylonectria, Ilyonectria, and Leptosphaeria were 

91 reported to have negative effects on plant health. In contrast, studies on the effects of ARD on 

92 bacterial root endophytes are scarce. So far, only a targeted cultivation dependent approach has 

93 been published, where the focus was given on the biocontrol properties of Actinobacteria isolates 

94 (mostly belonging to the genus Streptomyces) from the root interior of apple trees. However, no 

95 effect was observed when co-inoculated to apple seedlings with Pythium irregulare and 

96 Cylindrocarpon macrodidymum (Tewoldemedhin et al., 2011)

97

98 Therefore, the aim of this study was to investigate the bacterial root endophytic community 

99 structure in plants growing in ARD affected soils compared to ARD unaffected soils based on 

100 greenhouse biotests using a molecular barcoding approach. In these biotests the ARD-susceptible 

101 genotype M26 was planted into ARD affected soil (untreated or gamma-sterilized) and grass 

102 control soil (untreated or gamma-sterilized). To go beyond local response pattern we used soils 

103 from three different sites from Northern Germany in the frame of this study. For generating more 

104 robust data, we performed our study in two subsequent years to exclude specific effects of the 

105 used soils based on one particular season. We propose that a possible causal agent of ARD should 

106 be present in roots from all ARD affected soils in all three sites.

107

108

109

110

111
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112 Material and Methods

113 Experimental setting

114 Soil for these experiments was sampled from three different sites: Heidgraben (x-coordinate 

115 53.699199; y-coordinate 9.683171; WGS 84, Schleswig-Holstein, northern Germany), Ellerhoop 

116 (x-coordinate 53.71435; y-coordinate 9.770143 WGS 84, Schleswig-Holstein, northern Germany) 

117 and Ruthe (x-coordinate 52.243668; y-coordinate 9.819700; WGS 84, Lower Saxony, Germany). 

118 These sites differed in their climatic conditions and soil properties. The upper soil textures of the 

119 three sites were defined (based on World Reference Base for soil resources) as loamy sand 

120 (Heidgraben), sand (Ellerhoop) and silt loam (Ruthe) (Mahnkopp et al., 2018). Every site contained 

121 two different plot variants: (i) ARD plots, where ARD was successfully induced by repeatedly 

122 replanting ́ Bittenfelder´ apple seedlings since 2009 in a two-year cycle and (ii) control plots which 

123 were only covered with grass since then. ARD plots in Ruthe and Ellerhoop were replanted for the 

124 last time in spring 2015 and in Heidgraben in spring 2016. 

125 Soils were sampled from all three sites in a depth from 0 – 20 cm in the end of 2015 and 2016, 

126 respectively. After sampling and sieving (8 mm), soils were either gamma irradiated (G) at a 

127 minimal dose of 10 kGy or left untreated (UT) resulting in 4 variants per site: ARD untreated (ARD 

128 UT), ARD gamma (ARD G), grass untreated (Grass UT) and grass gamma (Grass G). 

129 The ARD susceptible apple rootstock M26 which was propagated and rooted in vitro (for details 

130 see Weiß et al. 2017a) was acclimatized for 4 weeks and afterwards one plantlet each was planted 

131 in 1 L-pots containing the different soil variants. Soils were supplemented with 2 g L−1 Osmocote 

132 Exact 3–4M (16 + 9 + 12 + 2 MgO; https://icl-sf.com/de-

133 de/products/ornamental_horticulture/8840-osmocote-exact-standard-3-4m/) to exclude 
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134 nutrient effects. Shoot lengths were measured weekly. Plants were grown for 8 weeks in the 

135 greenhouse at a mean daily temperature of 21°C and a 16 h photoperiod achieved by additional 

136 light (SON-T Philips Master Agro 400 W) with a set point of 25 klx. Plant protection measures and 

137 irrigation were done according to Yim et al. (2015). At the first sign of insect pests, 0.3 % NeemAzal 

138 was sprayed. During night, a sulfur evaporator was used in order to prevent fungal diseases. The 

139 greenhouse experiment was conducted twice, in February 2016 and 2017 (Mahnkopp et al. 2018) 

140 with 9 replicates per variant. 

141 Acclimatized plants (before planting into the soil variants) were treated as described by 

142 Mahnkopp et al. (2018) and served as source for the “timepoint zero” (T0) samples in both years.

143

144 Sampling

145 After 8 weeks of cultivation in the greenhouse 4 representative plants per variant were taken (48 

146 per year, 96 in total) as biological replicates. Roots were washed carefully to get rid of the 

147 adhering soil. Shoot and root fresh mass were determined. For surface sterilization, roots were 

148 rinsed for 30 s in EtOH (70 %), followed by stirring in 2 % NaOCl for 7.5 min and finally washing 5 

149 times in sterile deionized water. The final washing water was plated on 523 medium (Viss et al., 

150 1991) and incubated at room temperature for 1 week.  Plating resulted in < 10 CFU per plate in 

151 all cases. Roots were stored in sterile 2 ml Eppendorf tubes at -80°C until DNA extraction.

152

153 DNA extraction and amplicon sequencing 

154 50 to 100 mg surface sterilized roots per sample were homogenized under frozen conditions using 

155 steel beads (Ø 6 mm) in a mixer mill (MM400, Retsch, Haan, Germany) with a frequency of 23 Hz 
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156 for 2 minutes using sterilized devices. DNA was extracted using the Invisorb Spin Plant Mini Kit 

157 (Stratec, Berlin, Germany) according to the provided protocol. DNA quality was checked using a 

158 spectrophotometer (Nanodrop 2000c Peqlab, Erlangen, Germany). 

159 The primer combination 335F (CADACTCCTACGGGAGGC)/ 769R (ATCCTGTTTGMTMCCCVCRC) 

160 (Dorn-In et al. 2015) including overhang adapter sequence were used to amplify the V3 - V4 region 

161 of the 16S rRNA gene. PCR reactions contained 2x Phusion High-Fidelity Master Mix (1.5 mM 

162 MgCl2, 200 μM of each dNTP and 0.2 U Phusion DNA Polymerase, Thermo Fisher Scientific, 

163 Waltham, USA), 10 pmol of each primer, 5 ng DNA template and water to a final volume of 10 µL. 

164 The PCR cycling conditions consisted of an initial denaturation step of 98 °C for 10 s, followed by 

165 30 cycles involving 1 s of denaturation at 98 °C, 5 s of annealing at 59°C and 45 s of extension at 

166 72°C, with a final extension of 1 min at 72°C. Triplicate PCR reactions were pooled and purified 

167 using Agencourt AMPure XP kit (Beckman Coulter, USA). The purified products were quantitated 

168 using the Quant-IT PicoGreen dsDNA assay kit (Life Technologies Europe, Gent, Belgium). Sample 

169 indexing was carried out with Nextera XT Index Kit v2 Set A and B (Illumina, USA) in reaction 

170 mixtures containing 10 ng purified PCR product, 2x Phusion High-Fidelity Master Mix (1.5 mM 

171 MgCl2, 200 μM of each dNTP and 0.2 U Phusion DNA Polymerase, Thermo Fisher Scientific, 

172 Waltham, USA), 10 pmol of each indexing primer and water to a final volume of 25 µL. The 

173 indexing PCR cycling conditions consisted of an initial denaturation step of 98 °C for 30 s, followed 

174 by 8 cycles involving 10 s of denaturation at 98 °C, 30 s of annealing at 55°C and 30 s of extension 

175 at 72°C, with a final extension of 5 min at 72°C.

176 Indexed samples were purified as described above. Equimolar concentrations of the purified 

177 indexed samples were prepared and diluted to a final concentration of 4 nM. The library was 
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178 sequenced using the Illumina Miseq platform with the MiSeq Reagent Kit v3 (600 cycle) (Illumina, 

179 USA).

180

181 Bioinformatic and statistical analysis 

182 FASTQ files were trimmed with a minimum read length of 50 and a minimum Phred score of 15 

183 using AdapterRemoval (Schubert et al., 2016) without merging forward and reverse reads. 

184 Afterwards, sequences were analyzed using the QIIME 2 software package release 2017.11 

185 (Caporaso et al., 2010) with default parameters. The QIIME 2 plugin DADA2 (Callahan et al., 2016) 

186 was used for quality control with the following parameters: 10 bp were removed n-terminally, 

187 reads were truncated at position 300 (forward) and 260 (reverse) for universal 16S rRNA genes. 

188 Expected error was adjusted to 2. 

189 Taxonomic analysis of the resulting unique amplicon sequence variants (ASVs) was performed 

190 using primer-specific pre-trained Naive Bayes classifiers of the SILVA_132_QIIME release 99% and 

191 the q2-feature-classifier plugin, setting the confidence threshold to 0.9. As PCR negative control 

192 showed no ASVs, contamination during sample processing could be excluded. For further data 

193 analysis, unassigned reads and singletons (in sum < 0.03% of all reads) were excluded.

194 Raw sequence data was deposited in Genbank (https://www.ncbi.nlm.nih.gov/genbank/) under 

195 the accession PRJNA647245.

196

197 16S amplicon sequencing of DNA extracted from the surface sterilized M26 roots resulted after 

198 quality control in a total of 4,132,410 reads with a mean of 72,498 reads per sample in the biotest 

199 in 2016. After removal of chloroplast, archaea and eukaryotic ASVs sequence data was rarefied 
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200 at a number of 28817 reads (2016).  A total of 5898 ASVs were detected. As rarefaction analysis 

201 (Fig. S1) indicated that saturation was reached already with read numbers about 5,000 reads per 

202 sample, for 2017 the sequencing effort was reduced, resulting in in total 884,916 reads and a 

203 mean of 17351 reads per sample (rarefied to 4213 reads per sample after the removal of the 

204 chloroplasts). The total number of ASVs was 4971 which were nearly all covered after rarefying 

205 at 4813 reads per sample (Fig. S2). In order to identify identical ASVs between the two years, 

206 alignments of the sequences of the two years on genus level were done using Clustal W Multiple 

207 Alignment (Thompson et al., 1994) with number of bootstraps set to 1000 using BioEdit v7.2.5 

208 (Hall et al., 1999) followed by calculating a sequence differences count matrix. ASVs from 2017 

209 which were 100 % identical to ASVs from 2016 were given the corresponding name of 2016 ASVs 

210 to improve comparability of figures and tables.

211 To calculate the relative abundance, the number of reads per ASV in the samples was divided by 

212 the sum of total reads per sample and multiplied by 100. The relative abundances of ASVs 

213 belonging to the same phylum/genus were combined to calculate the overall relative abundance 

214 of the corresponding phylum/genus. Species diversity (Shannon, Simpson) and richness (Chao1) 

215 indices were determined using the “Phyloseq” (McMurdie and Holmes 2013) and “Vegan” 

216 (Oksanen et al. 2019) Packages of R v3.6.1 (R Development Core Team (2008), http://www.R-

217 project.org)  and tested for normal distribution based on Shapiro-Wilk test (Shapiro and Wilk, 

218 1965) and homogeneity of variance based on Levene´s test (Levene, 1960) using the program 

219 PAST3 v. 3.20 (Hammer et al. 2001). If the null hypotheses of normal distribution and equal 

220 variances were rejected, theTukey test based on Heberich et al. (2010) was used at p < 0.05 to 

221 determine significant differences of the raw diversity and richness scores. In order to compare 
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222 the relative abundance of different genera of the initial microbiome (T0 plants) between the 

223 years, all ASVs belonging to the same genus were merged. Because of unequal sample size and 

224 unequal variance, Welch’s Two Sample t-test was used at p < 0.05 to determine significant 

225 differences. Non-metric Multidimensional Scaling (NMMDS) was performed with the program 

226 PAST3 v. 3.20 (Hammer et al., 2001) using Bray Curtis similarity index and Analysis of Similarity 

227 (ANOSIM) in order to visualize the community composition of the different samples. To indicate 

228 the influence of the different genera, vectors were added which show the correlation between 

229 the corresponding genus and the NMMDS score. Spearman´s correlation was used in order to 

230 correlate ASVs to shoot growth and fresh mass using the program PAST3 v. 3.20 (Hammer et al., 

231 2001). Venn-Diagrams were designed using the Venn-Diagram tool of Bioinformatics & 

232 Evolutionary Genomics (BEG, http://bioinformatics.psb.ugent.be/webtools/Venn).

233 To identify specific Streptomyces ASVs, their nucleotide sequences (414 bp) were blasted against 

234 the NCBI database (https://www.ncbi.nlm.nih.gov/) using BLASTn.

235

236

237

238

239

240

241

242

243
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244 Results

245 Root and shoot biomass 

246 As expected, in both years, plants grown in untreated ARD affected soils showed the lowest 

247 increase in shoot length and lowest shoot fresh mass in comparison to the other soil variants (Tab. 

248 1). Gamma irradiation of grass and ARD soil led to increased shoot length and shoot fresh mass 

249 compared to the respective untreated soils. Overall plants grown in the biotest in 2017 showed a 

250 higher biomass in comparison to plants grown in 2016, but the response pattern to the different 

251 soils variants was comparable between both years. Detailed growth data for the full set of 9 plants 

252 per variant can be found in Mahnkopp et al. (2018), whereas in Table 1 only the data of the plants 

253 selected for the barcoding approach of this study is presented.

254

255 Endophytic bacterial community composition and diversity in plant roots grown in different soil 

256 variants

257 The mean number of observed ASVs per sample was 244 in 2016 (Tab. 2) and 201 in 2017 (Tab. 

258 3). The highest number of observed ASVs were found in plants grown in gamma irradiated (G) 

259 ARD soil from Ellerhoop with 339 ± 93 and the lowest one in the variant Heidgraben ARD G with 

260 148 ± 62 (both in 2016). In both years no significant differences in diversity or richness indices 

261 were recorded within or between the sites (Tukey-test, p < 0.05). 

262

263 Proteobacteria were clearly the dominant phylum in all variants with relative abundance ranging 

264 from 66.9 % (Heidgraben ARD G) to 83.7 % (Ruthe Grass UT, Fig. S3) for the biotest performed in 

265 2016. Bacteroidetes were of second most abundance with a mean value of 10.3 % followed by 
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266 Actinobacteria (5 %) and Firmicutes (4.4 %). Actinobacteria appeared in higher relative abundance 

267 in roots grown in ARD UT compared to the other variants of the respective site. The strongest 

268 difference was observed in Heidgraben where the abundance of ASVs linked to Actinobacteria in 

269 ARD UT variants (15.60 %) was significantly higher than in ARD G (5.03 %), Grass UT (2.75 %) and 

270 Grass G variants (3.47 %). The second biotest in 2017 showed similar shares for the different phyla 

271 (Fig. S4). ASVs assigned to Proteobacteria ranging from 66.7 % to 89.3 % were dominant, followed 

272 by Bacteroidetes with a mean value of 13.6 % relative abundance, Actinobacteria with 8.1 % and 

273 Firmicutes with 2.2 %. However, the higher abundance of ASVs linked to Actinobacteria in the 

274 untreated ARD variants was not observed in this year. 

275

276 Dynamics of endophytic bacteria during the biotest 

277 T0 plants of 2016 had the highest diversity of all treatments over the years (Tab. 2). In 2017, T0 

278 plants showed a significantly lower diversity compared to 2016 T0 plants (Fig. S8). After 

279 cultivation for 8 weeks in the different soils 9 out of 12 variants of 2016 still had higher numbers 

280 in the observed ASVs compared to 2017. However, these differences were not significant (Fig. 

281 S8).

282 On phylum level T0 plants grown in 2016 were dominated by Proteobacteria (79 %, Fig. S3), which 

283 did not change after 8 weeks of cultivation in the different soils. In 2017 this value increased to 

284 89 % for T0 plants, but here this high relative abundance was found reduced by about 16 % after 

285 the plants had been grown for 8 weeks in the different soil variants, irrespective of the soil (Fig. 

286 S4).
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287 On higher phylogenetic levels, proteobacterial groups of the genera Shewanella and Halomonas 

288 belonged to the top three genera regarding relative abundance in T0 plants in both years (Tab. 

289 S2). However, in total, nearly one third (31,9 %) of the genera showed significant differences in 

290 abundance between the years. In T0 plants from 2016 for example, Ralstonia was with 6.6 % the 

291 most abundant genus but not present in 2017 T0 plants. Even after growing for 8 weeks in 

292 different soils, this abundance pattern still remained for ASVs linked to Ralstonia.  Similar 

293 contrasting abundance pattern were observed for Pseudomonas when both years were 

294 compared. Here we could link 12,6 % of all ASVs from T0 plants to this genus in 2017, which was 

295 more than four times higher than in 2016. However, in contrast to ASVs linked to Ralstonia, after 

296 8 weeks of cultivation in the different soils these initial differences in abundance of Pseudomonas 

297 were no longer detectable. 

298

299 To analyze ß-diversity, 3D Non-metric Multidimensional Scalings (NMDS) were created for the 

300 untreated soils. In general, high variability within variants could be observed. In both years T0 

301 plants significantly separated from the other variants (ANOSIM with p ≤ 0.05, Fig. 1, Fig. S5). Only 

302 for the biotest in 2016, significant differences between other variants were observed, especially 

303 for the treatments with soil from Ruthe (Fig. 1). ASV assigned to Pseudomonas, Rhizobium and 

304 especially Streptomyces were closely linked with ARD, whereas ASVs related to Rhodanobacter, 

305 Dyella, Bradyrhizobium, Sphingomonas and Rhizomicrobium pointed to the untreated grass 

306 variants (Fig. 1). Most responsible for differentiation of T0 were ASVs which were linked to 

307 Halomonas, Acinetobacter and Shewanella. In the biotest in 2017 no clear clustering except for 

308 T0 was observed (Fig. S5).
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309

310 Identification of bacterial responders in the different treatments and correlation to plant 

311 growth

312 To further investigate ASVs responding to the different treatments of each site, Venn diagrams 

313 were designed. On the one hand the number of ASVs shared by all four different variants per site, 

314 which we considered as the core microbiome of a given site, was surprisingly small. In 2016, only 

315 6 ASVs (relative abundance > 0.5 %) in soil variants from Heidgraben, 3 in those from Ellerhoop 

316 and 4 in those from Ruthe were present in all variants (Fig. 2). In 2017, these numbers were 

317 reduced to 0 (Heidgraben), 2 (Ellerhoop) and 1 (Ruthe) (Fig. 3). On the other hand, the number of 

318 ASVs which were unique for each variant was high. In 2016, unique ASVs in untreated ARD 

319 variants ranged from 15 for Ruthe and 19 for Heidgraben, to 28 for Ellerhoop (Fig. 2). In the 

320 untreated grass variants, the number of unique ASVs ranged from 23 for Ruthe to 26 for Ellerhoop 

321 and 29 for Heidgraben. Although the overall distribution was very similar in both years, for the 

322 soil from Ellerhoop, some variations were observed: the number of unique ASVs changed in 

323 untreated grass variants from 26 in 2016 to 9 in 2017. Results for soil variants from Heidgraben 

324 showed the lowest variation between the years except the unique ASVs for the grass variant 

325 sterilized by gamma-irradiation, where 16 (2016) and 31 (2017) unique ASVs were observed, 

326 respectively.

327 In order to identify responders towards ARD, the unique ASVs of the untreated ARD variants were 

328 correlated to shoot growth and fresh mass of all variants of the three sites. In 2016 most 

329 noticeable were ASVs related to the genus Streptomyces (Fig. 2), which closely linked to plants 

330 grown in ARD affected soils, confirming the overall observation that ASVs related to 
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331 Actinobacteria were positively responding to the ARD affected soils with increased levels in 

332 relative abundance. In Heidgraben ARD UT, 7 out of 19 unique ASVs were linked to the genus 

333 Streptomyces followed by Ellerhoop ARD UT (4 out of 28) and Ruthe ARD UT (3 out of 15). Most 

334 of these ASVs were high in relative abundance. Streptomyces ASV66 in Heidgraben and 

335 Streptomyces_ASV42 in Ruthe showed the highest relative abundance with 4.48 % and 4.10 %, 

336 respectively. All Streptomyces ASVs were negatively correlated to the increase of shoot length 

337 and shoot fresh mass and some of them were even present in at least two sites. 

338 Streptomyces_ASV21 which was present in all three sites as a unique ASV showed with -0.54 and 

339 -0.58 the second highest negative correlation to both plant growth parameters. This number was 

340 only surpassed by Streptomyces ASV70 and Streptomyces ASV76 (both present in Heidgraben and 

341 Ellerhoop) with a correlation of -0.59 to the increase of shoot length and -0.65 to shoot fresh 

342 mass.

343 A high number of other genera harboring unique ASVs were also negatively correlated to plant 

344 growth parameters. For example, Novosphingobium ASV92 and Neorhizobium ASV47 (highly 

345 abundant in Heidgraben and Ellerhoop) negatively correlated to increase of shoot length (-0.59 

346 and -0.53) and shoot fresh mass (-0.53 and -0.59, Fig. 2).

347 In 2017, the overall number of negatively correlated ASVs was lower (Fig. 3). Nevertheless, several 

348 Streptomyces ASVs (also present in at least two sites) again were negatively correlated to plant 

349 growth. The relative abundance of Streptomyces ASV76 and Streptomyces ASV621 showed in 

350 Heidgraben and Ellerhoop a correlation of -0.53 and -0.57 to increase of shoot length and -0.60 

351 and 0.61 to shoot fresh mass. 
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352 We were further interested in unique ASVs of the untreated grass variants to identify possible 

353 plant growth promoting bacteria, which could help to counteract apple replant disease. In 2016, 

354 several ASVs of different genera were present in more than two sites (Fig. S6). These included 

355 ASVs related to Dyella, Massilia, Rhizobium, Rhodanobacter and unclassified Moraxellaceae. In 

356 the biotest 2017, only 2 ASVs (assigned to Rhizobium and Sphingobium) were present at least at 

357 two sites (Fig. S7) However, none of them showed positive correlations with plant growth. The 

358 only positively correlated ASV was related to unclassified Rhizobiaceae and found in 2017 with a 

359 relative abundance of 0.95 % and a correlation of 0.32 and 0.30 to shoot growth and shoot fresh 

360 mass (Fig. S7) 

361

362 Discussion

363 In the present study we characterized the bacterial root endophytic community of apple plants 

364 grown in replant and non-replant soil in order to understand the etiology of ARD and develop 

365 countermeasures.

366

367 Endophytic bacterial communities in apple roots were dominated by Proteobacteria

368 Proteobacteria were the dominant phylum in most studies, where bulk soil or rhizosphere 

369 samples from ARD affected sites had been analyzed (Franke-Whittle et al. 2015; Perruzzi et al. 

370 2017; Sun et al. 2014; Tilston et al. 2018; Yim et al. 2015) with an average relative abundance of 

371 35 % (Nicola et al., 2018). The same was true for the root endophytes analyzed in our experiments 

372 in both years (Fig. S3, S4). However, in comparison to Nicola et al. (2018) the relative abundance 

373 of Proteobacteria in roots from plants grown in ARD UT was clearly higher (76 % in 2016 and 71 
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374 % in 2017 in average of all three sites). This enrichment of Proteobacteria in the endosphere could 

375 be explained by selective recruitment/colonization or a higher competitiveness inside the plant. 

376 Members of this phylum are known for their various secretion systems (Preston et al., 2005), their 

377 fast growth and their high metabolic activity and therefore mostly predominate the endosphere 

378 (Lundberg et al. 2012; Reinhold-Hurek et al. 2015).

379 In many studies where rhizosphere and bulk soil samples of ARD affected sites have been analyzed 

380 Actinobacteria were amongst the most abundant phyla with an average relative abundance of 16 

381 % (Nicola et al., 2018), which was slightly higher than in our study when we focused on root 

382 endophytes (10 and 11 % in 2016 and 2017 respectively). Bacteroidetes showed in other studies 

383 an average relative abundance of 14 % (Nicola et al., 2018) and 13 % (Tilston et al., 2018). In our 

384 study, values ranged between 8 % (2016) and 15 % (2017). As expected Acidobacteria, which were 

385 also highly abundant in the rhizosphere and bulk soil in the above mentioned studies were low in 

386 relative abundance in the root interior, due to the ecophysiological properties of these bacteria, 

387 including the use of complex organic compounds and their slow growth.

388

389 Differences between the outcome of the biotest of 2016 and 2017

390 Significant differences occurred in the results comparing biotests between 2016 and 2017. In 

391 2016, Actinobacteria were significantly higher in relative abundance in root samples from ARD UT 

392 compared to the grass or gamma-sterilized variants (Fig. S3). Surprisingly, this was not the case in 

393 2017 (Fig. S4). Furthermore, there was a clustering of ARD variants apart from the grass variants 

394 in 2016 (Fig. 1) but not in 2017 (Fig. S5). These differences in the outcome of the biotests could 

395 be due to various factors, e. g. higher shoot lengths of T0 plants of 2017 or variation in 
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396 environmental factors. Another reason could be related to the soil: First of all, soil collection might 

397 have resulted in samples of different microbial composition due to patchy appearance of ARD in 

398 the field (Simon et al. 2020). Furthermore, at our reference sites, replanting takes place every 

399 second year, and was carried out in 2015 and 2017 at Ruthe and Ellerhoop and in 2014 and 2016 

400 at Heidgraben. Soil for the first greenhouse experiment in 2016 was sampled in the end of 2015, 

401 where plants at Ruthe and Ellerhoop had been replanted for the 4th time in spring 2015, while 

402 plants in Heidgraben had just been uprooted. For the experiment in 2017, soil was collected at 

403 the end of 2016, when plants at Ellerhoop and Ruthe had been uprooted and at Heidgraben had 

404 been replanted for the 5th time in spring. It is known that the microbial community composition 

405 in the rhizosphere of different apple genotypes varies seasonally and among the years 

406 (Rumberger et al. 2007). Also replanting is known to have an influence of the rhizosphere 

407 community composition (Sun et al., 2014). 

408

409 Another reason for these different outcomes of the bio-test in the two years could be differences 

410 in the initial endophytic bacterial community composition of the starting material (T0) plants. In 

411 this study, a higher diversity and number of ASVs of the initial microbiome in the plant roots was 

412 found in 2016, as compared to that in 2017. However, this difference between the two years was 

413 not significant after 8 weeks of growth in the soil. Therefore, a higher diversity and number of 

414 ASVs of the initial microbiome did not lead to higher number of ASVs and diversity in plant roots 

415 after 8 weeks of growth in the soil. Since soil is the main reservoir of microorganisms for the plant 

416 microbiome (Berg and Smalla 2009; Bonito et al. 2014; Lareen et al. 2016; Hartman and Tringe 

417 2019) it is one of the major factors influencing the number of ASVs and diversity. However, some 
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418 genera, e. g. Ralstonia, were present in the 2017 T0 plants and were still present in the plant roots 

419 after grown for 8 weeks in the soil (Tab. S2). With this in mind one strategy to help to overcome 

420 ARD could be to inoculate apple plants with plant growth promoting bacteria before transferring 

421 them into the soil. This so called microbiome engineering of plants was recently reviewed by 

422 Orozco-Mosqueda et al. (2018). Johnston-Monje and Raizada (2011) could show, that GFP tagged 

423 Enterobacter asburiaes could systemically colonize the roots of maize and even the rhizosphere. 

424 This means that some genera of the initial endophytic microbiome may possess the ability to not 

425 only colonize the plant roots but also the rhizosphere. In order to have plants which are 

426 preinoculated with PGPB that can influence not only the endosphere but also the rhizosphere and 

427 therefore may be able to reduce the ARD effect, inoculation studies are needed.

428

429 Next to differences between the years, variations within the soil variants were observed. The 

430 observed ASVs and the different diversity indices within the variants showed high standard 

431 deviations (Tab. 2 and 3). With the reanalysis of several studies of microbiomes of ARD affected 

432 soils Nicola et al. (2018) determined that the strongest factor for bacterial community variation 

433 were environmental variables. In our study several factors responsible for variations were 

434 reduced to a minimum (soils mixed, clonally propagated plants, same greenhouse conditions). 

435 However, here we were investigating the root endophytic community. Its selection is strongly 

436 controlled by the host plant and dependent of soil and several other factors like stress and 

437 environmental conditions (Afzal et al., 2019). Although all plants and soils within a variant were 

438 treated in the same way, individual differences in the soil microbiome and, therefore, differences 
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439 in root colonization cannot be excluded. To reduce these variations future biotests should 

440 increase the number of analyzed plants.

441

442 Are Streptomycetes part of the ARD complex?

443 Our results show that nearly all Streptomyces ASVs were negatively correlated to increase in shoot 

444 length and shoot fresh mass (Fig. 2 and 3). Interestingly, the same ASVs were also identified in 

445 the roots of the rootstock cultivar ´Bittenfelder´ grown in ARD affected soil in the three reference 

446 field sites Heidgraben, Ellerhoop and Ruthe (results not shown). Therefore, regardless of the year, 

447 whether greenhouse biotest or field experiment, the site or the apple rootstock genotype, 

448 Streptomyces ASVs were associated with apple roots grown in ARD soils. This raises the question 

449 whether Streptomyces is a causative part of the ARD complex or just an opportunistic or 

450 secondary colonizer.

451 Streptomyces is a well-studied genus and most famous for its production of antibiotics with 80 % 

452 of today’s antibiotics being derived from Streptomyces (de Lima Procópio et al. 2012). Next to 

453 this, traits like production of antifungal substances and siderophores, solubilization of phosphate, 

454 synthesis of plant growth regulators, secretion of volatile compounds, biocontrol (competition 

455 for nutrients) and degradation of phytotoxins makes it a potent plant growth promoting 

456 bacterium intensively reviewed by Olanrewaju and Babalola (2019), Sousa and Olivares (2016), 

457 Viaene et al. (2016) and Vurukonda et al. (2018). These reviews also highlight that Streptomyces 

458 is able to colonize a broad range of plant hosts. It is further believed that these plants can 

459 selectively recruit Streptomyces (Viaene et al. 2016). However, the signals which attract them or 
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460 the way of their entering and colonizing the roots are still unknown (Viaene et al. 2016; 

461 Vurukonda et al. 2018). 

462 However, these various plant growth promoting effects of Streptomyces were not affirmed by our 

463 findings. Roots growing in soil from the grass variants showed better growth than those in ARD 

464 soils. Only two Streptomyces ASVs being unique for at least two grass variants were found which 

465 had no correlation to increase in shoot length and shoot fresh mass (Fig. S6, S7). In contrast, in 

466 ARD variants a clear negative correlation of the relative abundance of Streptomyces and plant 

467 growth was shown (Fig. 2, 3). On the one hand this could indicate that Streptomyces is pathogenic 

468 and part of the replant disease. On the other hand, since Streptomyces has a saprophytic lifestyle, 

469 it could be an opportunist and degrade dead or damaged root material. Structurally damaged and 

470 partially necrotic root systems are typical symptoms for ARD affected plants (Grunewaldt-Stöcker 

471 et al. 2019). Streptomyces is able to break down organic remains of plants using several hydrolytic 

472 exoenzymes like cellulases, lignocellulases, pectinases, xylanases and cutinases (Chater et al., 

473 2010; Chater 2016). Streptomyces was also shown to appear in higher abundance in the 

474 rhizosphere of Arabidopsis thaliana when plant exudated phenolic-related compounds like 

475 salicylic acid were present (Badri et al. 2013; Lebeis et al., 2015) and can even grow on minimal 

476 media with only salicylic acid as a carbon source (Lebeis et al. 2015). Due to tyrosinase activity 

477 some isolates were partially protected against plant produced phenols leading to increased 

478 colonization rates of A. thaliana roots (Chewning et al. 2019). Gene expression studies revealed 

479 that genes responsible for the production of phytoalexins (some of which belong to polyphenols) 

480 are upregulated in M26 roots growing in ARD affected soils (Weiß et al. 2017a, 2017b). 

Page 22 of 60



23

481 Overall, these reasons make it seem likely that Streptomyces just finds favorable conditions and 

482 occurs in higher abundance in ARD affected roots, hence is opportunistic. Yet pathogenicity 

483 cannot be excluded.

484

485 Out of the 843 known Streptomyces species (Euzéby 1997; Parte 2018, LPSN accessed 18.04.2020) 

486 only 10 have pathogenic features (Viaene et al., 2016). Most known are Streptomyces scabies, S. 

487 acidiscabies and S. turgidiscabies which cause common scab on roots and tuber crops. These 

488 species are able to directly penetrate plant cells and in addition to necrotic scab lesions, lead to 

489 reduced growth, root stunting and browning and to a reduction of the complexity of the root 

490 system (Loria et al. 2003; Loria et al. 2006; Seipke et al. 2012), i.e. symptoms that resemble the 

491 phenotype of ARD affected roots. However, despite the large host range none of these species 

492 were reported to infect woody plants. Though, the host range likely includes all higher plants, 

493 since dicot and monocot seedlings of several plant species have shown symptoms after 

494 inoculation with S. scabies (Leiner et al., 1996; Loria et al. 2006). One reason for this large host 

495 range is based on the assumption that Streptomyces is believed to originate 400 million years ago 

496 when green plants started to colonize the land (Chater 2016). Another reason for this flexibility is 

497 the fact that Streptomyces virulence genes are clustered on a pathogenic island which can be 

498 mobilized and via conjugation transferred to nonpathogenic relatives which leads to the 

499 emergence of new plant pathogenic Streptomycetes (Lerat et al., 2009). 

500 A closer look at the Streptomyces from our greenhouse experiment revealed that the 

501 Streptomyces ASVs which occur in at least two sites (Fig. 2, 3) shared a high similarity with the 

502 pathogen S. turgidiscabies. Blasting the sequences against the NCBI database 
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503 (https://www.ncbi.nlm.nih.gov/) showed a similarity of 99.76 % (ASV21 and ASV70), 99.51 % 

504 (ASV76) and 99.52 % (ASV621) (Tab. S1). All these ASVs showed a negative correlation to shoot 

505 fresh mass of around -0.60 or more, whereas ASV121 which showed with -0.34 the lowest 

506 negative correlation also shared the lowest identity with S. turgidiscabies (97.32 %). However, for 

507 further comparisons to Streptomyces species the complete 16S rRNA sequence of the apple root 

508 endophytes identified in this study is necessary. 

509 Nevertheless, the high similarity to pathogenic Streptomyces, the broad host range and ability for 

510 horizontal gene transfer of virulence genes may be arguments in favor of Streptomyces as possible 

511 causative organism of apple replant disease. 

512

513 Role of Streptomyces in apple replant disease

514 Several previous studies investigated Streptomyces in relation to ARD. However, they resulted in 

515 controversial conclusions: Streptomyces is part of the order of Actinomycetales, members of 

516 which were first mentioned as a possible cause of ARD by Otto and Winkler (1977). The authors 

517 at that time could only identify the bacteria by their morphology at the level of the phylum which 

518 was called “Actinomycetes” in those days.  In their histological analysis, “Actinomycetes” were 

519 found in damaged roots of apple seedlings with a frequency of 47.3 % in replant affected soil, but 

520 not (0.3 %) in steamed soil (Otto and Winkler 1977). Also in plants from our greenhouse 

521 experiments, Actinobacteria were histologically observed more frequently in roots in untreated 

522 ARD soils than in non-ARD soils (Grunewaldt-Stöcker et al. 2019). The so called “root pathogenic 

523 Actinomycetes” (Otto et al. 1993) were observed in ARD affected roots of apple seedlings. 

524 Thereafter, the degree of infestation increased with increasing shoot growth and decreased with 
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525 stagnating growth. This led to the assumption that root exudates which are influenced 

526 qualitatively and quantitatively by the growing buds triggered the germination of persistent 

527 spores (Otto et al. 1993).

528 In contrast to a pathogenic role, Streptomyces spp. were considered plant growth promoters in 

529 other studies dealing with ARD. 16S rRNA-pyrosequencing revealed that the genus Streptomyces 

530 was positively (0.64) correlated to shoot growth in plants grown in fumigated ARD soil (Nicola et 

531 al. 2017). A function in disease suppression was also associated with Streptomyces (Cohen et al., 

532 2005; Cohen and Mazzola 2006; Mazzola et al., 2007), when the effect of seed meal amendments 

533 on the putative ARD causing pathogens Rhizoctonia solani or Pythium spp. was investigated. Seed 

534 meal amendments resulted in increased populations of Streptomyces, which were able to 

535 suppress infections by Rhizoctonia solani. Disease suppression was attributed to a transformation 

536 of bacterial community structure and the production of nitric oxide (Cohen et al. 2005; Cohen and 

537 Mazzola 2006) which plays a role in the induction of plant systemic resistance. Most Streptomyces 

538 isolates recovered from the apple rhizosphere were able to produce nitric oxide (Cohen et al. 

539 2005). By adding any of several Streptomyces strains, Cohen and Mazzola (2006) could restore 

540 disease suppressiveness in previously pasteurized soil. Next to disease suppression, promotion of 

541 root infection by Streptomyces was also observed in apple (Zhao et al. 2009) and Picea abies (Lehr 

542 et al. 2007;). Root infections were significantly elevated in the presence of Streptomyces. This may 

543 be a negative side effect, since Streptomyces is known to promote mycorrhizal formation by 

544 promoting fungal growth and by decreasing plant defense response (Lehr et al. 2007; Tarkka et 

545 al. 2008; Vurukonda et al. 2018). Streptomyces sp. AcH 505 was shown to downregulate the 
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546 peroxidase activity and pathogenesis-related peroxidase gene (Spi2) expression (Lehr et al. 2007) 

547 of the host plant, thus promoting fungal root colonization.

548 Furthermore, two more traits of Streptomyces match the characteristics of apple replant disease. 

549 First, like ARD Streptomyces can persist for a very long time in soil. Due to no or minimal metabolic 

550 activity spores can survive harsh conditions for years (Bobek et al., 2017). Second, Streptomyces 

551 is very sensitive to waterlogged conditions. Streptomyces is more abundant in drained soils (sandy 

552 loam) than in heavy soils (Gowdar et al., 2018) and similarly, ARD is usually more severe in light 

553 soil compared to heavy soils (Mahnkopp et al., 2018; Winkelmann et al., 2019). 

554 All these findings indicate that Streptomyces could be responsible for ARD or be part of it. But to 

555 proof this, inoculation experiments are necessary as done by Tewoldemedhin et al. (2011). They 

556 isolated 96 Streptomyces strains from surface sterilized roots from six ARD affected sites in South 

557 Africa and inoculated 37 of them to 4 weeks old apple seedlings to test pathogenicity. Moreover, 

558 11 were co-inoculated with the pathogens Pythium irregulare and Cylindrocarpon 

559 macrodidymum. All tested Streptomycetes had no effect on plant growth. At first this seems as a 

560 clear sign that these Streptomyces isolates were not pathogenic (directly or indirectly). However, 

561 these isolates had low identity (less than 98 %) to known Streptomyces species and none showed 

562 close similarity to Streptomyces turgidiscabies, which had a high identity to our ASVs with a 

563 negative correlation to plant growth. Also in our experiments not all Streptomyces were 

564 negatively correlated to plant growth. In 2017 of 61 detected ASVs only 6 showed negative 

565 correlations to shoot fresh mass (15 out of 32 in 2016). Furthermore, inoculation trials were done 

566 in artificial soil (bark medium and sand 2:1) (Tewoldemedhin et al., 2011) which means that 

567 potential “co-pathogens” were not present unlike in ARD soil.
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568

569 Streptomyces not present in T0 plants

570 Only very few of the detected ASVs assigned to Streptomyces negatively linked to plant growth 

571 were present in T0 plants (data not shown). In 2017, only Streptomyces ASV611 was present in 

572 one out of four replicates with a relative abundance of 0.38. In 2016, ASV121 was detected in 

573 three out of four replicates one with a relative abundance of 1.39. All others Streptomyces ASVS 

574 were not present in T0 plants. Since Streptomyces is widely distributed in soils (Ferrer et al., 2018; 

575 Olanrewaju and Babalola 2019; Seipke et al. 2012), plants in our experiments were most likely 

576 colonized after planting in the different soil variants. Based on molecular fingerprints of 

577 rhizosphere and bulk soil, Lucas et al. (2018) confirmed that Streptomyces is more abundant in 

578 ARD compared to grass control soil.

579

580 Plant growth promoting bacteria in plants grown in non-ARD soils

581 In order to find possible plant growth promoting bacteria (PGPB) that may be used to overcome 

582 ARD, we also looked at the unique ASVs in the grass variants to find ASVs positively correlated to 

583 plant growth. However, in 2016 no ASV showed any significant positive correlation (Fig. S6). In 

584 2017, only one ASV (NA_ASV4691 (Rhizobiaceae)) showed with 0.32 and 0.30 a positive 

585 correlation to the increase in shoot length and shoot fresh mass.

586

587 Conclusion

588 Here we could show for the first time the apple root endophytic community composition in plants 

589 grown on three replant affected soils in comparison to non-replant affected soils based on next 
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590 generation sequencing in two years. Although no plant growth promoting bacteria to counteract 

591 ARD could be found, several ASVs with negative correlations to plant growth were associated with 

592 ARD. With Streptomyces showing strong negative correlations and being present in all soils over 

593 the years, a potential key player for the cause of ARD may have been found. However, it remains 

594 to be clarified in future studies, whether Streptomyces as root endophyte in ARD situations acts 

595 opportunistic or is pathogenic. Streptomyces can grow saprophytically and just degrade plant 

596 material and metabolize plant exudates, but can also play an essential role in the ARD complex 

597 by suppressing plant defense responses and thereby promote infection of fungal pathogens. 

598 Further inoculation studies with Streptomyces isolates in combination with fungal pathogens as 

599 co-inoculants will help to answer this question.

600
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 Heidgraben Ellerhoop Ruthe

 ARD Grass ARD Grass ARD Grass

 UT G UT G UT G UT G UT G UT G

2016
Increase in 
shoot length 
(cm)

5.9 
± 2.3 a

18.5 
± 1.5 c

13.5 
± 2 b

27.7 
± 6.3 c

7.5 
± 1 a

12.4 
± 3.8 ab

19.6 
± 1.6 b

25.9 
± 1.7 c

8.5 
± 1.4 a

25.2 
± 0.2 c

16.7 
± 1.9 b

32.0 
± 1.4 d

Shoot fresh 
mass (g)

2.8 
± 0.6 a

7.2
± 0.6 b

5.9 
± 0.6 b

10.7 
± 1 c

3.2 
± 0.7 a

5.9 
± 1.3 ab

7.4 
± 1.1 b

14.4 
± 0.8 c

3.7 
± 0.4 a

11.4 
± 1 c

7.1 
± 0.1 b

17.6 
± 2.3 d

2017
Increase in 
shoot length 
(cm)

5.7 
± 2.2 a

31.7 
± 1.3 b

29.8 
± 3.4 b

42.3 
± 3.9 c

13.4 
± 3.4 a

24.7 
± 0.8 b

31.6 
± 3.8 bc

43.0 
± 4.9 c

22.9 
± 1.9 a

34.3 
± 1.5 b

36.3 
± 4.9 bc

41.6 
± 1.7 c

Shoot fresh 
mass (g)

2.8 
± 0.6 a

11.7 
± 0.7 bc

9.4 
± 1.2 b

19.8 
± 3.9 c

4.8 
± 0.9 a

9.4 
± 0.3 b

9.7 
± 1.9 b

18.7 
± 3.6 b

8.3 
± 1.1 a

12.8 
± 1.4 b

11.8 
± 2.1 ab

15.9 
± 1 b

998

999

1000

1001

1002

1003

1004

1005 Table 2: Richness and diversity of endophytic bacterial communities based on amplicon 

1006 sequence variants (ASVs) in roots grown for 8 weeks in soils from different sites and treatments 

1007 (UT = untreated. G = gamma irradiated) of the biotest in 2016. Additionally, T0 plants before 

1008 transferring into the soil variants are shown. There was no significant difference within and 

1009 between the sites according to Tukey’s test at p ≤ 0.05. Shown are mean ± standard deviation of 

1010 n replicates.
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Site Soil Treatment n Observed 
ASVs Chao1 Shannon Simpson

T0 4 290 ± 70 292 ± 70 5.12 ± 0.24 0.99 ± 0.00
UT 4 255 ± 106 257 ± 108 4.37 ± 0.50 0.97 ± 0.02

ARD
G 4 148 ± 62 149 ± 61 3.73 ± 0.88 0.91 ± 0.08

UT 4 289 ± 119 294 ± 124 4.42 ± 0.50 0.97 ± 0.01
Heidgraben

Grass
G 4 329 ± 88 331 ± 89 4.88 ± 0.27 0.98 ± 0.01

UT 4 303 ± 88 306 ± 89 4.86 ± 0.35 0.98 ± 0.00
ARD

G 4 339 ± 93 344 ± 95 4.66 ± 0.52 0.97 ± 0.02
UT 4 202 ± 38 204 ± 39 4.15 ± 0.65 0.96 ± 0.03

Ellerhoop
Grass

G 4 225 ± 110 228 ± 111 3.95 ± 0.65 0.94 ± 0.04
UT 4 252 ± 118 264 ± 135 4.13 ± 0.72 0.94 ± 0.06

ARD
G 4 211 ± 56 212 ± 56 4.33 ± 0.56 0.96 ± 0.02

UT 3 205 ± 18 205 ± 18 4.39 ± 0.13 0.97 ± 0.01
Ruthe

Grass
G 4 167 ± 16 168 ± 17 4.00 ± 0.45 0.95 ± 0.02

1011

1012

1013

1014

1015

1016

1017

1018 Table 3: Richness and diversity of endophytic bacterial communities based on amplicon 

1019 sequence variants (ASVs) in roots grown for 8 weeks in soils from different sites and treatments 

1020 (UT = untreated. G = gamma irradiated) of the biotest in 2017. Additionally, T0 plants before 

1021 transferring into the soil variants are shown. There was no significant difference within and 

1022 between the sites according to Tukey’s test at p ≤ 0.05. Shown are mean ± standard deviation of 

1023 n replicates.
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Site Soil Treatment n Observed 
ASVs Chao1 Shannon Simpson 

T0 5 166 ± 42 170 ± 47 4.3 ± 0.30 0.97 ± 0.02
UT 4 149 ± 35 152 ± 36 4.07 ± 0.30 0.96 ± 0.01

ARD
G 4 235 ± 84 239 ± 88 4.96 ± 0.28 0.99 ± 0.00

UT 4 152 ± 21 156 ± 24 3.94 ± 0.24 0.96 ± 0.02
Heidgraben

Grass
G 3 154 ± 49 154 ± 50 4.23 ± 0.49 0.97 ± 0.02

UT 4 263 ± 50 275 ± 55 4.73 ± 0.35 0.98 ± 0.01
ARD

G 2 206 ± 37 212 ± 33 4.84 ± 0.10 0.99 ± 0.00
UT 4 194 ± 60 200 ± 63 4.22 ± 0.42 0.94 ± 0.04

Ellerhoop
Grass

G 3 165 ± 64 172 ± 64 4.26 ± 0.62 0.97 ± 0.02
UT 3 193 ± 6 202 ± 10 4.3 ± 0.11 0.97 ± 0.01

ARD
G 4 200 ± 25 201 ± 24 4.59 ± 0.24 0.98 ± 0.01

UT 4 253 ± 105 263 ± 117 4.59 ± 0.33 0.97 ± 0.01
Ruthe

Grass
G 4 246 ± 148 261 ± 161 4.32 ± 0.74 0.96 ± 0.02

1024

1025

1026

1027

1028

1029

1030

1031
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Figure 1: Three dimensional Non-metric Multidimensional Scaling (NMDS) using Bray-Curtis dissimilarity of 
roots grown 8 weeks in soils from different sites of the biotest in 2016. Gamma irradiated variants are not 

included. Vectors represent the correlation coefficient between the corresponding genus and the NMDS 
score. The relative lengths and the directions of the vectors indicate the influence of the respective genera 

(RA > 1 %). The third axis is not shown. Results of the one way analysis of similarities (ANOSIM) are shown 
in the lower left corner, significant differences are highlighted in bold (p ≤ 0.05) . H = Heidgraben, E = 

Ellerhoop, R = Ruthe, A = ARD, G = Grass, UT = Untreated. 
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Figure 2: Venn-Diagrams showing overlapping ASVs (RA > 0.5 %) of the different soil variants (ARD, Grass, 
UT = untreated, G = Gamma irradiated) from Heidgraben, Ellerhoop and Ruthe of the biotest in 2016. The 

three tables show the site-specific unique ASVs of ARD UT variants with their relative abundance and 
spearman correlation to shoot growth (= increase in shoot length) and fresh mass (only significant 

correlations are shown (p ≤ 0.05). ASVs highlighted in bold appear in at least two sites. 
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Figure 3: Venn-Diagrams showing overlapping ASVs (RA > 0.5 %) of the different soil variants (ARD, Grass, 
UT = untreated, G = Gamma irradiated) from Heidgraben, Ellerhoop and Ruthe of the biotest in 2017. The 

three tables show the site specific unique ASVs of ARD UT variants with their relative abundance and 
spearman correlation to shoot growth (= increase in shoot length) and fresh mass (only significant 

correlations are shown (p ≤ 0.05). ASVs highlighted in bold appear in at least two sites. 
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Figure S1: Rarefaction curves showing the number of observed ASVs in all samples of the biotest in 2016. 
Each line represents one sample of M26 roots taken after 8 weeks. All samples were rarefied at 28817 

reads. UT = untreated, G = gamma irradiated. 
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Figure S2: Rarefaction curves showing the number of observed ASVs in all samples of the biotest in 2017. 
Each line represents one sample of M26 roots taken after 8 weeks. All samples were rarefied at 4213 reads 

(red line). UT = untreated, G = gamma irradiated. 
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Figure S3: Relative abundance of dominant bacterial phyla in roots grown for 8 weeks in soils from different 
sites and treatments (UT = untreated. G = gamma irradiated) of the biotest in 2016. Different letters 

indicate significant differences within the sites (Tukey test, p ≤ 0.05). Different colored letters belong to 
different phyla. No letters indicate no statistical difference. Replicate numbers (n) are shown in table 2. 
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Figure S4: Relative abundance of dominant phyla in roots grown for 8 weeks in soils from different sites and 
treatments (UT = untreated. G = gamma irradiated) of the biotest in 2017. Different letters indicate 

statistically significant differences within the sites (Tukey test, p ≤ 0.05). Different colored letters belong to 
different phyla. No letters indicate no statistical difference. N numbers are shown in table 3. 
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Figure S5: Three dimensional Non-metric Multi Dimensional Scaling (NMDS) using Bray-Curtis dissimilarity 
of roots grown 8 weeks in soils from different sites of the biotest in 2017. Gamma irradiated variants are not 

included. Vectors represent the correlation coefficient between the corresponding genus and the NMDS 
score. The relative lengths and the directions of the vectors indicate the influence of the respective genera 

(RA > 1 %). The third axis is not shown. Results of the one way analysis of similarities (ANOSIM) are shown 
in the lower right corner, significant differences are highlighted in bold (p ≤ 0.05) . H = Heidgraben, E = 

Ellerhoop, R = Ruthe, A = ARD, G = Grass, UT = Untreated. 
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Figure S6: Venn-Diagrams showing overlapping ASVs (RA > 0.5 %) of the different soil variants (ARD, 
Grass, UT = untreated, G = Gamma irradiated) from Heidgraben, Ellerhoop and Ruthe of the biotest in 

2016. The three tables show the site specific unique ASVs of grass UT variants with their relative abundance 
and spearman correlation to shoot growth (= increase in shoot length) and fresh mass (only significant 

correlations are shown (p ≤ 0.05). ASVs highlighted in bold appear in at least two sites. 
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Figure S7: Venn-Diagrams showing overlapping ASVs (RA > 0.5 %) of the different soil variants (ARD, 
Grass, UT = untreated, G = Gamma irradiated) from Heidgraben, Ellerhoop and Ruthe of the biotest in 

2017. The three tables show the site specific unique ASVs of grass UT variants with their relative abundance 
and spearman correlation to shoot growth (= increase in shoot length) and fresh mass (only significant 

correlations are shown (p ≤ 0.05). ASVs highlighted in bold appear in at least two sites. 
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Fig. S8: Comparison of richness and diversity of bacterial communities based on amplicon sequence variants 
(ASVs) in roots grown for 8 weeks in soils from different sites and treatments (untreated, gamma irradiated) 
in the biotests in 2016 and 2017 . Shown are Shannon (A) and Simpson (B) indices, Observed ASVs (C) and 

Chao 1 (D). Additionally T0 plants before transferring into the soil variants are shown. Different letters 
indicate significant differences between the years of the corresponding treatment (Welch-Two-sample t-test, 
p ≤ 0.05). No letters indicate no significant differences. Replicate numbers (n) are shown in Tab. 2 and 3. 
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