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total variance of eGFR and albuminuria is explained by the 
identified variants, and the relative risk for CKD is modified 
by at most 20% per locus. In African Americans, much of the 
risk for end-stage nondiabetic kidney disease is explained by 
common variants in the  MYH9/APOL1  locus, and in individu-
als of European descent, variants in  HLA-DQA1  and  PLA  2  R1  
implicate most of the risk for idiopathic membranous ne-
phropathy. In contrast, genetic findings in the analysis of di-
abetic nephropathy are inconsistent. Uncovering variants 
explaining more of the genetically determined variability of 
kidney function is hampered by the multifactorial nature of 
CKD and different mechanisms involved in progressive CKD 
stages, and by the challenges in elucidating the role of low-
frequency variants. Meta-analyses with larger sample sizes 
and analyses of longitudinal renal phenotypes using higher-
resolution genotyping data are required to uncover novel 
loci associated with severe renal phenotypes. 

 Copyright © 2011 S. Karger AG, Basel 

 Rationale for Genetic Studies in Kidney Disease 

 Chronic kidney disease (CKD) affects about 10% of 
the general population in industrialized nations, incur-
ring high morbidity and mortality, and posing a signifi-
cant financial burden to the health care systems  [1–3] , 
with patients that progress to end-stage renal disease 
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 Abstract 
 Chronic kidney disease (CKD) is common, affecting about 
10% of the general population, and causing significant mor-
bidity and mortality. Apart from the risk conferred by tradi-
tional cardiovascular risk factors, there is a strong genetic 
component. The method of a genome-wide association 
study (GWAS) is a powerful hypothesis-free approach to un-
ravel this component by association analyses of CKD with 
several million genetic variants distributed across the ge-
nome. Since the publication of the first GWAS in 2005, this 
method has led to the discovery of novel loci for numerous 
human common diseases and phenotypes. Here, we review 
the recent successes of meta-analyses of GWAS on renal phe-
notypes.  UMOD, SHROOM3, STC1, LASS2, GCKR, ALMS1, TFDP2, 
DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2/SH2B3, DACH1, 
UBE2Q2,  and  SLC7A9  were uncovered as loci associated with 
estimated glomerular filtration rate (eGFR) and CKD, and 
 CUBN  as a locus for albuminuria in cross-sectional data of 
general population studies. However, less than 1.5% of the 
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(ESRD) particularly affected. Diabetes and hypertension 
are major risk factors, but do not account for all of the risk 
 [4] .

  Heritability of glomerular filtration rate (GFR) has 
been estimated to range from 36 to 75%, and from 16 to 
49% for albuminuria, one of the first signs of kidney 
damage  [5, 6] . This, and the multitude of monogenic kid-
ney diseases involving a particularly severe phenotype 
with onset in early childhood, e.g. congenital nephrotic 
syndrome of the Finnish type (NPHS1), or in adulthood, 
e.g. autosomal dominant polycystic kidney disease  [7–11] , 
are the rationale for searching for common variants as-
sociated with renal function and kidney disease pheno-
types in the general population  [5, 11–13] . The elucida-
tion of the genetic variants involved may lead to a better 
understanding not only of variability of GFR and albu-
minuria in the general population but also of the biology 
of clinical phenotypes such as CKD, progressive kidney 
function decline and ESRD. Ultimately, this could lead to 
novel tools for diagnosis, prevention and therapy of CKD 
 [5, 12, 13] .

  The Evolving Methodology in Genetic Research 

 Classical genetic mapping approaches (linkage analy-
ses) in families with index patients affected by a rare dis-
ease have long been and continue to be successful in dis-
covering mutations causing rare single-gene diseases 
with a clear mendelian mode of inheritance and mostly a 
pathognomonic clinical phenotype  [7] . However, the use 
of these hypothesis-free methods has not been overly suc-
cessful in identifying genetic variants associated with 
common diseases (ESRD and diabetic nephropathy) or 
quantitative kidney traits (GFR and albuminuria). While 
carnosinase  (CNDP1)  was identified as a likely candidate 
gene for diabetic nephropathy  [14–19] , other studies on 
diabetic nephropathy or other kidney phenotypes have 
not been consistent  [20–33] .

  Another approach investigated the association be-
tween common genetic variants (minor allele frequencies 
 1 5% in the general population) in plausible candidate 
genes and kidney function or disease phenotypes such
as diabetic nephropathy  [11, 34] . However, confirmatory 
replication was rarely achieved due to a multitude of 
study design issues such as inadequate power, low sig-
nificance threshold, and differences in phenotype defini-
tion between studies  [35] .

  A further hypothesis-free approach is provided by 
 genome-wide association studies (GWAS). The GWAS 

approach has been catalyzed by the publication of the 
 human genome just over 10 years ago  [36, 37] , by tech-
nological advances in the high-throughput detection of 
genome sequence variation and the unraveling of the ar-
chitecture of genetic variation in humans of different eth-
nic origin in the HAPMAP project  [38] . With the high-
throughput genotyping technologies offered by compa-
nies such as Illumina and Affymetrix, it is now possible 
to rapidly genotype more than 1 million single nucleotide 
polymorphisms (SNPs) across the whole genome per per-
son in a single analytical process. In GWAS, linear (for 
continuous traits, e.g. GFR or proteinuria) and logistic 
(for dichotomous traits, e.g. CKD or ESRD) regression 
models are used to calculate the mean shift in the distri-
bution (for quantitative traits) or in the disease probabil-
ity (for dichotomous phenotypes) per risk allele (com-
pared to the other, the reference allele). By using the in-
formation on human genetic variation in the HAPMAP 
data set, these large data sets can be further enhanced by 
the imputation of a further over 1.5 million SNPs that lie 
between the genotyped SNPs  [39] . In addition to the ex-
tension of the number of SNPs that can be studied, this 
makes the different SNP panels obtained from different 
genotyping platforms compatible across studies and is 
thus pivotal to pooling of several GWAS (GWAS meta-
analyses, GWAMAs). The advantage of GWAMAs is that 
the larger sample size increases the power to detect small 
effects.

  Since the genetic markers in genome-wide research 
are distributed across the whole genome, this analytical 
approach has the advantage of being unbiased by biolog-
ical hypotheses, in contrast to candidate gene studies.

  However, since a large number of statistical tests are 
performed, it is paramount to stringently correct for mul-
tiple testing. Applying the method described by Bonfer-
roni to GWAS with 1 million independent SNP tests, an 
SNP association is deemed genome-wide significant if 
the p value is less than 5  !  10 –8   [40] . This small alpha 
level comes at the cost of a reduction in power. Very large 
sample sizes are thus required to identify a SNP associa-
tion with genome-wide significance. Further, to confirm 
results of this first stage of locus discovery, confirmation 
in independent individuals is mandatory in a second 
stage of genetic testing of the SNPs identified in stage 1 
GWAS  [41] .

  A disadvantage of using current HAPMAP-imputed 
SNP data sets is that there is considerable uncertainty 
about the quality of information on SNPs with a minor 
allele frequency (MAF) below 10%  [42] , which is further 
aggravated by the fact that most studies are underpow-
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ered to adequately analyze such SNPs. It is assumed that 
the low-frequency variants could account for larger effect 
sizes ( fig.  1 )  [41] . The sequence information of several 
hundred individuals of European origin has become 
available with the 1000 Genomes data set in 2010  [42, 43] , 
allowing the imputation of  1 7 million SNPs with im-
proved coverage of such low-frequency variants. These 
data sets will be used in the near future and may close the 
gap between common variant approaches (GWAS) and 
rare mutation approaches (linkage analysis). The extent 
of the contribution of these low-frequency variants to the 
disease heritability is one of the current great debates 
with conclusions eagerly awaited.

  The Successes and Limitations of GWAS  

 The first GWAS of common clinical diseases such as 
age-related macular degeneration  [44] , coronary heart 
disease  [45–47]  and diabetes mellitus types 1 and 2  [48]  
were published between 2005 and 2007, with successful 
studies of intermediate phenotypes, such as body mass 
index and blood glucose levels, as well as of traits without 
obvious pathological implications, such as eye and hair 
color, curly hair and freckling, following soon after  [49] .

  By June 2010, a total of 904 published genome-wide 
associations with diseases and traits had been registered 
in the so-called GWAS catalog, hand-curated by the Na-
tional Human Genetics Research Institute (USA)  [49, 50] . 
With some exceptions, common variants (MAF 10–50%) 
with low effects are typically discovered: the increase in 
relative disease risk per copy of the risk allele is mostly 
1–50%, and the percent of variance explained (for quan-
titative traits) or the attributable disease risk (for dichoto-
mous traits) usually falls short of 3% ( fig. 1 )  [41] . Only a 
handful of variants identified are associated with a more 
than 2-fold increased relative risk of disease, e.g. variants 
in the  CFH  gene for age-related macular degeneration. 
The discrepancy between the mostly high levels of ob-
served heritability of common diseases and traits (e.g. 
GFR has been shown to have a heritability of 36–75%) and 
the small effect size attributable to the variants identified 
so far has been given the term ‘missing heritability’  [41, 
51] , with several explaining hypotheses:

  (a) there are further frequent variants (MAF 10–50%) 
with a smaller effect size, which GWAS with a larger sam-
ple size will detect, as has been the case e.g. for body mass 
index  [52]  and waist-hip ratio  [53, 54] ;

  (b) less frequent variants (MAF 1–10%) account for 
larger effects and larger GWAS will detect them if their 

genotype data have a better coverage of these variants, 
which might be addressed to some extent by imputation 
to novel reference panels based on larger samples of se-
quenced individuals such as in the 1000 Genomes project 
 [41–43] ;

  (c) there is a great abundance of very rare variants 
(MAF  ! 1%) with a large effect if taken jointly. If these are 
tagged by a common SNP, such a common SNP could be 
detected by GWAS. However, sequencing of specific loci 
in substantial sample sizes would be required to identify 
the rare variants;

  (d) genetic variants other than SNPs comprise the 
functional entities, such as copy number variations or 
risk haplotypes. Some of these may be tagged by SNPs 
and could explain some of the found SNP associations 
 [55] . Others might not be tagged by SNPs and will thus 
only be found by approaches alternative to SNP associa-
tion;

  (e) gene-gene and gene-environment interaction 
could dilute the main variant effect. Larger GWAS ac-
counting for such interaction could detect SNPs in-
volved in networks. However, the substantial sample 
sizes with detailed environmental phenotyping in suf-
ficient quality are not yet available. The multitude of 
gene-gene interactions to be searched through would in-
volve an enormous number of tests, increasing expo-
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  Fig. 1.  Relation of effect size and risk allele frequency of SNPs as-
sociated with renal phenotypes. Adapted from McCarthy et al. 
 [41] . * Published in Köttgen et al.  [63, 79] . 



 Böger   /Heid    Kidney Blood Press Res 2011;34:225–234228

nentially with increasing number of interacting SNPs 
considered. This is beyond the scope of currently avail-
able computing power.

  Finally, an important caveat in the interpretation of all 
genetic association studies is that the SNPs identified 
through GWAS are rarely the causal variants, but rather 
implicate genetic loci for further functional study. Even 
the gene is usually not pinpointed by the GWAS top hit, 
as the SNP could tag any functional entity within the 
reach of any correlation of this SNP. So the first challenge 
after GWAS is pinpointing the gene involved, and the 
next is identifying the causal functional entity.

  Definition of Kidney Traits and Study Design 

 CKD (here defined as GFR  ! 60 ml/min/1.73 m 2 ) has 
multiple etiologies, with the main causes in the general 
population with European descent being diabetic ne-
phropathy and hypertensive nephropathy. Until the re-
cent discovery of genetic variants with very strong effects 
on nondiabetic ESRD risk (see the section on GWAS of 
ESRD in African Americans)  [56–58] , this was also as-
sumed for African Americans.

  The involved mechanisms at CKD initiation may dif-
fer from those during kidney function decline through 
the progressive stages leading to ESRD as the most severe 
clinical endpoint  [59–61] , while certain histological 
changes during progression of CKD, e.g. tubulointersti-
tial fibrosis, are common to multiple causes of CKD. Fur-
ther, the genetic determinants may be distinct for the 
traits that define kidney disease, namely proteinuria and 
GFR, as previously proposed for disorders such as dia-
betic nephropathy  [6] . Thus, trait definition and study 
design will invariably affect results of genetic analyses 
 [12, 62] .

  It is unfeasible to measure GFR in large general popu-
lation studies. Instead, GFR is estimated from serum cre-
atinine, ideally complemented by GFR estimated from 
serum cystatin C. The advantage of using two different 
biomarkers for estimation of GFR is that genetic factors 
affecting their production, metabolism and secretion can 
be evaluated  [63] .

  Owing to the large sample size, cross-sectional analy-
ses of estimated GFR (eGFR) and albuminuria as con-
tinuous traits have the highest power, while dichotomiz-
ing at established boundaries (e.g. eGFR: 60 ml/min/
1.73 m 2 ; albumin-creatinine ratio: 30 mg/g  [64, 65] ) sac-
rifices power but provides a clinically relevant pheno-
type. The main drawback of cross-sectional studies is 

that the clinically highly relevant phenotypes kidney 
function decline, CKD initiation and progression of CKD 
cannot be studied. By calculating the annual decline in 
eGFR from data obtained longitudinally, factors affect-
ing the slope of decline at all stages of CKD and the de-
cline to CKD stage 3 can be investigated  [62, 66–69] . The 
mechanisms involved in these phenotypes may differ in 
those without and with baseline CKD  [59–61] : the former 
depicts persons that are still in the preclinical range of 
GFR and might drop towards CKD during the observa-
tion time, while the latter are already patients and mech-
anisms account for severe and/or rapid aggravation of the 
disease.

  Longitudinal studies are thus suited to analyze CKD 
initiation, mechanisms involved in preclinical kidney 
function decline, and progression of CKD. However, es-
pecially in general population-based cohorts, studying 
mechanisms leading to ESRD is limited by low power 
owing to the small number of individuals progressing to 
ESRD. For example, in 17 years of follow-up in one of 
the largest cohorts (the ARIC study), only 101 (0.9%) of 
11,677 initially healthy individuals of European descent 
progressed to ESRD  [70] . Thus, case-control studies of 
ESRD are the mainstay of the genetic study of this phe-
notype in spite of acknowledged methodological limita-
tions of less than perfect comparability of cases and con-
trols (possible confounding effects introduced by sur-
vival bias and differences across studies in access to 
renal replacement therapies between health care sys-
tems)  [41, 71] .

  In principle, the above also applies to the much-stud-
ied phenotype of diabetic nephropathy, the main cause of 
ESRD in patients with European descent. In the sub-
group of about 25% of all diabetes patients affected  [72] , 
this disorder progresses over many years of diabetes du-
ration from normal albuminuria and GFR through most-
ly overlapping stages of hyperfiltration and increased 
GFR, mildly elevated albuminuria, declining GFR in
the normal range, decrease of GFR to below 60 ml/min/
1.73 m 2 , overt and sometimes nephrotic-range protein-
uria, decrease of GFR below 30 ml/min/1.73 m 2  and fi-
nally ESRD  [73] . In early stages, regression to normalbu-
minuria is frequently observed  [74] . Importantly, histo-
logical proof of this diagnosis is seldom obtained due to 
lack of clinical consequence.

  Since kidney histology is typically not available, clini-
cal criteria are used to reduce misclassification in case-
control studies of diabetic nephropathy, though there is 
no uniform definition of diabetic nephropathy status 
across all genetic studies. Controls are mostly defined as 
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those with long-standing diabetes and normal-range al-
buminuria ( ! 30 mg per day); the presence of a GFR  6 60 
ml/min/1.73 m 2  is not always taken as a criterion defining 
controls  [75] . Cases are mostly those with overt protein-
uria (defined mostly as  1 300 mg per day) and/or ESRD 
in the absence of other possible causes of ESRD  [76–78] . 
The presence of diabetic retinopathy is required by some 
studies  [15, 75]  since this makes the diagnosis of diabetic 
nephropathy more likely.

  Genetics of Kidney Traits 

 GWAS of GFR 
 Recently, a first GWAMA on eGFR and CKD report-

ed 3 novel susceptibility loci, i.e.  UMOD ,  STC1  and 
 SHROOM3   [79] . Soon thereafter, the CKDGen consor-
tium, encompassing 67,093 individuals from 20 interna-
tional, mostly general population-based cohort studies, 
identified 20 additional novel renal loci. Of these, 13 ap-
pear relevant for renal function, and 7 relevant for cre-
atinine production, metabolism and secretion  [63] . The 
genes located around or near the 16 renal function loci 
potentially influence calcium and phosphate homeostasis 
 (STC1),  the production of Tamm-Horsfall protein 
 (UMOD),  epithelial cell shape regulation  (SHROOM3),  
nephrogenesis  (ALMS1,   VEGFA,  potentially also  DACH1), 
 glomerular filtration barrier integrity and podocyte 
function  (DAB2, VEGFA),  angiogenesis  (VEGFA),  meta-
bolic kidney function  (PRKAG2 , potentially  GCKR , 
 LASS2),  ciliary function  (ALMS1, GCKR-IFT172)  and 
 solute transport  (SLC7A9, SLC34A1).  The renal expres-
sion or role in the renal function of genes in 4 further
loci  (TFDP2, UBE2Q2, PIP5K1B, ATXN2/SH2B3)  is un-
known. Two of the 16 renal function loci were confirmed 
in simultaneously published work in independent co-
horts  (ALMS1  and  SLC7A9)   [80] .

  These 16 loci accounted for 1.4% of the variation in 
eGFR, and the effect size on risk for prevalent CKD did 
not exceed 20% relative risk ( fig. 1 ). To assess the com-
bined role of these 16 loci on renal function and CKD 
prevalence, a genetic risk score was computed that cate-
gorized the individuals by number of eGFR-lowering al-
leles per individual (possible range of risk score: 0–32). 
Across categories of the genetic risk score with a sample 
size of at least n = 1,000 per category, the mean eGFR 
dropped from 90.7 ml/min/1.73 m 2  (in individuals with 
a risk score of 11.5–12.5) to 82.1 ml/min/1.73 m 2  (in indi-
viduals with a risk score of 22.5–23.5), and CKD preva-
lence ranged from 5.8 to 10.5%, respectively ( fig. 2 ).

  GWAS of Albuminuria 
 Albuminuria is another important parameter for kid-

ney function and damage, with a urinary albumin-cre-
atinine ratio  1 30 mg/g being the first sign of kidney 
 damage especially in diabetes mellitus. The CKDGen 
consortium conducted the first GWAMA of urinary al-
bumin-creatinine ratio in 12 studies of the general popu-
lation involving 31,580 participants and follow-up of se-
lected loci in 15 additional studies including 27,746 par-
ticipants. One nonsynonymous coding SNP in the  CUBN  
gene was identified (MAF 10%), explaining 0.2% of total 
variance of albuminuria ( fig. 1 ). The results were validat-
ed in cohorts of African Americans and in a prospective 
cohort study of diabetes type 1  [81] . This gene locus is 
biologically plausible, since its gene product, cubilin, is 
expressed in the apical brush border of the kidney’s prox-
imal tubulus, and together with the proteins megalin and 
amnionless plays a key role in the receptor-mediated en-
docytosis of low-molecular-weight proteins; patients 
lacking cubilin or amnionless in autosomal recessive 
Imerslund-Gräsbeck disease (OMIM No. 261100) have 
variable levels of proteinuria due to inefficient proximal 
tubular protein reabsorption  [82] .
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  The intronic SNP in  SHROOM3  associated with lower 
eGFR in the work by Köttgen et al.  [63, 79]  was the second 
highest-ranking SNP for lower levels of albuminuria in 
the GWAS of albuminuria, but genome-wide significance 
was not achieved  [81] . No other loci associated with eGFR 
and CKD  [63, 79]  showed genome-wide significance in 
the GWAS of albuminuria or vice versa  [81] , supporting 
the proposed concept of disparate susceptibility genes for 
these renal function measures  [6] .

  GWAS of ESRD and Diabetic Nephropathy 
 In 2003, Tanaka et al.  [83]  published the first GWAS 

of diabetic nephropathy in a Japanese population using a 
gene-based panel of over 55,000 SNPs in 94 cases of dia-
betic nephropathy and 94 controls, following the highest-
ranking SNPs in a larger set of type 1 diabetes patients. 
SNPs in  SLC12A3,  the gene encoding the thiazide-sensi-
tive sodium chloride cotransporter and mutated in Gitel-
man’s syndrome, were associated with diabetic nephrop-
athy. Some years later, an analysis in the same subjects 
with a total of over 80,000 gene-based SNPs revealed 
 ELMO1  (engulfment and cell motility 1) and  ACACB  
(acetyl coenzyme A carboxylase beta) as potential loci for 
diabetic nephropathy, validated by functional studies for 
both genes  [75, 84] .

   ELMO1  was also among the loci associated with dia-
betic nephropathy in patients of European descent with 
type 1 diabetes in a genome-wide analysis in the GoKinD 
collection of patients, where cases are those with ESRD 
or those with overt proteinuria  [85] . Further loci uncov-
ered in this study were  ZMIZ1, IRS2, TMPO, BID, KLRA1  
and  CNDP1 . The association with  ELMO1  was confirmed 
in a candidate gene study in a larger sample from the 
 GoKinD collective  [86] . The highest-ranking SNPs were 
more significantly associated with diabetic nephropathy 
when those with proteinuria but without ESRD were ex-
cluded from analysis. Further validation in other ethnic-
ities comes from studies that fine-mapped  ELMO1  in a 
study of African Americans with type 2 diabetes-associ-
ated ESRD and nondiabetic controls  [87] , and in Pima 
Indians, though effect directions were not consistent  [88] . 
Since the SNPs identified by all studies on diabetic ne-
phropathy are not completely correlated, are not direc-
tionally consistent and did not reach genome-wide sig-
nificance, further work is required to elucidate the mech-
anisms by which genetic variants in this locus affect 
diabetic nephropathy risk.

  In a genome-wide analysis of over 100,000 SNPs in 
Pima Indians, Hanson et al.  [89]  identified plasmo-
cytoma variant 1  (PVT1)  as a susceptibility locus for 

ESRD due to diabetes type 2, which was confirmed in 
Caucasians with ESRD attributed to diabetes type 1 
 [90] .

  Further,  FRMD3  and  CARS  were associated with dia-
betic nephropathy in a large GWAS of patients with type 
1 diabetes from the GoKinD collection  [76] . Though 
none of the reported SNPs reached genome-wide signifi-
cance, these findings were confirmed by an independent, 
prospective study of type 1 diabetes patients (DCCT/
EDIC  [91] ), and by expression in human kidney.

  GWAS of ESRD in African Americans 
 After adjusting for socioeconomic factors, African 

Americans have an age-adjusted risk for ESRD that is 
almost 4-fold higher than that of European Americans 
 [92] . In 2008, two groups simultaneously uncovered 
multiple common variants in  MYH9  associated with an 
up to 7-fold risk for nondiabetic ESRD and focal seg-
mental glomerulosclerosis, thus explaining most of the 
excess risk for these diseases in African Americans 
( fig. 1 )  [56, 57] . Interestingly, 2 years later, it was shown 
that this risk is apparently conferred by SNPs in the 
neighboring gene,  APOL1,  that are in linkage disequi-
librium with the originally described SNPs in  MYH9 . 
Intriguingly, the SNPs in  APOL1  cause nonsynonymous 
amino acid exchanges, which appear to bear an evolu-
tionary advantage by protecting from sleeping sickness 
due to  Trypanosoma brucei rhodesiense   [58] . Overall, 
these findings have incited a discussion that the major-
ity of African Americans with nondiabetic ESRD may 
have a genetically determined ESRD disease entity, ten-
tatively named  MYH9/APOL1  nephropathy  [93] . How-
ever, further work is required to unravel the mecha-
nisms by which the variants in this locus lead to ESRD 
 [94] .

  The search for genetic variants associated with ESRD 
due to diabetic nephropathy in African Americans has 
not been as successful  [95] . A recent GWAS of ESRD in 
African Americans with type 2 diabetes found no SNPs 
with genome-wide significance, but several loci were 
named as potential candidates for the disease, with odds 
ratios similarly scaled as in GWAS for diabetic nephrop-
athy in patients of European descent (range: odds ratio 
0.57–1.54 for the minor allele)  [96] . The formally signifi-
cant association of variants in  MYH9  with diabetic ne-
phropathy in a candidate gene study may be attributed to 
underlying nondiabetic kidney disease since the patients 
had not received kidney biopsy  [97] .
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  IgA Nephropathy and Idiopathic Membranous 
Nephropathy 
 Recently, GWAS have been published for two immu-

nological kidney disease entities: IgA nephropathy and 
idiopathic membranous nephropathy  [98–100] . In both, 
genome-wide significant associations are found in a set 
of genetic loci, which confer a large effect size when ana-
lyzed jointly. The mechanisms by which the uncovered 
genetic variants cause the two diseases are unknown, but 
a role in modifying the immune response to allo- or au-
toantigens appears plausible. Interestingly, the second 
strong genetic signal for membranous nephropathy was 
in  PLA  2  R1,  the gene encoding the M-type phospholipase 
A 2  receptor. This receptor is expressed in kidney podo-
cytes and is one of the targets of autoantibodies leading 
to idiopathic membranous nephropathy  [101–103] . The 
graded risk for membranous nephropathy with increas-
ing numbers of risk alleles at both loci suggests that ge-
netic modifications in the immune system in combina-
tion with genetic modifications in a podocyte gene leads 
to the production of autoantibodies, though experimen-
tal proof of this hypothesis is lacking. Further work is 
required also to identify the causal variants. Given the 
very low prevalence of this disease and the high risk allele 
frequency of variants detected in this publication (risk al-
lele frequency at rs2187668 in  HLA-DQA1:  39.2%; risk al-
lele frequency at rs4664308 in  PLA  2  R1:  25.2%), it can be 
expected that the detected variants are in linkage dis-
equilibrium with multiple rare causative variants.

  Kidney Function Decline, CKD Initiation and 
Progression of CKD 
 The mechanisms underlying CKD initiation and pro-

gression of CKD to ESRD may differ  [59–61, 104] , and 
understanding the genetics of these traits could lead to 

the development of novel diagnostic and therapeutic 
tools. However, GWAS examining these traits have not 
been performed, while candidate gene studies have re-
cently been published  [105, 106] .

  Conclusion 

 In conclusion, major advances have been made in the 
past decade by GWAS to unravel the genetics of complex 
diseases including kidney diseases. While loci unequivo-
cally associated with risk for diabetic nephropathy re-
main to be discovered, several novel loci associated with 
kidney function, prevalent CKD, albuminuria and cer-
tain immunological kidney diseases have been uncov-
ered in individuals of European descent. Common vari-
ants in the  MYH9/APOL1  locus account for most of the 
excess risk for nondiabetic ESRD in African Americans 
when compared to their counterparts of European de-
scent, but the mechanisms involved are yet unknown. Fi-
nally, further work is required to discover genetic vari-
ants associated with change in renal function over time, 
and genetic marker panels with higher resolution will en-
able the analysis of less frequent variants on a genome-
wide scale targeted to close the gap between the estimat-
ed heritability and the current genetically explained dis-
ease risk. The understanding of the genetic underpinning 
of several aspects of kidney diseases will greatly foster 
grasping the involved pathways with the hope for im-
proved diagnostic and therapeutic tools in the future.
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