Contact Tracing – Old Models and New Challenges – SI

Johannes Müller^{1,2}, Mirjam Kretzschmar³

¹ Mathematical Institute, Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Germany

 2 Institute for Computational Biology, Helmholtz Center Munich, 85764 Neuherberg, Germany

³ Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, The Netherlands

1 Contact Tracing – Literature overview

The table orders the papers primarily according to the infection they aim to investigate resp. for the rather theoretical papers, by the method used. If several infections are discussed, the paper nevertheless appears only once.

Abbreviations: CT: contact tracing DCT: digital contact tracing phenomen.: phenomenological approach (ODE)

author	infection	method	term for CT	CT de-	remarks	outcome(w.r.t. CT)
				lay		
	Chlamydia &	& Gonorrhoea				
Clark et al. 2012 [20]	Chlamydia	pair approx.	removal rate on infected- diagnosed pairs	-	based on [26, 40]	CT is efficient particularly below a certain prevalence
Clark et al. 2013 [21]	Chlamydia	IBM + phenomen. ODE SI	IBM: direct; ODE: power law in <i>I</i>	-	power law adapted to IBM simula- tions; optimal resource allocations (CT/screening)	CT is efficient and uses re- sources efficient
Heffernan et al. 2009 [36]	Chlamydia	phenomen. / ODE SI	mass action law	-	model includes random screening (yield index cases) and CT	model results in line with data
Hethcote et al 1984 [39]	Gonorrhoea	phenomen. ODE	decreased in- cidence	-	introduce backward and forward tracing	pioneering work about CT
Kretzschmar et al. 1996 [57]	Gonorrhoea, Chlamydia	IBM with household structure	identification of a fraction p of partners	-	one-step tracing	prevalence for different control scenarios
Kretzschmar et al. 2009 [55]	Chlamydia	IBM	direct formu- lation		three different IBM models previously published by dif- ferent authors are compared	the results of the mod- els are somewhat different, due to their complexity
Turner et al. 2006 [83]	Chlamydia	IBM	direct formu- lation	+	model with pair for- mation, CT within pairs	Model fits data, and yields comparable results com- parable studies
	Ebola					
Berge et al. 2018 [13]	Ebola	phenomen. / ODE, SEIR	fixed fraction of newly in- fecteds go to quarantine	-	CT not explicitly formulated	stationary states and their stability analysed
Browne et al. 2015 [17]	Ebola	branching pro- cess/ODE, SEIR	fixed fraction of newly in- fecteds go to quarantine	+	fraction of detected cases is computed based on the branching-process	paper aims at a theoretical framework that is feasible for practical applications
Shahtori et al. 2018 [78]	Ebola	IBM, homo- geneous pop- ulation	direct formu- lation	+	onset of infection only	crucial that CT is imple- mented at the beginning of the outbreak
Rivers et al. 2014 [76]	Ebola	phenomen., stoch. sim on pop level.+ODE, SEIR	increased di- agnosis rate	-	CT not explicitly formulated	reduction of R_{eff} by around 30% possible

author	infection	method	term for CT	CT	remarks	outcome(w.r.t. CT)
				de- lav		
	HIV					
de Ara- zoza et al. 2002 [23]	HIV	phenomen. / ODE SI	mass action	-	three classes of infecteds modelled: infecteds do /do not know their infection, AIDS	stability analysis of sta- tionary points, compari- son with data
Clémençon et al. 2008 [22]	HIV	phenomen. / stoch. process (population level), SDE, ODE	several terms: lin- ear, mass action, sat- uration function	-	extension of de Azoza [23]	development of statisti- cal tools (maximum likeli- hood estimators)
Blum et al. 2010 [14]	HIV	phenomen. / stochastic model on population level	linear and saturation	+	see also [68, 79]	Bayes interference (ABC and Metropolis Hastings) for estimating ct probabil- ity
Hsieh et al. 2005 [41]	HIV	phenomen. / ODE SI	several terms: lin- ear, mass action, sat- uration function	-	extension of de Azoza [23]	mass action inappropri- ate, linear or saturation term for CT better
Hsieh et al. 2010 [42]	HIV	phenomen. / ODE SI	saturation function; two-step tracing	-	extension of de Azoza [23]	stability analysis of sta- tionary points, R_{eff} ; two- step tracing superior over one-step tracing
Hyman et al. 2003 [44]	HIV	phenomen. / ODE SI	mass action	-	two models: core group, different stages of HIV	R_{eff} , sensitivity analysis
Mellor et al. 2001 [66]	HIV and Tu- berculosis	IBM with household structure	screening the household	-	casual contacts are not traced; HIV and Tuberculosis at the same time	cross-tracing of HIV and Tuberculosis is effective
Naresh et al. 2006 [72]	HIV	phenomen. / ODE SI	fixed frac- tion of newly infecteds know their infection	-	CT is not triggered by diagnosis, but infections of known infecteds	stability analysis of sta- tionary points
	Influenza					
Agarwal et al. 2012 [1]	Influenza	phenomen. / ODE SIR	fraction of newly in- fecteds go to quarantine	-	two risk classes in susceptibles are considered	Dynamical systems analysis, R_{eff}
Tim et al	Measles	IDM South a	dinest from		commission / see listic	OT com timitere il
2015 [62]	weasies	mogeneous population	lation	+	contact structure	contribute to control a measles outbreak

author	infection	method	term for CT	CT de-	remarks	outcome (w.r.t. CT)
				lay		
	SARS		1			
Becker et al. 2005 [11]	SARS	phenomen. / next genera- tion operator	reduction of incidence	-	article exclusively aims at R_{eff} , no dynamics.	formula for R_{eff} ; social distancing together with CT can control SARS
Chen et al. 2006 [19]	Influenza, Measles, Chicken- pox,SARS	phenomen. / PDE	fixed frac- tion of newly infecteds are eventually traced	-	based on Fraser [33]; only R_{eff} , no dynamics; airborne infection	Probability to control an outbreak is estimated
Kwok et al. 2019 [61]	SARS				review article	
Fraser et al. 2004 [33]	Theory & Influenza, SARS, Small- pox, HIV	phenomen. / PDE	fixed frac- tion of newly infecteds are eventually traced	-	basic model, used in applications [19, 31]	timing of incubation pe- riod and latency period is central for CT
Lloyd- Smith et al. 2003 [63]	SARS	phenomen. / time-discrete stoch. sim on poplevel	increased transition rate to quarantine	+	CT not explicitly formulated	crucial that CT is imple- mented at the beginning of the outbreak
	SARS-Co	V-2				
Aleta et al. 2020 [2]	SRAS- CoV-2	IBM, inho- mogeneous population	direct formu- lation	+	delailed social graph for the Boston area used	a second infection wave can be controlled by mas- sive testing/tracing; CT is indispensable.
Barrat et al. 2020 [9]	SARS- CoV-2	IBM, inho- mogeneous population	direct formu- lation	+	follow-up of Di Dimenico et al. 2020 [24] with DCT; preprint	Linear effect for manual CT in tracing probability, quadratic effect for DCT
Bradshaw et al. 2020 [15]	SARS- CoV-2	IBM, homo- geneous pop- ulation	direct formu- lation	+	preprint; DCT con- sidered, focus on onset, R_{eff} and prob. for major out- break	backward tracing and high abundance of DCT de- vices necessary
Braithwaite et al. 2020 [16]	SARS- CoV-2				review article, fo- cused on DCT	
Bulchandani et al. 2020 [18]	SARS- CoV-2	IBM, homo- geneous pop- ulation	direct formu- lation	-	preprint; DCT con- sidered, focus on onset, heuristic for- mula for R_{eff}	High DCT-device cover- age necessary
Di Di- menico et al. 2020 [24]	SRAS- Cov-2	IBM, inho- mogeneous population	direct formu- lation	+	age-structured IBM with social graph for Île-de-France; preprint	CT necessary for control; lifting the lockdown with no exit strategy induces a huge second wave
Ferretti et al. 2020 [31]	SARS- CoV-2	phenomen. / PDE	fixed frac- tion of newly infecteds are eventually traced	+	based on Fraser [33]; DCT considered, heuris- tic formula for R_{eff}	SARS-CoV-2 controllable by DCT
Firth et al. 2020 [32]	SRAS- CoV-2	IBM, inho- mogeneous population	direct formu- lation	+	DCT with inform- ing contactees of contactees (second level tracing)	tracing+testing can pre- vent a second wave, a high fraction of persons need to be quarantined
Giordano et al. 2020 [34]	CoV-2	phenomenol., ODE/SIR	increased rate for removal	-	detailed ODE model	CT is a central element in controlling the infection

author	infection	method	term for CT	CT de-	remarks	outcome (w.r.t. CT)
				lay		
Grasly et al. 2020 [35]	SARS- CoV-2	Phen. ap- proach	approximates linearly one- step tracing in a tree	-	resembles approach by Fraser [33]	R_{eff} approximated; test- ing, tracing, quarantine and social distancing can control covid-19
Hellewell et al. 2020 [37]	SARS- CoV-2	IBM, homo- geneous pop- ulation	direct formu- lation	-	onset of epidemic considered	high tracing probability necessary to control the infection
Hernandez- Orallo et al. 2020 [38]	SARS- CoV-2	IBM, inho- mogeneous population + ODE	direct formu- lation (IBM) / fixed frac- tion of newly infecteds are eventu- ally traced (ODE)	+	simulations based on empirical con- tact network	CT needs to be precise in order to avoid many per- sons in quarantine
Juneau et al. 2020 [45]	SRAS- CoV-2				review article; preprint	
Keeling et al. 2020 [49]	SARS- CoV-2	IBM, homo- geneous pop- ulation	direct formu- lation	-	preprint; time and intensity of contacts vary, simulation-based estimation of R_{eff} ;	high tracing probability necessary to control the infection
Kim et al. 2020 [50]	SARS- CoV-2	Stochastic branching process	verbally	-	preprint; DCT con- sidered; Heuristic calculations of effi- ciency	heuristic formula for effi- ciency
Kretzschmar et al. [59]	SARS- CoV-2	IBM, homo- geneous pop- ulation	direct formu- lation	+	preprint; Model based on Kret- zschmar(2004) [56]; preprint	middle range tracing probability necessary to control diseases
Kretzschmar et al. [58]	SARS- CoV-2	IBM, homo- geneous pop- ulation	direct formu- lation	+	preprint; Model based on Kret- zschmar [56]; DCT considered, combined with conventional CT; preprint	tracing delays need to be minimised for effective CT; DCT might be a way to speed up the process
Kucharski et al. [60]	SARS- CoV-2	IBM, inho- mogeneous population	direct formu- lation	-	preprint; DCT con- sidered, combined with conventional CT	CT more efficient than mass testing
Lorch et al. [64]	SARS- CoV-2	IBM with discrete spa- tial structure	one-step tracing, if at similar times in the same location	-	DCT considered, combined with conventional CT; preprint	DCT efficient particularly in case of a low fraction of quarantined persons

author	infection	method	term for CT	CT de-	remarks	outcome (w.r.t. CT)
Lunz et al. [65]	SARS-CoV-2	phenomen. / ODE SEIR	removal rate, mass action	-	the tracing rate is connected to contact heterogene- ity but not based on first principles; preprint	optimal CT defined as minimising the total num- ber of individuals that go into quarantine during he outbreak
Pollmann et al. 2020 [74]	SARS-CoV-2	IBM, (ho- mogeneous and inho- mogeneous version) and two branch- ing process models	direct formu- lation	+	IBMs with models of type [71] and [17] compared; analytic results for DCT in branching models; preprint	CT is able to control the outbreaks, many individu- als go to quarantine with- out precise protocol
Tanaka et al. [79]	SARS-CoV-2	IBM, homo- geneous pop- ulation	direct formu- lation	-	simulation of clusters detected by CT as input for stats (see also Blum [14]); preprint	Bayesian parameter esti- mation based on CT
D: 1	Smallpox	,	11 1		C • C • • •	
Eichner 2003 [28]	Smallpox	phenomen. / Stochastic model on population level	all close contacts and fraction of casual contacts are traced	-	age of infection in- cluded in the model	critical tracing probability estimated
Kaplan et al. 2002 [46]	Smallpox	phenomen. / ODE	saturation function	-	contactees who are traced are vacci- nated	mass vaccination superior to vaccination triggered by CT
Kretzschmar et al. [56]	Smallpox	Stochastic branching process	direct formu- lation	+	ring vaccination triggered by con- tact tracing	delay in CT is crucial
Porco et al. 2004 [75]	Smallpox	IBM with household structure	direct formu- lation	+	one step and two- step tracing com- pared	massive CT and ring vac- cination can control the outbreak.
A	Tuberculosis	/	Court for a		OT and any listing	
Aparicio et al. 2006 [3]	Tuberculosis	ODE SEIR	fixed frac- tion of newly infecteds are identified	-	formulated	simulation of prevalence
Begun et al. 2013 [12]	Tuberculosis				review article	
Kasaie et al. 2014 [47]	Tuberculosis	IBM with household structure	screening the household	-	contacts outside the household are not traced	household tracing reduces the incidence by 2%-3%
Tian et al. 2011 [80]	Tuberculosis	IBM, inho- mogeneous population	direct formu- lation	+	different scenarios, sensitivity analysis	simulation of prevalence
Tian et al. 2013 [81]	Tuberculosis	IBM, inho- mogeneous population	direct formu- lation	+	Follow-up of Tien [80]	simulation of prevalence

author	infection	method	term for CT	CT de- lay	remarks	outcome(w.r.t. CT)
	Theory	branching p	rocess			
Ball et al. 2011 [6]	Theory	Stochastic branching process	direct formu- lation	-	SIR, focus on fixed and exponen- tially distributed infectious period	analytic approach, bounds on R_{eff} , extinction prob- ability
Ball et al. 2015 [7]	Theory	Stochastic branching process	direct formu- lation	+	SEIR, follow up of Ball [6]	effect of tracing delay, R_{eff} , extinction prob.
Barlow 2020 [8]	Theory	Branching process	direct formu- lation	-	extends the perculation-based analysis/generating functions to CT; preprint	approximate expression for the probability for extinction
Baumgarten et al. 2020 [10]	Theory	Stochastic branching process	direct formu- lation	-	uses ideas of perco- lation theory; time- discrete model; DCT; preprint	Approximation of R_0 , compares result with stochastic simulations
Endo et al. 2020 [29]	Theory	Stochastic branching process	direct formu- lation	_	uses three gener- ations to approxi- mate the effect of CT with an index case in the middle generation (back- ward+forward tracing); time- discrete process; preprint	approximate results for R_{eff} in presence of overdispersion
Müller et al. 2000 [71]	Theory	Stochastic branching process	direct formu- lation	-	focus on age since infection	R_{eff} , ODE approxima- tion, critical tracing prob- ability
Müller et al. 2007 [68]	Theory	Stochastic branching process	direct formu- lation	-	based on Müller [71], see also [14, 79]	estimation of tracing probability
Müller et al. 2016 [70],	Theory	Stochastic branching process	direct formu- lation	+	based on Müller [71]	effect of tracing delay and latency period, R_{eff}
Müller et al. 2020 [69],	Theory	Stochastic branching process	direct formu- lation	-	based on Müller [71], focus on superspreader events	Mechnism fo CT in case of superspreaders is different from usual CT
Okolie et al. 2018 [73]	Theory	Stochastic branching process	direct formu- lation	-	connects branching process and pair approx., based on Müller [71]	effect of a random contact graph on CT
Klinkenberg et al. 2006 [53]	Theory & influenza, smallpox, SARS, foot-and- mouth disease	Stochastic branching process	direct formu- lation	+	single-step and re- cursive tracing	mostly: single step and re- cursive tracing is equal ef- fective
Shaban et al. 2008 [77]	Theory	Stochastic branching process	direct formu- lation	-	Vaccination of de- tected individuals	R_{eff} , probability for ex- tinction, simulation of fi- nal size
Kojaku et al. 2020 [54]	Theory	Stochastic branching process	direct formu- lation	-	CT on random graph, focus on generating func- tions for the degree; preprint	CT highly efficient as nodes with high degree are traced

author	infection	method	term for CT	CT de- lay	remarks	outcome(w.r.t. CT)
	Theory	IBM		iag		
Armbruster et al. 2007 [4]	Theory	IBM, lattice graph	direct formu- lation	-	addresses a cost- efficiency analysis; follow-up of Arm- bruster et al. [5]	CT only cost efficient if prevalence is small
Kiss et al. 2006 [51]	Theory	IBM, inho- mogeneous population	direct formu- lation	-	isolation of suscep- tible; scale free and Poisson network	For scale free networks, tracing effect less sensitive to the epidemiological pa- rameters
Kiss et al. 2008 [52]	Theory	IBM, inho- mogeneous population	direct formu- lation	-	assortatively / disassortatively mixing networks; Single-step and recursive tracing	CT more effective in dis- sacociative networks; re- cursive tracing more effi- cient
Farrahi et al. [30]	Theory	IBM, inho- mogeneous population	direct formu- lation	+	first model for DCT	DCT can be efficient even if the fraction of app-users is small
	Theory	pair approxi	mation			
Eames et al. 2002 [26]	Theory / STD	pair ap- prox.& stoch sim.	direct formu- lation	-	this paper intro- duced pair approx- imation for CT	modelling CT by pair approximation
Eames et al. 2003 [27]	Theory	pair ap- prox.& stoch sim.	direct formu- lation	-	based on Eames [26]	critical tracing probability
Eames et al. 2005 [48]	Theory	pair ap- prox.& stoch sim.	direct formu- lation	-	based on [26]; fo- cus on different so- cial graphs (small world, scale-free)	network structure influ- ence efficiency of CT
Eames 2007 [25]	Theory	pair ap- prox.& stoch sim.	direct formu- lation	-	based on Eames [26]	recursive CT much more effective than one-step CT; "targeted CT": focus on core groups
House et al. 2010 [40]	Theory	pair ap- prox.& stoch sim.	direct formu- lation	-	based on Eames [26]; focus on different so- cial graphs (small world, scale-free)	CT has higher efficiency in clustered contact graphs
Huerta et al. 2002 [43]	Theory	pair ap- prox.& stoch sim.	direct formu- lation	-	develop pair ap- proximation for CT	rewiring of contact net- work decreases CT
Tsimering et al. 2003 [82]	Theory	pair ap- prox.& stoch sim.	direct formu- lation	-	based on Huerta [43]	rewiring of contact net- work decreases CT
A	Theory	phenomenolo	ogical approach		. 11	
Armbruster et al. 2007 [5] Mizumoto et	Theory	phenomen. / ODE phenomen. /	mear re- moval term reduction of	-	addresses a cost- efficiency analysis focus on the	C1 only cost efficient if prevalence is small R_{eff} , probability for ex-
ai. 2013 [67]		tion operator	tor		branching process, analysed by gener- ating functions	nor outbreak

References

- M. Agarwal and A. S. Bhadauria. Modeling H1N1 flu epidemic with contact tracing and quarantine. *Internat J Biomath.*, 05:1250038, 2012. doi:10.1142/s1793524511001805.
- [2] A. Aleta, D. Martín-Corral, A. P. y Piontti, M. Ajelli, M. Litvinova, M. Chinazzi, N. E. Dean, M. E. Halloran, I. M. L. Jr, S. Merler, A. Pentland, A. Vespignani, E. Moro, and Y. Moreno. Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19. *Nature Human Behaviour*, 2020. doi:10.1038/s41562-020-0931-9.
- [3] J. P. Aparicio and J. C. Hernández. Preventive treatment of tuberculosis through contact tracing. Contemporary Math, 410:17–29, 2006. doi:10.1090/conm/410.
- [4] B. Armbruster and M. L. Brandeau. Contact tracing to control infectious disease: when enough is enough. *Health Care Manag. Sci.*, 10:341–355, 2007. doi:10.1007/ s10729-007-9027-6.
- [5] B. Armbruster and M. L. Brandeau. Optimal mix of screening and contact tracing for endemic diseases. *Math Biosci*, 209:386–402, 2007. doi:10.1016/j.mbs.2007.02.007.
- [6] F. G. Ball, E. S. Knock, and P. D. O'Neill. Threshold behaviour of emerging epidemics featuring contact tracing. Adv Appl Probab, 43:1048–1065, 2011. doi:10.1239/aap/ 1324045698.
- F. G. Ball, E. S. Knock, and P. D. O'Neill. Stochastic epidemic models featuring contact tracing with delays. *Math Biosci*, 266:23-35, 2015. doi:http://dx.doi.org/10.1016/j. mbs.2015.05.007.
- [8] M. T. Barlow. A branching process with contact tracing. arXiv preprint, 2020. arXiv: 2007.16182.
- [9] A. Barrat, C. Cattuto, M. Kivelä, S. Lehmann, and J. Saramäki. Effect of manual and digital contact tracing on COVID-19 outbreaks: a study on empirical contact data. *medRxiv* preprint, 2020. doi:10.1101/2020.07.24.20159947.
- [10] L. Baumgarten and S. Bornholdt. Epidemics with asymptomatic transmission: Sub-critical phase from recursive contact tracing. arXiv preprint, 2020. arXiv:2008.09896.
- [11] N. G. Becker, K. Glass, Z. Li, and G. K. Aldis. Controlling emerging infectious diseases like SARS. *Math Biosci*, 193:205–221, 2005. doi:10.1016/j.mbs.2004.07.006.
- [12] M. Begun, A. T. Newall, G. B. Marks, and J. G. Wood. Contact tracing of Tuberculosis: A systematic review of transmission modelling studies. *PLoS ONE*, 8:e72470, 2013. doi: 10.1371/journal.pone.0072470.
- [13] T. Berge, A. J. O. Tassé, H. M. Tenkam, and J. Lubuma. Mathematical modeling of contact tracing as a control strategy of Ebola virus disease. *Internat J Biomath*, 11:1850093, 2018. doi:10.1142/s1793524518500936.
- [14] M. G. B. Blum and V. C. Tran. HIV with contact tracing: a case study in approximate bayesian computation. *Biostatistics*, 11:644-660, 2010. doi:10.1093/biostatistics/ kxq022.

- [15] W. J. Bradshaw, E. C. Alley, J. H. Huggins, A. L. Lloyd, and K. M. Esvelt. Bidirectional contact tracing is required for reliable COVID-19 control. *medRxiv preprint*, 2020. doi: 10.1101/2020.05.06.20093369.
- [16] I. Braithwaite, T. Callender, M. Bullock, and R. W. Aldridge. Automated and partly automated contact tracing: a systematic review to inform the control of COVID-19. *Lancet Digit Health*, 2020. doi:10.1016/s2589-7500(20)30184-9.
- [17] C. Browne, H. Gulbudak, and G. Webb. Modeling contact tracing in outbreaks with application to ebola. J Theor Biol., 384:33-49, 2015. doi:10.1016/j.jtbi.2015.08.004.
- [18] V. B. Bulchandani, S. Shivam, S. Moudgalya, and S. L. Sondhi. Digital herd immunity and COVID-19. medRxiv preprint, 2020. doi:10.1101/2020.04.15.20066720.
- [19] S.-C. Chen, C.-F. Chang, and C.-M. Liao. Predictive models of control strategies involved in containing indoor airborne infections. *Indoor Air*, 16:469–481, 2006. doi:10.1111/j. 1600-0668.2006.00443.x.
- [20] J. Clarke, K. A. J. White, and K. Turner. Exploring short-term responses to changes in the control strategy for Chlamydia trachomatis. *Comput Math Methods Med*, 2012:1–10, 2012. doi:10.1155/2012/803097.
- [21] J. Clarke, K. A. J. White, and K. Turner. Approximating optimal controls for networks when there are combinations of population-level and targeted measures available: Chlamydia infection as a case-study. *Bull Math Biol*, 75:1747–1777, 2013. doi:10.1007/ s11538-013-9867-9.
- [22] S. Clémençon, V. C. Tran, and H. de Arazoza. A stochastic SIR model with contacttracing: large population limits and statistical inference. J Biol Dyn, 2:392–414, 2008. doi:10.1080/17513750801993266.
- [23] H. de Arazoza and R. Lounes. A non-linear model for a sexually transmitted disease with contact tracing. IMA J Math Appl Med Biol, 19:221–234, 2002. doi:10.1093/imammb/19. 3.221.
- [24] L. D. Domenico, G. Pullano, C. E. Sabbatini, P.-Y. Boëlle, and V. Colizza. Impact of lockdown on COVID-19 epidemic in île-de-france and possible exit strategies. *BMC Medicine*, 18, 2020. doi:10.1186/s12916-020-01698-4.
- [25] K. Eames. Contact tracing strategies in heterogeneous populations. Epidemiol Infect, 135:443-454, 2007. doi:10.1017/S0950268806006923.
- [26] K. T. Eames and M. J. Keeling. Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. *PNAS*, 99:13330 – 13335, 2002. doi:10.1073/ pnas.20224429.
- [27] K. T. Eames and M. J. Keeling. Contact tracing and disease control. Proc R Soc B, 270:2565-2571, 2003. doi:10.1098/rspb.2003.2554.
- [28] M. Eichner. Case isolation and contact tracing can prevent the spread of smallpox. Am J Epidemiol, 158:118-128, 2003. doi:10.1093/aje/kwg104.

- [29] A. Endo, Q. J. Leclerc, G. M. Knight, G. F. Medley, K. E. Atkins, S. Funk, and A. J. Kucharski. Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. *Wellcome Open Research*, 5:239, 2020. doi:10.12688/wellcomeopenres.16344.1.
- [30] K. Farrahi, R. Emonet, and M. Cebrian. Epidemic contact tracing via communication traces. PLoS ONE, 9:e95133, 2014. doi:10.1371/journal.pone.0095133.
- [31] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, M. Parker, D. Bonsall, and C. Fraser. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. *Science*, 368:eabb6936, 2020. doi:10.1126/science.abb6936.
- [32] J. A. Firth, J. Hellewell, P. Klepac, S. Kissler, A. J. Kucharski, and L. G. Spurgin. Using a real-world network to model localized COVID-19 control strategies. *Nat Med*, 2020. doi: 10.1038/s41591-020-1036-8.
- [33] C. Fraser, S. Riley, R. Anderson, and N. Ferguson. Factors that make an infectious disease outbreak controllable. PNAS, 101:6146–6151, 2004. doi:10.1073/pnas.0307506101.
- [34] G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, and M. Colaneri. Modelling the COVID-19 epidemic and implementation of population-wide interventions in italy. *Nat Med*, 2020. doi:10.1038/s41591-020-0883-7.
- [35] N. C. Grassly, M. Pons-Salort, E. P. K. Parker, P. J. White, N. M. Ferguson, K. Ainslie, M. Baguelin, S. Bhatt, A. Boonyasiri, N. Brazeau, L. Cattarino, H. Coupland, Z. Cucunuba, G. Cuomo-Dannenburg, A. Dighe, C. Donnelly, S. L. van Elsland, R. FitzJohn, S. Flaxman, K. Fraser, K. Gaythorpe, W. Green, A. Hamlet, W. Hinsley, N. Imai, E. Knock, D. Laydon, T. Mellan, S. Mishra, G. Nedjati-Gilani, P. Nouvellet, L. Okell, M. Ragonnet-Cronin, H. A. Thompson, H. J. T. Unwin, M. Vollmer, E. Volz, C. Walters, Y. Wang, O. J. Watson, C. Whittaker, L. Whittles, and X. Xi. Comparison of molecular testing strategies for COVID-19 control: a mathematical modelling study. *Lancet Infect Dis*, 2020. doi:10.1016/s1473-3099(20)30630-7.
- [36] C. Heffernan and J. A. Dunningham. Simplifying mathematical modelling to test intervention strategies for Chlamydia. J Public Health Epidemiol, 1:022–030, 2009. doi: 10.5897/JPHE.9000113.
- [37] J. Hellewell, S. Abbott, A. Gimma, N. I. Bosse, C. I. Jarvis, T. W. Russell, J. D. Munday, A. J. Kucharski, W. J. Edmunds, S. Funk, R. M. Eggo, F. Sun, S. Flasche, B. J. Quilty, N. Davies, Y. Liu, S. Clifford, P. Klepac, M. Jit, C. Diamond, H. Gibbs, and K. van Zandvoort. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. *Lancet Glob Health*, 8:e488–e496, 2020. doi:10.1016/s2214-109x(20)30074-7.
- [38] E. Hernandez-Orallo, P. Manzoni, C. T. Calafate, and J.-C. Cano. Evaluating how smartphone contact tracing technology can reduce the spread of infectious diseases: the case of COVID-19. *IEEE Access*, pages 1–1, 2020. doi:10.1109/access.2020.2998042.
- [39] H. W. Hethcote and J. A. Yorke. Gonorrhea transmission dynamics and control. Lecture Notes in Biomathematics, 56, 1984. doi:10.1007/978-3-662-07544-9.
- [40] T. House and M. J. Keeling. The impact of contact tracing in clustered populations. PLoS Comput Biol, 6:e1000721, 2010. doi:10.1371/journal.pcbi.1000721.

- [41] Y.-H. Hsieh, H. de Arazoza, R. Lounes, and J. Joanes. A class of methods for HIV contact tracing in Cuba: Implications for intervention and treatment. In *Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention*, pages 77–92. World Scientific, 2005. doi:10.1142/9789812569264_0004.
- [42] Y.-H. Hsieh, Y.-S. Wang, H. de Arazoza, and R. Lounes. Modeling secondary level of HIV contact tracing: its impact on HIV intervention in cuba. *BMC Infect Dis*, 10, 2010. doi:10.1186/1471-2334-10-194.
- [43] R. Huerta and L. S. Tsimring. Contact tracing and epidemics control in social networks. *Phys. Rev. E*, 66, 2002. doi:10.1103/physreve.66.056115.
- [44] J. M. Hyman, J. Li, and E. A. Stanley. Modeling the impact of random screening and contact tracing in reducing the spread of HIV. *Math Biosci*, 181:17–54, 2003. doi:10. 1016/s0025-5564(02)00128-1.
- [45] C.-E. Juneau, A.-S. Briand, T. Pueyo, P. Collazzo, and L. Potvin. Effective contact tracing for COVID-19: A systematic review. *medRxiv preprint*, 2020. doi:10.1101/2020.07.23. 20160234.
- [46] E. H. Kaplan, D. L. Craft, and L. M. Wein. Emergency response to a smallpox attack: The case for mass vaccination. PNAS, 99:10935–10940, 2002. doi:10.1073/pnas.162282799.
- [47] P. Kasaie, J. R. Andrews, W. D. Kelton, and D. W. Dowdy. Timing of tuberculosis transmission and the impact of household contact tracing. an agent-based simulation model. Am J Respir Crit Care Med, 189:845–852, 2014. doi:10.1164/rccm.201310-1846oc.
- [48] M. J. Keeling and K. T. Eames. Networks and epidemic models. J R Soc Interface, 2:295– 307, 2005. doi:10.1098/rsif.2005.0051.
- [49] M. J. Keeling, T. D. Hollingsworth, and J. M. Read. Efficacy of contact tracing for the containment of the 2019 novel coronavirus (COVID-19). J Epidemiol Community Health, pages jech-2020-214051, 2020. doi:10.1136/jech-2020-214051.
- [50] H. Kim and A. Paul. Contact tracing: a game of big numbers in the time of COVID-19. arXiv preprint, 2020. arXiv:2004.10762v1.
- [51] I. Z. Kiss, D. M. Green, and R. R. Kao. Infectious disease control using contact tracing in random and scale-free networks. J R Soc Interface, 3:55–62, 2006. doi:10.1098/rsif. 2005.0079.
- [52] I. Z. Kiss, D. M. Green, and R. R. Kao. The effect of network mixing patterns on epidemic dynamics and the efficacy of disease contact tracing. J R Soc Interface, 5:791-799, 2008. doi:10.1098/rsif.2007.1272.
- [53] D. Klinkenberg, C. Fraser, and H. Heesterbeek. The effectiveness of contact tracing in emerging epidemics. *PLoS ONE*, 1:e12, 2006. doi:10.1371/journal.pone.0000012.
- [54] S. Kojaku, L. Hébert-Dufresne, and Y.-Y. Ahn. The effectiveness of contact tracing in heterogeneous networks. arXiv preprint, 2020. arXiv:2005.02362v1.
- [55] M. Kretzschmar, K. M. E. Turner, P. M. Barton, W. J. Edmunds, and N. Low. Predicting the population impact of chlamydia screening programmes: comparative mathematical modelling study. *Sex Transm Infect*, 85:359–366, 2009. doi:10.1136/sti.2009.036251.

- [56] M. Kretzschmar, S. Van den Hof, J. Wallinga, and J. Van Wijngaarden. Ring vaccination and smallpox control. *Emerg Infect Dis*, 10:832, 2004. doi:10.3201/eid1005.030419.
- [57] M. Kretzschmar, Y. van Duynhoven, and A. Severijnen. Modeling prevention strategies for Gonorrhea and Chlamydia using stochastic network simulations. *Am J Epidemiol*, 144:306– 317, 1996. doi:10.1093/oxfordjournals.aje.a008926.
- [58] M. E. Kretzschmar, G. Rozhnova, M. C. J. Bootsma, M. van Boven, J. H. H. M. van de Wijgert, and M. J. M. Bonten. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. *The Lancet Public Health*, 5:e452–e459, 2020. doi: 10.1016/s2468-2667(20)30157-2.
- [59] M. E. Kretzschmar, G. Rozhnova, and M. E. van Boven. Isolation and contact tracing can tip the scale to containment of COVID-19 in populations with social distancing. *medRxiv* preprint, 2020. doi:10.1101/2020.03.10.20033738.
- [60] A. J. Kucharski, P. Klepac, A. J. K. Conlan, S. M. Kissler, M. L. Tang, H. Fry, J. R. Gog, W. J. Edmunds, J. C. Emery, G. Medley, J. D. Munday, T. W. Russell, Q. J. Leclerc, C. Diamond, S. R. Procter, A. Gimma, F. Y. Sun, H. P. Gibbs, A. Rosello, K. van Zandvoort, S. Hué, S. R. Meakin, A. K. Deol, G. Knight, T. Jombart, A. M. Foss, N. I. Bosse, K. E. Atkins, B. J. Quilty, R. Lowe, K. Prem, S. Flasche, C. A. B. Pearson, R. M. G. J. Houben, E. S. Nightingale, A. Endo, D. C. Tully, Y. Liu, J. Villabona-Arenas, K. O'Reilly, S. Funk, R. M. Eggo, M. Jit, E. M. Rees, J. Hellewell, S. Clifford, C. I. Jarvis, S. Abbott, M. Auzenbergs, N. G. Davies, and D. Simons. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study. *Lancet Infect Dis*, 2020. doi:10.1016/s1473-3099(20)30457-6.
- [61] K. O. Kwok, A. Tang, V. W. Wei, W. H. Park, E. K. Yeoh, and S. Riley. Epidemic models of contact tracing: Systematic review of transmission studies of severe acute respiratory syndrome and middle east respiratory syndrome. *Comput Struct Biotechnol J*, 17:186–194, 2019. doi:10.1016/j.csbj.2019.01.003.
- [62] F. Liu, W. T. A. Enanoria, J. Zipprich, S. Blumberg, K. Harriman, S. F. Ackley, W. D. Wheaton, J. L. Allpress, and T. C. Porco. The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for california. *BMC Public Health*, 15, 2015. doi:10.1186/s12889-015-1766-6.
- [63] J. O. Lloyd-Smith, A. P. Galvani, and W. M. Getz. Curtailing transmission of severe acute respiratory syndrome within a community and its hospital. *Proc R Soc B*, 270:1979–1989, 2003. doi:10.1098/rspb.2003.2481.
- [64] L. Lorch, W. Trouleau, S. Tsirtsis, A. Szanto, B. Schölkopf, and M. Gomez-Rodriguez. A spatiotemporal epidemic model to quantify the effects of contact tracing, testing, and containment. arXiv preprint, 2020. arXiv:2004.07641v2.
- [65] D. Lunz, G. Batt, and J. Ruess. To isolate, or not to isolate: a theoretical framework for disease control via contact tracing. *medRxiv preprint*, 2020. doi:10.1101/2020.05.26. 20113340.
- [66] G. R. Mellor, C. S. M. Currie, and E. L. Corbett. Incorporating household structure into a discrete-event simulation model of tuberculosis and HIV. ACM Trans Model Comput Simul, 21:1–17, 2011. doi:10.1145/2000494.2000499.

- [67] K. Mizumoto, K. Ejima, T. Yamamoto, and H. Nishiura. Vaccination and clinical severity: Is the effectiveness of contact tracing and case isolation hampered by past vaccination? Int J Environ Res Public Health, 10:816, 2013. doi:10.3390/ijerph10030816.
- [68] J. Müller and V. Hösel. Estimating the tracing probability from contact history at the onset of an epidemic. Math Popul Stud, 14:211–236, 2007. doi:10.1080/08898480701612857.
- [69] J. Müller and V. Hösel. Contact Tracing & Super-Spreaders in the Branching-Process Model. arXiv preprint, 2020. arXiv:2010.04942.
- [70] J. Müller and B. Koopmann. The effect of delay on contact tracing. Math Biosci, 282:204– 214, 2016. doi:10.1016/j.mbs.2016.10.010.
- [71] J. Müller, M. Kretzschmar, and K. Dietz. Contact tracing in stochastic and deterministic epidemic models. *Math Biosci*, 164:39 – 64, 2000. doi:http://dx.doi.org/10.1016/ S0025-5564(99)00061-9.
- [72] R. Naresh, A. Tripathi, and D. Sharma. A nonlinear HIV/AIDS model with contact tracing. Appl Math Comput, 217:9575–9591, 2011. doi:10.1016/j.amc.2011.04.033.
- [73] A. Okolie and J. Müller. Exact and approximate formulas for contact tracing on random trees. *Math Biosci*, 321:108320, 2020. doi:10.1016/j.mbs.2020.108320.
- [74] T. R. Pollmann, J. Pollmann, C. Wiesinger, C. Haack, L. Shtembari, A. Turcati, B. Neumair, S. Meighen-Berger, G. Zattera, M. Neumair, U. Apel, A. Okolie, J. Müller, S. Schoenert, and E. Resconi. The impact of digital contact tracing on the SARS-CoV-2 pandemic a comprehensive modelling study. *medRxiv preprint*, 2020. doi:10.1101/2020.09.13. 20192682.
- [75] T. C. Porco, K. A. Holbrook, S. E. Fernyak, D. L. Portnoy, R. Reiter, and T. J. Aragón. Logistics of community smallpox control through contact tracing and ring vaccination: a stochastic network model. *BMC Public Health*, 4, 2004. doi:10.1186/1471-2458-4-34.
- [76] C. Rivers, E. Lofgren, M. Marathe, S. Eubank, and B. Lewis. Modeling the impact of interventions on an epidemic of Ebola in Sierra Leone and Liberia. *PLoS Curr*, Edition 2, 2014. doi:10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c.
- [77] N. Shaban, M. Andersson, Åke Svensson, and T. Britton. Networks, epidemics and vaccination through contact tracing. *Math Biosci*, 216:1–8, 2008. doi:http://dx.doi.org/10. 1016/j.mbs.2008.06.009.
- [78] N. M. Shahtori, T. Ferdousi, C. Scoglio, and F. D. Sahneh. Quantifying the impact of early-stage contact tracing on controlling ebola diffusion. *Math Biosc Engin*, 15:1165–1180, 2018. doi:10.3934/mbe.2018053.
- [79] T. Tanaka, T. Yamaguchi, and Y. Sakamoto. Estimation of the percentages of undiagnosed patients of the novel coronavirus (SARS-CoV-2) infection in hokkaido, japan by using birthdeath process with recursive full tracing. *PLOS ONE*, 15:e0241170, 2020. doi:10.1371/ journal.pone.0241170.
- [80] Y. Tian, F. Alawami, A. Al-Azem, N. Osgood, V. Hoeppner, and C. Dutchyn. A system dynamics model of tuberculosis diffusion with respect to contact tracing investigation. In *Proceedings of the 2011 Winter Simulation Conference (WSC)*, page e72470. IEEE, 2011. doi:10.1109/wsc.2011.6147857.

- [81] Y. Tian, N. D. Osgood, A. Al-Azem, and V. H. Hoeppner. Evaluating the effectiveness of contact tracing on tuberculosis outcomes in saskatchewan using individual-based modeling. *Health Educ. Behav.*, 40:98S–110S, 2013. doi:10.1177/1090198113493910.
- [82] L. S. Tsimring and R. Huerta. Modeling of contact tracing in social networks. *Physica A*, 325:33–39, 2003. doi:10.1016/s0378-4371(03)00180-8.
- [83] K. M. E. Turner, E. Adams, N. Gay, A. Ghani, C. Mercer, and W. J. Edmunds. Developing a realistic sexual network model of chlamydia transmission in Britain. *Theor Biol Med Model*, 3:3, 2006. doi:10.1186/1742-4682-3-3.