
Inflammatory macrophage memory in
nonsteroidal anti-inflammatory drug–
exacerbated respiratory disease
Pascal Haimerl, MSc,a Ulrike Bernhardt,a,b Sonja Schindela,a Fiona D. R. Henkel, MSc,a Antonie Lechner, RPh,a

Ulrich M. Zissler, PhD,a Xavier Pastor, MSc,c Dominique Thomas, PhD,d Alexander Cecil, PhD,e Yan Ge, PhD,f

Mark Haid, Dipl Biol,e Cornelia Prehn, PhD,e Janina Tokarz, PhD,e,g Matthias Heinig, PhD,c Jerzy Adamski, PhD,e,h,i

Carsten B. Schmidt-Weber, PhD,a* Adam M. Chaker, MD,a,b and Julia Esser-von Bieren, PhDa Munich, Neuherberg,

Frankfurt, Dresden, and Freising-Weihenstephan, Germany, and Singapore
GRAPHICAL ABSTRACT
Background: Nonsteroidal anti-inflammatory drug–exacerbated
respiratory disease (N-ERD) is a chronic inflammatory condition,
which is driven by an aberrant arachidonic acid metabolism.
Macrophages are major producers of arachidonic acid
metabolites and subject to metabolic reprogramming, but they
have been neglected in N-ERD.
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Objective: This study sought to elucidate a potential metabolic
and epigenetic macrophage reprogramming in N-ERD.
Methods: Transcriptional, metabolic, and lipid mediator profiles
in macrophages from patients with N-ERD and healthy controls
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Abbreviations used

AA: Arachidonic acid

aMDM: Alveolar-like monocyte-derived macrophage

BMI: Body mass index

CRSwNP: Chronic rhinosinusitis with nasal polyps

DEG: Differentially expressed gene

DMR: Differentially methylated region

LOX: Lipoxygenase

LT: Leukotriene

N-ERD: NSAID-exacerbated respiratory disease

NSAID: Nonsteroidal anti-inflammatory drug

NT: NSAID-tolerant

PG: Prostaglandin

PUFA: Polyunsaturated fatty acid

RNAseq: RNA sequencing

sMac: Induced sputum-isolated macrophage
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patients with N-ERD (n 5 15) and healthy individuals (n 5 10)
were quantified by targeted metabolomics analyses. Genome-wide
methylomics were deployed to define epigenetic mechanisms of
macrophage reprogramming in N-ERD.
Results: This study shows that N-ERD monocytes/macrophages
exhibit an overall reduction in DNA methylation, aberrant
metabolic profiles, and an increased expression of chemokines,
indicative of a persistent proinflammatory activation.
Differentially methylated regions in N-ERD macrophages
included genes involved in chemokine signaling and
acylcarnitine metabolism. Acylcarnitines were increased in
macrophages, sputum, nasal lining fluid, and plasma of patients
with N-ERD. On inflammatory challenge, N-ERD macrophages
produced increased levels of acylcarnitines, proinflammatory
arachidonic acid metabolites, cytokines, and chemokines as
compared to healthy macrophages.
Conclusions: Together, these findings decipher a
proinflammatory metabolic and epigenetic reprogramming of
macrophages in N-ERD. (J Allergy Clin Immunol 2021;147:587-
99.)

Key words: Acylcarnitines, chemokines, eicosanoids, lipid medi-
ator, macrophages, metabolomics, nasal polyps, NSAID-exacerbated
respiratory disease, trained immunity, type 2 inflammation

Chronic rhinosinusitis with nasal polyps (CRSwNP) affects
0.5% to 4% of the population in most Westernized countries and
represents a debilitating disease, which is often refractory to
treatment.1 Patients affected by CRSwNP suffer from a
significantly reduced quality of life due to nasal obstruction,
facial pain, hyposmia, sleep apnea, and increased susceptibility
to sinus infections. Nonsteroidal anti-inflammatory drug
(NSAID)-exacerbated respiratory disease (N-ERD), the recently
chosen term for aspirin-exacerbated respiratory disease and
Samter triad,2 represents a particularly severe endotype of
CRSwNP, which affects around 10% to 16% of patients with
CRSwNP.3,4 N-ERD is characterized by severe and refractory
nasal polyposis, bronchial asthma, and intolerance to NSAIDs.5

To date, the pathogenesis of N-ERD remains incompletely
understood and curative treatments are lacking.

Multiple studies have implicated a dysregulation of the
arachidonic acid (AA) metabolism as well as aberrant type 2
cytokine responses in the pathogenesis of N-ERD.6,7 The aberrant
production and signaling of AA metabolites (eicosanoids), in
particular leukotrienes (LTs) and prostaglandins (PGs), are hall-
marks of N-ERD and determine chronic airway inflammation as
well as NSAID-triggered respiratory reactions.8-12 Patients with
N-ERD exhibit an overproduction of proinflammatory LTs and
PGD2, but a decreased synthesis of the airway-protective
cyclooxygenase metabolite PGE2.

10 These N-ERD-typic changes
in the AA metabolism can be observed in local samples (sputum,
saliva, nasal lining/lavage fluid) as well as systemically.8-10 In
addition to dysregulation of the AA metabolism, a high body
mass index (BMI) and changes in the metabolism of
sphingolipids have recently been associated with N-ERD.13,14

This suggested that metabolic aberrations beyond an altered AA
metabolism contribute to the pathogenesis of N-ERD.

Macrophages are major cellular players in metabolic reprog-
ramming15,16 and represent an important source and cellular
target of fatty acid metabolites during type 2 inflammation.16-19
Despite the abundance of profibrotic macrophages in the nasal
mucosa of patients with NSAID-tolerant (NT) CRSwNP and
those with N-ERD,20,21 the phenotypes and functions of
macrophages in N-ERD are largely unknown. Indeed, patients
with N-ERD have a high risk of asthma exacerbations, which
has been linked to defective macrophage function.22,23

Macrophage reprogramming has recently been suggested to occur
during type 2 airway inflammation, but the underlying
mechanisms and functional consequences remain obscure.24

Using global transcriptomics, genome-wide methylomics, and
targeted metabolomics, we identify changes in the acylcarnitine
metabolism and activation of macrophages as potential drivers of
type 2 inflammation in N-ERD. Patients with N-ERD also
exhibited elevated acylcarnitine levels in macrophages,
nasal lining fluid, sputum, and plasma, and N-ERD
macrophages responded to inflammatory challenge with an
exaggerated induction of proinflammatory lipid mediators,
acylcarnitines, chemokines, and cytokines. The persistent
proinflammatory reprogramming of macrophages may contribute
to the chronic and therapy-refractory airway inflammation in
N-ERD.
METHODS

Materials
Adetailed list of all materials used in this study can be found in this article’s

Online Repository available at www.jacionline.org.
Patient characterization
Patients with N-ERD and healthy controls were recruited and classified

according to their clinical characteristics at the ear, nose, and throat clinic of

the Klinikum rechts der Isar (Munich, Germany) (see Table E1 in this

article’s Online Repository at www.jacionline.org for an overview).

Malm score25 was determined by nasal endoscopy. Healthy controls had

no history of chronic rhinosinusitis, nasal polyposis, asthma, or

intolerance to NSAIDs. NT controls with CRSwNP had taken NSAIDs

within the previous 6 months without any adverse reaction. N-ERD was

diagnosed based on physician-diagnosed chronic asthma, CRSwNP, and a

history of respiratory reactions to oral NSAIDs. NSAID intolerance in

one of the patients had previously been confirmed by aspirin provocation.26

Exclusion criteria were acute airway infections; other systemic immune

disorders; pregnancy; cancer; and use of antibiotics, anti-5-lipoxygenase

(5-LOX, zileuton), biologics (omalizumab, benralizumab, reslizumab,

http://www.jacionline.org
http://www.jacionline.org
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mepolizumab, dupilumab), and/or oral corticosteroids 4 weeks prior to the

study.
Collection of nasal lining fluid
Nasal lining fluid from patients with N-ERD and healthy individuals of

cohort 1 were obtained as described previously27-29 and subjected to

metabolomics analyses. For details, see this article’s Online Repository.
Plasma collection and generation of MDMs
Plasma was collected and CD141 monocytes were isolated and

differentiated into macrophages with features of alveolar monocyte-derived

macrophages (aMDMs) as described previously.19 aMDM supernatants

were harvested after 24 hours of culture and used for multiplex cytokine/

chemokine and lipid mediator analyses. For details, see this article’s Online

Repository.
Sputum induction and isolation of sputum

macrophages
Sputum induction and induced sputum-isolated macrophage (sMac)

isolation were performed as previously described.30,31 Sputum samples

were subjected to metabolomics and lipid mediator analysis, and sMac were

used for RNA sequencing (RNAseq) analysis. For more details, see this

article’s Online Repository.
Transcriptomics
Total RNA was extracted and subjected to RNAseq as previously

described.32 For details, see this article’s Online Repository.
Genome-wide methylomics
Genomic DNA was extracted from CD141 monocytes or aMDMs and

subjected to whole-genome methylation analysis. For more details, see this

article’s Online Repository.
Lipid mediator analysis and metabolomics
Lipid mediator analysis was performed by LC-MS/MS as described

previously.19 A complete list of all measured analytes can be found in an extra

Excel file (Microsoft, Redmond, Wash) (see Table E2 in this article’s

Online Repository at www.jacionline.org). For a detailed description of

targeted lipid mediator and metabolomics analyses, see this article’s Online

Repository.
Data analysis
RNAseq differentially expressed gene (DEG) analysis was performed with

R (v3.5.0)33 and DESeq2.34 Methylomics differentially methylated position

and differentially methylated region (DMR) analyses were performed with

yapima35 utilizing limma36 and DMRcate.37 ToppGene suite38 was used for

enrichment and pathway analysis of DEGs and DMRs. Metabolomics data

and pathway analysis was performed with Metaboanalyst 4.0.39

Nonparametric statistical and correlation analyses (including multiple

comparison testing) were performed with GraphPad Prism 6 (GraphPad

Software, La Jolla, Calif). A P value < .05 was considered statistically

significant. For a detailed description of key data analyses and used R

packages, see this article’s Online Repository.

Data availability
Sequencing data have been deposited in the ArrayExpress database at

European Molecular Biology Laboratory–European Bioinformatics Institute

(https://www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-7965

(RNAseq) and E-MTAB-8065 (methylomics).
Study approval
This study was approved by the local ethics committee at the Klinikum

rechts der Isar, Technical University of Munich (internal reference: 422/16).

Written informed consent in accordance with the Declaration of Helsinki was

obtained from all patients.
RESULTS

Patients with N-ERD exhibit a persistent

proinflammatory macrophage activation
MDMs populate the airways, plastically respond to inflamma-

tory stimuli, and govern immune responses during type 2
inflammation.40,41 To identify a potential macrophage
reprogramming in N-ERD, we performed an RNAseq analysis
of aMDMs, differentiated from CD141 blood monocytes from
patients with N-ERD and healthy individuals in a lung-adapted
cytokine milieu (TGF-b1 and GM-CSF).19 Despite 1 week of
in vitro differentiation, 86 downregulated and 19 upregulated
genes were identified in N-ERD as compared to healthy aMDMs
(Fig 1, A; see Table E3, A and C, in this article’s Online
Repository at www.jacionline.org). This included genes involved
in chemotaxis (CXCL1–CXCL3, PPBP, CXCL8, CCL18, CCL20)
and host defense (CD1A–CD1C, CLEC10A, CLEC18B) as
revealed by functional and pathway analysis (Fig 1, A-C, Table
E3, B), suggesting that N-ERD is associated with a persistent
proinflammatory activation of monocytes/macrophages.

To further investigate whether proinflammatory macrophages
were present in the airways of patients with N-ERD, sMacs of
patients with N-ERD were used for transcriptome analysis. To
obtain insights into local versus systemic macrophage activation
profiles, we compared sputum-derived and blood-monocyte-
derived macrophages from the same patients with N-ERD.
RNAseq revealed a total of 984 genes to be downregulated and
1869 genes to be upregulated in sMacs as compared to aMDMs
(Fig 1, D, Table E3, D and F). Most DEGs were associated with
host defense and immune regulation as revealed by enrichment
and pathway analysis (Fig 1, E, Table E3, E). sMacs from patients
with N-ERD exhibited high expression of genes involved in
chemotaxis (CXCL1– CXCL3, CXCL8, CXCL9, CCL18,
CCL20), immune regulation (IDO1, IL10, IL23A, IL27,
SCGB1A1), T-cell priming (HLA, CD28, CD40, CD80), and
host defense (TLR2, TLR5, TLR10, CD1A–CD1C), suggestive
of a more activated phenotype in comparison to aMDMs
(Fig 1, F, Table E3,D and F). We also found a distinct eicosanoid
gene expression signature in aMDMs (ALOX5AP, CYSLTR1,
LTA4H, PTGS1, PTGDS) versus sMacs (ALOX15, CYSLTR2,
PTGS2, HPGDS, PTGER2– PTGER3, PTGES), which was
indicative of a LT-dominated eicosanoid profile in aMDMs but
a 15-LOX/COX–dominated profile in sMacs (Fig 1, F). Although
low numbers of sMacs recovered from healthy individuals
precluded a comparison of N-ERD sMacs to healthy sMacs,
this suggested that monocytes and macrophages with a persistent
proinflammatory phenotype are present in the blood and airways
of patients with N-ERD.
N-ERD macrophages exhibit proinflammatory

mediator and metabolite profiles
Based on the proinflammatory gene expression profiles of

N-ERD macrophages, we compared mediator production by
aMDMs from healthy controls, patients with NT CRSwNP, and

http://www.jacionline.org
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Transcriptome analysis of N-ERD (n 5 5) and healthy (n 5 4) aMDMs. A, Volcano plot of DEGs; significant

changes in blue (decrease) or red (increase); thresholds were set to Padj <_ .05 and log2-fold change >_11/ <_21.

B, Top 10 significant pathways obtained by ToppGene analysis. See Table E3, B, for the complete list. D to F,

Transcriptome analysis of aMDMs and sMacs from N-ERD (n 5 5). D, Volcano plot of DEGs; significant
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>_11/<_21. E, Top 13 significant pathways obtained by ToppGene analysis. See Table E3, E, for the complete
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proinflammatorymediators. A,Heatmap of baseline chemokine production byN-ERD (n5 15), NT CRSwNP

(n5 10) and healthy (n5 8) aMDMs, determined by multiplex cytokine array. B and C, Heat map (B) and bar
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are shown as z score in blue (low) or red (high) or were not detected (ND). Data are shown as mean 6
SD. *P < .05 (Kruskal-Wallis with Dunn multiple comparisons test). CysLTs, Cysteinyl LTs; HEPE,
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patients with N-ERD. At baseline, N-ERD aMDMs only showed a
weak tendency of increased chemokine secretion compared with
healthy aMDMs (Fig 2, A; see Table E4, A, in this article’s Online
Repository at www.jacionline.org). As a dysregulated polyunsatu-
rated fatty acid (PUFA) metabolism is a hallmark of N-ERD, we
further investigated whether PUFA metabolites were altered in
sputum, nasal lining fluid, or macrophages of our N-ERD cohort.
Indeed,we confirmed a tendency of higher LT but lower PGE2 pro-
duction in the airways of patients with N-ERD by LC-MS/MS (see
Fig E1 and Table E5,A andB, in this article’s Online Repository at
www.jacionline.org). To study whether aMDMs from patients
with N-ERD exhibit an altered capacity to produce eicosanoids,
we assessed levels of PUFA metabolites by LC-MS/MS after
Ca21 ionophore (A23187) stimulation. Significantly more AA-
derived 5-LOX metabolites (5-hydroxyeicosapentaenoic acid/5-
hydroxyeicosatetraenoic acid/5-oxo-eicosatetraenoic acid, LTB4)
and auto-oxidation products of docosahexaenoic acid (11-
HDHA, 13-HDHA) were produced by aMDMs from patients
with N-ERD compared with aMDMs from patients with NT
CRSwNP (Fig 2, B and C; see Table E4, B, in this article’s Online

http://www.jacionline.org
http://www.jacionline.org
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Repository at www.jacionline.org). The synthesis of cysteinyl
LTs, PGD2, and thromboxane B2 was increased, though not signif-
icantly, inN-ERDaMDMs. Thus, in addition to distinct proinflam-
matory gene expression profiles, macrophages from patients with
N-ERD showed an elevated capacity to release PUFA metabolites
and may thus contribute to proinflammatory eicosanoid profiles in
N-ERD.
N-ERD macrophages display distinct DNA

methylation and expression of chemokine and lipid

metabolism genes
Because altered gene expression and eicosanoid production of

N-ERD aMDMs persisted even after 7 days of in vitro differenti-
ation, we next studied whether these changes were associated
with epigenetic modifications.

Differentiation of CD141 monocytes into aMDMs resulted in
the increased methylation of genes involved in hematopoiesis (IN-
PP5A, GPR171), while genes regulating macrophage recruitment
and effector functions (HDAC5, IL7R, TGM2) were demethylated
(see Table E6 in this article’s Online Repository at www.jacionline.
org).42-45 Monocytes and aMDMs clustered according to cell type
for both healthy and N-ERD, suggesting that differentiation of
monocytes into aMDMs progressed normally for cells from pa-
tients with N-ERD (see Fig E2 in this article’s Online Repository
at www.jacionline.org). However, when comparing aMDMs from
patientswithN-ERD and healthy individuals, we found 3930 lower
and 211 higher differentially methylated positions (Fig 3, A; see
Table E7, A, in this article’s Online Repository at www.
jacionline.org). This was indicative of an overall transcriptionally
preactivated macrophage phenotype in N-ERD.

Functional analysis of significant DMRs of both aMDMs and
monocytes highlighted chemotaxis (CXCL2, PF4 [CXCL4]) and
fatty acid/acylcarnitine metabolism (CPT1A, CPT1B, ACACA)
as being associated with N-ERD (Fig 3, B and C, Table E7, B
and C). While CPT1A, CPT1B, and ACACA were expressed at
similar levels in aMDMs from patients with N-ERD and healthy
individuals at baseline (Fig 3, D), CPT1A was significantly
upregulated in N-ERD aMDMs as compared to healthy aMDMs,
when stimulated with a mix of acylcarnitines (Fig 3, E). Together,
this suggested that the persistent proinflammatory activation of
N-ERD macrophages was at least partially due to metabolic and
epigenetic changes related to fatty acid/acylcarnitine metabolism.
Acylcarnitines are increased in the upper and lower

airways of patients with N-ERD
As our methylomics and RNAseq data suggested a role for

metabolic changes in the proinflammatory reprogramming of N-
ERD macrophages, we characterized lipid, amino acid, and
carbohydrate metabolite profiles in nasal lining fluid and sputum
of patients with N-ERD and those with NT CRSwNP or healthy
controls by targeted metabolomics. Using a hierarchical clus-
tering approach, 4 distinct metabolite clusters were identified in
See Table E7, C, for the complete list. D, Relative expre

N-ERD (n 5 14-15) and healthy (n 5 10) aMDM at bas

ACACA in aMDMs (n 5 5 N-ERD, n 5 6 healthy) sta

0.25% FBS prior to stimulation with LPS (10 ng/mL), ac

C18 carnitines (all 10 mmol/L) 6 LPS (10 ng/mL) for 1

(Mann-Whitney test [D] and repeated measures 2-way

grp, Group.
nasal lining fluid (Fig 4, A; see Table E8, A, in this article’s Online
Repository at www.jacionline.org). The most prominent cluster 1
was associated with N-ERD and characterized by high concentra-
tions of acylcarnitines, lysophosphatidylcholines, and histamines
(Table E8, A). For sputum, hierarchical clustering resulted in 3
main metabolite clusters, with cluster 2 being associated with
N-ERD and containing acylcarnitine metabolites (Fig 4, B,
Table E8, B). Thus, N-ERD was characterized by elevated levels
of acylcarnitines in the airways.
Plasma acylcarnitines and sphingolipids, but not

adipokines are associated with N-ERD
To studywhether local changes inmetabolite profiles in N-ERD

are reflected systemically, we additionally performed a metab-
olomics analysis of plasma from healthy individuals, patients with
NT CRSwNP, and those with N-ERD. This analysis was extended
to sphingolipids, which have previously been suggested as poten-
tial biomarkers of N-ERD.14 Hierarchical clustering differentiated
the 3 patient groups into 5 partially overlapping clusters (Fig 4, C,
Table E8, C). Clusters 1 and 2 mainly comprised amino acids with
elevated levels in healthy controls, while clusters 3 and 4 were
characterized by high concentrations of sphingolipids and sphin-
gosine-1-phosphate in both patients with NT CRSwNP and those
with N-ERD. Cluster 5, which was associated with N-ERD, con-
tained sphingomyelins and medium- and long-chain acylcarni-
tines (C12–C16) (Fig 4, C, Table E8, C).

Further pathway analysis revealed the overall sphingolipid
metabolism to be associated with N-ERD, although there
were no significant differences for the individual metabolites (see
Fig E3 and Table E9 in this article’s Online Repository at www.
jacionline.org). Thus, N-ERD was characterized by both local and
systemic aberrations in acylcarnitines and signaling lipids, suggest-
ing a broad dysregulation of the lipid metabolism in this disease.

As acylcarnitines are increased in obesity-induced inflamma-
tion and an increased BMI had been suggested as a risk factor for
N-ERD,13,46 we assessed the BMI and its potential correlation
with clinical symptom scores. In addition, we quantified
adipokines, which link obesity, asthma, and NT CRSwNP.47-51

However, patients with N-ERD showed no significant increase
in BMI or leptin, and there was no correlation among BMI,
adipokines, and SNOT-22 (Sino-Nasal Outcome Test) score
(r 5 0.25; P 5 .37) (see Fig E4, A-E, in this article’s Online
Repository at www.jacionline.org). In contrast, adiponectin,
which has been implicated in the proinflammatory activation of
macrophages,52 tended to be increased in the plasma of patients
with N-ERD compared with that of healthy controls and patients
with NT CRSwNP (Fig E4, B).
Acylcarnitines are increased in N-ERD macrophages

at baseline and on inflammatory challenge
As acylcarnitines had been implicated in the proinflammatory

activation of macrophages,46,53 we studied whether intracellular
ssion of CPT1A, CPT1B, and ACACA in nonstarved

eline. E, Relative expression of CPT1A, CPT1B, and

rved for 5 hours in complete medium containing

ylcarnitine C14 (10 mmol/L), a mix of C14, C16, and

9 hours. Data are shown as mean 6 SD. *P < .05

ANOVA with Sidak multiple comparisons test [E]).
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acylcarnitine levels were altered in N-ERDmacrophages. Indeed,
most acylcarnitine species tended to be elevated in N-ERD
aMDMs compared with healthy aMDMs (Fig 4, D, Table E8, D
and E). In addition, some acylcarnitine species were further
increased on LPS challenge, suggesting that aberrations in the
macrophage acylcarnitine metabolism may be aggravated under
inflammatory conditions (Fig 4, D and E, Table E8, D and E).
N-ERD macrophages show increased inflammatory

gene expression but similar bioenergetic

reprogramming on LPS challenge
To study potential proinflammatory effects of acylcarnitines,

we stimulated aMDMs with myristoyl-L-carnitine (C14-
carnitine), which had previously been reported to induce inflam-
matory gene expression in a murine macrophage cell line.53 How-
ever, in human aMDMs, C14-carnitine alone did not induce the
expression of inflammatory cytokines (IL1B or TNFA), chemo-
kines (CXCL2, CXCL8), or COX-2 (PTGS2) (Fig 5, A). In
contrast, LPS alone or in combination with C14-carnitine showed
a robust induction of these genes. Remarkably, N-ERD macro-
phages showed a significantly increased induction of CXCL2,
IL1B, PTGS2, and TNFA on LPS stimulation, suggesting an
increased responsiveness to inflammatory challenge (Fig 5, A).

As increased responsiveness to inflammatory stimuli (eg, LPS
and b-glucan) has been linked to bioenergetic reprogram-
ming,15,54 we further performed metabolic flux (Seahorse) assays
to assess whether N-ERD macrophages exhibited altered
bioenergetic profiles. At baseline, extracellular acidification rates
as well as oxygen consumption rates of N-ERD aMDMs did not
differ from those of healthy aMDMs, suggesting that there were
no major changes in glycolysis or mitochondrial respiration
(Fig 5, B–D). However, when stimulated with C14-carnitine
plus LPS, aMDMs from healthy individuals but not from patients
with N-ERD showed significant increases in mitochondrial
respiration and glycolysis. Thus, rather than responding to an
inflammatory stimulus with increased respiration and ATP
production, N-ERD aMDMs readily increased the expression of
proinflammatory effector molecules.
N-ERD macrophages exhibit aberrant M2 activation
As type 2 inflammation has classically been associated with M2

polarization of macrophages, we further analyzed M2 markers in
N-ERD aMDMs at baseline and on inflammatory challenge.
ALOX15, which is involved in the synthesis of proresolving medi-
ators, tended to be reduced in N-ERD aMDMswhile proinflamma-
toryM2markers (CCL17 and TGM2) tended to be increased (Fig 6,
A). Stimulation with LPS resulted in a reduction of M2 marker
genes (ALOX15, MRC1, TGM2), which was more prominent in
aMDMs from patients with N-ERD (Fig 6, B). However, N-ERD
aMDMs showed an exacerbated upregulation of the TH2-
promoting chemokine CCL17 in response to LPS1C14-carnitine
levels of acylcarnitines in aMDMs of healthy individua

(10 ng/mL). D, Heat map of intracellular acylcarnitines

mean group concentrations (normalized to DNA con

healthy or N-ERD aMDMs. Concentration differences be

in blue (low) or red (high). E, Intracellular concentratio

aMDMs 6 LPS (10 ng/mL), normalized to DNA content

measures 2-way ANOVA with Sidak multiple comparis
(Fig 6, B). Thus, N-ERD aMDMs show a broad proinflammatory
phenotype shift and may particularly exacerbate airway inflamma-
tion during an inflammatory or infectious challenge.
DISCUSSION
Chronic type 2 inflammatory airway diseases including

N-ERD remain major unmet clinical needs.2,55 Macrophages
are key players in type 2 inflammation,40,56 but the metabolic
and epigenetic programs that determine macrophage phenotypes
and functions in human patients remain largely unknown. The
present study uncovers an unprecedented proinflammatory
‘‘macrophage memory’’ in patients suffering from N-ERD, a
severe and therapy-resistant form of chronic airway
inflammation. A combination of transcriptomics (RNAseq),
methylomics, and multifluid targeted metabolomics (LC-MS/
MS) analyses revealed distinct gene expression, DNA methyl-
ation, and metabolite profiles in monocyte-derived macrophages
from patients with N-ERD. In particular, N-ERD macrophages
produced higher levels of proinflammatory fatty acid metabolites
(acylcarnitines and 5-LOX products) and upregulated
chemokines and cytokines more readily on inflammatory
challenge. Strikingly, these increased proinflammatory capacities
of N-ERD macrophages were apparent even after 7 days of
in vitro differentiation. Our study thus identifies a persistent
metabolic and epigenetic reprogramming of macrophages as an
unprecedented pathomechanism of chronic type 2 inflammation.

We used aMDMs as an in vitro model because GM-CSF and
TGFß1 are essential for alveolar macrophage differentiation
and as aMDMs share important characteristics with alveolar
macrophages.57,58 Indeed, during inflammation, monocytes and
MDM are highly relevant as monocytes infiltrate the airways
and myeloid progenitors in the bone marrow can be functionally
reprogrammed and respond more readily to inflammatory
cues.40,59 The present study suggests that this phenomenon,
referred to as ‘‘central trained immunity’’ may also contribute
to chronic type 2 airway inflammation in N-ERD.

Recent studies revealed higher levels of acylcarnitines to be
associated with increased fatty acid oxidation and airway
inflammation in a murine model of allergic asthma.16 Here, we
also found elevated levels of acylcarnitines in macrophages and
body fluids of patients with N-ERD, suggesting an involvement
of these metabolites in type 2 inflammation. However, changes
in the acylcarnitine metabolism were not a sign of chronic airway
inflammation per se as acylcarnitines were not altered in NT
CRSwNP. Together with previously reported aberrations in the
AA and sphingolipid metabolism,6,8,14 this suggests that the fatty
acid metabolism is more globally dysregulated in N-ERD.
Although altered metabolite profiles in body fluids from patients
with N-ERD likely result frommetabolic changes in multiple cell
types, our findings support a role for macrophages in the
production of acylcarnitines and proinflammatory 5-LOX
ls (n 5 6) and patients with N-ERD (n 5 5) 6 LPS

assigned to clusters (see Table E8). Columns show

tent) of control (black) or LPS-stimulated (white)

tween groups and conditions are shown as Z score

ns of selected acylcarnitines in healthy and N-ERD

. Data are shown as mean 6 SD. *P < .05 (repeated
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metabolites during inflammation.60-62 Indeed, macrophages from
patients with N-ERD exhibited a high capacity to
generate proinflammatory 5-LOX products, including LTB4 and
5-oxo-eicosatetraenoic acid, which promote eosinophil activation
and recruitment.63,64 Thus, together with granulocytes and mast
cells,6 macrophages may represent an important source of
pathogenic 5-LOX metabolites in N-ERD.

In addition to their high capacity to produce 5-LOXmetabolites,
N-ERD aMDMs showed increased expression of multiple proin-
flammatory chemokines. Together with an elevated expression of
PTGS2,65,66 this profilewas indicative of a preactivated, proinflam-
matory state already at baseline. On inflammatory challenge with
LPS, N-ERD macrophages showed a more pronounced upregula-
tion of proinflammatory gene expression as compared to healthy
control macrophages. However, despite the upregulation of multi-
ple proinflammatory effector molecules, N-ERD aMDMs also
showed a striking reduction in potentially host-protective mole-
cules (CD1A–CD1C, CLEC10/CLEC18A). This may contribute
to a defect in pathogen clearance by macrophages, which has
been described as an important mechanism of chronification and
exacerbation in asthma.67 Furthermore, downregulation of CD1
molecules represents an immune evasion mechanism that facili-
tates viral persistence.68 Thus, the gene expression profile of N-
ERD aMDMs is indicative of a proinflammatory, but potentially
dysfunctional macrophage activation state. Indeed, a previous
study suggested that patients with N-ERD are among the patients
with the highest risk ofmultiple asthma exacerbations.23 However,
it remains to be studied whether this is a consequence of aberrant
macrophage activation in N-ERD.

The finding that N-ERD aMDMs exhibited a distinct gene
expression signature even after 7 days in vitro differentiation
pointed toward an epigenetic reprogramming of these cells.
Whole-genome methylation analysis revealed N-ERD-specific
methylation signatures to be stable during monocyte-to-
macrophage differentiation. However, differences in DNA
methylation between N-ERD and healthy monocytes/
macrophages were relatively small, suggesting that further
epigenetic mechanisms (eg, histone modifications) may
contribute to the proinflammatory gene expression profiles
identified by RNAseq. At baseline, N-ERD aMDMs only
exhibited a moderate increase in their capacity to produce
proinflammatory chemokines. Thus, the proinflammatory
potential of N-ERD macrophages may only fully unfold in
peripheral tissues, such as the nasal mucosa or lung, on
inflammatory challenge.

Unfortunately, low numbers of recovered sputummacrophages
in healthy individuals precluded a comparison of airway
macrophages from patients with N-ERD and healthy controls.
However, in line with previous studies,69,70 sputum macrophages
showed an abundant expression of proinflammatory chemokines
(CXCL8–CXCL11), antigen-presenting molecules, immune
regulatory enzymes (IDO-1, COX-2, microsomal PGE synthase
1), AREG (AMPHIREGULIN), and SCGB1A1 as compared to
aMDMs. Potentially as the result of active type 2 inflammation
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in the airways of patients with N-ERD, sMacs were also enriched
in markers of M2 activation (IRF4, CCL17, IL4I1, ALOX15,
HPGDS). Indeed, pathway analysis showed an enrichment for
IL-4/IL-13 signaling and CCL17, an important driver of type 2
airway inflammation was more readily induced in N-ERD
aMDMs.71,72

Importantly, overall disease burden, tissue composition, and
metabolite profiles of patients with N-ERD and those with NT
CRSwNP in our study were likely influenced by intranasal and/or
inhaled corticosteroids and potentially by asthma, which was
more frequent in N-ERD.1,73,74 Samples from untreated patients
could potentially provide viable insights into macrophage activa-
tion during full-blown N-ERD, but such studies are difficult to
realize due to the significant symptom burden of N-ERD. Based
on the explorative design and strict safety rules in Germany,
weaknesses of our study were the relatively small cohort size
and the lack of confirmatory NSAID provocation. Thus, future
studies should validate our findings in a larger N-ERD cohort,
preferentially with a confirmed diagnosis of N-ERD after NSAID
provocation. Such studies will hopefully shed further light on
macrophage reprogramming as a pathomechanism of N-ERD.
The inflammatory macrophage memory described here may
also help to explain the acquired or delayed onset of the disease.
Lastly, our work provides unprecedented insights into immune
cell reprograming during type 2 inflammation, which is likely
relevant for multiple chronic airway diseases.
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Clinical implications: The persistent proinflammatory activa-
tion ofmacrophages should be considered as a pathomechanism
and therapeutic target in N-ERD.
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