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Marius Ueffing,4,6 Nicolas Casadei,7 Rejko Krüger,8,12 Thomas Gasser,1,2 Daniela M. Vogt Weisenhorn,13

Philipp J. Kahle,1,2 Christoph Trautwein,3 Christian J. Gloeckner,2,6 and Julia C. Fitzgerald1,15,*
1Department of
Neurodegenerative
Diseases, Centre of
Neurology and Hertie
Institute for Clinical Brain
Research, University of
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Germany

3Werner Siemens Imaging
Center, Department of
Preclinical Imaging and
Radiopharmacy, University of
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Tübingen, Germany

6Core Facility for Medical
Bioanalytics, University of
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SUMMARY

PINK1 loss-of-function mutations cause early onset Parkinson disease. PINK1-
Parkin mediated mitophagy has been well studied, but the relevance of the
endogenous process in the brain is debated.
Here, the absence of PINK1 in human dopaminergic neurons inhibits ionophore-
induced mitophagy and reduces mitochondrial membrane potential. Compensa-
tory, mitochondrial renewal maintains mitochondrial morphology and protects
the respiratory chain. This is paralleled by metabolic changes, including inhibition
of the TCA cycle enzyme mAconitase, accumulation of NAD+, and metabolite
depletion. Loss of PINK1 disrupts dopamine metabolism by critically affecting
its synthesis and uptake. The mechanism involves steering of key amino acids to-
ward energy production rather than neurotransmitter metabolism and involves
cofactors related to the vitamin B6 salvage pathway identified using unbiased
multi-omics approaches.
We propose that reduction of mitochondrial membrane potential that cannot be
controlled by PINK1 signaling initiates metabolic compensation that has neuro-
metabolic consequences relevant to Parkinson disease.

INTRODUCTION

PINK1mutations are the second most frequent cause of early onset Parkinson disease (PD), and PINK1 var-

iants have been found in sporadic PD (Gandhi and Plun-Favreau, 2017; Klein et al., 2006). PINK1 PD has an

early occurrence of L-DOPA-associated dyskinesia, slow disease progression, and absence of cognitive

impairment (Schiesling et al., 2008; Valente et al., 2004). Affective and psychotic symptoms are also

frequently a part of the clinical presentation (Steinlechner et al., 2007).

Homozygous Pink1 knockout (KO) mice, drosophila, zebrafish, and PINK1 KO human cancer cells indicate

that loss of PINK1 causes mitochondrial dysfunction, altered mitochondrial morphology, disturbed mito-

chondrial quality control, as well as iron and calcium toxicity (Esposito et al., 2013; Gautier et al., 2008; Gis-

pert et al., 2009; Heeman et al., 2011; Julienne et al., 2017; Moisoi et al., 2014; Parganlija et al., 2014; Re-

quejo-Aguilar et al., 2014; Villa et al., 2017; Vives-Bauza et al., 2010). PINK1 in vivo models are

phenotypically mild, with neurodegeneration only observed in PINK1 KO zebrafish (Anichtchik et al.,

2008; Soman et al., 2017). Dopamine release and synaptic plasticity alterations have been reported in

PINK1 KO mouse striatum (Kitada et al., 2007).

PINK1 is a serine/threonine kinase targeted to mitochondria acting in a pathway together with another PD

gene product, the E3-ubiquitin ligase Parkin (Clark et al., 2006; Park et al., 2006), to regulate mitophagy

(Geisler et al., 2010; Narendra et al., 2008, 2010a). Upon loss of mitochondrial membrane potential or accu-

mulation of misfolded proteins, PINK1 stabilizes on the outer mitochondrial membrane (Jin et al., 2010; Jin

and Youle, 2013; Narendra et al., 2010a). PINK1 then phosphorylates ubiquitin at Ser65 to activate Parkin

(Kane et al., 2014; Kazlauskaite et al., 2014; Koyano et al., 2014). Parkin ubiquitinylates mitochondrial outer
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membrane proteins such as Mitofusins (Gegg et al., 2010) and Miro (Birsa et al., 2014). Miro1 is also sug-

gested to be phosphorylated by PINK1 and is important for mitochondrial movement and arrest (Wang

et al., 2011b). The buildup of ubiquitin chains on the outer mitochondrial membrane acts as a signal for

the recruitment of autophagy receptors (Geisler et al., 2010; Lazarou et al., 2015; Wong and Holzbaur,

2014) important for mitochondrial clustering (Narendra et al., 2010b; Okatsu et al., 2010). Some in vivo

studies have shown that PINK1 is not required for basal mitophagy in neurons (McWilliams et al., 2018;

Lee et al., 2018) or in human platelets (Walsh et al., 2018) but the topic is controversial (for an extensive re-

view see Chu, 2019; Cummins and Gotz, 2018).

The pathogenic action of PINK1 mutations could be cell-type specific. PINK1 is highly expressed in the

brain but it is also expressed throughout the rest of the body and has been associated with disease mech-

anisms in several tissues (Wang et al., 2018; Guo et al., 2019) including the progression of some cancers

(Berthier et al., 2011; Villa et al., 2017). PINK1 is expressed predominantly in neurons (Blackinton et al.,

2007) and myelinating oligodendrocytes (Zhang et al., 2014b). First studies in PINK1 PD patient stem-

cell-derived neurons described defective Parkin recruitment to mitochondria and enhanced mitochondrial

biogenesis (Seibler et al., 2011).

PINK1 has been shown to have a diverse catalog of biological functions beyond but not exclusive of mi-

tophagy. PINK1 may play important roles at endoplasmic reticulum (ER) contact sites and in ER stress (Gel-

metti et al., 2017; Torres-Odio et al., 2017; Celardo et al., 2016) and also in interactions with MIRO-1, VDAC,

Grp78, TRAP1 andmitofusins (McLelland et al., 2018; Kane and Youle, 2011; Grossmann et al., 2019; Geisler

et al., 2010; Shoshan-Barmatz et al., 2004). PINK1 has been shown to regulate calcium (Gandhi et al., 2009;

Heeman et al., 2011; Soman et al., 2017), iron toxicity (Allen et al., 2013a; Esposito et al., 2013; Horowitz and

Greenamyre, 2010; Li et al., 2018), and lipids (Ivatt et al., 2014). Recently PINK1 has been shown tomodulate

STING-induced inflammation (Sliter et al., 2018) and innate immunity (West et al., 2015; Matheoud et al.,

2019; Sliter et al., 2018; Mouton-Liger et al., 2018).

In this study, our aim was to understand the neuronal-specific functions of PINK1 and how this is relevant to

Parkinson disease etiology. We differentiated human midbrain specific neurons and showed that PINK1 is

not required for maintenance of themitochondrial networks nor for mitochondrial respiration but rather the

fine tuning of mitochondrial matrix metabolism. These alterations may compensate for low mitochondrial

quality but ultimately impact neuronal morphogenesis, neurotransmitter homeostasis, and dopamine

neuron function.
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RESULTS

Homozygous PINK1 Knockout in Human iPSCs Does Not Inhibit Differentiation of Midbrain-

Specific Dopaminergic Neurons (hDANs) but Inhibits Ionophore-Induced Mitophagy

We generated induced pluripotent stem cells (iPSCs) from a healthy female individual that we previously

characterized (Reinhardt et al., 2013b) and then introduced a homozygous deletion of PINK1 using a

TALEN directed to Exon 1 (Figure 1A). Twenty-eight to thirty-five days old human midbrain-specific dopa-

minergic neurons (hDANs) were derived via neural precursor cells (NPCs) using a differentiation protocol

we previously described (Reinhardt et al., 2013a). We selected two clonal iPSC lines with no random inte-

gration where no PINK1 transcripts upstream or downstream of the gene edit could be detected (Fig-

ure S1A). We stained independent hDAN differentiations for MAP2, a marker of mature neurons, and

also, tyrosine hydroxylase (TH), dopamine transporter (DAT), and forkhead box protein A2 (FOXA2), which

are markers of mature dopaminergic neurons (Figures S1B and 1B). There are higher amounts of dopami-

nergic markers TH and DAT for the PINK1 KO lines (p < 0.0001). Notably, TH content is significantly more

variable in PINK1 KO hDANs (p = 0.0206). Gene expression markers TH, MAP2, DAT, FOXA2 were

measured alongside markers MAO-A and MAO-B (catecholamine degradation), VGlut1 (glutaminergic

neurons), SYP (synaptic marker), and TPH2 (highly expressed in serotonergic neurons). TH and vGlut

expression were increased (p < 0.005) and TPH2 and MAP2 decreased (p < 0.005) in PINK1 KO hDANs

compared with their isogenic control (Figure 1C). The proportion of TH-positive neurons in 2D, iPSC-

derived hDAN differentiations varies significantly. Because the aim of the protocol is to derive dopami-

nergic neurons, implicit bias cannot be ruled out during imaging even though counting is blinded. Fully

automated procedures and developmental studies in vivo will be beneficial. We can conclude that

PINK1 KO does not inhibit the differentiation of TH-positive, dopaminergic neurons from NPC

intermediates.
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Figure 1. Homozygous PINK1 Knockout in Human iPSCs Does Not Inhibit Differentiation of hDANs but Inhibits

Ionophore-Induced Mitophagy

(A) Scheme showing removal of PINK1 exon 1 (homozygous) using TALEN gene editing in healthy iPSCs. Sequence

confirmation of two clonal lines.

(B) Percentage of hDANs in a field of view positive for MAP2, FOXA2, TH, and DAT using immunocytochemistry. Each

point on the graph is a technical replicate (nDiff = 4, error bars = SD). ns = not significant, **** = p < 0.0001 (MannWhitney

U-test).

(C) Relative gene expression of neuronal markers in PINK1 KO hDANs compared with the healthy control (nDiff = 4, except

vGlut, nDiff = 3, error bars = SD). ns = not significant, TH ** = p0.0063 (t test), vGlut ** = p0.0022, TPH2 *** = p < 0.0002,

MAP2 ** = p0.0043 (all Mann Whitney U-test).

(D) Western blots showing autophagic flux (LC3-II accumulation (C)an LC3-I, mAconitase, and b-actin) in untreated CTRL

and PINK1 KO hDANs and those stimulated by Valinomycin (Val, 1mM, 24 h) or NH4CL (20mM, 4 h) and Leupeptin (Leu,

200mM, 4 h) or both treatments together. nDiff = 3.

(E) Western blots in CTRL and PINK1 KO hDANs untreated or following 10mM CCCP treatment for 0, 2, 6 and 24 h �/+

proteasome inhibition (MG132, 10mM, 6 h). nDiff = 3.

(F) CI dipstick assay for active CI in CTRL and PINK1 KO hDANs treated with or without 1mM Valinomycin for 24 h (left

panel). Quantification of dipstick band (nDiff = 3). ns = not significant, * = p < 0.05, error bars = SD (t test).

(G) CI dipstick assay for active CI in gene-corrected (GC) CTRL and PINK1 Q126P hDANs treated with or without 1mM

valinomycin for 24 h (left panel). Quantification of dipstick band (nDiff = 3). ns = not significant, * = p0.023, error bars = SD

(Mann Whitney U-test).
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We treated hDANs with the potassium ionophore Valinomycin (Val, 1mM, 24 h) or lysosomal inhibitors

(NH4CL 20mM with Leupeptin (Leu), 200mM for 4 h) and measured autophagic flux using Western blotting

for LC3-I/II in combination with mitochondrial aconitase (mAconitase) and b-actin as loading controls. Va-

linomycin and NH4Cl induced LC3-II accumulation in control and PINK1 KO hDANs to the same extent (Fig-

ure 1D), meaning that PINK1 is dispensable for general autophagy. Neither treatment led to significant

depletion ofmAconitase (Figure 1D), suggesting that removal of the mitochondrial matrix was not induced

under these conditions in hDANs. We then assessed markers of canonical, CCCP ionophore-induced mi-

tophagy in hDANs with the addition of the proteasome inhibitor MG132 at 6 h. PINK1 accumulates in
iScience 23, 101797, December 18, 2020 3
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control hDANs over the CCCP time course peaking at 6 h (Figure 1E) in line with previous work. The ubiq-

uitination and degradation of mitochondrial outer membrane (MOM) proteins Mitofusin1 (Mfn1) and

TOM70 was almost absent in PINK1 KO hDANs (Figure 1E), confirming previous work in non-neuronal cells

that PINK1 is required for CCCP-induced ubiquitinylation and degradation of Mfn1. The MOM protein and

PINK1 substrate MIRO-1 accumulates in all hDAN lines following CCCP treatment (Figure 1E). After 6-h

CCCP and proteasomal inhibition MIRO-1 levels were lower in PINK1 KO hDANs (Figure 1E), suggesting

that PINK1 could stabilize MIRO-1 during late stages of CCCP-induced mitophagy. Steady state Parkin

levels remain unaffected by PINK1 KO (Figure 1E). There was some loss of the OPA-long form and more

OPA-short form in CCCP-induced PINK1 KO hDANs consistent with mitochondrial fragmentation at very

early stages of mitophagy (Figure 1E).

The potassium ionophore Valinomycin, as CCCP, induces PINK1-Parkin-mediated mitophagy (Rakovic

et al., 2019; Zhang et al., 2014a) and was our ionophore of choice to induce mitophagy in hDANs. Because

of the 24-h treatment window, it allowed us to optimize a 24-h period of antioxidant withdrawal (removal of

potent antioxidants from the neuronal maturationmedia), which we established for all readouts. In line with

previous work in hDANs, ionophores do not induce the turnover of all mitochondrial markers equally. We

observe little influence of depolarization on matrix proteins, so we measured the amount of active protein

at the inner mitochondrial membrane (IMM) using NADH dehydrogenase (CI). Using PINK1 KO and PINK1

Q126P patient hDAN isogenic lines, we immunoprecipitated CI from fresh lysates and then quantified the

conversion of NADH given as a substrate using a simple dipstick assay. We found no significant differences

in active CI between the lines under basal conditions (Figures 1F and 1G). Mitophagy induced by Valino-

mycin depletes active CI in control hDANs after 24 h but not in PINK1 KO nor PINK1 Q126P hDANs (Figures

1F and 1G), suggesting that PINK1-dependent mitophagy (but not PINK1 per se) is relevant for complex I

activity in hDANs.
PINK1 Knockout hDANs Exhibit Normal Mitochondrial Morphology but Defective ER

Calcium Release and Reduced Mitochondrial Membrane Potential

We used electron microscopy (EM) to look for qualitative structural changes to the mitochondria in hDANs

devoid of PINK1. EM images from independent hDAN differentiations (PINK KO 1 and PINK KO 2) showed

no notable differences in mitochondrial size, shape, or abundance (Figure 2A). Removal of mitochondria

following 24-h Valinomycin treatment occurred in control hDANs but not in PINK1 KO hDANs receiving

the same treatment (Figure 2A). We observed the presence of round membranous structures in PINK1

KO hDANs, particularly in those treated with the ionophore (indicated by black arrows, Figure 2A). We em-

ployed live cell imaging with baculovirus gene transfer into mammalian cells (Bacmam Mito dsRed) on

mature hDANs (Figures 2B and S2A) to quantify mitochondrial abundance and morphology. We found

no significant differences between PINK1 KO and CTRL hDANs mitochondrial morphology (Figures 2B

and S2A). Only PINK1 KO neuronal precursor cells (NPCs) have reduced mitochondrial area per cell

compared with isogenic controls (Figure 2B), suggesting mitochondrial fragmentation may be important

for neurons to overcome the loss of PINK1 during differentiation. Next, we measured the lifetime (or turn-

over) of mitochondria usingMitoTimer live cell imaging. PINK1 KO causes significantly lower red/greenMi-

toTimer ratio compared with controls, indicating shorter lifespan of the expressed mitochondrial protein

and points to mitochondrial renewal in hDANs (Figure S2B). Increased TOM22 fluorescence in flow cytom-

etry (Figure S2C), increased PGC1a levels (Figure S2D), and altered SDHA (nuclear encoded)/MTCO1

(mtDNA encoded) ratio (Figure S2E) support the notion that hDANS lacking PINK1 may employ piecemeal

mitochondrial renewal. Statistical significance could only be assigned in the case of PINK1 KO hDANs for

the SDHA/MTCO1 mitobiogenesis test after the addition of Valinomycin (Figure S2E).

PINK1 loss of function has previously been associated with calcium toxicity (Gandhi et al., 2009). We

measured cytosolic calcium levels using live imaging in PINK1 KO and control following the addition of

thapsigargin to release calcium from ER stores. Control hDANs release calcium into the cytosol, which is

then buffered. PINK1 KO hDANs respond minimally to thapsigargin stimulation compared with control

hDANs (Figure 2C). Response to thapsigargin normalized to the baseline is shown because baseline cyto-

solic calcium levels were on average higher in control hDANs compared with PINK1 KO (Figure S2F).

Mitochondrial membrane potential (Dcm) is an indicator of mitochondrial function and health. We used the

mitochondrial toxin rotenone and FCCP acute treatments to lower theDJm further in living cells. We found

lower DJm in untreated PINK1 KO hDANs compared with controls using flow cytometry (Figure 2D, left
4 iScience 23, 101797, December 18, 2020
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Figure 2. PINK1 Knockout hDANs Exhibit Normal Mitochondrial Morphology but Defective ER Calcium Release

and Reduced Mitochondrial Membrane Potential

(A) Electron microscope images of hDANs untreated or treated with valinomycin (Val, 1mM, 24 h). Representative images

(nDiff = 3). Black arrows point to membranous structures.

(B) Average mitochondrial area in neuronal progenitor cells (NPCs) and hDANs from live cell imaging (nDiff = 4, error

bars = SD). ns = not significant, * = p < 0.05, ** = p < 0.005 (Mann Whitney U-test).

(C) Cytosolic calcium in response to the addition of thapsigargin during live cell imaging measured by Fluo4 dye

fluorescence in hDANs. The total corrected cell fluorescence is shown (nDiff = 4, error bars = SD).

(D) Left panel. Mean average mitochondrial membrane potential (DJm) (flow cytometry TMRM fluorescence) for

untreated hDANs and those treated acutely with 10mMCCCP (nDiff = 3). Right panel, mean average DJm (live cell kinetic

imaging, corrected total cell fluorescence, CTCF). Acute treatment with sequential addition of Oligomycin (Oligo),

Rotenone (Rot), and FCCP (nDiff = 3, error bars = SD). ** = p < 0.0026. ns = not significant (t test).
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panel) and live cell imaging (Figure 2D, right panel). Under baseline conditions the DJm was reduced by

approximately 25%–30% in PINK1 KO hDANs (p < 0.0001, endpoint PINK1 KO1 only, and p < 0.0001, live

imaging corrected total cell fluorescence). Together the pH gradient and the membrane potential consti-

tute an electrochemical proton gradient, which exerts the proton-motive force needed to generate ATP.

We show part depolarization in untreated PINK1 KO hDANs, and it is not clear to what extent mitochondrial

membrane depolarization is protective and at what point irreversible damage occurs. ATP levels in PINK1

KO hDANs were similar to their control (Figure S2G).
PINK1 KO Impedes mAconitase and Reduces Distinct Metabolite Pools but Does Not Inhibit

Respiration in hDANs

Low DJm could indicate dysfunctional mitochondrial respiration but basal mitochondrial oxygen con-

sumption was surprisingly elevated over healthy hDANs and respiratory capacity unaffected (Figure 3A).

Perhaps one significant observation is that PINK1 KO hDANs are capable of consuming more oxygen

than their healthy controls when uncoupled (Figure 3A). Mild uncoupling is used by cells to reduce their

oxidative burden. hDANs also prefer glycolysis (indicated by a small increase in extracellular acidification

rate, ECAR) when mitochondrial respiration is minimalized (Figure 3A). The substrates pyruvate, glucose,

and glutamine are given to the hDANs in the base media before measurement of basal oxygen con-

sumption; therefore, we asked whether mitochondrial substrates could be a limiting factor in PINK1

KO hDANs.

First, we measured the activity of complex I (CI) of the respiratory chain because CI dysfunction has previ-

ously been associated with PINK1-Parkinson disease (Morais et al., 2014; Pogson et al., 2014; Vos et al.,

2017). Using NADH and coenzyme Q10 as substrates, CI enzyme activity is not significantly affected by

loss of PINK1 in hDANs (Figure 3B). We normalize CI activity rates to citrate synthase activity to account

for differences in mitochondrial mass and remove any non-CI-specific consumption of NADH by

completely inhibiting CI with rotenone in the same set. Because we observed an overall increase (p =
iScience 23, 101797, December 18, 2020 5
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Figure 3. PINK1 KO Impedes mAconitase Activity and Reduces Distinct Amino Acid Pools but Does Not Inhibit Respiration in hDANs

(A) Respiratory analyses of OCR (oxygen consumption rate, left panel) and ECAR (extracellular acidification rate, middle panel) in hDANs. Basal = basal

respiration, min = minimal respiration, max = maximal respiration, ns = not significant. *** = p0.0004, * = p0.0158 (nDiff = 4, error bars = SD, t test).

(B) Complex I (CI) enzyme activity normalized to citrate synthase (CS) activity. ns = not significant, (nDiff = 6, error = SD, t test).

(C) Citrate synthase enzyme activity normalized to total protein concentration of the mitochondrial preparation. ns = not significant (nDiff = 3, t test).

(D) NAD+ concentration of hDANs normalized to total protein and to the healthy control. * = p0.0222, *** = p0.0004. (nDiff = 5, error bars = SD, t test).

(E) Alpha-ketoglutarate dehydrogenase enzyme activity in mitochondrial preparations of PINK1 KO hDANs normalized to mg protein of mitochondria and

healthy control. ns = not significant (nDiff = 3, t test).

(F) Aconitase enzyme activity in of PINK1 KO (left panel) andQ126P hDANs (middle panel) with respective controls and wildtype plusW437X HeLa cells (right

panel). ns = not significant, * = p < 0.05 (nDiff = 3, HeLa n = 3, t test).

(G) A heatmap, generated with MetaboAnalyst, illustrates the Control and PINK KO clone 1 and 2 group relative average metabolite concentration changes.

All metabolites were quantified by NMR-based metabolomics. Red indicates high concentrations and blue indicates low concentrations. The metabolites

with similar concentration pattern have been grouped together.

(H) NMR metabolomics analysis-based scatterplots were generated for metabolites related to citric acid (TCA, Krebs) cycle and general mitochondria

activity. One-way ANOVA & post-hoc tests (Fischer’s LSD) were applied to the three-group comparison dataset with adjusted p value (FDR—false discovery

rate) cutoff at p0.05. Metabolites tyrosine (p0.0005), phenylalanine (p0.0007), glutamine (p0.0025), and succinate (p0.0042) were reported with the highest

significant p values. The t test was applied for individual pair comparison. Where = p < 0.05 and ns = not significant.

(I) Mitochondria metabolic pathways illustration focused on the TCA cycle, GSH repair/damage, and NAD+/NADH pool. Red arrows highlight the quantified

metabolite concentration changes in PINK1 KO hDANs. Gray arrows indicate the reaction flow; blue long dash arrows show anaplerotic reactions.
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0.22 not significant) in citrate synthase enzyme activity (Figure 3C) in PINK1 KO hDANs, we cannot rule out

that alterations to mitochondrial dynamics is masking susceptibility to CI function. Nor can we rule out that

the availability of substrates to the electron transport chain is an important physiological factor since sub-

strates are given in such assays. Therefore, we looked more closely at wider energy metabolism in PINK1

KO hDANs. The NAD+ pool was significantly elevated (Figure 3D), suggestive of metabolic compensation

or flexibility.

a-ketoglutarate dehydrogenase (aKGDH) is a key, rate-limiting enzyme of the citric acid cycle and a redox

sensor. We found no significant alterations to aKGDH activity (Figure 3E). The most notable impact of

PINK1 KO was a drastic reduction in the activity of the citric acid cycle enzyme m-Aconitase, by around

60% (p < 0.05) compared with control hDANs (Figure 3F, left panel). The trend was replicated in PINK1

PD patient hDANs (Q126P) and HeLa PINK1 loss-of-function W437X cells (Figure 3F, middle and right

panels). We used a coupled assay for mAconitase that includes the second catalytic step of the reaction

requiring iron. mAconitase catalyzes the isomerization of citrate to isocitrate and possesses a 4Fe-4S

iron–sulfur cluster. The iron transport protein STEAP3 and the mitochondrial iron transporter Mitoferrin

were upregulated in PINK1 KO hDANs (Figure S3A). PINK1 KO hDANs were able to import the radiola-

beled proteins 35S-pSU9-DHFR and 35S-Fis1, suggesting relatively normal protein import function into

mitochondria (Figure S3B). We recorded no significant levels of cytosolic ROS or changes in reduced gluta-

thione levels in the presence or absence of several stressors (Figure S3C). Citrate or pyruvate transport

could also be affected by the mitochondrial proton gradient (Bender and Martinou, 2016).

Nuclear magnetic resonance (NMR) spectroscopy-based metabolomics analysis enabled us to identify a

buildup of citrate, which is in-line with reducedmAconitase activity (Figures 3G and 3H). Overall, 46 metab-

olites from different chemical compound groups and pathways were quantified. We show the average

metabolite concentrations in each PINK1 KO and CTRL; however, most of them did not have statistically

significant changes (Figure 3G). NMR detected increased levels of oxidized glutathione (GSSG), GDP,

and UDP in PINK1 KO hDANs (Figures 3G and 3H).

PINK1 KO hDANs tend to have reduced amino acid pools (shown in the heatmap in Figure 3G), with phenyl-

alanine (p = 0.0007, one-way ANOVA), tyrosine (p = 0.0005, one-way ANOVA), and glutamine (p = 0.0025,

one-way ANOVA) having significantly reduced concentrations compared with isogenic control, which has

implications for protein synthesis and neurotransmitter metabolism (especially dopamine, which is synthe-

sized from tyrosine).

Reduced glutamine is particularly relevant for antioxidant defense, inflammation, lipid metabolism, and

many other metabolic pathways. We also observed significantly reduced succinate levels (p = 0.0042,

one-way ANOVA), which has implications for mitochondrial respiration and antioxidant status for example.

Phenylalanine and succinate were significantly reduced (p=< 0.016 and p=< 0.023 respectively, using t

tests) in PINK1 KO clones compared with control hDANs (Figures 3G, 3H, and S4C).
iScience 23, 101797, December 18, 2020 7
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Principle component analysis (PCA) of the metabolomics data shows that PINK1 KO hDAN clones 1 and 2

vary in metabolic profile (Figure S4A) but sPLSDA suggested distinct group differences (Figures S4B and

S4C). Since changes in glutamine levels are associated with neuronal differentiation, we mined the data

for the compounds most associated with glutamate (Figure S4D). Here again the phenylalanine and tyro-

sine were highlighted. PINK1 KO hDANs may utilize succinate and glutamate for energy production. Hor-

metic dose response to amino acids is known to regulate lifespan and neuronal differentiation and could

point toward a compensatory metabolic shift in an attempt to reduce oxidative burden and maintain ATP

output. The overall NAD+ concentration was increased significantly in one PINK1 KO clone, which corre-

lates well with the Figure 3D biochemical assay (Figure S4E). PINK1 KO-induced changes in mitochondrial

metabolism are depicted in the diagram in Figure 3I. Whether reduced mAconitase activity is the primary

cause of the metabolite changes is still unclear. Glucose, lactate, and pyruvate concentrations were also

quantified, yet there were no significant metabolic changes between the control and PINK1 KOs (Fig-

ure S4E). Buildup of citrate and a general depletion of metabolites following mAconitase in the citric

acid cycle point toward compensatory utilization of amino acids and possibly anaplerotic usage of phenyl-

alanine and tyrosine.
Gene Expression Analysis Highlights the Relevance of PINK1 in Vitamin B6 Salvage and

Neuronal-Specific Processes

We hypothesized that the observed metabolic changes due to loss of PINK1 in hDANs could be indirect

compensation for reduced mitochondrial quality. We then sought to identify genes relevant to PINK1 in

hDANs that could further decipher mechanisms in hDANs. RNAs were deep sequenced in the basal state

and following treatment with 1mM Valinomycin (24 h). We compared the top significantly regulated genes

(p < 0.03) for genotype and treatment. Colored squares show the gene expression as per-row normalized

(scaled and centered, i.e. mean = 0, standard deviation = 1) cpm (counts per million) as a measure for gene

expression strength (Figure 4A). The raw CPM and Log2FC expression datasets are available as a supple-

mentary Excel file (Table S1). Those significantly regulated genes were used for unbiased pathway analysis

using GOrilla (http://cbl-gorilla.cs.technion.ac.il/), a tool for identifying enriched gene ontology (GO)

terms. The list of all genes sequenced in the hDANs was used as the background input. The top 15,

most significant (ranked by FDR-q-value) GO process terms for the PINK1 KO genotype include tissue

development, nervous system development, and cell differentiation (Figure 4B, upper panel graph). For

PINK1 KO hDANs challenged with Valinomycin, all GO process significant terms are listed in the table (Fig-

ure 4B lower panel, table) and include extracellular structure organization and negative regulation of devel-

opmental process. Themost significant differentially expressed gene was Pyridoxine-50-phosphate oxidase
(PNPO), an enzyme of the vitamin B₆ salvage pathway, important for many cellular functions including

amino acid metabolism and neurotransmitter metabolism. PNPO gene expression was virtually silenced

in PINK1 KO hDANs compared with control. Searching by PNPO-associated pathways, we used Ingenuity

software (Qiagen) to find relevant pathways, which included dopamine metabolism. The software plotted

all gene expression changes in the dopamine pathway (Figure 4B, bottom right scheme. Red = increased

expression and green = decreased expression in PINK1 KO hDANs compared with control). There was a

significant and remarkable downregulation of PNPO expression (p < 0.0001) in both PINK1 KO NPCs

and in hDANs (Figure 4C).

Both unbiased metabolite and expression analysis pointed toward PINK1 involvement in dopaminergic

differentiation and neuronal-specific regulation. The RNA sequencing analysis for the dopamine synthe-

sis pathway is shown in Figure 4D. We measured the expression of genes involved in dopamine and

neurotransmitter metabolism in RNA prepared from the following isogenic models: PINK1 KO hDANs,

PINK1 Q126P Parkinson disease patient hDANs (the Q126P mutation is located just after the transmem-

brane domain of PINK1 (94–110 aa)), HeLa cells gene edited with PINK1 loss-of-function mutation (PINK1

W437X, kinase domain), three PINK1 Q456X Parkinson disease patient hDAN lines with corresponding

gene-corrected controls (PINK1 Q456X, kinase domain), and PINK1 KO mouse striatum. Statistically sig-

nificant gene changes occurred for PNPO (PINK1 KO and Q456X), dopa decarboxylase (Q126P), and

tryptophan hydroxylase 1 (TPH1, Q126P) (Figure 4D). TH expression was not significantly different but

PINK1 Q126P hDANs were more variable than the gene corrected control (p0.000013). We also measured

expression of TPH2 (serotonin biosynthesis), PDXK (pyridoxal kinase, this gene was also unaffected ac-

cording to RNA sequencing) and DNAJC12 (a co-chaperone together with HSP70 responsible for the

proper folding of phenylalanine hydroxylase), which were not significantly altered in any of the PINK1

models. These data confirm reduced PNPO expression occurs in human neurons where PINK1 is
8 iScience 23, 101797, December 18, 2020
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Figure 4. Gene Expression Analysis Highlights the Relevance of PINK1 in Vitamin B6 Salvage and Dopamine

Pathways

(A) Deep RNA sequencing revealed disregulated genes. Log2FC of top significant hits (p < 0.03) in regard to genotype

(PINK1 KO vs control hDANs) or treatment (untreated and 1mMValinomycin) (n = 3, nDiff = 1), gene expression as per-row

normalized (mean = 0, SD = 1) counts per million (cpm).

(B) Pathway analysis of top regulated genes to identify enriched gene ontology (GO) terms with regard to the genotype

(upper panel, graph ranked GO terms by significance-FDR q-value) and treatment (10mMValinomycin, lower left panel, all

GO terms listed in table with significance-FDR q-value). Dopamine pathway heatmap of Log2FC gene expression

changes in PINK1 KO hDANS compared with control (lower right panel, n = 3, nDiff = 1).

(C) Confirmation of the downregulated PNPO expression in PINK1 KO NPCs and hDANs with respective controls by qRT-

PCR. *** = p < 0.0001 (nDiff = 3, error bars = SD, t test).

(D) qRT-PCR expression analysis of selected genes in the pathway in PINK1 KO, PINK1 Q126P PD hDANs, PINK1 HeLa

W437X, and for PNPO PINK1 Q456X PD-derived hDANs (Patient n = 3) and PINK1 KOmouse ventral midbrain (n = 3) with

respective isogenic controls. (nDiff = 3, error bars = SD). ns = not significant, PINK1 exon 1–2 (**** = p < 0.0001 for PINK1

KO versus CTRL and PINK1 Q456X versus GC CTRL), PNPO (**** = p < 0.0001 for PINK1 versus CTRL, ** = p0.0027 for

PINK1 Q456X versus GC CTRL), DDC (*** = p0.0010 for PINK1 Q126P versus GC CTRL), TPH1 (** = p0.0035 for Q126P

versus GC CTRL). All t test.
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significantly depleted. It remains unclear whether depletion of PINK1 or reduced PINK1 kinase function is

driving the effect on PNPO.
Combined Proteomic and Transcriptomic Pathway Analyses Highlight Metabolic Role of

PINK1

To further identify pathways or interactors that could link PINK1 to neuronal metabolism, we performed

quantitative proteomics across independent PINK1 KO hDAN differentiations using crude mitochondrial

preparations (Figure S5A). The final assay library contained 3,951 protein IDs including ambiguous hits.
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The library contained 3,413 proteins covered by at least one proteotypic peptide. According to Mito-

Carta2.0 (Calvo et al., 2016), 761 of those proteins were annotated asmitochondrial proteins, which allowed

a 65% coverage of the reference mitochondrial proteome. Based on the extracted peptide/protein abun-

dances we calculated the Log2 fold change (Log2FC) values for the control versus PINK1 KO clone 1 and

then again for PINK1 KO clone 2 and marked all those proteins that showed significant Log2FC in both

PINK1 KO clones. To list the top proteomic hits for PINK1, we removed significant hits between �1.75

and +1.75 to be able to list them in Figure 5A. No other filtering was applied, and the raw mean Log2FC

data and list of all significant hits are available as a supplementary Excel file (Table S2). We performed

pathway analysis of the top hits against the assay library (Figure 5B). The most significant (FDR-q-value)

GO process terms included movement of cell or subcellular components, amide biosynthetic process,

cellular amide metabolic process, and peptide biosynthetic process (the top 25 GO process terms are

ranked in Figure 5B). These terms point toward PINK1 loss of function in hDAN affecting development

and differentiation and metabolism. We overlapped the top regulated genes with top regulated proteins

and ranked them by fold change for PINK1 KO. One hundred fourty-four IDs common to both PINK1 KO

clones differ from the control (Figure 5C). This list was subjected to pathway analysis against the proteome

using Gorilla, and again the top 25 significant GO terms were ranked by FDR-q-value (Figure 5D). Here,

core metabolic GO process terms were enriched.

Alternative pathway analysis of proteomic data using Qiagen Ingenuity plotted the interactions between

annotated biological pathways (Figure S5D). These data highlight processes relevant to neurons and syn-

apses: androgen signaling, synaptic long-term depression, axonal guidance, CREB signaling, GABA

signaling, and EF2 signaling (Figure S5D). The iron sulfur cluster containing calcium-binding protein NE-

CAB2 (also known as MitoNEET) was consistently and significantly more abundant in PINK1 KO hDANs

(+2.4 Log2FC, Figure 5A) and was confirmed by Western blotting (Figure S5B). Proteomic data were

used to rank disease or function terms and revealed cell migration, severe psychological disorder, and

mood disorder for PINK1 KO (Figure S5C).
PINK1 Is Required for Maintenance of Dopamine Pools and Proper Neurotransmitter Uptake

in Human Neurons

We next investigated neurotransmitters and dopamine homeostasis in PINK1 hDANmodels following data

from the unbiased omics approaches. We measured the neurotransmitter content of the hDANs using

high-pressure liquid chromatography (HPLC). Short-term and low-dose L-DOPA treatment allows mea-

surement of dopamine (DA) and DA flux accurately. The PINK1 KO hDANs have significantly reduced

DOPAC (20-fold reduction, p < 0.0049, nDiff = 8) and DA levels (6-fold reduction, p0.0026, nDiff = 8) (Fig-

ure 6A). The ratio of DOPAC/DA was also reduced but not HVA/DA, implicating a role for PINK1 at the pre-

synapse (Figure 6B). We controlled for the number of dopaminergic neurons in the heterogeneous hDAN

cultures by monitoring TH at mRNA and protein level in each independent differentiation and HPLC exper-

iment. TH levels vary but not decrease in PINK1 KO hDANs (Figure 6C) HPLC samples, ruling out the pos-

sibility that loss of TH positive neurons is responsible for the loss of DA and its metabolites. DA levels inside

hDANs and in the media could not be replenished by blocking DA degradation (Figure 6D). Data are not

normalized, as hDANs were counted prior to HPLC measurement. Endogenous dopamine is difficult to

detect in 2D cultures and requires large hDAN numbers but we measured 0.69 G 0.355 ng dopamine

per ml in untreated control hDANs (nDiff = 3) and 0.245 G 0.122 ng dopamine per ml in untreated

PINK1 KO hDANs (KO1 and KO2, nDiff = 4). MAO A and B enzyme activity and MAO-A protein levels

were not significantly affected by PINK1 KO (Figure 6H). These data suggest that synthesis or uptake of

dopamine, and not degradation, is themajor factor contributing to the phenotype. To rule out major oxida-

tion of DA to its Quinone form, which is not detectable by HPLC, we measured total oxidized catechol-

amines and did not observe any significant differences in the absence or presence of L-DOPA (Figure 6I).

Next, we measured neurotransmitter (NT) uptake by giving a labeled substrate and found it was signifi-

cantly impaired in PINK1 KO hDANs (Figure 6E). This could not be rescued by inhibition of the monoamine

uptake into vesicles (VMAT inhibition), DA synthesis via TH (TH inhibition), or DA degradation (COMT/

MAO inhibition) (Figure 6F). This was replicated in PINK1 Q126P hDANs (Figure 6G). Addition of pyridoxal

phosphate (PLP) rescue was not feasible because of its ubiquitous inclusion in neuronal base medias. Addi-

tion of tetrahydrobiopterin (BH4) improved NT uptake across all hDAN preparations (Figure 6G). Unlike

PLP, which is required for many, diverse biochemical reactions including amino acid conversion, BH4 is

an essential cofactor for aromatic amino acid hydroxylases, alkylglycerol monooxygenase, and nitric oxide
10 iScience 23, 101797, December 18, 2020
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Figure 5. Combined Proteomic and Transcriptomic Pathway Analyses Highlight Metabolic Role of PINK1

(A) Top differentially abundant proteins (mean Log2 fold change), significantly changed in both PINK1 KO1 and PINK1 KO2 hDANs (nDiff = 3, t test).

(B) Unbiased pathway analysis of differentially abundant proteins to generate the top 25 GO process terms for untreated PINK1 KO hDANs (nDiff = 3) based

on significance (FDR-q-value).

(C) Overlap of differentially regulated genes and proteins from transcriptomics and proteomics comparing CTRL and PINK1 KO hDANs.

(D) Unbiased pathway analysis of differentially regulated ID (genes and proteins) to generate the top 25 GO process terms for untreated PINK1 KO hDANs

based on significance (FDR-q-value).
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Figure 6. PINK1 Is Required for Maintenance of Dopamine Pools and Proper Neurotransmitter Uptake in Human

Neurons

(A) Concentration of neurotransmitters and metabolites epinephrine (E), 3,4-dihydroxyphenylacetic acid (DOPAC),

dopamine (DA), 5-hydroxyindoleacetic acid (HIAA), homovanillic acid (HVA), 3-methoxytyramine (3-MT), and 5-

hydroxytryptamine/serotonin (5-HT) in hDANs treated with L-DOPA 50mM for 24 h. ** = p0.0045 (DOPAC), p0.0023 (DA),

ns = not significant. (nDiff = 8, error bars = SD, t test).

(B) Ratios of DOPAC/DA, HVA/DA, and DOPAC plus HVA/DA. * = p0.0130 (DOPAC/DA), p0.0144 (DOPAC + HVA/DA),

ns = not significant (nDiff = 8, error bars = SD, t test).

(C) Tyrosine hydroxylase (TH) protein levels (left panel) and gene expression (right panel) in hDAN aliquots from each

HPLC experiments. ns = not significant (nDiff = 4, error bars = SD, t test).

(D) Dopamine concentration in hDANs and in cell culture supernatants treated with L-DOPA for 24 h with or without

inhibition of dopamine degradation via COMT and MAOA/B (MOA/COMT inhib’). ** = p0.0036 (L-DOPA, CTRL versus

KO), p0.046 (DOPAC + MAOi, CTRL versus KO), ns = not significant (nDiff = 4, error bars = SD, t test).

(E) Neurotransmitter uptake in hDANs measured by the fluorescence of the labeled amine converted inside hDANs only.

* = p < 0.0001 (nDiff = 3, error bars = SD, two-way ANOVA).

(F) Quantification of neurotransmitter uptake in hDANs with or without acute inhibition of TH activity (THi), VMAT2 activity

(VMAT2i), and COMT and MAOA/B activity (COMTi/MAOi) with or without 24-h 50mM L-DOPA treatment. The rate of

uptake is normalized to the amount of TH staining in the well to account for hDAN number. ** = p0.0071 (*L-DOPA + THi,

KO1), ** = p0.0048 (*L-DOPA + THi, KO2), * = p0.049 (*L-DOPA + COMTi/MAOi versus KO1), ** = p0.010 (*L-DOPA +

COMTi/MAOi vs KO2) (nDiff = 3, t test).
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Figure 6. Continued

(G) Neurotransmitter uptake in untreated or BH4-treated PINK1 KO and Q126P hDANs with respective isogenic and gene

corrected (GC) controls ** = p0.0024 (untreated CTRL versus PINK1 KO), * = p0.023 (untreated GC CTRL versus PINK1

Q126P), ns = not significant. (nDiff = 3, error bars = SD, t test).

(H) MAOA/B activity in hDANsmeasured by the deamination of a radiolabeled tyramine substrate (left panel) andMAO-A

protein levels normalized to GAPDHmarker and the healthy control (right panel) ns = not significant (nDiff = 3, error bars =

SD, t test).

(I) Catecholamine oxidation in hDANs with or without 50mM L-DOPA treatment for 24 h, showing results for soluble and

insoluble fractions. Left panel pictures of blots with oxidized catecholamines. Right panel mean fluorescence signal (a.u.)

of oxidized catechols in hDANs (representative blots, nDiff = 3). Two-way ANOVA found significance across the

genotypes (* = p0.144), including all the conditions.
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synthases and therefore indispensable for the production of catecholamine neurotransmitters including

dopamine.
DISCUSSION

Homozygous PINK1 KO causes a significant catecholamine deficit in human mid-brain-specific neurons.

The loss of dopamine cannot be attributed to any significant absence of TH-positive neurons in the

same hDAN cultures used for catecholamine detection, although TH expression varied across differentia-

tions. Reduced dopamine pools are not a result of increased degradation by monoamine oxidases. Dopa-

mine oxidation remains a possible explanation as we detected increased catecholamine oxidation, but this

was inconsistent and in Triton insoluble fractions of PINK1 KO hDANs with L-DOPA treatment. It will be

interesting to study whether neuromelanin levels are increased with the advent of mid-brain-specific orga-

noid models. One interesting possibility is that the dopamine deficiency could be caused by mitochondrial

metabolism. We show that loss of PINK1-mitochondrial quality control reduces mitochondrial membrane

potential and mAconitase activity, yet this is compensated to maintain the mitochondrial networks and

meet energy demand. Routing of phenylalanine and tyrosine into the TCA cycle and to acetyl-CoA reduces

the pool of precursors for neurotransmitter synthesis. The fact that PINK1 also plays an important role in

mitochondrial metabolism in cancer and is highly expressed in non-neuronal brain cells demonstrates

that one main function of PINK1 is to help maintain the metabolic quality of mitochondria.

Although PINK1 maintains general mitochondrial quality, it is dispensable for the maintenance of mito-

chondrial networks and mitochondrial structure in human neurons. This is in line with prior evidence that

mitochondrial turnover can occur independently of PINK1 (McWilliams et al., 2018; Lee et al., 2018; Allen

et al., 2013a).

Loss of PINK1-mediated, mitochondrial quality control does, however, impair mitochondrial health, seen

here by reduced mitochondrial membrane potential. The mitochondrial membrane potential contributes

to the proton-motive force needed to generate energy and therefore is seen as a mitochondrial dysfunc-

tion. However, the situationmight bemore complex becausemild depolarization and uncoupling has been

shown to be beneficial for longevity. Depolarization can trigger stress responses and mitochondrial

signaling that are necessary for adaption and reducing oxidative burden. Even small changes to mitochon-

drial membranes are important for adapting and regulating redox (Vyssokikh et al., 2020) and fueling dopa-

mine release (Graves et al., 2020).

Our data confirm PINK1’s role in canonical, ionophore-inducedmitophagy while highlighting the relevance

of mitochondrial quality control mechanisms that could occur independently of PINK1 (Soubannier et al.,

2012; Pickles et al., 2018). Mitochondrial fragmentation occurs in PINK1 KONPCs but is not observed in the

mature hDANs. This supports the model that mitochondrial dynamics can protect healthy mitochondrial

domains from elimination when left unchecked by the PINK1-Parkin pathway (Burman et al., 2017; Exner

et al., 2007; Ziviani et al., 2010).

Here, we show that PINK1 is dispensable for complex I activity in hDANs. Even in the presence of iono-

phores, complex I in PINK1 KO hDANs still actively consumes NADH. This observation is in contrast to

several studies showing that PINK1 is needed for phosphorylation of complex I (Morais et al., 2014) and

reduced complex I activity in PINK1 models and PD patients (Pogson et al., 2014; Flones et al., 2017; Scha-

pira et al., 1989). Our data are obtained from neurons derived from stem cells where the gene knockout has

been introduced and therefore does not rule out the possibility that complex I could become impaired
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during aging, nor does it take into account the influence of substrate availability, influence of the complete

respiratory chain, different states of respiration, lipids, and membrane architecture (Vos et al., 2017). In our

study, the depletion of succinate, but not NADH or complex I, points to the relevance of succinate dehy-

drogenase (complex II) in tuning of respiration and reducing oxidative burden. The mitochondrial matrix

protein TRAP1 modulates complex II activity (Sciacovelli et al., 2013) and has previously been shown to

act downstream of PINK1 (Fitzgerald et al., 2017; Pridgeon et al., 2007).

PINK1 orchestrates diverse quality control mechanisms (Geisler et al., 2010, Narendra et al., 2010a, Wang

et al., 2011a, Sliter et al., 2018, Lai et al., 2015), yet discovery of novel bonefide PINK1 substrates in human

neurons remains elusive. We show that mAconitase activity and PNPO expression are greatly inhibited by

PINK1 KO in neurons. Direct physical interaction between PINK1 and these candidates is unlikely consid-

ering their location. The transport of mitochondrial metabolites to the mitochondrial matrix could be a key

factor. Other mitochondrial proteins previously described as interactors of PINK1, such as complex I,

MIRO-1, or TRAP1, could also be involved in PINK1-metabolic control (Esposito et al., 2013; Morais

et al., 2014; Pridgeon et al., 2007; Wang et al., 2011a). The calcium-binding, iron sulfur cluster protein NE-

CAB2 (also known as mitoNEET) and the mitochondrial NDP kinase NME4 identified in this study are inter-

esting candidates for PINK1 interaction.

PINK1 mediates iron homeostasis (Esposito et al., 2013; Kang et al., 2019; Wan et al., 2020; Allen et al.,

2013b). The PINK1-PARK2 pathway regulates mitochondrial iron accumulation through affecting

SLC25A37 and SCL25A28 degradation, contributing to the abnormal metabolism that supports pancreatic

tumor development (Li et al., 2018). lron is needed formAconitase activity andmust be actively transported

into the mitochondrial matrix by mitoferrin, which is upregulated in PINK1 KO hDANs. We propose iron

availability in the mitochondrial matrix is responsible for reducedmAconitase activity in PINK1 KO hDANs.

Since we do not observe a significant buildup of fumarate nor loss of pyruvate, we can rule out inhibition of

mAconitase by succination via fumarate (Ternette et al., 2013). Citrate availability and utilization has been

demonstrated for mAconitase role in cancer metabolism. In contrast to certain cancers that permit citrate

isomerization at the expense of fatty acid synthesis, PINK1 KO neurons inhibit mAconitase activity, thus

promoting fatty acid synthesis. This is important for the mitochondrial and cell membranes and for

b-oxidation.

Loss of PINK1 initially induces benign biochemical and metabolic responses and mitochondrial compen-

sation. These biochemical changes are, however, particularly relevant for dopaminergic neurons. Nucleo-

tide and amino acid metabolism were highlighted in metabolomics, transcriptomics, and proteomics ex-

periments in PINK1 KO hDANs. GO terms such as ‘‘amide metabolism’’ describing central metabolic

processes ranked the highest when combining the most significant gene and protein changes due to

PINK1 KO. Amidemetabolism is important in the synthesis of key biochemical intermediates including pro-

teins and lipids and an active component of coenzymes, including CoA.

Amino acids regulate the target of rapamycin (TOR) pathway and are important in aging, inflammation, and

neurodegeneration (Auburger et al., 2017; De Simone et al., 2013), reviewed in (Neinast et al., 2019).

Phenylalanine and tyrosine, two amino acids reduced in PINK1 KO hDANs, precede tyrosine hydroxylase

conversion of tyrosine to L-DOPA, which is the rate-limiting step in the synthesis of dopamine. Dopamine

and DOPAC levels are significantly reduced by PINK1 KO in hDANs. Dopamine synthesis also requires pyr-

idoxal phosphate (PLP), the active form of vitamin B6 and a product of the vitamin B6 salvage pathway via

PNPO, which is silenced in PINK1 KO hDANs. We suggest that altered dopamine metabolism in PINK1 KO

hDANs is due to restriction of its precursors because they are urgently required elsewhere to provide an

anaplerotic lifeline to the TCA and support anabolism via acetyl-CoA. The role of PNPO is complex.

Silencing of PNPO expression in PINK1 KO NPCs that do not yet express TH or other dopaminergic

markers suggests this is tied to the early mitochondrial compensation events resulting from loss of

PINK1. Loss of PINK1 expression or kinase function is required for reduced PNPO expression because

the PINK1Q126P point mutation has no effect. High PLP levels can shut down PNPO expression in negative

feedback loop, and it is possible that there is an inverse correlation between PINK1 levels and PLP. High

PLP levels might be needed for feeding the TCA cycle with amino acid catabolites generated via transam-

ination reactions. The fact that PINK1 Q126P PD hDANS develop neurotransmitter defects without signif-

icant reduction of PNPO expression suggests that PNPO silencing here is a relevant to understanding the

mechanism but not the biological cause.
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Tetrahydrobiopterin (BH4) is a crucial cofactor in catecholamine metabolism. Here, BH4 promotes the up-

take of catecholamines into neurons. Rescue of catecholamine uptake in PINK1 KO hDANs by BH4 shows

that the uptake defect is secondary since the uptake assay provides a synthetic, exogenous substrate.

Because ferrous iron reduces the BH3 radical back to BH4 (Berka et al., 2004), the link between PINK1

and Iron and PINK1 and metabolic cofactors needs further elucidation.

Dopamine degradation by MAO and COMT was not significantly affected by loss of PINK1 (we observed

significant fluctuations of MAO abundance at the gene and protein level but it was not consistent). TH

levels were also highly fluctuating in PINK1 KO hDANs differentiations. TH cofactor biosynthesis is regu-

lated by BH4 and phenylalanine. These data point toward steering of phenylalanine and tyrosine toward

energy metabolism in the mitochondria away from dopamine synthesis.

Whether PINK1 can directly control dopaminemetabolism at themitochondrial outer membrane andmito-

chondrial-ER contact sites through phosphorylation is an interesting question but so far there is no

biochemical evidence. Until candidates are proven, we must assume that it is the loss of mitochondrial

quality control and altered MOM landscape that induces metabolic changes. PINK1 involvement in the

transport of iron and fine tuning of mitochondrial membranes can mediate such biochemical changes

and the consequences go beyond mitophagy in dopaminergic neurons.

Limitations of the Study

� The lack of reliable antibodies to pull down endogenous PINK1 in hDANs limits the biochemical

confirmation of PINK1 interactors. Further work using endogenous gene editing of PINK1 in iPSCs

and phospho-targeted proteomics is needed.

� It was not possible to reintroduce wild-type human PINK1 into PINK1 KO hDANs to confirm key

finding were due to PINK1 KO. Viral transduction is required and low transfection efficiency in

iPSC-derived neurons masks any rescue effects without the ability to sort living cells. Introducing

antibiotic resistance is limited by the TALEN.
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Transparent Methods 

Ethics statement and data protection 

All procedures were in accordance and approved by the ethical board at The 

University of Tübingen and according to the international standards defined in the 

declaration of Helsinki. Human samples were obtained with consent and prior ethical 

approval at The University of Tübingen and the Hertie Institute for Clinical Brain 

Research Biobank number 146/2009B01. Medical Faculty of the University of 

Tübingen (https://www.medizin.uni-tuebingen.de/de/medizinische-

fakultaet/ethikkommission).  

RAW sequences of RNA and peptides will not be made freely available according to 

EU and German data protection laws to protect the identity of the healthy donor used 

as an isogenic control in this study. See data availability below.  

 

Generation of human induced pluripotent stem cells (hiPSCs) and PINK1 

knockout 

hiPSCs were cultured in self-made E8 media on Vitronectin (VTN-N, Gibco) coated 

cell culture dishes. iPSCs from a healthy individual that were previously 

characterized (Reinhardt et al., 2013) were transfected with a TALEN and a 

homologous construct for PINK1 exon1 using an Amaxa Nucleofector II with the 

Stem cell Nucleofection Kit (both from Lonza). The transfected iPSCs were plated on 

VTN-N –coated 10cm dishes in E8 medium containing 10 µM ROCK inhibitor 

Y27632. Homologous recombined iPSC colonies were selected with 250 µg/ml G418 

(Biochrome) or 10 µgml-1 Blasticidin (InvivoGen) in the second round of TALEN 



transfection and re-plated in 12-well plates. Resistant iPSC colonies were 

characterized by sequencing, qRT-PCR and Western blot to confirm successful 

homozygous gene knockout. TALENs were designed with the online tool TAL 

Effector Nucleotide Targeter 2.0 (Cornell University) and generated using a cloning 

protocol adapted from (Cermak et al., 2011). The following RVD sequences were 

used for the TALEN monomers: HD HD NI NH NH NG NH NI NH HD NH NH NH NH 

HD and NI NH HD NG HD HD NH NG HD HD NG HD HD NH HD. Colony-PCR after 

the first TALEN reaction was conducted with the primers pCR8_F1 (5’-

TTGATGCCTGGCAGTTCCCT-3’) and pCR8_R1 (5’-

CGAACCGAACAGGCTTATGT-3’). After the second Golden Gate reaction the 

colony-PCR was performed with the primers TAL_F1 (5’-

TTGGCGTCGGCAAACAGTGG-3’) and TAL_R2 (5’-

GGCGACGAGGTGGTCGTTGG-3’). 

 

Generation of PINK1 Q126P hiPSCs and subsequent gene correction 

Human fibroblasts were derived from a skin biopsy of a female PD patient with a 

PINK1 Q126P mutation in Tübingen of which the family was previously described 

(Prestel et al., 2008). Human samples were obtained with consent and prior ethical 

approval at The University of Tübingen and the Hertie Institute for Clinical Brain 

Research Biobank. The PINK1 Q126P 15167 hiPSC line was generated using the 

CoMIP 4in1 method.  Reprogramming and characterization (pluripotency, stability of 

karyotype, and differentiation potential was performed in the iPSC Core Facility of 

Helmholz Zentrum München. PINK1 Q126P hiPSCs were gene corrected using 

pCAG-Cas9 vector (Addgene plasmid 84918) and a donor vector carrying a cassette 



flanked by a PINK1 5’homology arm containing the g.155732C>A and a 3’ homology 

arm. The hiPSCs and the gene corrected line were kindly provided through 

collaboration with Daniela M. Vogt Weisenhorn and Wolfgang Wurst (Helmholtz 

Zentrum München, German Research Center for Environmental Health, Institute of 

Developmental Genetics, Munich-Neuherberg, Germany) as part of a BMBF MitoPD 

project.  

 

Derivation of NPCs from iPSCs and differentiation into mature, human, mid-

brain specific dopaminergic neurons (hDANs)  

Mature hDANs were generated from iPSCs via neural progenitor cells (NPC) 

intermediates using a protocol adapted from (Reinhardt et al., 2013a). The healthy 

control line (K7.1) has been previously fully characterized and described (Reinhardt 

et al., 2013a). Two distinct PINK1 KO iPSC clones devoid of PINK1 transcript were 

used in this study (PINK1 KO1-Δ8.9 and PINK1 KO2-Δ40.7). Briefly, IPSCs were 

maintained in E8 medium. For the generation of embryoid bodies (EBs), iPSCs were 

cultured in ’50:50 base medium’ (one to one mixture of DMEM Hams F12 (#FG4815 

Biochrome/Millipore): Neurobasal® medium (#21103-049 Gibco/Thermo Scientific), 

1X Penicillin/Streptomycin (Biochrome/Millipore), 1X GlutaMAX supplement Thermo 

Scientific), 1X B27 supplement (Gibco/Thermo Scientific) and 1X N2 supplement 

(Gibco/Thermo)) plus the addition of 10µM SB431542 (Sigma, SB), 1µM 

dorsomorphin, 3µM CHIR99021 (CHIR, Axon) and 0.5µM pumorphamine (PMA, 

Alexis) on uncoated 6-well cell culture plates. EBs were then transferred to Matrigel 

(Corning)-coated 6-well plates in NPC maintenance media (’50:50 base medium’ 

plus the addition of 150µM Ascorbic Acid (AA, Sigma), 3µM CHIR, 0.5µM PMA). 



After several passages NPCs were cultivated in NPC priming medium (‘50:50 base 

medium’ plus the addition of 150µM AA and 3µM CHIR99021). Differentiation of 

confluent NPCs was initiated by cultivation in a patterning medium for seven days 

(‘50:50 base medium’ plus the addition of 10ng/mL FGF8 (Peprotech), 1µM PMA, 

200µM AA, 20ng/mL BDNF (Peprotech). The differentiating neurons were matured in 

maturation media (’50:50 base medium’ plus the addition of 10ng/mL BDNF, 

10ng/mL GDNF (Peprotech), 1ng/mL TGFß-III (Peprotech), 200µM AA, 500 µM 

dbcAMP (Applichem) and 10µM DAPT (Sigma).  

 

Removal of antioxidant supplements and apoptosis inhibitors 

hDANs require N2 and B27 supplements (GIBCO) and ascorbic acid in their culture 

media. We also routinely use apoptosis inhibitors for splitting and plating NPCs and 

hDANs, Prior to all experiments, the maturation medium was replaced 24h before 

the experiment with ‘N2 medium’ (using 50:50 base media without the B27 

supplement or ascorbic acid) to reduce excessive amounts of antioxidants in the 

media that could quench phenotypes. Also, no apoptosis inhibitors such as 

APOI/ROCK inhibitor were used after the final plating of the hDANs throughout 

maturation.  

 

Immunofluorescence staining 

Mature hDANs were cultivated on Matrigel-coated glass coverslips and fixed with 4% 

(w/v) paraformaldehyde (PFA, Sigma) in phosphate buffered saline (PBS) for 15 min 

at room temperature (RT). Permeabilization with ice-cold, neat methanol for 5 min at 



-20°C. After washing with 0.01% (v/v) Tween in PBS (PBS-T), the fixed hDANs were 

blocked with 5% (v/v) normal goat serum in PBS-T for 1h at RT. Afterwards the cells 

were washed again and incubated overnight at 4°C with the primary antibody in 

2.5% (v/v) serum in PBS-T. On the following day the cells were incubated with the 

secondary fluorescent antibody (#A32721, #A11070, #A21449, #A11010 all from 

Molecular probes/Thermo Scientific) for 2h at RT in darkness and nuclei stained with 

DAPI (Sigma). Coverslips were mounted in mounting medium (Dako) on glass 

slides. Immunofluorescence was imaged using an AxioVert fluorescence microscope 

(Zeiss). MAP2 (AbCam ab5392) (n=diff5), TH (AbCam ab112) (n=diff5), FOXA2 

(Millipore AB4125) (nDiff 3), DAT (Millipore MAB369) (nDiff3). Statistics Figure 1B: 

Blinded IF images were counted manually (IF positive cell as a percent of total cells 

in a field of view). All values were listed in Graphpad Prism in columns (nDiff=4). The 

number of % IF positive values from each field of view are as follows; CTRL MAP2 

(68), PINK1 KO clones 1 and 2, MAP2 (98), CTRL FOXA2 (31), PINK1 KO clones 1 

and 2 FOXA2 (49), CTRL TH (68), PINK1 KO clones 1 and 2, TH (89), CTRL DAT 

(37) and PINK1 KO clones 1 and 2, DAT (49). Ten outliers were removed by 

Graphpad Prism (all from CTRL TH). Significance test; All data sets was tested for 

normal Gaussian distribution using Graphpad Prism (D'Agostino & Pearson test). 

FOXA2 data was normally distributed and the Unpaired t-test used (ns = not 

significant). For the remaining non-normally distributed data, the non-parametric 

Mann Whitney U-test was used. **** = p<0.0001. Levene’s test of unequal variance 

was performed in Excel followed by single ANOVA (TH marker CTRL v PINK1 KO 

p0.0206). 

 



Quantitative Reverse Transcription PCR (qRT-PCR) 

RNA was isolated from mature hDANs (and NPCs) using a RNeasy Mini Kit 

(QIAGEN), including the on-column DNA digestion step. A one-step qRT-PCR was 

performed on 0.1-1µg RNA (equalized to the same imput amount) with the 

QuantiTect SYBR Green RT-PCR Kit (QIAGEN) on a LightCycler®480 (Roche). The 

relative expression levels were calculated with the 2-Δ method, based on a biological 

reference and housekeeping genes (GAPDH and HMBS) for normalization. Statistics 

Figure 1C: All ΔΔCt gene of interest/GAPDH were normalised to the CTRL in each 

case. All values were listed in Graphpad Prism in columns (nDiff=4, except vGlut 

nDiff = 3). The number of values; CTRL (12), PINK1 KO clones 1 and 2 vGLUT (3), 

PINK1 KO clones 1 and 2 TH (12), PINK1 KO clones 1 and 2 MAO-A, (11), PINK1 

KO clones 1 and 2, MAO-B (10), PINK1 KO clones 1 and 2, DAT (6), PINK1 KO 

clones 1 and 2, SYP (6), PINK1 KO clones 1 and 2 THP2 (5) and PINK1 KO clones 

1 and 2, MAP2 (6). One outlier was removed by Graphpad Prism (from THP2). 

Significance test; All data sets were tested for normal Gaussian distribution using 

Graphpad Prism (D'Agostino & Pearson test). TH (**=p0.0063), MAO-A (ns = not 

significant) and MAO-B (ns = not significant) data were normally distributed and the 

unpaired T-test used. For the remaining data normality could not be assigned due to 

low n, the non-parametric Mann Whitney U-test was used. vGlut (**=p0.0022), TPH2 

(*** = p<0.0002), MAP2 (**=p0.0043). Statistics Figure 4C and 4D: All ΔΔCt gene of 

interest/GAPDH were listed in Graphpad Prism in columns. One column was made 

for both PINK1 KO clones. The data was not normalized to the control in each PINK1 

line (except for PINK1 Q456X where there are 3 patients, the ΔΔCt data is 

normalized to each corresponding gene corrected control line). No outliers were 

removed by Graphpad Prism. Significance test; assuming normal distribution with 



unequal standard deviation, the student’s t test with Welch correction was 

performed. PINK1 exon 1-2 (****=p<0.0001 for PINK1 KO v CTRL and PINK1 

Q456X v GC CTRL), PNPO (****=p<0.0001 for PINK1 v CTRL, **=p0.0027 for 

PINK1 Q456X v GC CTRL), DDC (***=p0.0010 for PINK1 Q126P v GC CTRL), 

TPH1 (**=p0.0035 for Q126P v GC CTRL). All t test comparisons were made for all 

other CTRL and PINK1 lines individually shown for each gene and were not 

statistically significant. Then all the ΔΔCt values for each gene were listed in two 

columns in Graphpad Prism (all CTRL/WT v all PINK1 KO/mutation) and each data 

set for each gene was tested for Gaussian distribution using the D'Agostino & 

Pearson test. The student’s t test with Welch correction; PINK1 (****p<0.0001), DDC 

(ns=p0.0773), TPH1 (ns=p0.1055), TPH2 (ns=p0.7855), PDXK (ns=p0.8046), 

DNAJC12 (ns=p0.8663). The non-parametric Mann Whitney U-test; PNPO 

(*=p0.0192), TH (ns = p0.53). nDiff=3. Levene’s variance test was performed in 

Excel followed by single ANOVA (TH expression GC v Q126P, p0.0000137).  

 

Primer sequences  

DNAJC12 (FW:TCACCCAGACAAGCATCCTGA, RV: 

TTACCTCTGACAACCCAGTGC); TPH1 (FW: AACCCATGCTTGCAGAGAGT, RV: 

GCCACAGGACGGATGGAAAA); TPH2 (FW: GTGGATGTGGCCATGGGTTA, RV: 

TGGAGAGCTCCCGGAATACA), PDXK (FW: GGGATTTGAGATTGACGCGG, RV: 

GGGACGTACATCGAGCCTTC); DDC (FW:GAGCCAGACACGTTTGAGGA, RV: 

TAGGCGAAGAAGTAGGGGCT); PNPO (hFW: AGTCGAAAAGGAAAAGAGCTG; 

hRV: GGCGGGAGTGGAAGTAG), 

(msFW:CTGAACCGTCAGGTGCGTGTGGAAGGC, 



msRV:AAGGTGCAAGTCTCTCATACACCCAGTCT ); TH (FW: 

TGTCTGAGGAGCCTGAGATTCG; RV: GCTTGTCCTTGGCGTCACTG); PINK1 

(exon 1 FW: GGGTCGAGCGCTGCTGCTGCGCTT; exon 2 FW: 

TCCGGGGGCCCCTGCCTTCC; exon 4 RV: TTGCTTGGGACCTCTCTTGG); 

vGLUT1 (FW: GAGTGGCAGTACGTGTTCCT; RV: TCCATTTCGCTGTCGTCACT); 

MAO-A (FW: GCCCTGTGGTTCTTGTGGTATGT; RV: 

TGCTCCTCACACCAGTTCTTCTC); MAO-B (FW: 

ACTCGTGTGCCTTTGGGTTCAG; RV: TGCTCCTCACACCAGTTCTTCTC); DAT 

(FW: CAAAAGCTGCTTTCCATGGCACACT; RV: 

CGGCTCCCACCGAGCATTACACT); SYP (FW: CAGGGTGGGGCTTAGAATGG; 

RV: GTGTGTGTGGTGGGGTGCTT); MAP2 (FW: CCGTGTGGACCATGGGGCTG; 

RV: GTCGTCGGGGTGATGCCACG); CP (FW:CTTAACAGCACCTGGAAGTG; 

RV:TTGTGAAGGAGGCATCTGTG); GCLC (FW:TGAGCTGGGAGGAAACCAAG; 

RV: AACATGTATTCCACCTCATCGC); STEAP3 

(FW:TTCAGCTTCGTTCAGTCCTC, RV:AGGCAGGTAGAACTTGTAGC); SLC7A11 

(FW:CTTTCAAGGTGCCACTGTTC, RV: GATAATACGCAGGGACTCCA); 

Mitoferrin2 (FW: CCATCGACTGCGTCAAGACC; RV: 

CAAAATAAAGGGCGTGGGCA). 

 

Autophagy and mitophagy induction 

Autophagic flux was induced in mature hDANs using Valinomycin (Val, 1µM, 24h) or 

NH4CL (20mM, 4h) and Leupeptin (Leu, 200µM, 4h) nDiff=3. Mitophagy was induced 

in hDANs using; 10µM CCCP for 2h, 4h, 6h, (6h+ 10µM MG132) and 24h or 1µM 

Valinomycin for 24h nDiff=3.  



 

SDS-PAGE and Western blotting 

All cell lysates were prepared in RIPA buffer (Sodium chloride 150mM, Tris-HCL 

50mM, Sodium dodecyl sulfate 0.10% (w/v), Sodium deoxycholate 0.50% (w/v), 

Triton-X-100 1% (v/v)) containing 1X concentration of phosphatase inhibitor cocktail 

(Complete, Roche) and phosphatase inhibitor cocktail (PhosSTOP, Roche).  Briefly, 

the lysis buffer was added directly to washed cells in dishes or washed cell pellets 

and kept at 4 °C. Needles were used to further homogenize the lysates (9 passes 

20G, 9 passes 27G) and incubated 30 minutes on ice. Insoluble nuclear material 

was removed after centrifugation at 14,000 rpm for 10 minutes. Proteins were 

electrophoresed on self-made acrylamide gels or pre-cast Bis-Tris gels (Thermo 

Scientific) and transferred to nitrocellulose membranes using the iBlot device 

(Thermo Scientific), with the exception of very large target proteins or heavily 

lipidated proteins, in which case wet blotting with PVDF membranes was used. Total 

protein stain Ponceau (Applichem) was used to assess transfer and loading and the 

PageRuler plus pre-stained protein ladder (Thermo Scientific) for kDa range. 

Antibodies against PINK1 (Novus), Mitofusin1 (MFN1, AbCam), TOM70 (Santa 

Cruz), OPA1 (BD Biosciences), Parkin (Cell Signalling Technology), mAconitase (BD 

Biosciences), β-Actin (Sigma Aldrich), GAPDH (Invitrogen, Thermo Scientific) Tom20 

(Santa Cruz Biotechnology), LC3I/II (Novus), PGC1α (AbCam), MIRO-1 (Sigma 

Aldrich), OPA1 (Novus Biologicals), TH (Millipore), Vinculin (Sigma-Aldrich), MAO-A 

(In-house produced monoclonal antibody from Ellen Billett, Nottingham Trent 

University, UK), NECAB2 ( a kind gift from Axel Methner, Johannes Gutenberg 

University Mainz / Germany) and Mitobiogenesis antibody (containing SDHA, 

GAPDH and MTCO1, AbCam) were used. Secondary antibodies were purchased 



from GE Healthcare (HRP-conjugated) and from LiCOR (α-rabbit and mouse Alexa 

Fluophor™680, α-rabbit and mouse Alexa Fluophor™800). Fluorescence detection 

and analysis were performed using a LI-CORE blot scanner and Image Studio™ Lite 

software. Densitometry from Western blot was performed using the Image J 1.41o 

software (Wayne Rasband; National Institutes of Health, USA). Representative 

Western blots are shown. For calculating mitochondrial turnover statistics Figure 

S2D/E. Densitometry data was normalized and no outliers removed. Assuming 

normal distribution, the student’s t test was assigned and ns=not significant, 

*=p<0.05. nDiff=3. Levenes test of variance was also performed in Microsoft Excel 

followed by single ANOVA (Untreated mitobiogenesis, p>0.050, valinomycine treated 

mitobiogenesis p0.030). 

 

Complex I Dipstick Assay 

Active Complex I was pulled down from mature hDAN homogenates using the 

Complex I Dipstick Assay from AbCam (ab109720) according to the manufacturer’s 

instructions. The dipsticks were immediately scanned and the band densitometry 

quantified using the Image J 1.41o software (Wayne Rasband; National Institutes of 

Health, USA). Statistics Figure 1F and G: All densitometries derived from scanning 

the dipstick (nDiff=3) were listed in Graphpad Prism in columns. There were three 

values for each data set and therefore the test for Gaussian distribution could not be 

performed. Assuming non-normality, the Mann Whitney U-test was performed 

(Figure 1G, *=p0.023, Figure 1F, ns =not significant). Assuming normality, the t test 

was performed (Figure 1F, *=<0.05). 1-way ANOVA with the Kruskal Wallis test was 



performed assuming a possible mixture of distributions (Figure 1F, p0.036 and 

Figure 1G, p0.0003). 

 

Transmission Electron Microscopy 

Mature hDANs were seeded on Matrigel (Corning) coated glass coverslips and 

cultivated for three days prior to treatment with N2 medium with and without 1 µM 

Valinomycin for 24 hours. After washing and fixation with 2.5% glutaraldehyde 

(Science Services, Munich, Germany) in cacodylate buffer (pH7.4; Merck-Millipore, 

Darmstadt, Germany) overnight at 4°C, cells were washed with cacodylate buffer, 

post fixed in 1% osmiumtetroxide, dehydrated and embedded in epoxide resin 

(Araldite, Serva, Heidelberg, Germany) as described previously (Wolburg-Buchholz 

et al., 2009). Ultrathin sections were performed using a Reichert Ultracut 

ultramicrotome (Leica, Bensheim, Germany) and were analyzed in an EM 10 

electron microscope (Zeiss, Oberkochen, Germany). Images were taken by a digital 

camera (Tröndle, Germany). Qualitative data, representative images are shown, 

nDiff=3. The high quality images are available on request.  

 

Mitochondrial Morphology (BacMam Mitogreen) 

NPCs and mature hDANs were plated on Matrigel covered glass coverslips, treated 

with CellLight™ Mitochondria-GFP, BacMam 2.0 (Invitrogen) according to 

manufacturer’s instructions for 24 hours in N2 medium. Mitochondria of transfected 

neurons were imaged using an LSM-510 confocal microscope (Zeiss). Z-stack 

images were analysed with ImageJ (Fiji, Rasband, W.S., ImageJ, U. S. National 



Institutes of Health, Bethesda, Maryland, USA). Statistics Figure 2B: Blinded Z stack 

IF images were analyzed using ImageJ software (Rasband, W.S., ImageJ, U. S. 

National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/). All 

values for mitochondrial area were listed in Excel per cell for each field of view 

(nDiff=4). The data was normalised to the isogenic control for hDANs and for NPCs. 

No outliers were removed and distribution analysis (D'Agostino & Pearson test) was 

not possible because nDiff=4. Significance test; Non-normal distribution was 

assumed and the non-parametric Mann Whitney U-test was used. Ns = not 

significant, *=p<0.05, **=p<0.005. Statistics Figure S2A: Blinded IF images were 

analyzed using particle analysis with IMARIS software and ImageJ (Fiji) across z 

stacks.  

Mathematical calculations for mitochondrial circularity, aspect ratio (length) and form 

factor (degree of branching) was performed using ImageJ (Fiji), as follows; briefly, 

images were converted to 8-bit greyscale, → ‘despeckle’, → ‘convolve’, → ’subtract 

background’, → ‘create binary’ and ‘adjust threshold’ (the threshold must remain the 

same for all images). ‘Set measurements’, check Area, Perimeter and Fit ellipse. 

‘Analyze particles’; Smallest particle set to 1 pixel, → ‘Show outlines’. Data for each 

mitochondria is listed and raw data copied in Excel. Mean values for each 

measurement per image is used. Form factor (or degree of branching is the 

perimeter squared, divided by (4π ₓ area). The data was set in columns in Graphpad 

Prism in columns (nDiff=4). No outliers were removed and distribution analysis 

(D'Agostino & Pearson test) was not possible because n=Diff4. Significance test; 

Non-normal distribution was assumed and the non-parametric Mann Whitney U-test 

was used. ns = not significant. 



 

Calcium imaging 

Mature hDANs were seeded on Matrigel-coated glass coverslips. Fluo-4 Direct 

Calcium Reagent (Invitrogen) was added to the cells and incubated for one hour at 

37°C and 5% CO2. After washing the cells with growth medium, the 24mm 

coverslips were transferred into self-made imaging chambers and Fluo-4 reagent 

diluted in growth medium was added. 3 mM EGTA was added per well 10 minutes 

prior to imaging. Neurons were imaged on a LSM 510 Confocal microscope (Zeiss) 

taking a picture every 0.5 sec for 25 minutes. A baseline was recorded for two 

minutes and then 2 µM Thapsigargin was added. The data analysis was performed 

using ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, 

Maryland, USA, https://imagej.nih.gov/ij/). The corrected total cell fluorescence per 

cell was determined for 10 neurons per experiment and plotted over time to evaluate 

the calcium signal. To account for variability in Fluo4 signal between imaging 

sessions we always normalized the Fluo4 signal to the baseline (average Fluo4 

signal before the addition of Thapsigargin). Only PINK1 KO clone 1 passed the 

D'Agostino & Pearson normality test. Therefore, ordinary two-way ANOVA was used 

for statistical analysis. The data was statically significant comparing genotype across 

time (****=p<0.0001). 

 

Flow cytometry experiments 

Mature hDANs were carefully washed in PBS and then treated with Accumax (PAN 

Biotech) to remove them from the monolayer, quenched in PBS and centrifuged at 



300 g for 5 minutes and then incubated in dye, buffer only or dye plus a control. For 

mitochondrial membrane potential, 200 nM Tetramethylrhodamine, Ethyl Ester, 

Perchlorate (TMRE, from Thermo Scientific) in PBS or TMRE plus Carbonyl cyanide-

p-trifluoromethoxyphenylhydrazone (CCCP, Sigma Aldrich) 10 µM was used. Cells 

were measured using a MACSQuant® automated flow cytometer (Mitenyi 

Biotechnology) according to their mean average fluorescence signal. All mean 

average fluorescence values were divided by the background fluorescence in the 

same channel in the same unstained cells to account for auto-fluorescence. 

Statistics Figure 2D (left panel): Assuming normal distribution, the t test was 

performed. **= p<0.0026. ns=not significant. nDiff=3. 

 

Live Cell Kinetic Measurement of Mitochondrial Membrane Potential 

Cells were seeded in Ibidi® dishes and the media exchanged for HBSS containing 

200 nM TMRE stain (Thermo Scientific) for 15 minutes at 37°C with CO2. The TMRE 

was removed and replaced with 360 µl Hanks buffer. The cells were imaged using a 

Zeiss Inverted Confocal microscope at Excitation HeNe1, 543 nm and Emission LP 

560 nm and brightfield for 20 × 4s cycles. Followed by the addition of 360 µL (0.25 

mg/ml Oligomycin), measured for 20 × 4s cycles, 180 µL (10 µM Rotenone), 

measured for 20 × 4s cycles and 100 µL (10 µM FCCP) and measured for 20-40 × 

4s cycles. Using ImageJ (Rasband, W.S., ImageJ, U. S. National Institutes of Health, 

Bethesda, Maryland, USA, https://imagej.nih.gov/ij/), each frame was analysed for 

TMRE fluorescence intensity, mean fluorescence and total area. The corrected total 

cell fluorescence (CTCF) over time was calculated using the formula: CTCF = 

fluorescence intensity - (cell area × mean background fluorescence). Statistics: 



Figure 2D (right panel): p<0.0001, 2-way ANOVA (CTCF across genotype and time) 

for corrected total cell fluorescence from live imaging mean CTRL v PINK1 KO1 and 

KO2 hDANs. nDiff=3. 

 

ATP Assay 

ATP was measured using the ViaLightTM Cell Proliferation BioAssay Kit according to 

the manufacturer’s instructions (Lonza) and normalized to the total protein content in 

each well. Luminescence was detected using SpectraMax L plate reader (Molecular 

Devices). Technical replicates =3 in each assay and nDiff=4. The mean data from 

each independent experiment comparing PINK1 KO1 and PINK1 KO2 to control was 

tested using the Mann Whitney U Test and the differences were not significant. 

 

Mitochondrial turnover using MitoTimer™plasmid 

Mitotimer is a fluorescent reporter suitable for the investigation of mitochondrial 

turnover. Based on oxidation state, the fluorescent protein (dsRed mutant) targeted 

to the mitochondria shifts its emission spectra from green to red as the protein 

matures (Hernandez et al., 2013). Approximately 100,000 hDANs were seeded per 

24-well well on coated coverslips in maturation medium. Mature hDANs were 

transfected with pMitoTimer from Zhen Yan (Addgene plasmid # 

52659;http://n2t.net/addgene:52659 ; RRID:Addgene_52659) using Fugene HD 

transfection reagent (Promega) according to manufacturer’s instructions. 

Transfection efficiency ranged from 5-10% of total hDANs in the field of view. The 

hDANs were fixed 48 h post-transfection with 4% (v/v) PFA in PBS for 10 min RT. 



Transfected hDANs were imaged for both green (Ex/Em, 488nm/518nm) and red 

channels (Ex/Em, 543nm/572nm) using a LSM 510 confocal (Zeiss). Z-Stack 

pictures were analyzed using IMARIS 8.3.1 (Bitplane). Statistics Figure S2B: Data 

were normalized to the isogenic control in each case and one outlier was removed. 

The student’s t test was performed. **=p0.0043 and *=p0.0222. nDiff=3.  

 

Tom22 flow cytometry 

The Tom22 content in hDANs was measured using the Inside Stain Kit (Miltenyi 

Biotec). hDANs cultured on Matrigel (Corning) were pre-treated with N2 buffer 24 h 

prior to the experiment. Cells were harvested, suspended in PBS containing 0.5% 

BSA and 2mM EDTA and fixed using the same amount of Inside Fix solution 

(Miltenyi Biotec). After 20 min of incubation at RT neurons were centrifuged for 5 min 

at 300 g. The supernatant was removed and after a washing step the cell pellets 

were suspended in Inside Perm with Tom22-GFP antibody (diluted 1:10) or a mouse 

IgG control. The samples were incubated for 10 min at RT in darkness. To stop the 

staining samples were diluted with Inside Perm and centrifuged for 5 min at 300g. 

The supernatant was discarded, and the pellets were suspended in PBS containing 

0.5% BSA and 2mM EDTA. Tom22-GFP fluorescence was measured using a 

MACSQuant Analyzer flow cytometer. IgG background control fluorescence was 

subtracted from the obtained Tom22-GFP fluorescence for analysis. Statistics Figure 

S2C: Data was normalised and no outliers removed. Assuming normal distribution, 

the t test was assigned and ns=not significant, *=p<0.05. nDiff=3.  

 

Respiratory analyses 



For the basic mitochondrial stress test, oxygen consumption rates (OCR) and 

extracellular acidification rates (ECAR) were measured in mature hDANs using a 

Seahorse™ XF96 Extracellular Flux Analyzer. Cells were seeded in Matrigel coated 

Seahorse cell plates 24-48h prior to the experiment. During the experiment, 

OCR/ECAR is measured before any injection of mitochondrial toxins. This is referred 

to as the basal state (The base media contains glucose, pyruvate and glutamine). 

The wells were then injected sequentially with 1µM Oligomycin (Santa Cruz 

Biotechnology) ‘minimal respiration’, 5µM FCCP (Santa Cruz Biotechnology) 

‘maximal respiration’, and 1µM Antimycin A (Santa Cruz Biotechnology)/ 1µM 

Rotenone (Sigma Aldrich) ‘mitochondrial inhibition’. Following the respiratory 

analysis, the media is removed and the cells are fixed with 4% (w/v) PFA containing 

Hoechst stain (1:10,000) for 5 minutes before washing and imaging for automated 

cell counting (BD Pathway 855, BD Bioscience). Normalisation was performed by 

counting the number of cells per well of the plate using a high content imager from 

BD Biosciences (BD Pathway 855). The cell counting was performed by the Pathway 

855 using an in house written macro and the dimensions of the wells (0.358 cm2). 

Statistics Figure 3A: For each condition per experiment at least 6 wells are used for 

technical reproducibility. The mean average OCR/ECAR values for each 

independent experiment are plotted and the error bars show standard deviation 

(nDiff=4). The t test was used. ns=not significant. ***=p0.0004, *=p0.0158. 

 

Crude mitochondrial enrichment 

Crude mitochondrial enrichment: Fresh cell pellets on ice were suspended in 

mitochondrial isolation buffer (10 mM HEPES pH 7.4, 50 mM sucrose, 0.4 M 



mannitol, 10 mM KCl, 1 mM EGTA, phosphatase and protease inhibitors (Roche)) 

and passed through 20G, 27G and 30G needles 8 times to disrupt cells. Note: 

because of the size of hDANs and large amounts of axonal material, we found 

needle homogenization in the absence of detergents to yield the best mitochondrial 

enrichments. Fractionation was then achieved by several centrifugation steps. First, 

samples were centrifuged for 5 min at 1000 xg at 4°C and the supernatant was 

saved. The pellet was suspended in 500 µL mitochondrial isolation buffer and 

passed through a 30G needle 8 times before centrifuging 5 min at 900 g at 4°C. The 

second supernatant was pooled with the first and centrifuged for 15 min at 9000 g at 

4°C. The obtained pellet comprises the mitochondrial fraction. 

 

Complex I and citrate synthase activity 

Complex I activity was measured in crude mitochondrial enrichments from hDANs 

previously described in (Fitzgerald et al., 2017) and based on the method of 

(Hargreaves et al., 2007). Following isolation of crude mitochondria, a total protein 

content >0.7mg/mL is required to have enough active mitochondria for each sample 

replicate in each independent assay which needs to be duplicated for the addition of 

rotenone as a negative control. Citrate synthase activity was measured on the same 

sample sets and independent differentiations according to (Hargreaves et al., 2007). 

The citrate synthase activity is used to normalise complex I activity (to account for 

mitochondrial mass). To later measure the whether citrate synthase activity alone 

was significantly altered between the groups citrate synthase activity was measured 

again, this time measuring the exact input protein per well. Citrate synthase is then 

expressed as a change in absorbance per min per µg protein. The SpectraMax® M 



microplate reader (Molecular Devices) was used. Statistics Figure 3B/C. Outlier tests 

were performed in Graphpad Prism and no outliers were removed. Distribution 

analysis (D'Agostino & Pearson test) was not possible. The student’s t test was 

used. ns=not significant. nDiff=6 (CI) and nDiff=3 (CS).  

 

NAD+ and NADH measurement 

Mature hDANs were cultivated in N2 medium 24 h before the experiment. Whole cell 

NAD+ and NADH-levels were determined using the NAD/NADH Assay Kit 

(Fluorometric) from Abcam according to manufacturer’s instructions. NADH reaction 

mixture was incubated for 1 hour and fluorescence (Ex/ Em = 540/ 590 nm) was 

measured using a SpectraMax® M microplate reader (Molecular Devices). Statistics 

Figure 3D. Outlier tests were performed in Graphpad Prism and no outliers were 

removed. Distribution analysis (D'Agostino & Pearson test) was not possible. The 

student’s t test was used. *=p0.0222, ***=p0.0004. nDiff=5. NADH levels were 

slightly increased in PINK1 KO hDANs but not significantly (data not shown).  

 

αKetoglutarate dehydrogenase activity assay 

Mature hDANs were pretreated with N2 medium for 24 hours prior to the experiment. 

Mitochondria were extracted using the protocol for crude mitochondrial enrichment. 

Measurement of alpha-ketoglutarate dehydrogenase activity in mitochondria was 

performed using the alpha-Ketoglutarate Dehydrogenase Activity Colormetric Assay 

Kit (Sigma-Aldrich) according to manufacturer’s instructions. Absorbance (A450) of 

the samples was measured in kinetic mode every minute for 1h at 37°C on a 



SpectraMax®M microplate reader (Molecular Devices). Statistics Figure 3E. Outlier 

tests were performed in Graphpad Prism and no outliers were removed. The 

student’s t test was used. ns=not significant. nDiff=3.  

 

Mitochondrial Aconitase activity 

mAconitase activity was measured in mature hDANs using a protocol from (Pierik et 

al., 2009). Briefly, hDANs were washed with PBS and the cell pellet suspended in 

200µl TNEGT buffer + protease inhibitors. Then dounced on ice using a loose then a 

tight fitting glass pestle. The homogenates were centrifuge at high and low speeds 

with rigorous vortexing inbetween (Pierik et al., 2009). The resulting supernatant is 

then centrifuged for 10 minutes at 13,000g at 4°C. The resulting supernatant is then 

protein estimated before being used in the assay. Set up of the assay plate: Per well: 

95µl trietholamine buffer, 10µl cis aconititic acid (20mM), 20µl Isocitrate 

dehydrogenase (4U/ml), 10µl NADP (0.1M) and 40µg hDAN supernatant containing 

the enzyme. Blank = no cis aconitic acid, no isocitrate dehydrogenase. Read 

absorbance at 340nm, every 30s for 10 mins. We used a SpectraMax® M microplate 

reader (Molecular Devices). Statistics Figure 3F: Activity rates are normalised to the 

healthy control. No outliers were removed. The t test was used. *=p<0.05. ns= not 

significant. nDiff=3, Hela n=3.  

 

Nuclear magnetic resonance (NMR) based metabolomics 

hDAN metabolite extraction: hDAN pellets were collected, washed with PBS buffer 

and quenched in 400 µL ice-cooled ultrapure methanol. The cell suspensions were 



then transferred to 2 mL glass tubes (Covaris Adaptive Focused Acoustics AFATM) 

and added to 1000 µL of tert-butyl methyl ether (MTBE), well mixed and submitted to 

AFA ultrasound metabolite extraction protocol (Covaris E220 Evolution Woburn, 

USA). Ultrasonication programme setup: two treatment cycles, 1st: 30s, Peak Power 

125.0, Duty Factor 32.0, Cycles/Burst 400, Avg. Power 40.0. 2nd: 30s, Peak Power 

100.0, Duty Factor 30.0, Cycles/Burst 800, Avg. Power 30.0. The ultrasonication was 

carried out in cooled water bath, temperature range 5.0 to 15.0 °C. Each cycle was 

repeated 5 times per sample, total run time per sample was 5 min. Following 

extraction, 400 µL of ultrapure water were added to the extraction mixture, 

thoroughly vortexed and centrifuged at 12’000 g for 10 min for optimum phase 

separation. After centrifugation, the two phases were manually separated: the top 

lipid (MTBE) layer was transferred to 2 mL HPLC (High-Performance Liquid 

Chromatography) glass vials; the bottom aqueous phase was moved to 1.5 mL 

Eppendorf cups. Those were then submitted to another centrifugation step at 30’000 

g for 10 min to separate any undissolved cell culture residue. Following 

centrifugation, the aqueous supernatant was transferred to fresh Eppendorf cups 

and evaporated to dryness by a vacuum concentrator (Thermo Fisher Speedvac 

XYA). NMR sample preparation: Dried metabolite pellets were re-suspended in 45 

µL 1M K2HPO4 (phosphate) buffer (pH = 7.4, containing NaN3 and 1mM internal 

NMR standard TSP), thoroughly mixed and then centrifuged for 5 min with 30’000 g. 

40 µL of the supernatant was filled into 1.7mm NMR tubes that are compatible to 

Bruker auto-sampler. NMR spectra acquisition: Metabolomics data were acquired 

on a 14.10 Tesla (600 MHz) ultra-shielded NMR spectrometer (Avance III HD, 

Bruker BioSpin, Karlsruhe, Germany) equipped with a 1.7 mm room temperature 

triple resonance probe (1H, 13C, 31P).  Spectra were recorded at 298 K. A quick 



simple ZG experiment was performed followed by a 1D NOESY (Nuclear 

Overhauser Effect Spectroscopy) aiming to optimise offset and shim parameters. A 

CPMG (Carr-Purcell-Meiboom-Gill) experiment was used to suppress residual 

background signals from remaining macromolecules in the solution and water (time 

domain = 64k points, sweep width = 20 ppm, 2024 scans, 4 hours per sample). NMR 

data analysis and statistics: The recorded free induction decays (FIDs) were 

Fourier-transformed (FT) and NMR spectra were processed by Bruker TopSpin 3.6.1 

software (automated baseline correction, phase correction and spectra offset 

adjustment). Metabolite annotation and quantification was done with ChenomX NMR 

Suite 8.5 software containing the additional HMDB (Human Metabolome Data Base) 

library. The MetaboAnalyst 4.0 web server (R-based online analysis tool, 

www.metaboanalyst.ca) was used for statistics. To make samples and features 

comparable, all data was normalised by a reference sample (probabilistic quotient 

normalisation (PQN) to account for dilution effects and scaled by the Pareto scaling 

method (mean-centred and divided by the square root of the standard deviation of 

each variable). Statistics Figure 3H, initially one-way ANOVA (analysis of variance) 

with p< 0.05. Then the student’s t test was applied to compare metabolite 

concentrations between the control and each PINK1 KO clone. We used Principal 

component analysis (PCA), sparse partial least squares discriminant analysis (sPLS-

DA), pattern hunter and heatmap tools for data visualisation. Independent biological  

experiments n=4 and nDiff=2. 

 

Mitochondrial import Assay 

http://www.metaboanalyst.ca/


Radiolabelled proteins were synthesized in rabbit reticulocyte lysate in the presence 

of 35S-methionine after in vitro transcription by SP6 polymerase from pGEM4 vector 

(Promega). Radiolabelled precursor proteins were incubated at either 30°C (pSu9-

DHFR) or 4°C (Fis1) in import buffer (250 mM sucrose, 0.25 mg/ml BSA, 80 mM 

KC1, 5 mM MgCl2, 10 mM MOPS-KOH, 2 mM NADH, 4 mM ATP, pH 7.2) with crude 

mitochondria isolated from mature hDANs. Non-imported pSu9-DHFR molecules 

were removed by treatment with proteinase K (PK, 50 µg/ml) for 30 min on ice and 

then PK was inhibited with 5 mM Phenylmethanesulfonyl fluoride. Membrane 

integration of Fis1 molecules was confirmed by resistance to alkaline extraction 

(incubation on ice for 30 min with 0.1 M Na2CO3 followed by centrifugation to obtain 

membrane-embedded proteins in the pellet). Finally, samples were heated at 95°C 

for 5 min before their analysis by SDS-PAGE and autoradiography. Representative 

images of four independent experiments are shown. Quantification of band 

densitometry was performed with the AIDA software (Raytest). No outliers were 

removed. Error bars show standard deviation between independent experiments. 

Test for normality were not possible. The student’s t test was performed comparing 

control to PINK1 KO hDANs at multiple time points. ns=not significant. nDiff=4. 

 

Cytosolic ROS 

Medium was changed to N2 medium 24 h prior to the experiment. On the following 

day mature hDANs were incubated with N2 medium or N2 medium containing 10µM 

Rotenone, 1mM Buthionine sulphoximine (BSO) or 50µM Mn-Tbap (a mitochondrial 

superoxide dismutase 2 mimic) (for 4h before measurement. 100µM dihydroethidium 

(DiHET) (Santa Cruz Biotechnology) was added to all wells and emission was 



measured at 610nm emission (535nm excitation) (chromatin-bound, oxidized DiHET) 

was measured every 30 secs for 30 min on a SpectraMax® M microplate reader 

(Molecular Devices). No outliers were removed. Error bars show standard deviation 

between independent experiments. Tests for normality were not possible. The 

student’s t test was performed and the data showed no statistically significant 

differences between control and PINK1 KO hDANs. nDiff=3. 

  

Glutathione assay 

Neurons on a 96-well plate were treated with different treatment conditions 

(untreated N2 medium only, 10µM Rotenone, 1mM BSO, and 10µM Rotenone plus 

1mM BSO) in N2 medium 24 h prior to the experiment. Cells were briefly washed 

with HBSS (Gibco) and incubated with 100µL HBSS containing 50µM 

Monochlorobimane (Sigma) for 40 minutes @37°C, 5% CO2. Blanks were treated 

the same way but did not contain cells. After washing with HBSS, cells were imaged 

with a SpectraMax® M microplate reader (Molecular Devices) (Ex 390nm/Em 

478nm) to detect the fluorescent adduct of Monochlorobimane and reduced 

Glutathione (GSH). Background fluorescence obtained from blanks was subtracted 

for analysis. No outliers were removed. Error bars show standard deviation between 

independent experiments. Tests for normality were not possible. The t test was 

performed and the data showed no statistically significant differences between 

control and PINK1 KO hDANs. nDiff=3. 

 

RNA sequencing 



Approximately 5 million hDANs were lysed in 350ml RTL buffer and homogenized 

using QIAshredder® homogenizer (Qiagen). RNA isolation was performed using 

RNeasy Mini Kit (Qiagen). RNA was eluted in 30μl RNase-free water. RNA quality 

was assessed with an Agilent 2100 Bioanalyzer and the Agilent RNA 6000 Nano kit 

(Agilent). Samples with very high RNA integrity number (RIN > 9) were selected for 

library construction. For polyA enrichment, a total of 200ng of total RNA was 

subjected to polyA enrichment and cDNA libraries were constructed using the 

resulting mRNA and the Illumina TruSeq Stranded mRNA kit (Illumina). Libraries 

were sequenced as single reads (65 bp read length) on a HighSeq 2500 (Illumina) 

with a depth of >22 million reads each. Library preparation and sequencing 

procedures were performed by the same individual and a design aimed to minimize 

technical batch effects was chosen. Read quality of raw RNA-seq data in FASTQ 

files was assessed using QoRTs (v1.2.37) to identify sequencing cycles with low 

average quality, adaptor contamination, or repetitive sequences from PCR 

amplification. Reads were aligned using STAR (v2.5.3a) allowing gapped alignments 

to account for splicing to the Ensembl Homo sapiens GRCh37 reference genome. 

Alignment quality was analyzed using ngs-bits (v0.1) and visually inspected with the 

Integrative Genome Viewer (v2.4.19). Normalized read counts for all genes were 

obtained using subread (v1.5.1) and edgeR (v3.24.3). Transcripts covered with less 

than 1 count-per-million in at least 5 out of 6 samples were excluded from the 

analysis leaving >13,000 genes for determining differential expression in each of the 

pair-wise comparisons between experimental groups. For statistics, we used the 

ederR statistical framework for the calculations 

(https://bioconductor.org/packages/release/bioc/html/edgeR.html). In short, the 

methods models read counts per gene using the negative binomial distribution 



(capturing the abundance and variability between replicates). Variability is estimated 

for each gene and on a global scale. After establishing these models, using a 

generalized linear model (GLM) coefficients are fitted and each gene is tested 

individually using quasi-likelihood F-test to yield a significance value (p value). 

Statistics: For sample size n, we used minimum 3 replicates per group. This 

experiment is following a 2x2 design with 2 samples (nDiff=2) in Valinomycin 

treatment groups and nDiff=1 sample in control groups for each genotype. Pathway 

Analysis: The heatmap shows the top significant genes (<0.03 p-value) in contrast 

to untreated PINK1 KO vs. untreated isogenic control. Colored squares show the 

gene expression as per-row normalized (scaled and centered, i.e. mean=0, standard 

deviation=1) cpm (counts per million as a measure for gene expression strength) 

values - not log FC values. CPM data were refined by log2 fold change values 

(logFC) of PINK1 KO hDANs compared to control hDANs for Ingenuity Pathways 

Analysis (IPA, QIAGEN). First, twenty genes with the highest and lowest log2 fold 

change were listed. The gene ontology pathway analysis GOrilla was used to 

generate p values and maps of affected processes according to GO terms.  

 

RNA extraction from PINK1 KO mice brain and PINK1 Q456X PD patient hDANs 

for PNPO expression analysis 

RNA was prepared from the striatum of three healthy control mice and three PINK1 

knockout mice (homogenized using QIAshredder® homogenizer (Qiagen). RNA 

isolation was performed using RNeasy Mini Kit (Qiagen)) and kindly provided 

through collaboration with Daniela Vogt-Weisenhorn and Wolfgang Wurst (Helmholtz 



Zentrum München, German Research Center for Environmental Health, Institute of 

Developmental Genetics, Munich-Neuherberg, Germany).  

Human iPSC-derived hDANs from three distinct PD patients carrying the PINK1 

Q456X mutation and their corresponding gene-corrected isogenic controls were 

collected at day 30 of differentiation and subjected to RNA extraction by using the 

RNeasy mini kit (QIAGEN). Briefly, cells were washed twice in PBS and immediately 

lysed in RTL buffer supplemented with beta-mercaptoethanol. Lysate 

homogenization was obtained by using the QIAshredder system (QIAGEN), followed 

by on-column DNase digestion to remove DNA contamination. RNA was finally 

eluted in nuclease-free water and purity assessed by Nanodrop (A260/A280 and 

A260/A230 ratios). The cell models were kindly provided by Christine Klein and 

Philipp Seibler (University of Lubeck, Germany). Their corresponding gene-corrected 

controls were generated by Jens Schwamborn and Javier Jarazo (University of 

Luxembourg, Luxembourg).  

 

Proteomics: Quantitative Hyper Reaction Monitoring (HRM)-based mass 

spectrometry 

For lysis, mitochondrial pellets were suspended in 100 µl 6M urea, 100 mM 

Ammonium bicarbonate pH 8.0 and incubated for 30 min at 4°C. After clearance, the 

concertation of each lysate was determined by Bradford and 50µg protein per 

biological replicate were precipitated by methanol chloroform precipitation and 

processed as described previously (Gloeckner et al., 2009). Briefly, dried protein 

precipitates were re-dissolved in 30mM Ammonium bicarbonate pH8.0 

supplemented with 0.2% RapiGestTM (Waters) surfactant and reduced/ alkylated by 



DTT/ Idoacetamide prior to over-night proteolysis with trypsin (Promega). Proteolysis 

was followed by hydrolysis of the surfactant by TFA according to the manufacturer’s 

protocol. Prior to MS analysis, samples were pre-cleaned with StageTips. For the 

final dataset two biological replicates (individual differentiations) have been analyzed 

in three technical replicates. For the generation of the assay library, three DDA runs 

per condition and biological replicate were acquired. Vacuum-dried samples were re-

dissolved in 0.5% TFA and mixed with 2 µl iRT standard peptide mix (Biognosis). 

Extracted peptides were subsequently subjected to LC-MS/MS-analysis by a 180 

min standard method:  Tryptic peptide mixtures were injected automatically and 

loaded at a flow rate of 30 μl/min in 0.1% trifluoroacetic acid in high performance 

liquid chromatography (HPLC)-grade water onto a nano trap column (300 μm inner 

diameter × 5 mm precolumn, packed with Acclaim PepMap100 C18, 5 μm, 100 Å; 

Thermo Scientific). After 3 min, peptides were eluted and separated on the analytical 

column (75 μm inner diameter × 25 cm, Acclaim PepMap RSLC C18, 2 μm, 100 Å; 

Thermo Scientific) by a linear gradient from 2% to 30% of buffer B (80% acetonitrile 

and 0.08% formic acid in HPLC-grade water) in buffer A (2% acetonitrile and 0.1% 

formic acid in HPLC-grade water) at a flow rate of 300 nl/min over 147 min. 

Remaining peptides were eluted by a short gradient from 33% or 30% to 95% buffer 

B in 5 or 10 min. Eluting peptides were analysed on an Q-Exactive Plus mass 

spectrometer (Thermo Fisher). The HRM acquisition method was adapted from 

(Bruderer et al., 2015). To improve the quantification performance, 15 instead of the 

19 variable windows have been used covering an MS rage from M/Z 457 to M/Z 914 

(457-483, 481-506, 504-531, 529-554, 552-576, 574-600, 598-624, 622-650, 648-

676, 674-704, 702-735, 733-771, 769-810, 808-856, 854-914). Each HRM sequence 

was preceded by a full-scan. MS1 and MS2 spectra were acquired in the profile 



mode. MS2 spectra were acquired with a stepped collision energy (10% at 25%). 

DDA MS2 spectra for the assay library creation were acquired with a TOP10 method 

and in the centroided mode with a fixed collision energy of 25%. 

 

HRM-workflow and statistical analysis 

Assay library. The assay library was created with the trans-proteomic-pipeline (TPP 

v5.1) following published protocols (Schubert et al., 2015). The Thermo RAW files 

were converted into the mzXML format using MSConvert (Proteowizard v3.0.10765) 

with the TPP compatibility switch set. The files were filtered for the 150 most intense 

peaks to reduce the size of the datasets. Briefly, results from four search engines 

(Mascot [v.2.5.1], Comet [v.2017.01 rev. 1], Myrimatch [v.2.2.10165] and X!Tandem 

[v.2013.06.15.1]) with trypsin as enzyme, a peptide tolerance of 20 ppm and 3-

Methoxythyramine as fixed modification. Individual searches were performed against 

the human subset of the Swissprot database (release 2016_05, 20201 entries). The 

masses of the iRT standard (Escher et al., 2012) and decoys (reversed sequences) 

were added. The assay library was generated by the published TPP workflow. 

Remaining decoy sequences were manually removed and protein names were 

replaced by the Uniprot identifiers and the final library was processed and converted 

into the PQP format by OpenMS (v. 2.4.0). The final assay library contained shuffled 

decoy sequences in the same amount as the targets. OpenSWATH workflow. The 

openSWATH analysis was performed as previously described (Rost et al., 2017). 

Briefly, prior to quantification the HRM RAW files were converted into the mzML 

format at 64bit precision. The files were processed by the OpenSWATHWorkflow 

(OpenMS v. 2.4.0; Revision: 103a38b) and subsequently analyzed by pyProphet 



(v2.01) performing local, experiment-wide and global-statistics for filtering. Files 

exported to the legacy tsv format were re-aligned by TRIC (Rost et al., 2017). 

MSStats. The TRIC output was processed with SWATH2stats R package (v.1.12.0) 

(Blattmann et al., 2016) to generate the MSstats format. The final analysis and group 

comparison was performed using MSStats R package (v.3.12.3) (Choi et al., 2014). 

Final tables were generated by Perseus (v.1.6.1.3) (Tyanova et al., 2016) to extend 

the annotation by gene and protein names. Data analysis. Statistical significance for 

each gene Log2FC for control versus PINK1 KO clone 1 and control versus PINK1 

KO clone 2 was assigned by an asterisk *p=<0.05 (nDiff=3). Filtering to minimize the 

top hits list for the figure was achieved by removing all significant proteins in the 

CTRL v PINK1 comparison that did not appear significant in both PINK1 KO lines. 

Then a cutoff point of +/- Log2FC 1 to limit only relevant fold changes and then an 

arbitrary +/-1.7 Log2FC cut off (-1.7 to +1.7 Log2FC was removed) to limit the 

number of hits shown because of space. Qiagen Ingenuity and GOrilla was used to 

generate a pathway analysis using the LogFC as metrics.  The pathway analysis 

files are available as supplementary Excel files. For the comparison of the 

mitoproteome with gene expression, RNASeq data were merged on the SWATH 

proteomic dataset using the ‘matching rows by name’ function of Perseus.   

 

Measurement of biogenic amines by HPLC-ED 

Mature hDANs were expanded during differentiation into 175cm2 Matrigel coated 

flasks. For each HPLC experiment, approximately 2-3 175cm2 flasks were required. 

Although endogenous dopamine levels could be detected in hDANs derived from 

much larger cell volumes, we employed 50µM L-DOPA treatment overnight (16h) to 



enhance dopamine metabolism without risk of dopamine toxicity (Allen et al., 2013, 

Burbulla et al., 2017). Following detachment of hDANs with Accumax, the cell 

suspensions were washed in PBS and cells counted. PBS was used to normalize the 

number of cells in the suspension. An aliquot of the normalized suspension was 

taken for preparation of protein lysate and RNA to determine the relative amount of 

TH positive cells in each experiment and differentiation for each cell line. Fresh 

(unfrozen) cell pellets kept on ice were suspended in 350µl of a standard HPLC 

elution buffer that does not contain detergents (Thermo Scientific). The suspensions 

were homogenized using 5mm stainless steel beads and the tissue lyser LT 

(Qiagen) for 4 minutes with 50Hz. The cell homogenate was centrifuged at 14000 g 

for 10 min and the supernatant was filtered through a 0.2µm nylon membrane. 

Samples were analyzed for catecholamine and indolamine content by ion-pair 

reverse phase HPLC with colorimetric detection (Ultimate 3000 LC with 

electrochemical detection ECD3000RS, Thermo Fischer Scientific, California, USA). 

A hypersil C18 column was used (150x3 mm, 3 µm) and the system was run with a 

Test mobile phase containing 10% acetonitrile and 1% phosphate buffer (Thermo 

Fischer Scientific, California, USA) at a flow rate of 0.4 ml/min at 30 °C. The potential 

of the first channel was set to +350 mV, the second channel to -250 mV. 

Epinephrine, Norepinephrine, Dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), 

homovanillic acid (HVA), 5-hydroxyindol-acetic acid (HIAA), 3-Methoxytyramine (3-

MT) and 5-hydroxytryptamine/serotonin (5-HT), concentration was determined by 

comparing peak areas of the samples with those of standards using Chromeleon 7 

chromatography data system software. The neurochemicals in standards were 

determined with a high correlation linearity (r2 = 0.98) and good reproducibility in 

retention time (0.03%). The limit of detection was <1 pg on column for all the 



metabolites analyzed. Statistics Figure 6A: The data was not normalized. One outlier 

for dopamine was removed from the control hDAN dataset. The data was normally 

distributed. The Student’s t test was performed, **=p0.0045 (DOPAC), p0.0023 (DA), 

ns=not significant. nDiff=8. Figure 6B: The data was not normalized. One outlier for 

dopamine was removed from the control hDAN dataset. The data was normally 

distributed. The Student’s t test was performed, *=p0.0130 (DOPAC/DA), p0.0144 

(DOPAC+HVA/DA), ns=not significant. nDiff=8. Figure 6C: The Student’s t test was 

performed, ns=not significant. nDiff=3. Figure 6D: The data was not normalized. No 

outliers were removed. Data distribution analysis was not possible. The Student’s t 

test was performed, **=p0.0036 (L-DOPA, CTRL v KO), p0.046 (DOPAC+MAOi, 

CTRL v KO), ns=not significant. nDiff=4. 

 

Neurotransmitter Uptake Assay 

Neurotransmitter transporter activity in hDANs was measured using the 

Neurotransmitter Transporter Uptake Assay Kit (Molecular Devices) according to the 

manufacturer’s instructions. Mature hDANs were seeded in Matrigel coated black, 

clear bottom 96-well plates prior to the assay at a density of 60,000/well in triplicates. 

Wells containing no cells were used as an internal control. hDANs were treated with 

a specific VMAT2 inhibitor (Tetrabenazine, 10µM), a TH inhibitor (3-Iondol-L-

Tyrosine, 300µM), or a combination of MAO and COMT inhibitors (Tranylcypromine 

10µM and Tolcapone 100nM respectively). These compounds were added in media 

containing L-DOPA (50µM) or without L-DOPA. A subset of hDANs triplicates were 

treated with media alone or media containing L-DOPA (50µM). All treatments were 

incubated on the cells at 37°C for 20 minutes prior to the addition of the substrates. 



For the NT uptake in Figure 6G; hDANs were plated in the same way and either 

untreated or treated with 1mM BH4 for 2h prior to addition of substrates. Uptake 

fluorescence was measured using the SpectraMax M2
e microplate reader in kinetic 

mode (Molecular Devices) measuring every 30s or as an endpoint after 30 minutes 

incubation with the substrates). After the assay, the hDANs were washed and fixed 

in 4% (v/v) PFA containing Hoechst to account for cell number in each well and then 

counterstained for TH to account for any large differences in TH positive hDANs in 

the culture wells. No outliers were removed. Statistics Figure 6E: Linear regression 

plotted, 2-way ANOVA was performed. Genotype across times was statistically 

significant ***=p<0.0001 nDiff=3. Figure 6F: In the presence of L-DOPA, THi and 

MAO/COMTi statistically significantly different to PINK1 KO hDANs using 2-way 

ANOVA (multiple comparisons). **=p0.0071 (*L-DOPA+THi, KO1), **=p0.0048 (*L-

DOPA+THi, KO2), *=p0.049 (*L-DOPA+COMTi/MAOi, v KO1), **=p0.010 (*L-

DOPA+COMTi/MAOi, v KO2) nDiff=3. Figure 6G: No outliers were removed. 

Neurotransmitter uptake was measured as a FL endpoint and normalized to the 

untreated control hDANs in each experiment, Welch’s t test was performed. 

**=p0.0024 (untreated CTRL v PINK1 KO), *=p0.023 (untreated GC CTRL v PINK1 

Q126P), ns=not significant. nDiff=3.  

 

Monoamine oxidase (MAO) Activity Assay 

MAO activity was monitored using a radiometric assay with 14C-tyramine 

hydrochloride as substrate as previously described (Ugun-Klusek et al., 2019). Data 

were normalized for protein content and rates expressed as disintegrations of 



14C/min/μg protein. The student’s t test identified no significant differences. ns=not 

significant, nDiff=3.  

 

Dopamine (Catecholamine) oxidation assay 

The catecholamine oxidation assay was performed according to (Burbulla et al., 

2017) using Biodyne® B 0.45µm membranes (Pall corporation) and detection using 

a LiCOR fluorescent scanning device. The quantification performed using Image 

Studio from LiCOR. Representative blots and standard curve are shown. Mean FL 

units were plotted for each genotype, fraction and treatment. No outliers were 

removed. The student’s t tests were not significant (CTRL v PINK1 KO in each 

condition). 2-way ANOVA found significance across the genotypes (*=p0.144) 

including all the conditions. nDiff=3.  

 

Supplementary Figures and Legends 



 



Supplementary Figure S1, related to Figure 1: S1A) Example immunocytochemistry 

staining of MAP2, TH and FOXA2 in fixed hDANs. Representative images are shown 

(nDiff=4). S1B) Relative PINK1 gene expression in control and PINK1 KO hDAN clones using 

primers directed to exon1-4 and exon 2-4 (nDiff=3).  

 



Supplementary Figure S2, related to Figure 2: S2A) Readouts of mitochondrial morphology 

in hDANs from live cell imaging (nDiff=3, ns=not significant). S2B) Diagram showing work flow 

for MitoTimer experiments in hDANs. Right panel: MitoTimer live cell imaging red/green 

fluorescence intensity ratio of PINK1 KO hDANs normalised to the isogenic control **=p0.0043 

and *=p0.0222 (nDiff=3, error bars=SD). S2C) Tom22 fluorescence (APC-FL) detected by 

inside staining and flow cytometry in hDANs. ns=not significant (nDiff=3, error bars=SD). S2D) 

Upper panel respective Western blot of PGC1alpha in PINK1 KO hDANs and isogenic control 

under untreated conditions (UT) or valinomycin (VAL) 1µM, 24h (UT n=diff3-4; VAL n=2-3diff, 

error bars=SD). Lower panel densiometric quanitification of PGC1alpha signal normalised to 

GAPD and isogenic control. ns=not significant. S2E) Upper panel respective Western blot of 

SDHA and MTCO1 in PINK1 KO hDANs and healthy control under untreated conditions or 

valinomycin (VAL) 1µM, 24h (nDiff=3-5). Lower panel densiometric signal ratio of 

MTCO1/SDHA of PINK1 KO hDANs and healthy control (ns= not significant, *=p<0.05, error 

bars=SD). S2F) Total corrected cell Fluo4 fluorescence (cytosolic calcium) calculated for 

every live image frame across 1500 seconds (nDiff=4, error bars=SD) for CTRL and PINK1 

KO hDANs. S2G) Normalised ATP levels in CTRL and PINK1 KO hDANs (nDiff=4, error bars 

=SD, T-test).  



 

Supplementary Figure S3, related to Figure 3 A-F:  S3A) Left panel: Genes identified from 

RNA sequencing related to iron metabolism. Log2FC values are shown for PINK1 KO hDAN 

clonal lines versus isogenic control (n=3, nDiff=1). Right panel: Mean fold change of mRNA 

expression of iron related genes; CP, STEAP3, GCLC, SLC7A11 in PINK1 KO hDANs 

normalised to healthy control and HMBS (nDiff=4, error bars=SD). Lower panel: Expression 

of Mitoferrin-2. mRNA in PINK1 KO hDANs and isogenic control determined by qRT-PCR, 

results in mean fold change normalised to HMBS and control (nDiff=3; ****=p<0.0001). 

Western blot of Mitoferrin-2 in PINK1 KO hDANs compared to healthy control, mean protein 

band density normalised to GAPDH (nDiff=3-5, *=p<0.0179 **=p<0.0079). S3B) SDS–PAGE/ 

autoradiography analysis showing import of radiolabelled proteins 5S-pSU9-DHFR and 35S-



Fis1 in PINK1 KO and healthy control hDANs after different time points (2, 5 and 20 min), 

arrows indicate precursor and mature pSU9-DHFR protein (nDiff=4, error bars=SD).  S3C) 

Top panel: Mean rates of oxidised DiHET (Et) fluorescence signal increase (Ex 535nm/Em 

610) per sec in PINK1 KO and isogenic control hDANs untreated or treated with 10µM 

Rotenone/ 1mM BSO/ 50µM Mn-Tbap indicating cytosolic ROS (nDiff=3, error bars=SD). 

Bottom panel: Fluorescence signal increase of MCB-GSH adduct in PINK1 KO hDANs and 

isogenic control untreated or treated with 10µM Rotenone/ 1mM BSO/ 1mM BOS + 10µM 

Rotenone (nDiff=3). Values normalised per µg protein of cell lysates and to untreated healthy 

control. 



 

Supplementary Figure S4, related to Figure 3G-I:   S4A) Principal Component Analysis 

(PCA) was generated for the control, KO 1 and 2 metabolomics data comparison. Generally, 

all three groups have strong similarities between the first two principal components since the 



overlap is almost complete. S4B) Sparse partial least squares discriminant analysis (sPLS-

DA) algorithm allowed reducing the dimensional complexity and illustrated the changes 

driven by most significant features of the groups. Here, the group separation is significantly 

improved which correlates to multiple metabolites having significant p-values. S4C) sPLS-

DA loadings plot illustrates the metabolites which drive the group differences. Here, as top 

scoring metabolites are phenylalanine, tyrosine, glutamine and succinate, which we identify 

as main statistical significant metabolite changes. S4D) Pattern hunter was generated for 

glutamine and illustrated the top 25 metabolites which correlate the most strongly with this 

compound in the dataset (Pearson r distance measure). Glutamine concentration changes in 

this metabolic setup have the strongest correlation with fumarate, phenylalanine, tyrosine, 

succinate, aspartate, isoleucine, choline, threonine, glycine, alanine and glutamate, most of 

which are the amino acids supplying TCA cycle. S4E) Scatter plots were generated for all 

the metabolites of interest based on their changes between the control and KO groups. 

ns=not significant, *=p<0.05, **=p<0.005 (n=4, nDiff=2, error bars=SD).  

 



Supplementary Figure S5, related to Figure 5: S5A) Diagram of workflow and mitochondrial 

preparations from hDANs for quantitative mass spectrometry. S5B) Representative Western 

blot of NECAB2 (MitoNEET) and vinculin (loading control) in PINK1 KO hDANs and healthy 

control untreated or treated with 10µM CCCP for 0, 2, 6 (+/- 10µM MG132) for 24 hours. 

Densiometric quantification of NECAB2 Protein in untreated PINK1 KO hDANs and isogenic 

control normalized to Vinculin. Not significant. (nDiff=4, error bars=SD). S5C) Top annotate 

hits according to disease or function using Qiagen Ingenuity software. listed with respective p 

values. S5D) Plot of interactions between annotated biological pathways determined by 

Qiagen Ingenuity.  
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